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Abstract—This paper studies delay-dependent exponential
dissipative and l2–l∞ filtering problems for discrete-time
switched neural networks (DSNNs) including time-delayed states.
By introducing a novel discrete-time inequality, which is a
discrete-time version of the continuous-time Wirtinger-type
inequality, we establish new sets of linear matrix inequality (LMI)
criteria such that discrete-time filtering error systems are expo-
nentially stable with guaranteed performances in the exponential
dissipative and l2–l∞ senses. The design of the desired exponen-
tial dissipative and l2–l∞ filters for DSNNs can be achieved by
solving the proposed sets of LMI conditions. Via numerical sim-
ulation results, we show the validity of the desired discrete-time
filter design approach.

Index Terms—l2–l∞ filtering, discrete Wirtinger-type inequal-
ity, discrete-time switched neural networks (DSNNs), dissipative
filtering, exponential stability.

I. INTRODUCTION

OVER the past years, neural networks (NNs) have
attracted considerable attention since they are success-

fully applied in many fields, such as communication, com-
putational optimization problems, pattern recognition, and
signal processing [1]–[5]. The dynamic behavior of NNs
has been successfully described in these applications. The
stability criteria, state estimation, and control problems for
NNs [6]–[11] have received significant attention in recent
decades in the design of NNs for engineering applications.
In practical applications, it is should be noted that time
delay occurs frequently, and causes oscillation, divergence, and
instability. Therefore, many researchers have been interested
in studying time-delayed systems. In particular, with the
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successful introduction of the linear matrix inequality (LMI)
approach, many issues on this topic have been addressed in the
literature.

Hybrid systems which consist of continuous dynamics, dis-
crete dynamics, and the interaction between them have been
extensively used because of the rapid development of intel-
ligent control. The purpose of researching hybrid systems
originates from the fact that the hybrid control design gives
a successful solution for highly nonlinear complex dynamical
systems with uncertain parameters. Switched systems, which
are composed of a family of dynamical subsystems, are clas-
sified as a significant branch of hybrid systems. Hence, many
efforts have concentrated on the design and/or construction of
switched systems [12]–[15]. Recently, switched systems have
been integrated with NNs, because they can be used to model
several practical applications. Actually, many complex nonlin-
ear systems [16]–[18] are efficiently represented by switched
NNs as a mathematical model. Therefore, some considera-
tions in the stability analysis for switched NNs were studied
in [16], [17], and [19]–[22].

On the other hand, the filtering problem is an important
issue in control engineering due to the lack of sensors in
real applications (see, for instance, [23]–[28]). In particular,
practical considerations for utilizing relatively large-scale NNs
in real-world applications include the problem of estimating
neuron states. Often, neuron information is not completely
accessible, and only a partial state variable of the network is
obtained from the measurements of the network. Therefore, the
estimation of neuron states has great importance for achieving
certain objectives, and many studies have been conducted on
the state estimation of NNs [29]–[31]. Recently, filter design
techniques based on passivity [32]–[34], l2–l∞ [35], [36],
and H∞ [37]–[39] approaches for switched NNs were also
proposed. Up to now, it should be noted that all the afore-
mentioned studies have examined continuous-time NNs. In
the case of discrete-time NNs, various stability and state
estimation criteria have been introduced in [40]–[45], but rela-
tively few studies have examined the exponential stability and
state estimation problem [46]–[51]. A delay-dependent filter
design focused on discrete-time switched NNs (DSNNs) was
presented in [47]. Mathiyalagan et al. [48], Zhang et al. [49],
and Zhang et al. [50] proposed exponential H∞ filtering for
DSNNs with delays. Although research on discrete-time fil-
ter design is in progress, due to its importance, approaches



or results on discrete-time cases are lacking compared with
continuous-time cases. As far as we are aware, the previous
works do not completely cover the exponential dissipative and
l2–l∞ filtering problems of DSNNs. Due to this consideration,
the major objective of this paper is to study the problems
of exponential dissipative and l2–l∞ filter design for DSNNs
with time-delayed states. In this regard, we introduce new
delay-dependent exponential dissipative and l2–l∞ filters for
DSNNs with time delay. Based on a discrete-time Wirtinger-
type inequality, which is a new summation inequality, and a
discrete-time version of the continuous-time one, new sets of
delay-dependent LMI conditions are established such that fil-
tering error systems are exponentially stable with guaranteed
performances in the exponential dissipative and l2–l∞ senses.
By solving sets of the proposed LMIs, the desired filter gains
for DSNNs with time delay can be obtained. It is demon-
strated that the proposed filters are effective through numerical
examples.

The contents of this paper are as follows. In Section II, we
introduce the problem formulation. Sections III and IV, present
the delay-dependent conditions of the proposed exponential
dissipative and l2–l∞ filters, respectively, for DSNNs with time
delay. Section V presents numerical simulations to validate
the effectiveness of the developed filters, and conclusions are
given in Section VI.

Notation: The superscript T is employed to represent matrix
transposition. P > 0 means P is a positive definite matrix.
�max(P) and �min(P) represent the maximum and minimum
eigenvalues of P, respectively. An asterisk * is employed to
represent matrix expressions to induce a symmetric struc-
ture. diag{·} indicates a block-diagonal matrix. It is assumed
that matrices without precise definition of their dimensions
are compatible for algebraic operation. l2[0, T ] is the space
with the square-summable discrete-time vector sequences over

[0, T ] with the following norm: ‖x(k)‖2 =
√∑T

k=k0
xT(k)x(k)

for a vector x(k).

II. PROBLEM FORMULATION

As an effective approach of the hybrid system, DSNNs
that consist of subsystems change their mode according to
a switching rule and can be an efficient model for describ-
ing nonlinear dynamics. According to subsystems and the
switching rule, the DSNN model is represented as

x(k + 1) = Aσ(k)x(k) + Wσ(k)φ(x(k − d)) + Jσ(k)(k)

+ Gσ(k)w(k) (1)

y(k) = Cσ(k)x(k) + Dσ(k)x(k − d) + Fσ(k)w(k) (2)

z(k) = Hx(k) (3)

where x(k) ∈ Rn denotes the discrete-time state; y(k) ∈
Rm denotes the discrete-time output; z(k) ∈ Rl denotes
a discrete-time controlled output; w(k) ∈ Rp denotes
the discrete-time disturbance, which belongs to l2[0, T ];
d ≥ 0 denotes the discrete-time time delay; φ(x(k)) =
[φ1(x(k)), . . . , φn(x(k))]T ∈ Rn denotes the discrete-time non-
linear vector function; A = diag{a1, . . . , an} ∈ Rn×n (|ai| <

1, k = 1, . . . , n) denotes the feedback matrix; W ∈ Rn×n

denotes the weight matrix; G ∈ Rn×p, C ∈ Rm×n, D ∈ Rm×n,
F ∈ Rm×p, and H ∈ Rl×n are given matrices; J(k) ∈ Rn

denotes an exogenous input; and σ(k) denotes the switch-
ing signal, which can be changed within the finite set N =
{1, 2, . . . , N}. Let us assume that the switching signal, which
may become autonomous, state- or time-dependent, or con-
trolled, is not known previously, but its instant value can be
obtained in real-time application. The holding time between
[kt, kt+1] is said to be the dwell time of the presently consid-
ered discrete-time subsystem for the switching time sequences
k0 < k1 < k2 < · · · of switching signal σ , where t is a
non-negative integer. φ(·) is assumed to satisfy the following
assumption.

Assumption 1 [52]: For given constant scalars λ−
i , λ+

i , the
neuron activation function holds the following condition such
that:

λ−
i � φi(s1) − φi(s2)

s1 − s2
� λ+

i ∀s1, s2, s1 �= s2 (4)

for i = 1, 2, . . . , n. Hereafter, the notation of the constant
bound matrices of the activation function is represented as

�1 � diag
(
λ−

1 λ+
1 , λ−

2 λ+
2 , . . . , λ−

n λ+
n

)

�2 � diag

(
λ−

1 + λ+
1

2

λ−
2 + λ+

2

2
, . . . ,

λ−
n + λ+

n

2

)
. (5)

Remark 1: The constants λ−
i and λ+

i in Assumption 1 can
be negative, zero, or positive. This implies that the activation
functions are nonmonotonic. Recently, they have been com-
monly considered Lipschitz conditions. For less conservative
results, this assumption is introduced.

Remark 2: It is commonly accepted that the activation func-
tions are continuous, differential, bounded, and monotonically
increasing, such as a sigmoid-type function. This type denotes
the class of global Lipschitz activation functions. On the other
hand, Assumption 1 represents the nonmonotonic activation
function, because the constants λ−

i and λ+
i are assumed to

be negative, zero, or positive. These nonmonotonic functions
are more general ones [52] than the class of global Lipschitz
functions and can be more suitable for describing the acti-
vation function of the neuron in designing and implementing
an NN.

The ith switched subsystem model is expressed by

x(k + 1) = Aix(k) + Wiφ(x(k − d)) + Ji(k)

+ Giw(k) (6)

y(k) = Cix(k) + Dix(k − d) + Fiw(k) (7)

z(k) = Hx(k). (8)

Our main interest is estimating the state vector. Thus, the filter
for DSNNs (6)–(8) is designed by

x̂(k + 1) = Aix̂(k) + Wiφ
(
x̂(k − d)

)+ Ji(k)

+ Li(y(k) − ŷ(k)) (9)

ŷ(k) = Cix̂(k) + Dix̂(k − d) (10)

ẑ(k) = Hx̂(k) (11)

where x̂(k) ∈ Rn is the discrete-time state signal of the esti-
mator and ŷ(k) ∈ Rm is the discrete-time output signal of the



estimator. Li ∈ Rn×m is the filter gain, and our main objective
is to obtain a suitable filter gain matrix Li. It is assumed that
the filter and system (1)–(3) share the same switching signal
σ(k) which is said to be mode-dependent. Let the filtering
errors be denoted as e(k) = x(k)− x̂(k) and z̃(k) = z(k)− ẑ(k).
By combining the state estimator (9)–(11) and the switched
NN (6)–(8), the discrete-time filtering error system is obtained
as follows:

e(k + 1) = (Ai − LiCi)e(k) − LiDie(k − d)

+ Wiφ̃(x(k − d)) + (Gi − LiFi)w(k) (12)

z̃(k) = He(k) (13)

where φ̃(x(k − d)) = φ(x(k − d)) − φ(x̂(k − d)).
Definition 1: Under a known switching signal σ(k), the

exponential stability result of the discrete-time filtering error
system (12) is ascertained if there are some scalars δ > 0 and
0 < χ < 1 satisfying

‖e(k)‖2 < δχk−k0‖e(k0)‖2
L k ≥ k0 (14)

where χ is the decay rate, ‖e(k0)‖L = supk0−d�θ�k0
‖e(θ)‖,

and k0 is an initial time.
Definition 2 [47], [49]: Under a known switching signal

σ(k), k ≥ k0, and k0 � τ � k, let define Nσ (k0, k) as the
number of times to switch within [k0, k]. If there are Ta > 0
and N0 ≥ 0 such that Nσ (k0, k) � N0 +(k−k0)/Ta is satisfied,
then N0 and Ta are called the chatter bound and the average
dwell time, respectively. As it is generally used, we select
N0 = 0.

Definition 3: Let the energy supply function be defined as
E(e(k), w(k)) = eT(k)Qe(k) + 2eT(k)Sw(k) + wT(k)Rw(k).
Given scalars α > 0 and 0 < ρ < 1, the fil-
tering error system (12) is said to be strictly (Q,S,R)
exponentially dissipative, under the zero initial condition,
if the following condition is satisfied for every nonzero
w(k) ∈ l2[0, T ]:

T∑
s=k0

E(e(s), w(s)) ≥ α

T∑
s=k0

(1 − ρ)swT(s)w(s) (15)

where k0 is an initial time and Q,S, and R are real matrices
with symmetric Q and R. For convenience, assume Q � 0
and −Q = QT−Q− for some Q−.

Definition 4: Under a known scalars γ > 0 and 0 < ρ < 1,
the filtering error system (12) is said to have a guaranteed
exponential l2–l∞ index γ if the following condition is sat-
isfied for every nonzero w(k) ∈ l2[0, T ] under a zero initial
condition:

sup
k∈[k0,T ]

(1 − ρ)kz̃T(k)z̃(k) � γ 2
T∑

s=k0

wT(s)w(s) (16)

where k0 is an initial time.
The major focus of this paper is finding appropriate filter

gain such that the exponential stability result of the discrete-
time filtering error system (12) is ensured for w(k) = 0
with the performance indices given in Definitions 3 and 4 for
w(k) �= 0.

Before moving on, to propose a new summation inequality
called the discrete form of the vector Wirtinger-type inequality,
the following lemma is required.

Lemma 1 [53]: For some symmetric constant matrix S ≥ 0,
scalar d > 0, and a vector η(k) = e(k + 1) − e(k), we obtain

−
k−1∑

s=k−d

ηT(s)Sη(s) � −1

d

k−1∑
s=k−d

ηT(s)S
k−1∑

s=k−d

η(s). (17)

Using Lemma 1, we present a discrete form of the vector
Wirtinger-type inequality as follows.

Lemma 2 (Discrete Form of Vector Wirtinger-Type
Inequality): Let η(k) = e(k + 1) − e(k) ∈ Rn be the discrete
derived function on the interval [a, b]. Then, for any n × n
matrix R > 0, scalar d > 0, the following relation is satisfied:

−
k−1∑

s=k−d

ηT(s)Rη(s) � − 2

d3

⎛
⎝

k−1∑
s=k−d

e(s)

⎞
⎠

T

R

⎛
⎝

k−1∑
s=k−d

e(s)

⎞
⎠

− 2

d
eT(k − d)Re(k − d)

+ 4

d2

⎛
⎝

k−1∑
s=k−d

e(s)

⎞
⎠

T

Re(k − d). (18)

Proof: It is assumed that 2 < d < k holds, and the summa-
tion is only allowed to increase the index of summation. The
result of the summations with regard to the decreasing direc-
tion is zero [e.g.,

∑b
s=a η(s) � 0 if a > b]. From Lemma 1,

one can obtain

1

d

⎛
⎝

k−1∑
s=k−d

[e(s) − e(k − d)]

⎞
⎠

T

R

⎛
⎝

k−1∑
s=k−d

[e(s) − e(k − d)]

⎞
⎠

�
k−1∑

s=k−d

(
[e(s) − e(k − d)]TR[e(s) − e(k − d)]

)

=
k−1∑

s=k−d

⎛
⎜⎝
⎡
⎣

s−1∑
j=k−d

η(j)

⎤
⎦

T

R

⎡
⎣

s−1∑
j=k−d

η(j)

⎤
⎦
⎞
⎟⎠

�
k−1∑

s=k−d

s−1∑
j=k−d

(s − k + d)ηT(j)Rη(j)

=
k−2∑

j=k−d

k−1∑
s=j+1

(s − k + d)ηT(j)Rη(j)

=
k−2∑

j=k−d

(
d2

2
− (j − k + d)2

2
− j − k + 2d

2

)
ηT(j)Rη(j)

� d2

2

k−2∑
j=k−d

ηT(j)Rη(j)

� d2

2

k−1∑
s=k−d

ηT(s)Rη(s).



Note that

⎛
⎝

k−1∑
s=k−d

[e(s) − e(k − d)]

⎞
⎠

T

R

⎛
⎝

k−1∑
s=k−d

[e(s) − e(k − d)]

⎞
⎠

=
⎛
⎝

k−1∑
s=k−d

e(s)

⎞
⎠

T

R

⎛
⎝

k−1∑
s=k−d

e(s)

⎞
⎠+ d2eT(k − d)Re(k − d)

− 2d

⎛
⎝

k−1∑
s=k−d

e(s)

⎞
⎠

T

Re(k − d).

Thus, we have the discrete form of the vector Wirtinger-type
inequality (18). This completes the proof.

III. STRICTLY (Q,S,R) EXPONENTIALLY DISSIPATIVE

FILTER DESIGN FOR DSNNS WITH TIME DELAY

This section establishes a new set of sufficient con-
ditions for a discrete-time strictly (Q,S,R) exponen-
tially dissipative DSNN filter design scheme (6)–(8). The
designed filter gain matrix guarantees that the filtering error
system (12) satisfies the performance index presented in
Definition 3.

Theorem 1: Based on Assumption 1, for prescribed scalars
d > 0, σ > 0, α > 0, μ ≥ 1, and 0 < ρ < 1, if there are
matrices Pi = PT

i > 0, Qi = QT
i > 0, Ri = RT

i > 0, Si =
ST

i > 0, and Ni = [NT
1i NT

2i NT
3i NT

4i NT
5i NT

6i]
T; diagonal matrix

� > 0; and Mi for certain switching signal σ(k) satisfying the
average dwell time with Ta ≥ T∗

a = − ln μ/ ln(1 − ρ), such
that
⎡
⎢⎢⎣

�Di

√
d(1 − ρ)dNi ϒT

i

√
d�T

i∗ −Si 0 0
∗ ∗ −Pi 0
∗ ∗ ∗ −2σPi + σ 2Si

⎤
⎥⎥⎦ < 0

(19)

Pi � μPj, Qi � μQj, Ri � μRj, Si � μSj

(20)

for all i, j ∈ N, i �= j, where

�Di =

⎡
⎢⎢⎢⎢⎢⎢⎣

�11i �12i �13i �14i �15i �16i

∗ �22i �23i �24i �25i �26i

∗ ∗ �33i �34i 0 0
∗ ∗ ∗ �44i �45i �46i

∗ ∗ ∗ ∗ �55i 0
∗ ∗ ∗ ∗ ∗ −[R − αI]

⎤
⎥⎥⎥⎥⎥⎥⎦

�11i = −(1 − ρ)Pi + Qi + (1 − ρ)d(N1i + NT
1i

)

+ dRi − Q
�12i = (1 − ρ)d(NT

2i − N1i)

�13i = (1 − ρ)dNT
3i, �14i = (1 − ρ)d(NT

4i − N1i
)

�15i = (1 − ρ)dNT
5i, �16i = (1 − ρ)dNT

6i − S

�22i = −(1 − ρ)dQi − �1� − 2(1 − ρ)d

d
Si

− (1 − ρ)d(N2i + NT
2i

)

�23i = 2(1 − ρ)d

d2
Si − (1 − ρ)dNT

3i

�24i = −(1 − ρ)d(NT
4i + N2i

)

�25i = �2� − (1 − ρ)dNT
5i, �26i = −(1 − ρ)dNT

6i

�33i = −2(1 − ρ)d

d3
Si − (1 − ρ)d

d
Ri

�34i = −(1 − ρ)dN3i, �44i = −(1 − ρ)d(N4i + NT
4i

)

�45i = −(1 − ρ)dNT
5i, �46i = −(1 − ρ)dNT

6i

�55i = −�

ϒi = [(PiAi − MiCi) − MiDi 0 PiWi

(PiGi − MiFi)]

�i = [(PiAi − MiCi − Pi) − MiDi 0 PiWi

(PiGi − MiFi)] (21)

then the exponential stability result of the discrete-time fil-
tering error system is ensured for w(k) = 0 and the
strictly (Q,S,R) exponential dissipativity of the filtering
error system is ensured for all nonzero w(k). Then, the
desired filter gain matrix in (9) is calculated by Li = P−1

i Mi

for i ∈ N.
Proof: Choose the piecewise Lyapunov–Krasovskii

functional

Vi(k) =
4∑

s=1

Vsi(k) (22)

where

V1i(k) = eT(k)Pie(k)

V2i(k) =
k−1∑

s=k−d

eT(s)(1 − ρ)k−s−1Qie(s)

V3i(k) =
−1∑

j=−d

k−1∑
s=k+j

eT(s)(1 − ρ)k−s−1Rie(s)

V4i(k) =
−1∑

j=−d

k−1∑
s=k+j

ηT(s)(1 − ρ)k−s−1Siη(s)

where η(s) = e(s + 1) − e(s). Let the exponential forward
differences of Vi(k) and Vsi(k) be defined as �Vi(k) = Vi(k +
1) − Vi(k) and �Vsi(k) = Vsi(k + 1) − Vsi(k) for s = 1, . . . , 3
and i ∈ N, respectively; then we obtain

�V1i(k) + ρV1i(k) = eT(k + 1)Pie(k + 1)

− (1 − ρ)eT(k)Pie(k) (23)

�V2i(k) + ρV2i(k) = eT(k)Qie(k)

− (1 − ρ)deT(k − d)Qie(k − d) (24)

�V3i(k) + ρV3i(k) � deT(k)Rie(k)

− (1 − ρ)d
k−1∑

s=k−d

eT(s)Rie(s)

� deT(k)Rie(k)

− (1 − ρ)d

d

k−1∑
s=k−d

eT(s)Ri

k−1∑
s=k−d

e(s)

(25)



�V4i(k) + ρV4i(k) � dηT(k)Siη(k)

− (1 − ρ)d
k−1∑

s=k−d

ηT(s)Siη(s). (26)

Based on Assumption 1, it is apparent that

[
e(k − d)

φ̃(x(k − d))

]T
⎡
⎣ λ−

j λ+
j ejeT

j −λ−
j +λ+

j
2 ejeT

j

−λ−
j +λ+

j
2 ejeT

j ejeT
j

⎤
⎦

×
[

e(k − d)

φ̃(x(k − d))

]
� 0, j = 1, . . . , n

where ej is the unit column vector, which has a “1” element on
its jth row and zeros elsewhere. Let � = diag{ω1, ω2, . . . , ωn};
then

n∑
j=1

ωj

[
e(k − d)

φ̃(x(k − d))

]T

⎡
⎢⎢⎣

λ−
j λ+

j ejeT
j −λ−

j + λ+
j

2
ejeT

j

−λ−
j + λ+

j

2
ejeT

j ejeT
j

⎤
⎥⎥⎦

×
[

e(k − d)

φ̃(x(k − d))

]
� 0

or

[
e(k − d)

φ̃(x(k − d))

]T[
�1� −�2�

−�2� �

][
e(k − d)

φ̃(x(k − d))

]
� 0

which is rewritten as

eT(k − d)�1�e(k − d) − 2eT(k − d)�2�φ̃(x(k − d))

+ φ̃T(x(k − d))�φ̃(x(k − d)) � 0. (27)

By combining (23)–(27), we obtain

�Vi(k) + ρVi(k)

� eT(k + 1)Pie(k + 1) − (1 − ρ)eT(k)Pie(k)

+ eT(k)Qie(k) − (1 − ρ)deT(k − d)Qie(k − d)

+ deT(k)Rie(k) − (1 − ρ)d

d

k−1∑
s=k−d

e(s)TRi

k−1∑
s=k−d

e(s)

+ dηT(k)Siη(k) − (1 − ρ)d
k−1∑

s=k−d

ηT(s)Siη(s)

− eT(k − d)�1�e(k − d)

+ 2eT(k − d)�2�φ̃(x(k − d))

− φ̃T(x(k − d))�φ̃(x(k − d)). (28)

According to the free-weighting matrix technique [54], the
following expression is possible for any appropriately dimen-
sional matrix Ni:

2(1 − ρ)dξT(k)Ni

⎡
⎣e(k) − e(k − d) −

k−1∑
s=k−d

η(s)

⎤
⎦ = 0 (29)

where

ξ(k) =
⎡
⎣eT(k), eT(k − d),

k−1∑
s=k−d

eT(s)

k−1∑
s=k−d

ηT(s), φ̃T(x(k − d)), wT(k)

⎤
⎦

T

. (30)

If we add the terms on the left-hand side of (29) and �(k) =
αwT(k)w(k) − E(e(k), w(k)) to the upper bound of �Vi(k) +
ρVi(k) in (28) and apply the change of variable such that
Mi = PiLi, we can obtain

�Vi(k) + ρVi(k) + �(k)

� ξT(k)
{
�i + d(1 − ρ)dNiS

−1
i NT

i

+ d�T
i P−1

i SiP
−1
i �i + ϒT

i P−1
i ϒi

}
ξ(k)

− (1 − ρ)d
k−1∑

s=k−d

[
ξT(k)Ni + ηT(s)Si

]
S−1

i

× [
NT

i ξ(k) + Siη(s)
]

= ξT(k)
{
�i + d(1 − ρ)dNiS

−1
i NT

i

+ d�T
i P−1

i SiP
−1
i �i + ϒT

i P−1
i ϒi

}
ξ(k)

− d(1 − ρ)dξT(k)NiS
−1
i NT

i ξ(k)

− 2(1 − ρ)dξT(k)Ni

k−1∑
s=k−d

η(s)

− (1 − ρ)d
k−1∑

s=k−d

ηT(s)Siη(s) (31)

where

�i =

⎡
⎢⎢⎢⎢⎢⎢⎣

�11i �12i �13i �14i �15i �16i

∗ �22i �23i �24i �25i �26i

∗ ∗ �33i 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ �55i 0
∗ ∗ ∗ ∗ ∗ −[R − αI]

⎤
⎥⎥⎥⎥⎥⎥⎦

�11i = −(1 − ρ)Pi + Qi + (1 − ρ)d(N1i + NT
1i

)+ dRi − Q
�12i = (1 − ρ)d(NT

2i − N1i
)

�13i = (1 − ρ)dNT
3i, �14i = (1 − ρ)dNT

4i

�15i = (1 − ρ)dNT
5i, �16i = (1 − ρ)dNT

6i − S
�22i = −(1 − ρ)dQi − �1� − (1 − ρ)d(N2i + NT

2i

)

�23i = −(1 − ρ)dNT
3i, �24i = −(1 − ρ)dNT

4i

�25i = �2� − (1 − ρ)dNT
5i, �26i = −(1 − ρ)dNT

6i

�33i = − (1 − ρ)d

d
Ri, �55i = −�. (32)

From Lemma 2, we can obtain

− (1 − ρ)d
k−1∑

s=k−d

ηT(s)Siη(s)

� −2(1 − ρ)d

d3

⎛
⎝

k−1∑
s=k−d

e(s)

⎞
⎠

T

Si

⎛
⎝

k−1∑
s=k−d

e(s)

⎞
⎠



− 2(1 − ρ)d

d
eT(k − d)Sie(k − d)

+ 4(1 − ρ)d

d2

⎛
⎝

k−1∑
s=k−d

e(s)

⎞
⎠

T

Sie(k − d)

which applies to (31). Then, we have

�Vi(k) + ρVi(k) + �(k)

� ξT(k)
{
�Di + d(1 − ρ)dNiS

−1
i NT

i

+ d�T
i P−1

i SiP
−1
i �i + ϒT

i P−1
i ϒi

}
ξ(k)

− d(1 − ρ)dξT(k)NiS
−1
i NT

i ξ(k)

where �Di is defined in (21). Since Si > 0, −d(1 −
ρ)dξT(k)NiS

−1
i NT

i ξ(k) � 0, if the inequality

�Di + d(1 − ρ)dNiS
−1
i NT

i + d�T
i P−1

i SiP
−1
i �i

+ ϒT
i P−1

i ϒi < 0 (33)

is satisfied for i = 1, . . . , N, we obtain

�Vi(k) + ρVi(k) + �(k) � 0. (34)

According to the Schur complement, the inequality (33)
changes to �i < 0 for i = 1, . . . N, where

�i =

⎡
⎢⎢⎢⎣

�Di

√
d(1 − ρ)dNi ϒT

i

√
d�T

i
∗ −Si 0 0
∗ ∗ −Pi 0
∗ ∗ ∗ −PiS

−1
i Pi

⎤
⎥⎥⎥⎦ (35)

for i = 1, . . . , N. Note that (35) is not an LMI condition
due to the term −PiS

−1
i Pi. Given the inequality PiS

−1
i Pi ≥

2ηPi − η2Si resulting from

(Pi − ηSi)
TS−1

i (Pi − ηSi) = PiS
−1
i Pi − 2ηPi + η2Si ≥ 0

the LMI condition (19) implies (35). The filter gain matrix is
then calculated by Li = P−1

i Mi. Based on (34), it is easy to
obtain

Vi(k) � (1 − ρ)k−k0 Vi(k0) −
k−1∑
s=k0

(1 − ρ)k−s−1�(s). (36)

From (20) and (36), one can obtain

Vσ(k)(k) � (1 − ρ)k−kt Vσ(kt)(kt) −
k−1∑
s=kt

(1 − ρ)k−s−1�(s)

� (1 − ρ)k−ktμVσ(kt−1)(kt) −
k−1∑
s=kt

(1 − ρ)k−s−1�(s)

� (1 − ρ)k−ktμ

⎡
⎣(1 − ρ)kt−kt−1Vσ(kt−1)(kt−1)

−
kt−1∑

s=kt−1

(1 − ρ)kt−s−1�(s)

⎤
⎦

−
k−1∑
s=kt

(1 − ρ)k−s−1�(s)

� · · · � (1 − ρ)k−k0μNσ (k0,k)Vσ(k0)(k0)

− (1 − ρ)k−k1μNσ (k0,k)
k1−1∑
s=k0

(1 − ρ)k1−s−1�(s)

− (1 − ρ)k−k2μNσ (k1,k)
k2−1∑
s=k1

(1 − ρ)k2−s−1�(s)

· · · −
k−1∑
s=kt

(1 − ρ)k−s−1�(s)

= (1 − ρ)k−k0μNσ (k0,k)Vσ(k0)(k0)

−
k−1∑
s=k0

μNσ (s,k)(1 − ρ)k−s−1�(s). (37)

Under a zero initial condition, (37) becomes

k−1∑
s=k0

μNσ (s,k)(1 − ρ)k−s−1�(s) � 0. (38)

Substituting �(s) into (38) yields

α

k−1∑
s=k0

μNσ (s,k)(1 − ρ)k−s−1wT(s)w(s)

�
k−1∑
s=k0

μNσ (s,k)(1 − ρ)k−s−1E(e(s), w(s)). (39)

Multiplying both sides of (39) by μ−Nσ (0,k) yields

α

k−1∑
s=k0

μ−Nσ (0,s)(1 − ρ)k−s−1wT(s)w(s)

�
k−1∑
s=k0

μ−Nσ (0,s)(1 − ρ)k−s−1E(e(s), w(s)). (40)

Then, due to the fact that

Nσ (0, s) � s

Ta
� −s ln(1 − ρ)

ln μ
(41)

we have

α

k−1∑
s=k0

μ
s ln(1−ρ)

ln μ (1 − ρ)k−s−1wT(s)w(s)

�
k−1∑
s=k0

(1 − ρ)k−s−1E(e(s), w(s)). (42)

Therefore

α

k−1∑
s=k0

(1 − ρ)s(1 − ρ)k−s−1wT(s)w(s)

�
k−1∑
s=k0

(1 − ρ)k−s−1E(e(s), w(s)) (43)

which implies that

α

T∑
s=k0

(1 − ρ)swT(s)w(s) �
T∑

s=k0

E(e(s), w(s)). (44)



Next, it will be shown that the filtering error system (12)
and (13) for w(k) = 0 is exponentially stable. If w(k) = 0,
from (34), we have

Vi(k + 1) � (1 − ρ)Vi(k) + E(e(k), w(k))

� (1 − ρ)Vi(k) (45)

which leads to

Vσ(k)(k) � (1 − ρ)k−kt Vσ(kt)(kt)

� μNσ (k0,k)(1 − ρ)k−k0 Vσ(k0)(k0). (46)

We know that N(k0, k) � (k − k0)/Ta, and then (46) becomes

Vσ(k)(k) �
(
(1 − ρ)μ

1
Ta

)k−k0
Vσ(k0)(k0). (47)

It can be established from (22) that

β1‖e(k)‖2 � Vσ(k)(k) (48)

and

β2‖e(k0)‖2
L ≥ Vσ(k0)(k0) (49)

where β1 = min∀i∈N �min(Pi) and β2 = max∀i∈N �max(Pi) +
d max∀i∈N �max(Qi) + d2 max∀i∈N �max(Ri) +
4d2 max∀i∈N �max(Si). From (46)–(49), we have

β1‖e(k)‖2 � Vσ(k)(k)

�
(
(1 − ρ)μ

1
Ta

)k−k0
Vσ(k0)(k0)

�
(
(1 − ρ)μ

1
Ta

)k−k0
β2‖e(k0)‖2

L. (50)

Now, we have

‖e(k)‖2 � β2

β1

(
(1 − ρ)μ

1
Ta

)k−k0‖e(k0)‖2
L. (51)

From Definition 1, the exponential stability result of the
discrete-time error system (12) and (13) is ensured with
δ = β2/β1 and χ = ((1 − ρ)μ(1/Ta)). Note that δ > 0 and
0 < χ < 1. This completes the proof.

Remark 3: The optimal dissipativity performance bound α∗
can be derived through the maximization problem of α subject
to Pi > 0, Qi > 0, Ri > 0, Si > 0, and the LMI conditions
in (19) and (20) for i ∈ N.

Next, consider DSNNs without time delay. When there is
no delay in the activation function, the DSNN filtering error
system can be described as follows:

e(k + 1) = (Ai − LiCi)e(k) + Wiφ̃(x(k))

+ (Gi − LFi)w(k) (52)

z̃(k) = He(k) (53)

where φ̃(x(k)) = φ(x(k)) − φ(x̂(k)). Then, we can show the
exponential stability with the strictly (Q,S,R) dissipative
performance of the discrete-time filtering error system (52)
and (53) without delay in the following corollary.

Corollary 1: Based on Assumption 1, for prescribed scalars
α > 0, μ ≥ 1, and 0 < ρ < 1, if there are matrices Pi =
PT

i > 0, diagonal matrix � > 0, and Mi for certain switching

signal σ(k) satisfying the average dwell time with Ta ≥ T∗
a =

− ln μ/ ln(1 − ρ), such that

⎡
⎢⎢⎣

−(1 − ρ)Pi − Q − �1� �2�

∗ �

∗ ∗
∗ ∗

−S (PiAi − MiCi)
T

0 PiWT
i

−[R − α]I (PiGi − MiFi)
T

∗ −Pi

⎤
⎥⎥⎦ < 0

Pi � μPj

for all i, j ∈ N, i �= j, then the exponential stability result of the
discrete-time filtering error system is ensured for w(k) = 0 and
the strictly (Q,S,R) exponential dissipativity of the filtering
error system is ensured for all nonzero w(k). The desired filter
gain matrix is calculated by Li = P−1

i Mi.
Proof: The proof of Corollary 1 can be derived by selecting

the Lyapunov function V(k) = eT(k)Pie(k) and following the
proof of Theorem 1.

IV. EXPONENTIAL l2–l∞ FILTER DESIGN

FOR DSNNS WITH TIME DELAY

Theorem 1 represents an exponentially dissipative filtering
approach, which contains exponential passivity and exponen-
tial H∞ filters as special cases. The exponential H∞ filter
design considers the filtering error for the worst possible
bounded disturbance; that is, an energy-to-energy guaranteed
gain for disturbance is considered. However, it cannot cover
exponential l2–l∞ performance, which can enable the peak
filtering error to be investigated for all possible bounded dis-
turbances [40]. Thus, in this section, the design technique
of an exponential l2–l∞ filter for DSNN (6)–(8) is intro-
duced. The desired filter gain guarantees that the filtering
error system (12) satisfies the performance index presented
in Definition 4. Theorem 2 presents a new set of sufficient
criteria for the presence of the proper filter for DSNN (6)–(8).

Theorem 2: Based on Assumption 1, for prescribed scalars
d > 0, σ > 0, γ > 0, μ ≥ 1, and 0 < ρ < 1, if there are
matrices Pi = PT

i > 0, Qi = QT
i > 0, Ri = RT

i > 0, Si =
ST

i > 0, and Ni = [NT
1i NT

2i NT
3i NT

4i NT
5i NT

6i]
T; diagonal matrix

�i > 0; and Mi for certain switching signal σ(k) satisfying
the average dwell time with Ta ≥ T∗

a = − ln μ/ ln(1 − ρ),
such that

⎡
⎢⎢⎢⎣

�Li

√
d(1 − ρ)dNi ϒT

i

√
d�T

i
∗ −Si 0 0
∗ ∗ −Pi 0
∗ ∗ ∗ −2σPi + σ 2Si

⎤
⎥⎥⎥⎦ < 0 (54)

[
Pi HT

H γ 2I

]
> 0 (55)

Pi � μPj, Qi � μQj, Ri � μRj, Si � μSj

(56)



for all i, j ∈ N, i �= j, where

�Li =

⎡
⎢⎢⎢⎢⎢⎢⎣

�̂11i �12i �13i �14i �15i �̂16i

∗ �22i �23i �24i �25i �26i

∗ ∗ �33i �34i 0 0
∗ ∗ ∗ �44i �45i �46i

∗ ∗ ∗ ∗ �55i 0
∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎦

(57)

with

�̂11i = −(1 − ρ)Pi + Qi + (1 − ρ)d(N1i + NT
1i

)+ dRi

�̂16i = (1 − ρ)dNT
6i (58)

and other terms ({�12i · · · �55i}) are the same as those in
Theorem 1, then the exponential stability result of the discrete-
time filtering error system is ensured with exponential l2–l∞
index γ and the desired filter gain matrix in (9) is obtained
by Li = P−1

i Mi.
Proof: By replacing �(k) in Theorem 1 with �(k) =

−wT(k)w(k), one can easily obtain

�̂i =

⎡
⎢⎢⎢⎢⎢⎢⎣

�̂11i �12i �13i �14i �15i �̂16i

∗ �22i �23i �24i �25i �26i

∗ ∗ �33i 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ �55i 0
∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎦

(59)

instead of �i presented in Theorem 1, where �̂11i = −(1 −
ρ)Pi+Qi+(1−ρ)d(N1i+NT

1i)+dRi, �̂16i = (1−ρ)dNT
6i, and the

other terms are the same as those in (32). Then, by following
the proof in Theorem 1 after replacing �i with �̂i, one can
show that discrete-time filtering error system (12) is globally
exponentially stable for w(k) = 0. Next, we will show that the
performance index prescribed in Definition 4 is satisfied using
the Lyapunov–Krasovskii functional in (22). We introduce the
following new performance index:

Ji(k) = Vi(k) − (1 − ρ)k−k0Vi(k0)

−
k−1∑
s=k0

(1 − ρ)k−s−1wT(s)w(s)

=
k−1∑
s=k0

(1 − ρ)k−s−1(�Vi(s) + ρVi(s) − wT(s)w(s)
)
.

Using the proof in Theorem 1, �Vi(k)+ρVi(k)−wT(k)w(k) <

0 is satisfied under the condition of Theorem 2. Thus, we have
Ji(k) < 0, which leads to

Vi(k) � (1 − ρ)k−k0Vi(k0) +
k−1∑
s=k0

(1 − ρ)k−s−1wT(s)w(s).

Hence, for any switching signal σ(k), it holds that

Vσ(k)(k) � (1 − ρ)k−k0 Vσ(k)(k0)

+
k−1∑
s=k0

(1 − ρ)k−s−1wT(s)w(s). (60)

From (56) and (60), we obtain

Vσ(k)(k) � (1 − ρ)k−kt Vσ(k)(kt)

+
k−1∑
s=kt

(1 − ρ)k−s−1wT(s)w(s)

� (1 − ρ)k−ktμVσ(kt−1)(kt)

+
k−1∑
s=kt

(1 − ρ)k−s−1wT(s)w(s)

� (1 − ρ)k−ktμ

⎡
⎣(1 − ρ)kt−kt−1Vσ(kt−1)(kt−1)

+
kt−1∑

s=kt−1

(1 − ρ)kt−s−1wT(s)w(s)

⎤
⎦

+
k−1∑
s=kt

(1 − ρ)k−s−1wT(s)w(s)

� · · · � (1 − ρ)k−k0μNσ (k0,k)Vσ(k0)(k0)

+
k−1∑
s=k0

μNσ (s,k)(1 − ρ)k−s−1wT(s)w(s). (61)

Assuming the zero initial condition, the following is given by
the above equation as:

Vσ(k)(k) �
k−1∑
s=k0

μNσ (s,k)(1 − ρ)k−s−1wT(s)w(s). (62)

Multiplying both sides of (62) by μ−Nσ (0,k) gives

μ−Nσ (0,k)Vσ(k)(k)

�
k−1∑
s=k0

μ−Nσ (0,s)(1 − ρ)k−s−1wT(s)w(s). (63)

Then, due to the fact that

Nσ (0, k) � k

Ta
� −k ln(1 − ρ)

ln μ
(64)

we have

(1 − ρ)kVi(k) �
k−1∑
s=k0

wT(s)w(s). (65)

From (55) and (65), we obtain

(1 − ρ)kz̃T(k)z̃(k) − γ 2
k−1∑
s=k0

wT(s)w(s)

� (1 − ρ)k
{

z̃T(k)z̃(k) − γ 2Vi(k)
}

� (1 − ρ)keT(k)
(

HTH − γ 2Pi

)
e(k) < 0 (66)

which further implies that the exponential l2–l∞ performance
in Definition 4 is guaranteed under the zero initial condition.
Then, the proof is completed.

Remark 4: The minimum exponential l2–l∞ performance
bound γ ∗ can be derived from the minimization problem of



γ subject to Pi > 0, Qi > 0, Ri > 0, Si > 0, and the LMI
conditions in (54)–(56) for i ∈ N.

Remark 5: Compared with the normal l2–l∞ performance
index, the exponential l2–l∞ performance index includes a
weighting parameter (1 − ρ). If a ρ close to 1 is selected, the
exponential l2–l∞ performance index (16) puts more weight on
the filtering error peak value during the initial period of time.
If a ρ close to zero is selected, the performance index (16)
becomes the normal l2–l∞ performance. Thus, the exponen-
tial l2–l∞ performance can be regarded as an extension of the
normal l2–l∞ performance.

Next, we consider DSNNs without delay. Based on the fil-
tering error system (52) and (53), exponential stability with
guaranteed exponential l2–l∞ performance for DSNNs without
delay is presented in Corollary 2.

Corollary 2: Based on Assumption 1, for prescribed scalars
γ > 0, μ ≥ 1, and 0 < ρ < 1, if there exist matrices Pi =
PT

i > 0, diagonal matrix � > 0, and Mi for certain switching
signal σ(k) satisfying the average dwell time with Ta ≥ T∗

a =
− ln μ/ ln(1 − ρ), such that

⎡
⎢⎢⎣

−(1 − ρ)Pi − �1�i �2�i 0 (PiAi − MiCi)
T

∗ −�i 0 PiWT
i

∗ ∗ −I (PiGi − MiFi)
T

∗ ∗ ∗ −Pi

⎤
⎥⎥⎦ < 0

[
Pi HT

H α2I

]
> 0

Pi � μPj

for all i, j ∈ N, i �= j, then we can say that the exponential
stability of the discrete-time filtering error system (52) and
(53) is ensured with exponential l2–l∞ index γ , and the desired
filter gain is obtained by Li = P−1

i Mi.
Proof: The proof of Corollary 2 is easily derived by select-

ing the Lyapunov function V(k) = eT(k)Pie(k) and following
the proof of Theorem 2.

Remark 6: Based on a μ-dependent approach,
Zhang et al. [49], [50] designed the exponential H∞
filter and H∞ controller for a discrete switched linear system
under dwell time switching. However, these results do not deal
with the exponential dissipative and l2–l∞ filtering problems
for discrete NNs. Compared with these results, we propose
exponential dissipative and l2–l∞ filtering for DSNNs with
time delay. A new discrete-time Wirtinger-type inequality,
whose counterpart is the continuous-time Wirtinger-type
inequality, was first established and applied to filter design
problems for DSNNs. Thus, new sets of delay-dependent LMI
conditions are established such that filtering error systems
are exponentially stable with guaranteed performances in the
exponential dissipative and l2–l∞ senses.

Remark 7: Recently, some new results on filter design have
been reported [23], [37], [39], [42], [44] for various kinds
of NNs. These studies have focused on filtering problems
with multiple missing measurements, switching regularities,
and sensor nonlinearities. Our findings can be integrated with
these studies to produce new results. In [38], [40], [41],
[43], and [46], filter design methods were introduced for

TABLE I
OPTIMAL DISSIPATIVITY PERFORMANCE BOUND α∗

CORRESPONDING TO DIFFERENT VALUES OF ρ

NNs by constructing suitable Lyapunov–Krasovskii function-
als. However, these results were restricted to filtering problems
based on H∞ performance. Thus, this paper can be combined
with the results presented in [38], [40], [41], [43], and [46]
to produce new results on exponential dissipative and l2–l∞
filter design for DSNNs.

Remark 8: Recently, a new free-matrix-based integral
inequality was proposed by Zeng et al. [55], [56] to further
reduced the potential conservatism of conditions. However,
the result was restricted to the stability criteria of continuous
time-varying delayed systems. By extending this method to
a discrete-time counterpart, a new exponential dissipative and
l2–l∞ filter for DSNNs can be derived. Some recent issues
on the stability and passivity of NNs have been addressed
in [57]–[59]. Although these results focus on passivity anal-
ysis, they may be integrated with our results to obtain new
filter for DSNNs.

Remark 9: Many practical systems (e.g., robotic systems),
are governed by nonlinear dynamics. In this case, switched
NNs can be used as an appropriate replacement for describing
these nonlinear systems. However, the full state information
of NNs cannot be directly obtained. Thus, to overcome this
problem, the filter designed in this paper can be effectively
utilized for estimating the network state variables. In addi-
tion, the proposed filter can be used for many applications,
including filtering noisy signals, generating nonobservable
states, and predicting future states. These results could be inte-
grated with a discrete-time output-feedback controller design
method for discrete-time nonlinear complex systems modeled
by switched NNs.

V. NUMERICAL EXAMPLES

This section verifies the usefulness and capability of
the proposed discrete-time results through two numerical
simulations.

A. Example 1

Consider the following DSNN:

x(k + 1) = Aix(k) + Wiφ(x(k − d)) + Ji(k)

+ Giw(k) (67)

y(t) = Cix(k) + Dix(k − d) + Eiw(k) (68)

for i = 1, 2, where

x(k) =
[

x1(k)
x2(k)

]
, w(k) =

[
w1(k)
w2(k)

]

A1 =
[

0.51 0
0 0.37

]
, A2 =

[
0.44 0

0 0.28

]



Fig. 1. State trajectory x1(k) and estimate x̂1(k).

G1 =
[

0.2 0.1
0 0.1

]
, G2 =

[
0.15 0
0.2 0.1

]

W1 =
[−0.02 0.04

0 0.02

]
, W2 =

[
0.02 −0.06
0.03 0.04

]

C1 = [
1 0

]
, C2 = [

0 1
]

D1 = [−0.5 0.1
]
, D2 = [−0.1 0.3

]

F1 = [
0.1 −0.4

]
, F2 = [−0.2 −0.5

]
.

Choose the activation function as φ(x(k)) =
[tanh(−1.6x1(k)) tanh(1.2x2(k))]T. Through Assumption 1, it
is easily seen that �1 = diag{0, 0} and �2 = diag{−0.8, 0.6}.
For given values, d = 1, σ = 2, μ = 1.1, Q = −0.1I,
S = I, and R = 3I, by solving the conditions in Theorem 1,
the optimal dissipativity performance bounds α∗ are given for
several values of ρ in Table I. Let ρ = 0.05 for simulations;
the filter gain matrices Li (i = 1, 2) are obtained as follows:

L1 =
[−0.1872

−0.0411

]
, L2 =

[−0.1497
−0.0533

]
. (69)

Moreover, we obtain the average dwell time Ta = 2 through
the condition Ta > T∗

a = 1.8581. The decay rate of the given
system is χ = 0.9964 < 1, and we obtain

‖e(k)‖ � 19.1130e−0.0036(k−k0)‖e(k0)‖L, ∀k ≥ k0. (70)

Hence, we can see that an exponential stability result of the
discrete-time filtering error system is ensured. The external
inputs are given by J1(k) = [0.1 sin(k) 0.2 cos(k)]T and
J2(k) = [−0.1 cos2(2k) 0.1 sin(5k)]T. It is assumed that the
external disturbance wi(k) (i = 1, 2) is white noise with nor-
mal distribution The simulations for the discrete-time switched
exponential dissipative filter design with initial conditions
x(0) = [−1.5 1.7]T and x̂(0) = [2.4 − 1.1]T are illus-
trated in Figs. 1–3. Figs. 1 and 2 illustrate the responses of
the real states x1(k), x2(k) and the estimation states x̂1(k),
x̂2(k), respectively. Fig. 3 depicts the response of the discrete-
time filtering error e(k). From the numerical simulations, the
effectiveness of the developed LMIs for a strictly (Q,S,R)
exponentially dissipative filter design for DSNNs is verified.

Fig. 2. State trajectory x2(k) and estimate x̂2(k).

Fig. 3. Filtering error trajectory e(k).

TABLE II
MINIMUM l2–l∞ PERFORMANCE BOUNDS γ ∗ CORRESPONDING TO

SEVERAL VALUES OF ρ

B. Example 2

Consider the DSNN in Example 1. For given values d = 1,
σ = 2, and μ = 1.15, by solving the LMIs in Theorem 2, the
minimum l2–l∞ performance bounds γ ∗ are listed for several
values of ρ in Table II. Let ρ = 0.05 for simulations. The
filter gain matrices Li (i = 1, 2) are obtained as follows:

L1 =
[

0.0110
−0.0879

]
, L2 =

[−0.0477
−0.0429

]
. (71)

Moreover, the average dwell time is obtained as Ta = 3
through the condition Ta > T∗

a = 2.7248. The decay rate
of the above system is given as χ = 0.9953 < 1, and we have

‖e(k)‖ � 19.1130e−0.0047(k−k0)‖e(k0)‖L, ∀k ≥ k0. (72)



Fig. 4. State trajectory x1(k) and its estimation x̂1(k).

Fig. 5. State trajectory x2(k) and its estimation x̂2(k).

Fig. 6. Filtering error trajectory e(k).

Therefore, we can conclude that an exponential stability result
of the discrete-time filtering error system is ensured. The exter-
nal inputs are given by J1(k) = [−0.1 sin(2k) 0.2 cos2(2k)]T

and J2(k) = [0.2 cos(2k) − 0.1 sin2(k)]T. The external
disturbance and initial condition are the same as those in
Example 1. The simulations for the discrete-time switched

exponential l2–l∞ filter design approach are illustrated in
Figs. 4–6. Figs. 4 and 5 show the real states x1(k), x2(k) and
the estimation states x̂1(k), x̂2(k), respectively. Fig. 6 illustrates
the filtering error trajectory e(k). Through these numerical
examples, it is shown that the exponential stability result of
the discrete-time filtering error system is ensured with an
exponential l2–l∞ performance γ .

VI. CONCLUSION

This paper has examined the exponential (Q,S,R) dis-
sipative and l2–l∞ filtering problems for DSNNs including
time-delayed states. New sets of LMI conditions were devel-
oped by employing the discrete-time Wirtinger-type inequality,
which is a new summation vector inequality. By solving the
proposed sets of LMIs, desired exponential (Q,S,R) dis-
sipative and l2–l∞ filters for DSNNs were designed such
that the filtering error systems had exponential stability with
guaranteed performances in the strictly (Q,S,R) exponen-
tial dissipativity and exponential l2–l∞ senses. Numerical
examples verified the effectiveness of the developed filter
design.
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