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ABSTRACT

Semi-analytical strategies are presented for the nonlinear vibration analysis of variable-stiffness
plates. The formulations are developed within a mixed variational framework, where the out-of-
plane displacements and the Airy stress functions are the unknowns of the problem, approximated
using the Ritz method. Three different strategies are presented for solving the discrete set of equa-
tions originating from the Ritz expansion: direct time integration, an iterative procedure based on
the Harmonic Balance Method (HBM) and the Method of Averaging. In addition, a single-mode
perturbation approach is developed, and is proposed as a suitable way for efficiently assessing the
nonlinear vibration problem of variable-stiffness plates. Comparison against results from literature
confirms the validity of the proposed models.
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1 INTRODUCTION

Considerable attention has been devoted in the past decades to vibration problems for plates and
shells involving moderately large displacements [1]. The motivations can be found in the theoretical
relevance of the phenomenon along with several practical applications, in many cases related with
structural stability problems. Several studies can be found in the literature for classical isotropic
or composite configurations [1, 2]. However, relatively few works cover this topic in relation with
variable-stiffness configurations [3, 4]. This work aims at presenting semi-analytical formulations
as a viable alternative to finite element techniques for analyzing with improved efficiency the non-
linear vibrations of variable-stiffness plates. Different solution strategies are implemented and
comparison against reference results is shown.

2 THEORETICAL FRAMEWORK

The approach is developed for the analysis of thin composite plates, obtained by the stacking of
plies with non-uniform properties, i.e. variable-stiffness plates (VSP). The orientation of the fibers
of a generic ply is specified according to the notation

〈
α|β
〉
, where α and β are the fiber’s orienta-

tions at the center and the edges of the plate. The formulation is based on thin-plate theory, where
a mixed variational functional [5, 6] is introduced for expressing the equilibrium and the compat-
ibility requirements. The functional, expressed in terms of the out-plane deflections and the Airy
stress function and including for the contribution due to inertial forces, reads:

Π∗ =− 1
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(1)

where F and k are the vectors collecting the second derivatives of the Airy stress function and
out-of-plane displacements; the matrices a and D are the in-plane compliance and the bending
stiffness, both function of the position x, y due to the variability of elastic properties over the
plane x-y; the out-of-plane deflections and the initial imperfections are denoted with w and w0,
respectively. In-plane inertia effects are neglected, and just the out-of-plane moment of inertia I0
is considered. Following Wu et al. [7] the expansion of the unknowns is performed referring to
Legendre polynomials and boundary functions, where the membrane stresses are split into a part
related to the distribution at the boundaries and another contribution specifying the behaviour inside
the plate domain.

Direct time integration

A first strategy for solving the nonlinear dynamic problem consists in integrating the equations
of motion. The Ritz approximation is substituted into Eq. (1) and, after imposing the functional
to be stationary, the set of nonlinear equations expressing membrane compatibility and dynamic
equilibrium along the out-of-plane direction are retrieved. Whenever the loads are directed in the
out-of-plane direction, as it is considered here, the compatibility equations are time-independent.
Therefore, the problem can be statically condensed into one single set of equations expressing the
equilibrium requirements. Referring to a base of n modes, these equations are obtained as:

q̈i + ciq̇i + kiqi +
nn∑

jk=1

aijkqjqk +
nnn∑
jks=1

bijksqjqkqs = pi for i = 1, 2, ...n (2)

where the coefficients ki, aijk and bijks are obtained by numerical integration of the stiffness-related
contributions of the functional Π∗ and successive projection onto the modal basis. Viscous damping
can be added through the term ci. The equations are integrated using the Matlab ode23s scheme,
based on a modified Rosenbrock formula of order 2.
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Iterative procedure

A second strategy relies upon an iterative procedure based on the Harmonic Balance Method
(HBM), which can be employed for evaluating the forced steady-state response and the nonlin-
ear free vibrations. In the former case, the response of the nonlinear system is approximated as:

q ∼= Q0 +
5∑

k=1

[
Qc,k cos(kωt) + Qs,k sin(kωt)

]
(3)

where ω is the frequency of the forcing term, so super-harmonic contributions are taken as multiples
of the fundamental frequency up to the fifth order. Substitution of Eq. (3) into the equation of
motion, and successive balancing of the harmonics allows to derive the system of 11n nonlinear
equations, which are solved using a Newton-Raphson technique.

Method of averaging

The method of averaging is based on an initial description of the problem as per Eq. (2), where
a two-mode approximation is performed, q1 and q2 being the modal coordinates. By applying the
averaging procedure to eliminate time-dependence, i.e. by replacing the vibration amplitudes and
phases with their average values over the time period, the governing equations are found as a set
of four algebraic equations. Clearly, the single-mode approximation can be retrieved as a special
case, reducing the number of unknowns from four to two.

Perturbation approach

An effective strategy for analysing the nonlinear vibration response relies on a perturbation ap-
proach [8], which is essentially an extension of Koiterś approach to the case of vibrations. Main
advantage is that the nonlinear problem is transformed into a sequence of linear problems. The
unknowns, after introducing the Ritz approximation, are approximated using a perturbation expan-
sion: the out-of-plane deflections are approximated as w = ξw(1) + ξ2w(2) + ..., where ξ is the
perturbation parameter, and similarly is done for the Airy function.

3 RESULTS

Exemplary results are presented to illustrate the comparison between the different methods pre-
sented above and reference numerical simulations from the literature [4, 9]. The full plate prop-
erties are not reported here for the sake of conciseness, but can be found in the referenced works.
In all the examples, the boundary conditions are those of a fully clamped panel with immovable
edges. The first example deals with a variable-stiffness plate with stacking sequence given by
[
〈
135|90

〉
,
〈
−90| − 45

〉
,
〈
90|45

〉
,
〈
45|0

〉
]s. The nonlinear free vibration response is assessed in

Figure 1(a), where the comparison is presented against the backbone curve obtained in Ref. [4].
Note, due to the close matching between the results, they are presented using markers and not con-
tinous curves. In the case of the direct integration approach, the procedure is quite cumbersome, as
integration needs to be carried-out for a sufficiently large number of periods. Furthermore, several
frequency response curves need to the traced to derive the final backbone plot. In this example, a
11-dof model is considered, with a concentrated force applied at the center of the plate (magnitude
f = 0.7N ) and accounting for a slight damping factor (ξ1,1 = 0.0325).
A second example regards the forced nonlinear response of the variable-stiffness plate analyzed
by Akhavan [9], whose lay-up is [

〈
90|45

〉
, 90,

〈
90|45

〉
]s. The load is introduced in the form of a

uniform pressure with magnitude equal to 2×104 N/m2. No damping is accounted for. The results
are reported in Figure 1(b) in terms of maximum nondimensional deflection versus nondimensional
frequency ω = ωa

√
ρ/E22. Even in this case, close matching can be observed between the present

results and those of Ref. [9], where the p-version finite element and third-order plate theory are
used. In both cases, computations are carried out very effectively, with times ranging from 0.5 s
to few minutes (on a laptop with Intel i7 4.00 GHz, 32 GB of RAM). The perturbation technique
is particularly effective, as fractions of a seconds are needed to trace the plots with a two-term
expansion. Iterative procedure and method of averaging require, in general, few seconds, while
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(a) (b)

Figure 1: Comparison between different methods and reference results: (a) backbone curves, (b)
frequency response curves.

numerical integration is the most computationally intensive approach, requiring a total time of the
order of a few minutes.

4 CONCLUDING REMARKS

A semi-analytical strategy has been presented for analyzing the nonlinear vibration response of
variable-stiffness plates. The formulation is general enough to allow any set of flexural boundary
conditions to be studied, while free, movable and immovable edges can be considered with respect
to the in-plane motion. Four different strategies were proposed for solving the nonlinear equations
available from the Ritz discretization: direct time integration can be relatively time-consuming, but
the three other strategies are extremely attractive in terms of computational time. This is particularly
true for the single-mode perturbation approach: the solution is obtained as a sequence of linear
problems, and fractions of a second are required for the problem to be solved. These features
render the proposed approaches particularly suited for gathering insight into the nonlinear vibration
response of variable-stiffness configurations, a relatively new field demanding further investigation.
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