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ABSTRACT 
 

Selective laser melting (SLM) has been attracting a growing interest in different industrial sectors as it is 

one of the key technologies for metal additive manufacturing. Despite of the relevant improvements made 

by the SLM technology in the recent years, process capability is still a major issue for its industrial 

breakthrough. As a matter of fact, different kinds of defect may originate during the layer-wise process. In 

some cases, they propagate from one layer to the following ones leading to a job failure. In other cases, 

they are hardly visible and detectable by inspecting the final part, as they can affect the internal structure 

or structural features that are difficult to measure. This implies the need for in-process monitoring 

methods able to rapidly detect and locate defect onsets during the process itself. Different authors have 

been investigating machine sensorization architectures, but the development of statistical monitoring 
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techniques is still in a very preliminary phase. This paper proposes a method for the detection and spatial 

identification of defects during the layer-wise process by using a machine vision system in the visible 

range. A statistical descriptor based on Principal Component Analysis (PCA) applied to image data is 

presented, which is suitable to identify defective areas of a layer. The use of image k-means clustering 

analysis is then proposed for automated defect detection. A real case study in SLM including both simple 

and complicated geometries is discussed to demonstrate the performances of the method.  

Keywords: Additive Manufacturing; Selective Laser Melting; Process Monitoring; Image 

Analysis; Principal Component Analysis; k-means Clustering 

 

 

1 INTRODUCTION 
 

Additive manufacturing (AM) of functional parts via selective laser melting (SLM) 

has been attracting an increasing interest in industry in the recent years [1 – 7]. The SLM 

technology involves the use of a laser to locally melt a metal powder bed on a layer-by-

layer basis, to produce parts whose structural properties and shape complexity prevent 

from the use of conventional processes. The high potential provided by this technology 

has been paving the way to innovative applications in different domains, e.g., aerospace, 

bio-medical, tooling and moulding, and automotive [1; 8 - 10].  

SLM belongs to the so-called “powder bed fusion” processes. A thin layer of metal 

powder (e.g., average thickness of about 50 μm) is deposited on a flat substrate via a 

powder deposition system. Then, the laser melts the powder to realize the first slice of 

the part by following a predefined scanning path. When the scan of the first layer is 

complete, the substrate is lowered, a new layer of powder is deposited and the process 

is repeated to realize the following slice. For a more detailed description and overview of 

the SLM technology, the reader may refer to Gibson et al. [1]. Despite of great 
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improvements of SLM systems in the recent years, the process capability still represents 

a major limitation to their industrial breakthrough. The quality of the part depends on 

hundreds of controllable parameters, but it is also affected by many nuisance factors. 

Local defects may occur during the laser scanning of one (or more) layers, caused by 

improper process parameters or supporting strategies, wrong powder deposition, 

possible material contamination, etc. [11 - 12]. Furthermore, different features are known 

to be critical, like overhang (i.e., down-facing) structures and acute corners [13 – 15].  

 

 

Fig. 1 - Examples of defective parts produced via SLM: local defects in a) complicated 
geometries, b) contours of solid parts, c) lattice structures, and d) part – support 

interfaces 
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Fig. 1 shows four examples of defective parts generated during an SLM process on 

AISI 316L parts. The defects were either caused by improper heat conduction in overhang 

features (Fig. 1a and b), a wrong powder deposition due to a worn recoating blade (Fig. 

1c) or an improper heat conduction to the underneath powder at the connection between 

the bottom layers of the part and the supports (Fig. d). All the defects shown in Fig. 1 

could have been possibly detected during the process itself, by in-process monitoring. 

Different authors and research groups have been studying in-process monitoring 

solutions for SLM systems [11 – 12]. Generally speaking, three different scales can be 

envisaged to gather data during the process (see Fig. 2).  

The first scale involves the characterization of the melt pool and the surrounding 

heat-affected zone [15 – 17]. The dimensions, shape and temperature distribution of the 

melt pool provide relevant information about the process stability and the occurrence of 

local defects. The second scale regards the analysis of the entire layer, to detect errors in 

different areas of each slice. In this case, different authors focused on the temperature 

distribution over the slice [18 - 19], on the surface pattern observed at the end of the 

laser scanning [20] and the reconstruction of the 2D slice geometry [18]. The third scale 

regards the volumetric growth of the build, from layer to layer. This implies repeating the 

previous analysis for each layer in order to monitor the overall evolution of the process 

and its stability along the vertical growth direction. 
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Fig. 2 - Three monitoring scales for SLM processes 

 

This study focuses on the second scale and it aims to detect and spatially localize 

the onset of process defects via an off-axial machine vision system. The category of 

defects investigated in this study consists of local overheating phenomena that may cause 

geometrical distortions. This kind of defect is caused by a wrong heat transfer from the 

melt pool to the surrounding material that usually occurs in down-facing zones, acute 

corners and thin walls that are mostly surrounded by loose powder. The major challenge 

consists of distinguishing between over-heated areas, normal melted zones and spatter 

tracks. Other phenomena may generate similar “hot spots” during the process, e.g., the 

deposition of large hot spatters on the powder bed. However, the possible extension of 

the proposed approach to other defect scenarios will be the subject of a future research.  

In the SLM literature, the development of statistical monitoring methodologies 

and the assessment of suitable control statistics is still in a quite preliminary phase. 

Abdelrahman and Starr [18] and Schilp et al. [21] discussed a thermography analysis for 

local overheating detection based on off-axial monitoring. Similarly to the work of Schilp 

et al. [21], this study proposes a method to estimate a statistical descriptor for the spatial 

localization of defects associated to overheating phenomena. Contrary to previous 
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approaches, we propose a statistical method that requires neither process modelling nor 

image segmentation or edge detection operations. Moreover, differently from previous 

studies, our proposed quality index is estimated from image streams acquired in the 

visible range by using an experimental setup that requires no modification of the machine 

tool configuration, which makes it easily reproducible by practitioners.  

The main idea consists of identifying molten areas whose behaviour is different 

from other portions of the same layer in terms of intensity profiles of each image pixel. 

To this aim, we propose the use of Principal Component Analysis (PCA) [22] for image 

data to define a statistical descriptor based on the Hotelling’s 𝑇2 distance [23 – 24].  An 

automated method based on k-means clustering [25] applied to the spatial distribution 

of the 𝑇2 distance is then proposed for in-process defect detection. The paper presents a 

real case study dealing with SLM production of both simple and complicated shapes [26]. 

The comparison with a basic statistic indicator highlights the benefits of the proposed 

approach. An analysis to determine the robustness of the methodology to different ways 

of rearranging the image stream dataset into the PCA input matrix is presented and 

discussed too. 

The paper is organized as follows. Sections 2 describes the case study whereas 

Section 3 presents the proposed methodology. Section 4 presents the results achieved by 

applying the proposed approach to the SLM process and eventually Section 5 concludes 

the paper. 
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2 A REAL CASE STUDY IN SLM 

The case study includes both a simple geometry and a complicated shape with 

critical features produced via SLM. The first one consists of a cylinder, which is 

representative of an in-control process as no geometrical or surface defects were 

observed after inspecting and measuring the part. The second one consists of 

complicated shapes (Fig. 1a - the largest sample)2, where different defects and 

geometrical distortions were observed. The SLM was performed on AISI 316L powder by 

using a RenishawTM AM250 machine, and both the parts were produced in the same build. 

Sub-section 2.1 introduces the experimental setup and sub-section 2.2 describes the 

process parameters, the monitored features and the nature of observed defects. 

 

2.1. Experimental Setup 

Fig. 3 shows the experimental setup for image stream acquisition that consists of 

an OlympusTM I-speed 3 camera placed outside the build chamber, which includes a CMOS 

sensor and operates in the visible range and mounts a SIGMA 105 𝑚𝑚 macro lens. The 

frame rate was selected by finding a compromise between the capability of tracking the 

laser kinematics without losing relevant information and the computational feasibility of 

in-process image analysis implementation. To this aim, a sampling frequency of 𝑓 =

300 𝑓𝑝𝑠 was selected, corresponding to a spatial resolution of 1280 × 1024 pixels.   

 

 
2 The CAD model of this part is available at https://grabcad.com 
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Fig. 3 - Experimental setup with the high-speed camera outside the build chamber: side 
view picture (left panel) and schematic representation of the same view (central panel) 

 

The experimental setup adopted in this study requires no modification of an 

existing machine tool configuration and hence it can be easily reproduced by 

practitioners. Future research will be aimed at extending this study to image stream 

acquired at different frame rates or by using a different experimental setup. It is worth to 

notice that by using a camera with a sufficiently high spatial resolution and a proper lens, 

it is possible to capture the entire layer and hence to detect possible defects in every 

region of the build. Unfortunately, the high-speed acquisition and processing of high-

resolution images that cover such a wide area implies very high computational costs and 

expensive tools. In this study, the image acquisition setup was aimed at monitoring a 

limited portion of the entire build area. Possible technological extensions to demonstrate 

larger area monitoring capabilities may be the subject of future studies. 
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2.2. Process Parameters And Monitored Features 

Default laser and scanning parameters suggested by the machine tool 

manufacturer were considered during SLM. Table 1 shows the main parameters, where 

power (𝑃), exposure time (𝑡) and focus position (𝑓𝑝) relate to the laser settings, the point 

distance, 𝑑𝑝, is the distance between the single laser spots along the scan direction, 

whereas the hatch distance, 𝑑ℎ, is the distance between successive scanned hatches 

when using a meandering scanning path. Eventually, the laser spot is about 70 𝜇𝑚.  

Table 1  - Main process parameters used in the case study 
Parameter Power 

(𝑃) 
Exposure time 

(𝑡) 
Focus position 

(𝑓𝑝) 
Point distance 

(𝑑𝑝) 
Hatch distance 

(𝑑ℎ) 

Value 200 𝑊 80 𝜇𝑠 0 𝑚𝑚 60 𝜇𝑚 110 𝜇𝑚 

 

An AISI 316L powder with average particle size of about 25 − 30 𝜇𝑚 was used, 

and the powder layer thickness was set to 50 𝜇𝑚. The cylindrical part has diameter ∅ =

16 𝑚𝑚 and height ℎ = 44 𝑚𝑚 and it was built perpendicularly to the supporting 

platform. The complicated geometry is about 50 × 50 × 50 𝑚𝑚 and no supports were 

used apart from the ones underneath the base corners used to ease the part removal 

from the substrate. This latter part was chosen because it exhibits different criticalities. 

Indeed, a large portion of part slices includes features with down-facing acute corners, 

where overheating phenomena and local defects are more likely to occur.  
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Fig. 4 - Left panel: bottom view of the CAD model, where three triangular features 
resulting from part slicing are highlighted (referred respectively as triangle 1, 2 and 3); 

right panel: bottom view of manufactured part showing the effects of local over-heating 
in overhang acute corners 

 

The image data presented in this study refer, respectively, to one in-control layer 

of the cylindrical part and a few out-of-control layers in the lower portion of the 

complicated part. With regard to the out-of-control examples, each slice consists of 

multiple triangular features. Fig. 4 (left panel) shows a bottom view of the CAD model, 

where three triangular features resulting from slicing the part are highlighted in red: they 

will be named “triangle 1”, “triangle 2” and “triangle 3” in the following. The acute corners 

of triangle 1, 2 and 3 belong to down-facing zones, where the most severe defects were 

observed. Fig. 4 (right panel) shows a bottom view of the final part, which highlights the 

defective zones corresponding to these down-facing acute corners. 

Fig. 5 shows a larger view of triangle 1, 2 and 3 where the corners are identified 

by using capital letters. The laser scanning path for triangle 1 and a detail view of corner 
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C are shown in Fig. 6, in left and right panel, respectively. The scanning path in Fig. 6 

includes normal borders and hatches, together with down-facing and up-facing borders 

and hatches.  

 

Fig. 5 - Triangular features resulting from slicing the CAD model of the part 

 

The local overheating, caused by a wrong heat transfer toward underneath and 

surrounding loose powder, yielded defects in corners C, E and G. The major difference 

between a normal melting zone and an over-heated zone regards the cooling rate. A 

normal melting zone is characterized by a high cooling rate that leads to a finer grain and 

stiffer material. Over-heated zones, instead, exhibit quite low cooling rates because of an 

improper heat transfer to the surrounding material. Indeed, the corners C, E and G 

exhibited a longer cooling transitory than other parts of the slice. This overheating 

phenomenon rapidly yielded a super-elevation of the acute corners leading to a growth 

of defect severity from one layer to another.  
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Fig. 6 - Example of laser scanning path for triangle 1 (left panel) and detail of corner C 
(right panel): borders in red, hatches in grey, up-facing paths in blue and down-facing 

paths in green (see the on-line version of the paper for color figures) 

 

In this study, the laser scanning of one triangular feature per layer was acquired, 

such that triangle 1 was the portion of slice monitored in layer 149, triangle 2 was 

monitored in layer 150 and triangle 3 was monitored in layer 151. The overall number of 

layers of the build was 1040. This resulted in three distinct image streams associated to 

different portions of part slices. The methodology presented in Section 3 can be extended 

to monitor not only the entire slice but also successive layers of the same process. 

 

3 METHODOLOGY 

The proposed approach is thought to monitor an SLM process by detecting and 

locating possible defects in each layer. The image stream acquired during the SLM of a 

single layer can be represented as a 3-dimensional array, 𝓤 ∈ ℝ𝐽×𝑀×𝑁, where 𝐽 is the 

total number of acquired frames, and  𝑀 × 𝑁 is the size, in pixels, of each frame (see Fig. 

7). The 3-dimensional array is such that 𝓤 = {𝑼1, 𝑼2, … , 𝑼𝐽} where 𝑼𝑗 ∈ ℝ𝑀×𝑁 is the 𝑗𝑡ℎ 



Journal of Manufacturing Science and Engineering 

 

MANU-15-1647 – Grasso - 13 

 

image of size 𝑀 × 𝑁, and 𝑗 = 1, … , 𝐽. The (𝑚, 𝑛)-th element of the matrix 𝑼𝑗  represents 

the intensity of that pixel in the corresponding frame, for 𝑚 = 1, … , 𝑀 and 𝑛 = 1, … , 𝑁. 

As an example, for greyscale images at 8 bpp (bit per pixel) the pixel intensity, 𝑢𝑗(𝑚, 𝑛), 

ranges from 0 to 255, where 0 is black and 255 is white. Being [𝑡0, 𝑡0 + ∆𝑡] the time 

interval associated to the image stream 𝓤, then 𝑓 = 𝐽 ∆𝑡⁄  is the frame rate of the video.  

The 1 × 𝐽 vector 𝒖(𝑚, 𝑛) = [𝑢1(𝑚, 𝑛), … , 𝑢𝐽(𝑚, 𝑛)]
𝑇

 represents the intensity 

profile of the (𝑚, 𝑛)-th pixel over the 𝐽 acquired frames. Notice that here the term 

“intensity profile” is referred to the intensity pattern of a single pixel along the image 

stream. The underlying idea of the proposed approach consists of studying the variability 

of all the pixel intensity profiles, and identifying pixels (or groups of pixels) whose profile 

deviates from the in-control pattern that describes the data structure. To this aim, we 

propose a PCA-based methodology [22] to characterize the in-control data pattern and to 

estimate a statistical descriptor based on the Hotelling’s 𝑇2 distance [24]. A k-means 

clustering analysis [25] is then used to automate the detection and localization of the 

defect area. 
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Fig. 7 - Example of an image stream that consists of 𝐽 frames of size  𝑀 × 𝑁 pixels 

 

The method is first presented as a tool for the spatial identification of local defects 

at the end of the layer scanning, i.e., when the entire image stream 𝓤 = {𝑼1, 𝑼2, … , 𝑼𝐽} 

is available. The method is then extended to provide an iterative update of the statistical 

descriptor during the scanning of the current layer, in order to anticipate the 

identification of the defect.  

An overview of the two major steps of the proposed approach are presented in 

sub-section 3.1 and 3.2, whereas its extension via iterative updating is discussed in sub-

section 3.3.  

 

3.1. Statistical Descriptor Estimation Via PCA 

The PCA has been used for image analysis and classification by different authors 

[22; 27 – 31], also in the frame of manufacturing process monitoring [32 – 34]. A common 
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way to apply the PCA to image data, a.k.a. vectorised PCA (VPCA), entails the 

“vectorization” operation, which involves the transformation of bi-dimensional samples 

(i.e., the frames) into one-dimensional vectors. The result is a transformation from a 3-

dimensional array into a matrix that is known as “unfolding” operation.  A brief overview 

of the VPCA methodology is presented in Appendix A.  

In the traditional SPC framework, the VPCA is applied to a dataset that consists of 

random replicates of the same type of image and the goal is to associate a control statistic 

value to each of them for either monitoring or classification purposes. This implies an 

unfolding operation like the one shown in Fig. 8, on the left. 

 

 

Fig. 8 - Traditional (left) and proposed (right) unfolding approaches from ℝ𝐽×𝑀×𝑁 to 
ℝ𝐽×𝑝 and to ℝ𝑝×𝐽, respectively, where 𝑝 = 𝑀 × 𝑁 

 

Fig. 8, left side, shows a transformation from the 3-dimensional array  𝓤 ∈

ℝ𝐽×𝑀×𝑁 to a matrix 𝐗 ∈ ℝ𝐽×𝑝, where 𝑝 = 𝑀 × 𝑁. Each row of the matrix consists of a 

vectorised frame. The VPCA generates PCs that associate a weight to each pixel. A 

statistical descriptor based on the Hotelling’s 𝑇2 distance [24] associates a value to each 
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frame, such that the larger is the 𝑇2 value, the more outlying is the corresponding frame 

pattern from the underlying image data structure [32 – 34]. 

The image stream dataset used in this study exhibits two major differences from 

the aforementioned framework. The first difference consists of the fact that the video 

frames are not replicates of a single image, but they capture successive stages of the SLM 

process. Second, the goal is not to signal an anomalous frame, but to identify a portion of 

the images (i.e., a group of pixels) characterized by an anomalous pattern. Because of this, 

a different implementation of the PCA technique is presented. It involves performing the 

unfolding operation as shown in Fig. 8, on the right. 

In this case, the 3-dimensional array  𝓤 ∈ ℝ𝐽×𝑀×𝑁 is transformed into a matrix 

𝐗 ∈ ℝ𝑝×𝐽, where 𝑝 = 𝑀 × 𝑁. Each row of the matrix consists of a pixel intensity profile, 

i.e., the 1 × 𝐽 vector 𝒖(𝑚, 𝑛) = [𝑢1(𝑚, 𝑛), … , 𝑢𝐽(𝑚, 𝑛)]
𝑇

. The VPCA generates PCs that 

associate a weight to each frame. Thus, each PC is a 1 × 𝐽 vector that weights each time-

location of pixel intensity profiles. This unfolding strategy is analogous to the so called “T-

mode PCA” used in multidimensional data analysis [22]. 

The statistical descriptor based on the Hotelling’s 𝑇2 distance is a spatial index, 

i.e., a function 𝑇2(𝑋, 𝑌) of pixel location within the image, which maps a 𝑇2 value to each 

pixel. The more outlying is the pattern of a pixel with respect to the underlying pattern 

captured by the VPCA, the largest is the corresponding 𝑇2(𝑋, 𝑌) value. This yields a spatial 

localization of the possible defect in a complete data-driven way, without any ad-hoc pre-

processing step. 
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It is evident that there are many ways to arrange the pixel intensity vectors, 

𝒖(𝑚, 𝑛), into the rows of 𝐗, e.g., row-wise, column-wise or randomized ordering. Since 

the variance-covariance structure of the transformed dataset may depend on the pixel 

arrangement in the 𝐗 matrix, it is important to assess the robustness of the proposed 

approach against such arrangements. In the following, a row-wise arrangement is used as 

a baseline solution, whereas the robustness of the method is investigated in Section 4, by 

comparing different approaches. 

 

3.2. K-Means Clustering For Automated Defect Detection 

Once the 𝑇2(𝑋, 𝑌) descriptor has been estimated (see Appendix A), an automated 

procedure is required to signal the presence of an area of the images where pixel intensity 

profiles exhibit an unnatural pattern. In this study, we propose a method based on k-

means clustering analysis. The k-means algorithm represents an effective and popular 

clustering technique that allows partitioning 𝑝 observations into 𝑘 ≤ 𝑝 clusters to 

minimize the within-cluster sum of squared distances from the cluster centroid [25]. 

When the k-means approach is applied to image or surface data it provides a 

segmentation into 𝑘 areas characterized by maximum within similarity [35]. In this study, 

the k-means methodology is not applied to the original images but to the spatial 

distribution of the 𝑇2(𝑋, 𝑌) descriptor. A predefined number, 𝑘, of centroids is randomly 

placed in the 𝑀 × 𝑁 image space and the image pixels are then associated to the closest 

centroid in terms of Euclidean distance between 𝑇2(𝑋, 𝑌) values. The process is repeated 

iteratively until the centroids stabilize about a fixed position in the image space. 
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Hierarchical clustering [23, 25] represents an alternative way to achieve a similar 

segmentation but, generally speaking, it is less computationally efficient and it suffers 

from combinatorial explosion as the number of pixels grows [25, 35]. Thus, the k-means 

approach is applied in this study, but future research developments may investigate the 

effectiveness of different clustering techniques. 

In the absence of local defects, two distinct regions must be present: one 

corresponding to the background, involving lower values of 𝑇2(𝑋, 𝑌), and one 

corresponding to the trace of both heated zone and spatters in the visible range. In 

normal process conditions, the 𝑇2(𝑋, 𝑌) distribution should be partitioned into these two 

regions. In the presence of a defect caused by a local overheating, a third region is 

expected to appear, corresponding to a local peak of 𝑇2(𝑋, 𝑌). Our proposed approach 

consists of clustering the 𝑇2(𝑋, 𝑌) spatial distribution into a data-driven selected number 

𝑘 of clusters. As soon as 𝑘 > 2 clusters are detected, i.e., when at least one extra cluster 

is generated, an alarm can be signalled.  

The data-driven choice of the “correct” number of clusters is known as “cluster 

validity” problem [36]. Many different criteria have been proposed so far. A wide category 

of validity criteria relies on the measure of the within-group variance and the between-

group variance [36 – 40]. A method that provides satisfactory results in a wide range of 

applications consists of looking for an elbow point in the sums of squared within-distances 

(SSWs) between the 𝑇2 value of each pixel and the mean value of the corresponding 

cluster, for different numbers 𝑘. The 𝑆𝑆𝑊(𝑘) index can be computed as follows: 
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𝑆𝑆𝑊(𝑘) = (1/𝑘) ∑ ∑ ‖𝑇𝑖
2(𝑋, 𝑌)𝑐𝑘

− 𝑇2̅̅̅̅ (𝑋, 𝑌)𝑐𝑘
‖𝑖∈𝑐𝑘

𝐾
𝑘=1 , 𝑘 =

1,2, … , 𝐾  

(1) 

where 𝑇𝑖
2(𝑋, 𝑌)𝑐𝑘

 is the 𝑇2 value of the i-th pixel belonging to the 𝑐𝑘 cluster, 

𝑇2̅̅̅̅ (𝑋, 𝑌)𝑐𝑘
 is the mean 𝑇2 value of the corresponding cluster, and 𝐾 ≤ 𝑝 is the maximum 

number of tested clusters, to be selected ex-ante. 𝑆𝑆𝑊(𝑘) is a monotone decreasing 

function of the number of clusters 𝑘, which is normalized with respect to the number of 

clusters to reduce the risk for over-segmentation. 

A common way to find the elbow point consists of computing the distance, 𝐷(𝑘), 

between 𝑆𝑆𝑊(𝑘) and the straight segment connecting the two extreme points, 𝑆𝑆𝑊(1) 

and 𝑆𝑆𝑊(𝐾). The elbow of the function, i.e., the number of clusters 𝑘 that provides the 

best partition of the 𝑇2(𝑋, 𝑌) spatial distribution, is �̂� = argmax
𝑘

𝐷(𝑘). 

This procedure for cluster validation is suitable when the minimum number of 

clusters is 𝑘 = 2, which is the case of the present application, where the natural spatial 

distribution of 𝑇2(𝑋, 𝑌) consists of two clusters, and the appearance of additional clusters 

is a symptom for local defect generation. 

 

3.3. A Within-Layer Extension Of The Proposed Approach 

The method presented in the previous sections allows one to estimate and analyze 

the spatial indicator at the end of the layer scanning, as it requires the acquisition of all 

the 𝐽 frames of the image stream, 𝓤 ∈ ℝ𝐽×𝑀×𝑁. Nevertheless, it is possible to extend the 

methodology in order to achieve a faster detection of possible defects via an iterative 
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updating of the VPCA model estimation. To this aim, the method can be extended as 

follows. Let 𝓤1 ∈ ℝ𝐽′×𝑀×𝑁 be a first batch of 𝐽′ frames such that  1 < 𝐽′ ≤ 𝐽 and let 𝐗1 

be its unfolded version. By applying the VPCA to the matrix 𝐗1 it is possible to study the 

variance-covariance structure of the pixel intensity profiles from frame 𝑗 = 1 up to frame 

𝑗 = 𝐽′. If an anomalous pattern is present within the first 𝐽′ frames, the k-means clustering 

approach based on the 𝑇1
2(𝑋, 𝑌) indicator will aid its detection, where the subscript “1” 

refers to the use of 𝐗1 matrix. The estimation of the VPCA model can be updated when a 

new batch of 𝐽′ frames is available, such that 2𝐽′ ≤ 𝐽. The spatial descriptor can be 

updated as well, leading to a new spatial distribution, 𝑇2
2(𝑋, 𝑌), and an updating of the 

clustering analysis. The former step can be iteratively repeated until the laser scanning of 

the current layer is over.  

 

4 DISCUSSION OF RESULTS 

The results achieved by applying the proposed approach at the end of the layer 

scanning are first discussed in sub-section 4.1. The results achieved by applying the 

iterative updating extension of the method are presented in sub-section 4.2, and a 

comparison against a competitor approach based on the mean pixel intensities is 

discussed in sub-section 4.3. Eventually, sub-section 4.4 presents a robustness analysis 

with respect to the ordering of image pixels in the VPCA input matrix. 
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4.1. Entire Image Stream Analysis 
 
4.1.1. In-control process monitoring 

In this subsection, the results achieved by monitoring one in-control layer of the 

cylindrical part are discussed. The total number of acquired frames is 400 and the image 

size after a crop operation is 310 × 220. Image cropping can be automatically set before 

starting the image acquisition, since the size of the monitored feature/slice is known. 

Fig. 9 (right panel) shows the spatial distribution of the 𝑇2(𝑋, 𝑌) descriptors when 

the VPCA is applied to the entire image stream of the monitored slice. The 𝑇2(𝑋, 𝑌) 

indicator is based on the minimum number of PCs that explains at least 80% of the overall 

image data variability (see Appendix A for details). In this case, the number of retained 

PCs is 𝑚 = 10. The 𝑇2(𝑋, 𝑌) descriptor exhibits the largest values over the scanned area 

of the slice but its spatial distribution also shows the track of hot spatters generated 

during the process (upper part of the scanned area). Fig. 9 (central panel) shows the 

results of the k-means clustering applied to the circular slice. The automatic selection of 

cluster numbers yields 𝑘 = 2 in all the considered cases (see the 𝐷(𝑘) statistics in the left 

panel of Fig. 9). One cluster (represented by the black area) corresponds to the 

background region. The second cluster (represented by the grey area) corresponds to the 

normal melting zone.  
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Fig. 9 - Spatial distribution of 𝑇2(𝑋, 𝑌) for one slice of the cylindrical shape (left panel); 
clusters identified using the k-means approach (central panel; black: background, grey: 

normal melting) and corresponding 𝐷(𝑘) statistics (right panel) 

 

These two clusters are expected to represent the natural (in-control) state of the 

process, as discussed in the previous section. The lack of further clusters is representative 

of the lack of local defects characterized by anomalous melting conditions. 

 
4.1.2. Out-of-control process monitoring 

In this subsection, the results achieved by monitoring the defective part are 

discussed. The total number of frames acquired for each monitored feature, i.e., triangles 

1, 2 and 3, together with the corresponding image sizes after a crop operation are listed 

in Table 2. With regard to the computational feasibility of the VPCA-based approach, the 

analysis of a 8591 × 350 matrix that results from the unfolding of 350 frames of size 

121 × 71 required about 0.15 𝑠 on a laptop equipped with an Intel® Core™ i7-3537 CPU 

@ 2.00 GHz. Although this makes the method suitable for in-process monitoring via batch 

analysis, future research efforts may be devoted to investigate more efficient PCA 

variants and algorithm implementations. 
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Table 2  - Number of frames and image sizes for different monitored features 
Monitored feature Total number of frames (𝐽) Image size (pixels) 

Triangle 1 350 121 × 71 

Triangle 2 200 121 × 71 

Triangle 3 350 121 × 71 

 

An example of the pixel intensity profiles, 𝒖(𝑚, 𝑛) = [𝑢1(𝑚, 𝑛), … , 𝑢𝐽(𝑚, 𝑛)]
𝑇

, for 

three pixels belonging, respectively, to the three corners, A, B and C, of triangle 1, are 

shown in Fig. 10. The pixel intensity ranges between 0 (black) and 255 (white), whereas 

the background intensity is about 80.  

 

 

Fig. 10 - Examples of three intensity profiles for pixels belonging to corner A (top panel), 
corner B (central panel) and corner C (bottom panel) – triangle 1 
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The intensity profiles of pixels in corner A and B (Fig. 10, top and central panels) 

are representative of a normal melting. The intensity peaks correspond to frames where 

either the high intensity area surrounding the laser spot or one (or more) spatters passed 

over the corresponding pixel. Due to the scanning strategy that involves internal hatches 

and borders, a single pixel is scanned more than once during the SLM phase. The intensity 

profile of pixels belonging to corner C (Fig. 10, bottom panel) is representative of a 

defective melting, due to a local overheating. Such an overheating causes a slow cooling 

transitory after the intensity peak at about frame 𝑗 = 125 and, more evidently, the long 

lasting pixel saturation that starts at about 𝑗 = 180. The pixel intensity decreases very 

slowly and it reaches the background intensity only after the SLM of the feature is over. 

 

 

Fig. 11 - 2D (top panels) and 3D (bottom panels) representations of the spatial 
distribution of 𝑇2(𝑋, 𝑌) for triangle 1 (left panels), triangle 2 (central panels) and 

triangle 3 (right panels); the colour map ranges from dark blue (lower values) to bright 
yellow (larger values) (see the on-line version of the paper for color figures) 
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Fig. 11 shows the spatial distribution of the 𝑇2(𝑋, 𝑌) descriptors when the VPCA 

is applied to the entire image stream of each monitored feature. Fig. 11 (top panels) 

shows a 2D representation of the 𝑇2(𝑋, 𝑌) descriptors, where the centre line of each 

triangle (dashed white line) is superimposed. Fig. 11 (bottom panels) shows the 3D views 

of the same statistic. The 𝑇2(𝑋, 𝑌) indicator is based on the minimum number of PCs that 

explains at least 80% of the overall image data variability (see Appendix A for details). In 

this case, the number of retained PCs is respectively 𝑚 = 12, 𝑚 = 10 and 𝑚 = 10 for 

triangle 1, triangle 2 and triangle 3. A discussion about the physical meaning of the 

resulting PCs and the related statistics is presented in Appendix B.  

Fig. 11 shows a peak of the 𝑇2(𝑋, 𝑌) descriptor corresponding to corners C, E and 

G, i.e., the down-facing acute corners where the overheating phenomenon occurred. 

Such a high value is due to the fact that pixels in those zones are characterized by an 

intensity profile that is considerably different from the underlying pattern that describes 

the image stream (see Fig. 10). This makes the VPCA-based 𝑇2(𝑋, 𝑌) descriptor a suitable 

spatial index for in-process detection of local defects associated to overheating problems. 

Fig. 11 also shows that some single-point spikes are present. In particular, Fig. 11 (bottom-

left panel) highlights two spikes in the spatial distribution of 𝑇2(𝑋, 𝑌) for triangle 1, called 

spike I and II. The two intensity profiles corresponding to these spikes are shown in Fig. 

12. These two pixels exhibit an anomalous pattern in the last frames: their intensity does 

not go down to the background value, but it fluctuates around higher values. This may be 
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caused by a local reflection of light towards the lens, a deposition of a hot spatter, or 

something else that deserves a further investigation.  

 

 

Fig. 12 - Example of intensity profiles corresponding to pixels that exhibit a spike of the 
𝑇2(𝑋, 𝑌) indicator identified as spike I and spike II (triangle 1) 

 

Fig. 13 (top panels) shows the results of the k-means clustering applied to the 

three triangular features. The automatic selection of cluster numbers yields 𝑘 = 3 in all 

the considered cases (see the 𝐷(𝑘) statistics in the bottom panels of Fig. 13). One cluster 

(represented by the black area) corresponds to the background region. A second cluster 

(represented by the grey area) corresponds to the normal melting zone. The third cluster 

(represented by the red area3) corresponds to the peak of 𝑇2(𝑋, 𝑌) values4. 

 
3 See the on-line version of the paper for color figures. 
4 In all the considered cases, the k-means algorithm was implemented by setting one hundred iterations, 

each one corresponding to a randomly generated starting position of cluster centroids 
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Fig. 13 - Clusters identified using the k-means approach in the out-of-control examples 
(top panels; black: background cluster, grey: normal melting cluster, red: defect cluster) 
and corresponding 𝐷(𝑘) statistics (bottom panels; vertical red dashed line corresponds 

to the selected number 𝑘 of clusters); see the on-line version of the paper for color 
figures 

 

The first two clusters are expected to represent the natural state of the process, 

whereas the presence of the third cluster is a symptom of a non-homogeneous heating 

condition due to the onset of a local defect. Fig. 13 shows that the proposed approach is 

able to signal also the two major spikes in the image stream associated to triangle 1, i.e., 

spike I and II, and one large spike in the image stream associated to triangle 2. The 

knowledge of spatial localization of these spikes is relevant from an in-process monitoring 

perspective, as they can represent local anomalies that may produce defect onsets in the 

next layers. 
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4.2. Within-Layer Monitoring Results 
 
4.2.1. In-control process monitoring 

In order to show the potential benefits of the within-layer monitoring procedure, 

the iterative updating of the proposed approach was first applied to the in-control 

example. We decided to split the duration of the process into 𝑛 = 8 batches, such that 

𝐽′ = 50 for triangle 1 and 3 (corresponding to about 0.165 𝑠). This means that the 

estimate of the VPCA-based indicator and the k-means results are updated every 𝐽′ 

frames. The choice of the batch size, 𝐽′, depends on different factors. On the one hand, a 

sufficient number of frames is required to initialize the VPCA–based estimation. On the 

other hand, a smaller batch size may provide a faster detection of defects. The 

computational effort for VPCA updating should be taken into account as well.  

Fig. 14 shows the result of the k-means clustering iteratively updated for an 

increasing number of frames during the laser scanning of the cylindrical shape. Only the 

two natural clusters (black and grey areas in the figure) are always present, although their 

separation evolves during the SLM process. The lack of any further cluster in all the 

recursively updated time windows is representative of a process that is stable over time.  
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Fig. 14 - k-means clustering of the 𝑇2(𝑋, 𝑌) statistic iteratively updated for a growing 
number of frames for one slice of the cylindrical shape (black: background, grey: normal 

melting) 

 

 

4.2.2. Out-of-control process monitoring 

The iterative updating of the proposed approach was applied to the out-of-control 

examples. Analogously to the in-control case, we split the duration of the process into 

𝑛 = 8 batches, such that 𝐽′ = 45 for triangle 1 and 3 (corresponding to about 0.15 𝑠), and 

𝐽′ = 25 for triangle 2 (corresponding to about 0.08 𝑠).  

Fig. 15 shows the result of the k-means clustering iteratively updated for an 

increasing number of frames during the laser scanning of triangle 1. Fig. 15 shows that 

the two natural clusters (black and grey areas in the figure) are always present, although 

their separation evolves during the SLM process. A third cluster (red area5) starts to be 

signalled starting from the fifth batch, corresponding to the 𝑇2(𝑋, 𝑌) peak in corner C. 

 
5 See the on-line version of the paper for color figures. 
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This means that a recursive update of the proposed approach allows a faster detection of 

a possible defect, even before the SLM of a complete slice is over.  

 

 

Fig. 15 - k-means clustering of the 𝑇2(𝑋, 𝑌) statistic iteratively updated for a growing 
number of frames for triangle 1 (black: background, grey: normal melting, red: defect); 

see the on-line version of the paper for color figures 

 

 

Fig. 16 - k-means clustering of the 𝑇2(𝑋, 𝑌) statistic iteratively updated for a growing 
number of frames for triangle 2 (black: background, grey: normal melting, red: defect); 

see the on-line version of the paper for color figures 
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Fig. 17 - k-means clustering of the 𝑇2(𝑋, 𝑌) statistic iteratively updated for a growing 
number of frames for triangle 3 (black: background, grey: normal melting, red: defect); 

see the on-line version of the paper for color figures 

 

In case of triangle 2, Fig. 16 shows that the local defect starts to be clearly visible 

and distinct from other clusters at the fourth batch. In case of triangle 3, Fig. 17 shows 

that the local defect starts to be signalled at the fifth batch. 

 

4.3. A Comparison Study 
 
 

Due to the emerging nature of the research problem, there are neither actual 

benchmark approaches nor consolidated techniques to compare with. Nevertheless, it is 

possible to investigate the benefits of the proposed approach against the use of a simpler 

statistical descriptor, i.e., the mean intensity of each pixel. The overheating phenomenon 

yields a local increase of mean pixel intensities in the presence of a defect. Thus, the mean 

intensity �̅�(𝑚, 𝑛) = (1/𝐽) ∑ 𝑢𝑗(𝑚, 𝑛)𝐽
𝑗=1  might be considered as a reasonable competitor 

of the 𝑇2(𝑋, 𝑌) descriptor proposed in this study. The k-means methodology was applied 
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to the spatial distribution of the mean intensity descriptor, and the results are presented 

in the following. 

 

 

Fig. 18 - Results of competitor approach based on average pixel intensities for triangle 1 
(black: background, grey: normal melting, red: defect); see the on-line version of the 

paper for color figures 

 

 

Fig. 19 - Results of competitor approach based on average pixel intensities for triangle 2 
(black: background, grey: normal melting, red: defect); see the on-line version of the 

paper for color figures 
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Fig. 20 - Results of competitor approach based on average pixel intensities for triangle 3 
(black: background, grey: normal melting, red: defect); see the on-line version of the 

paper for color figures 

 

Fig. 18 to Fig. 20 show the mean intensity-based clustering results for triangle 1, 2 

and 3, respectively. Fig. 18 and Fig. 20 show that, contrary to the proposed approach, the 

use of the mean intensity descriptor does not allow detecting a third cluster 

corresponding to the overheated acute corner. This is because there is a smooth and 

reduced variation of mean intensity between the acute corner and the surrounding area, 

which prevents the clustering algorithm from identifying two distinct areas.  

Fig. 19 shows that, in case of triangle 2, the mean intensity descriptor allows 

signalling the defect, but the detection occurs later (i.e., at the sixth batch) than in our 

proposed approach (see Fig. 15). In this case, the gap between the mean intensity of pixels 

belonging to corner E and the surrounding pixels is sufficiently large to aid a detection of 

a third cluster, but the 𝑇2(𝑋, 𝑌) descriptor is still preferable. Indeed, the VPCA analysis 

emphasizes the differences between pixels by taking into account a richer information 
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than the simple average intensity levels, and this leads to a faster detection of the defect 

onset. 

 

4.4. Robustness To Different Pixel Ordering Strategies 

As mentioned in Section 2, the variance-covariance structure of the data matrix 𝐗 

may be influenced by the approach used to rearrange the 𝑀 × 𝑁 pixels into the 𝑝 rows 

of 𝐗. The results discussed in sub-section 4.1 and 4.2 were based on a row-wise 

arrangement, but many other ways for pixel ordering are possible. In order to evaluate 

the robustness of the 𝑇2(𝑋, 𝑌) spatial distribution against the pixel ordering, four pixel 

arrangement methods were considered: (1) row-wise arrangement, (2) column-wise 

arrangement, (3) row-wise arrangement where the within-row order of the pixel was 

randomized (same ordering for each row), and (4) complete randomization of the pixel 

order. Fig. 21 shows that the resulting 𝑇2(𝑋, 𝑌) spatial distribution is weakly affected by 

the pixel order arrangement (as an example, the spatial distribution for triangle 1 is 

shown). The first and third solutions are basically identical, whereas the second and the 

forth solution slightly change the distribution of the statistic at lower values and they yield 

a scale change.  
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Fig. 21 - 𝑇2(𝑋, 𝑌) spatial distribution for different pixel arranging methods: row-wise 
(top-left panel) and column-wise (top-right panel), row-wise arrangement with 

randomized order within the row (bottom-left panel) and complete order randomization 
(bottom-right panel) – triangle 1 

 

Instead of considering just one possible random ordering, it is possible to estimate 

the 𝑇2(𝑋, 𝑌) indicator for a larger number of random order realizations and plot the 

resulting ensemble mean spatial distribution. The mean 𝑇2(𝑋, 𝑌) spatial distribution and 

the corresponding standard deviation for an ensemble of one thousand realizations are 

shown in Fig. 22. A standardization was applied in order to estimate the 𝑇2(𝑋, 𝑌) values 

on the same scale in each realization.  
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Fig. 22 - Mean 𝑇2(𝑋, 𝑌) spatial distribution (left panel) and the corresponding standard 
deviation (right panel) for an ensemble of one thousand realizations – triangle 1 

 

The ensemble mean distribution (Fig. 22, left panel) is very close to the 

distributions shown in Fig, 21, which confirms the robustness of the spatial descriptor 

against the pixel ordering during the unfolding operation. An ensemble analysis is not 

computationally suitable for an in-process implementation, and hence the pixel ordering 

strategy should be selected in advance, but it is expected to have a quite limited impact 

on process monitoring performances. 

 

5 CONCLUSIONS 
 

Despite of the great potential of SLM technologies in many application fields, the 

process capability still deserves considerable improvements to achieve an industrial 

breakthrough. Different kinds of defects may originate during the scanning of one single 

slice and then propagate to the following layers, with a detrimental impact on the 

geometrical or mechanical/physical properties of the part. In many cases, the defects 
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affect the internal structure or structural features that are difficult to measure. Thus, they 

might be hardly visible or detectable by inspecting the final part, but they strongly 

influence its functionality. Because of this, in-process monitoring plays a relevant role in 

the development and enhancement of SLM processes, thanks to the capability of 

detecting the defect onset during the layer-by-layer process itself. Although available SLM 

systems still lack adaptive/reactive control strategies that can be used for defect 

mitigation or removal, in-process monitoring has been pointed out as a key enabling 

technology to pave the way to next generation metal additive manufacturing systems. To 

this aim, consistent research and development efforts are needed to include in-process 

monitoring tools into feedback process control loops, possibly by exploiting hybrid 

manufacturing paradigms.   

This paper proposes a method for in-process monitoring of SLM processes via 

image analysis, which allows both the detection and the spatial localization of local 

defects related with overheating phenomena. The category of defects investigated in this 

study consists of local overheating phenomena caused by a wrong heat transfer from the 

melt pool to the surrounding material.  

The proposed approach consists of identifying molten areas whose behaviour is 

different from other portions of the same layer in terms of pixel intensity patterns over 

time. An image stream from an off-axial camera was processed via a multi-dimensional 

version of the PCA, called vectorised PCA. This allows estimating a spatial version of the 

traditional Hotelling’s 𝑇2 statistic, which maps a 𝑇2 value to each image pixel. A k-means 

clustering with data-driven selection of the number of clusters, 𝑘, was then applied to the 
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spatial descriptor. The results showed that the method is suitable to automatically detect 

and localize a defect during the layer-by-layer SLM process. A comparison with a simpler 

statistical descriptor highlighted the effectiveness of the PCA-based methodology. The 

robustness analysis showed that the spatial descriptor is robust against the strategy used 

to rearrange the pixel order during the unfolding operation.  

The presented case study regarded the SLM of a complicated shape where 

geometrical and surface finishing defects occurred due to a local overheating in down-

facing acute corners of scanned slices. The analysis showed that the proposed approach 

allows identifying the zones of the slice that exhibit an anomalous cooling transitory 

resulting from an undesired overheating. Other phenomena may generate “hot spots” 

similar to the ones corresponding to over-heated zones, e.g., the deposition of large hot 

spatters on the powder bed. However, the possible extension of the proposed approach 

to other defect scenarios will be the subject of a future research. 

The proposed approach requires no ad-hoc image segmentation or image 

thresholding operations, and it exploits an experimental setup that implies no 

modification of the machine configuration. Future developments will be aimed at 

verifying the suitability and the performances of the proposed approach for image 

streams acquired with a different frame rate or by using a different experimental setup.  
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NOMENCLATURE 
 

AM  Additive manufacturing 

𝑐𝑘   k-th cluster 

CMOS  Complementary metal-oxide semiconductor 

𝐷(𝑘)  Statistic used to select the number of clusters, 𝑘 

𝑑ℎ  Hatch distance 

𝑑𝑝  Point distance between single laser spots 

𝑓  Video frame rate 

𝑓𝑝  Laser focus position 

𝑓𝑝𝑠  Frames per second 

𝐽’, 𝐽  Number of frames 

𝑘  Number of clusters 

𝐾  Maximum number of clusters 

𝐋  Eigenvalue matrix 

𝑚  Number of retained PC 

𝑀 × 𝑁  Image size in pixels 

𝑝  Number of pixels 

𝑃  Laser power 

PC  Principal component 

PCA  Principal component analysis 

𝐒  Variance-covariance matrix 

SLM  Selective laser melting 

SPE  Squared prediction error 

𝑆𝑆𝑊(𝑘)  Sum of within sum of squared as a function of the number of clusters, 𝑘 

𝑡  Laser exposure time 

𝑇2  Hotelling’s statistic 

𝓤  3-dimensional array that represents the image stream 

𝑼𝑗   𝑗𝑡ℎ  image, 𝑗 = 1, … , 𝐽 

𝑢𝑗(𝑚, 𝑛) (𝑚, 𝑛)  element of the matrix 𝑼𝑗, 𝑗 = 1, … , 𝐽 

𝐕  Eigenvector matrix 

VPCA  Vectorized PCA 

𝐱𝑙  𝑙𝑡ℎ row of the 𝐗 matrix, 𝑙 = 1, … , 𝑝 

�̅�  Cross-sectional average profile of the 𝐗 matrix 
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�̂�𝑙(𝑚)  𝑙𝑡ℎ reconstructed profile of the 𝐗 matrix based on 𝑚 retained PCs, 𝑙 = 1, … , 𝑝 

𝐗, 𝐗𝐽  Data matrix resulting from unfolding operation 

𝐳𝑙  𝑙𝑡ℎ score vector of the VPCA, 𝑙 = 1, … , 𝑝 

𝜆𝑗   𝑗𝑡ℎ  eigenvalue, 𝑗 = 1, … , 𝐽 
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APPENDIX A: OVERVIEW OF THE VPCA TECHNIQUE 

The first step of the VPCA [32 -  34, 41] consists of performing a spectral 

decomposition,  

𝐕𝑇𝐒𝐕 = 𝐋,  of the sample variance-covariance matrix 𝐒 ∈ ℝ𝐽×𝐽 of the 𝑝 × 𝐽 data matrix 

𝐗. 𝐋 is a diagonal matrix whose diagonal elements are the eigenvalues of 𝐒 (𝜆𝑗; 𝑗 =

1, … , 𝐽), and 𝐕 is an orthonormal matrix whose 𝑗𝑡ℎ column, 𝒗𝑗, is the 𝑗𝑡ℎ eigenvector of 

𝐒.6 The projection of the 𝑙𝑡ℎ pixel intensity profile onto the 𝐽-dimensional PC orthogonal 

space is defined as follows (a.k.a. “score”): 

𝐳𝑙 = 𝐕𝑇(𝐱𝑙 − �̅�) = [𝑧𝑙,1, … , 𝑧𝑙,𝐽]
𝑇

           (𝑙 = 1, … , 𝑝 = 𝑀 × 𝑁) (A1) 

where 𝐱𝑙 = 𝒖(𝑚, 𝑛) = [𝑢1(𝑚, 𝑛), … , 𝑢𝐽(𝑚, 𝑛)]
𝑇

 is the 𝑙𝑡ℎ row of the data matrix 

𝐗 and �̅� = (1/𝑝) ∑ 𝐱𝑙
𝑝
𝑙=1  is the cross-sectional average profile among the 𝑝 intensity 

profiles used to estimate the VPCA model. Extracted PCs are linear combination of frames 

from 𝑗 = 1 to 𝑗 = 𝐽. This means that the 𝑗𝑡ℎ eigenvector, 𝒗𝑗, contains the weights, a.k.a. 

“loadings”, of this linear combination. The first PC is the maximum variance linear 

combination; the second PC is the maximum variance linear combination having zero-

correlation with the first one; and so on. The relative importance of each PC, i.e. the 

amount of explained variance, is represented by the value of the corresponding 

eigenvalue. Thus, the relevant information enclosed in the image stream may be captured 

by a reduced number of PCs, say 𝑚. The number 𝑚 of relevant PCs can be selected by 

 
6 For process monitoring applications the variance-covariance matrix estimation based on the successive 

difference operator is advocated [43]. 
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setting a threshold on the minimum percentage of overall data variance explained by 

those PCs. This method guarantees that PCs retained from iteratively generated matrices 

actually refer to the same amount of data variability. Other methods have been proposed 

in the literature: for a comparison study see Valle et al. [42].  

In order to characterize the behaviour of each pixel and to identify single pixels 

(or spatial clusters of  pixels) that exhibit anomalous intensity profiles, the Hotelling’s 𝑇2 

statistic can be used:  

𝑇𝑙
2 = ∑

𝑧𝑙,𝑗
2

𝜆𝑗

𝑚
𝑗=1            (𝑙 = 1, … , 𝑝 = 𝑀 × 𝑁) (A2) 

Contrary to profile monitoring applications [41, 44], in our proposed approach, 𝑇𝑙
2 

is a spatial indicator through the mapping 𝑇𝑙
2 ∈ ℝ+

𝑝 → 𝑇2(𝑋, 𝑌) ∈ ℝ+
𝑀×𝑁, and hence it can 

be represented in the same domain of original images, 𝑇2(𝑋, 𝑌), where 𝑋 and 𝑌 denotes 

the image pixel location. The spatial distribution of 𝑇2(𝑋, 𝑌) is therefore suitable to 

synthetize the information content of a video, represented in terms of a 3-dimensional 

array, into a spatially distributed descriptor. Usually it is advocated to couple the 

Hotelling’s 𝑇2 statistic with an additional statistic that allows one to monitor patterns that 

affect directions orthogonal to the ones associated to the retained PCs. Such a statistic is 

known as “squared prediction error” (SPE) and it involves the estimation of the 

reconstructed intensity profiles. By retaining the first 𝑚 PCs, each pixel intensity profile, 

i.e. each row of the matrix 𝐗, may be reconstructed as follows: 

�̂�𝑙(𝑚) = �̅� + ∑ 𝑧𝑙,𝑗𝒗𝑗
𝑚
𝑗=1           (𝑙 = 1, … , 𝑝 = 𝑀 × 𝑁) (A3) 

Then, the SPE statistic is given by: 
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𝑆𝑃𝐸𝑙 = (�̂�𝑙(𝑚) − �̅�)𝑇(�̂�𝑙(𝑚) − �̅�)           (𝑙 = 1, … , 𝑝 = 𝑀 × 𝑁) (A4) 

Analogously to the 𝑇𝑙
2 indicator, the 𝑆𝑃𝐸𝑙  is a spatial statistic through the mapping 

𝑆𝑃𝐸𝑙 ∈ ℝ+
𝑝 → 𝑆𝑃𝐸(𝑋, 𝑌) ∈ ℝ+

𝑀×𝑁. If a defect affects the pixel intensity profiles in a way 

that is not captured by the retained PCs, the SPE statistic guarantees that no information 

is lost, and the defect might be localized by looking at high values of 𝑆𝑃𝐸(𝑋, 𝑌). This study 

focused on the 𝑇2(𝑋, 𝑌). Future development may be aimed at extending the k-means 

clustering methodology to include the 𝑆𝑃𝐸(𝑋, 𝑌) descriptor, too, into the analysis. 

 

APPENDIX B: ON THE PHYSICAL INTERPRETATION OF PCS 

The physical understanding of estimated PCs plays a key role to interpret the 

results of the proposed approach. Here a discussion about the analysis of triangle 1 is 

briefly presented. Analogous conclusions can be drawn for other image streams. Fig. B1 

shows the loadings of 𝑚 = 12 retained PCs that explain the 80% of the overall image 

stream variability. Each loading, 𝒗𝑗, is a vector of length 𝐽 that associates a weight to each 

frame. Thus, contrary to the traditional VPCA for image analysis, the loadings in our 

proposed approach are linear combinations of points in time (i.e., the frames). The effects 

of the overheating of corner C were mainly visible during the time window that is marked 

by red dotted lines in Fig. B1. The PCs that associate a larger weight to points in time 

within that time window are the first three PCs. Thus, they represent the most informative 

variables for defect detection. 
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Fig. B1 - Loadings of retained PCs estimated by analysis the entire image stream for 
triangle 1 (red dotted lines mark the time window during which the overheating effects 

of corner C were visible) 

 

The scores corresponding to these retained PCs are vectors of real numbers in ℝ𝑝, 

and hence they can be represented via the mapping ℝ𝑝 → ℝ𝑀×𝑁. Fig. B2 shows the 

spatial distribution of the scores corresponding to the loadings in Fig. B1. Each score 

value, z𝑙,𝑗, represents the projection of the 𝑙𝑡ℎ pixel, 𝑙 = 1, … , 𝑝 = 𝑀 × 𝑁, onto the 𝑗𝑡ℎ 

PC, 𝑗 = 1, … , 𝑚. Fig. B2 shows that, along the first principal direction, the defect is visible 

as a contrast between the acute corner C and the background area. Along the second 

principal direction, the defect is visible as a contrast between corner C and the opposite 

corner A. Along the third principal direction, the defect is visible as a contrast between 
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corner C and the surrounding area. Therefore, in this study the effects of the local defect 

is visible along the first three PCs, whereas following PCs provide a limited contribution.  

Generally speaking, in case a defect is such that its effects are only visible along directions 

that are orthogonal to those PCs, an additional statistic, i.e., the 𝑆𝑃𝐸(𝑋, 𝑌), is required to 

avoid information losses. As an example, the 𝑆𝑃𝐸(𝑋, 𝑌) spatial distribution for triangle 1 

is shown in Fig. B3. Analogously to the 𝑇2(𝑋, 𝑌) indicator, the 𝑆𝑃𝐸(𝑋, 𝑌) exhibits larger 

values corresponding to the down-facing acute corner C, but it provides no significant 

additional information.  

 

 

Fig. B2 - Scores of retained PCs estimated by analysis the entire image stream for 
triangle 1 
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Fig. B3 - 3D representation of the 𝑆𝑃𝐸(𝑋, 𝑌) statistic triangle 1; the colour map ranges 
from dark blue (lower values) to bright yellow (larger values); see the on-line version of 

the paper for color figures 
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