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Using Curve Registration Information for 

Profile Monitoring 

MARCO GRASSO, ALESSANDRA MENAFOGLIO,  

BIANCA M. COLOSIMO and PIERCESARE SECCHI1 

Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy 

The quality characteristics in manufacturing processes are often represented in terms of 

spatially or time ordered data, called “profiles”, which are characterized by amplitude and 
phase variability. In this context, curve registration plays a key role, as it allows separating 

the two kinds of between-profiles variability, and to reduce any undesired inflation of the 

natural phase variability. In the mainstream literature, registration warping functions are 

not generally considered in the monitoring process, even though this may cause a 

significant information loss. We propose a novel approach for profile monitoring, which 

combines the Functional Principal Component Analysis and the use of parametric warping 

functions. The key idea is to jointly monitor the stability over time of the registered 

profiles (i.e., the information related to amplitude variability) and the registration 

coefficients (i.e., the information related to phase variability). This allows improving the 

capability of detecting unnatural pattern modifications, thanks to a better characterization 

of the overall natural variability. The benefits of a proper management of functional data 

registration, together with the advantages over the most common approaches used in the 

literature, are demonstrated by means of Monte Carlo simulations. The proposed 

methodology is finally applied to a real industrial case study relying on a dataset acquired 

in waterjet cutting processes under different health conditions of the machine tool. 

Keywords: Warping Functions, Curve Registration, Functional Data Analysis, Profile 

Monitoring 

 

1. Introduction 

In several manufacturing applications of practical 

interest, the signals acquired during the process 

and/or the geometric features measured on the 

product may be represented by spatially or time 

ordered data known as “profiles”. In the presence of 
quality characteristics consisting of cyclically 

repeating patterns, the term “profile monitoring” 
refers to a suite of methods that provides the natural 
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framework to evaluate the stability over time of 

process quality (Woodall et al., 2004; Kang and 

Albin, 2000). Different techniques have been 

proposed to deal with complex shape profiles 

acquired from sensor signals. Some contributions in 

this field include the studies of Jin and Shi (1999; 

2001), Zhou et al. (2005), Ding et al. (2006), Chang 

and Yadama (2010) and Grasso et al. (2014a; 2014b). 

An overview of parametric and nonparametric 
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approaches for profile monitoring can be found in 

Noorossana et al. (2012).  

The recorded profiles generally present two kinds of 

natural variability: a phase variability and an 

amplitude variability (Ramsay and Li, 1998; Vantini, 

2012). The natural phase variability may be inflated 

by undesired misalignments caused by random 

durations of cyclical processes or by other disturbance 

factors. An inflated phase variability results in an 

inflation of the overall natural variability, which may 

mask the effects of unnatural deviations associated to 

assignable causes. In addition, a curve misalignment 

makes the salient features of different profiles to be 

shifted in phase, which reduces the capability of 

detecting local pattern modifications. 

As far as the curve registration problem is concerned, 

the mainstream literature devoted to profile 

monitoring (see Section 2) does not deal with 

registration, as it is deemed an unnecessary task or 

simply treated as a pre-processing step to be neglected 

when profile monitoring is applied. However, 

registration is a very important and complex task in 

many application domains, and it plays a relevant role 

when monitoring is applied either to geometric 

profiles and surfaces (Colosimo and Pacella, 2007, 

Dryden and Mardia, 1998) or signal profiles. As a 

matter of fact, simple re-sampling or triggering 

methods, which are sometimes used in practice for 

signal misalignment reduction, do not guarantee a 

proper separation of amplitude and phase variability. 

Second, monitoring only the registered curves, 

without keeping any explicit track of the registration 

parameters, implies a loss of information about the 

phase variability, which may reduce the control chart 

performances. The present study is a first contribution 

in the direction of integrating curve registration 

algorithms into the profile monitoring framework. We 

propose a novel approach to jointly monitor the 

stability over time of both the registered profiles and 

the warping functions used to align them. To this end, 

we propose a three-step procedure consisting of: (i) 

applying a parametric warping registration (Eilers, 

2004; Ramsay and Silverman, 2005) of the acquired 

profiles to decouple the phase and the amplitude 

variability, (ii) performing a dimensionality reduction 

of the registered profiles through Functional Principal 

Component Analysis (FPCA) (Ramsay and 

Silverman, 2005), and (iii) monitoring both the phase 

and the amplitude variability of the signals through 

appropriate control charts. Specifically, the 

coefficients of the warping functions singled out in 

Step (i) are used to describe the natural phase 

variability of profile data. A FPCA of registered 

curves allows reducing the number of features 

representing the amplitude variability. Step (iii) 

finally controls the signals through both the phase and 

the amplitude variability (in terms of warping 

coefficients and principal components scores), 

together with the FPCA residuals, which are used to 

detect possible deviations involving principal 

directions orthogonal to those of the retained 

components. This approach avoids information 

losses, besides allowing a proper management of both 

kinds of shape variability. A rationale for the use of 

this approach, together with a brief state of the art on 

curve registration in profile monitoring applications, 

is discussed in Section 2.  

We demonstrate the benefits of the proposed 

approach through Monte Carlo simulations and by 

means of a real industrial test case in waterjet cutting 

(Kovacevic et al., 1997). Two competitor 

implementations of a FPCA-based profile monitoring 

approach are considered: (i) FPCA on raw data 

without registering the curves in advance, and (ii) 

FPCA on the registered curves, monitoring the FPCA 

scores only. The former approach is representative of 

what is done in practice when only a rough alignment 

(or no alignment at all) is applied before analysing the 

data, whereas the latter approach is representative of 

what is usually proposed in the mainstream literature.  

The paper is organized as follows: Section 2 describes 

the curve registration issue in profile monitoring 

applications and presents two motivating examples; 

Section 3 reviews the time warping approach for 

functional data registration; Section 4 describes the 

proposed approach; Section 5 discusses the 

simulation analysis; Section 6 presents the real case 

study in waterjet cutting processes; Section 7 

discusses the possible shape distortion effects caused 

by the time warping operation and some possible 

ways to deal with them; Section 8 concludes the 

paper. 

2. The Curve Registration Issue 

and Motivating Examples 

Despite of a wide literature devoted to the registration 

of 2D/3D point clouds in coordinate metrology for 

shape analysis (Chen and Hung, 1999; Okello and 

Ristic, 2003; Guo et al., 2011; Senin et al., 2013; Del 

Castillo and Colosimo, 2011), only few authors 

emphasize the critical role of registration for profile 

monitoring of signal data (Woodall et al. 2004; 

Mosesova et al., 2007, Colosimo and Pacella, 2007). 

As a matter of fact, most of the proposed methods 



assume that profiles to be monitored are already 

registered or do not need registration at all. 

Unfortunately, this hypothesis is often unrealistic 

when signal profiles have to be monitored, because 

manufacturing processes and industrial machinery 

never exhibit an exact cyclical behaviour, the result 

being that the salient features of acquired profiles are 

seldom naturally aligned. 

Signal triggering and/or synchronous resampling 

procedures are sometimes used to reduce the 

misalignment effects (e.g., Zhou et al., 2005, Jin and 

Shi, 2001). These methods are also often exploited in 

commercial monitoring toolkits used in industry. 

However, they may be insufficient to achieve reliable 

registration performances, as illustrated by the 

following examples. Two kinds of signal profiles 

acquired in two different machining operations are 

shown in Fig. 1. Fig. 1 a) shows three torque profiles 

acquired under natural process conditions during an 

M8 threads tapping operation on a mild steel part. Fig. 

1 b) shows three profiles representing the natural 

water pressure ripples in a waterjet cutting process, 

acquired during three consecutive pumping cycles.  

 

FIGURE 1. Examples of misaligned signal profiles 

acquired during a) a tapping process and b) a 

waterjet cutting process 

In both cases, the profile acquisition was 

automatically started and stopped by means of 

embedded trigger commands. Concerning the 

waterjet case, a synchronous re-sampling procedure 

(Gao, 2012) was also applied to get profiles of equal 

length. The examples in Fig. 1 show that automated 

triggering and synchronous re-sampling might not be 

sufficient to guarantee a proper alignment of 

repeating patterns. Re-sampling procedures may 

enhance the analysis, but in most cases they cannot 

avoid undesired time-shifts of the salient shape 

features.  

Other approaches used in the profile monitoring 

literature include shift registration (Colosimo and 

Pacella, 2007) and landmark registration (Mosesova 

et al., 2007), possibly coupled with a trigger-based 

segmentation and re-sampling operations. Shift 

registration allows aligning periodic profiles when the 

misalignment error consists only of a pure translation 

along the time axis. Thus, it can be useful only in 

particular cases. Landmark registration, instead, 

allows dealing with more complex misalignment 

conditions, by accurately matching pre-selected 

features. However, the automated identification of the 

salient landmarks may be a troublesome task, which 

makes this approach more suitable for post-process 

monitoring applications. 

Regardless of the method used for reducing the 

misalignment effects, the registration operation is 

usually carried out during the signal pre-processing 

steps: after registration, only the registered profiles 

are considered for monitoring purposes. As a 

consequence, the information about the phase 

variability is partially lost. Furthermore, the 

registration procedure implies that each newly 

observed profile is aligned to an in-control reference 

pattern before being classified as either an in-control 

or an out-of-control profile. Thus, the registration 

operation viewed as a pre-processing step may even 

mitigate the effects of actual out-of-control 

behaviours, as it forces the new pattern to resemble 

the reference one. This motivates the construction of 

an effective method to keep under statistical control 

not only the amplitude variability but also the phase 

variability of the signals during the process 

monitoring. 

3. Functional data registration via 

warping functions 

Different curve registration methods have been 

proposed in the literature. One research stream in this 



field consists of aligning the curves by maximizing a 

similarity index: this approach is followed by Ramsay 

and Li (1998), Ramsay and Silverman (2005), James 

(2007), Kaziska and Srivastava (2007) and Sangalli et 

al. (2009a). Apart from the simplest case of shift 

registration, two popular methods are based on 

landmark registration (Gasser et al., 1990; Kneip and 

Gasser, 1992) and time warping (Eilers, 2004; Tang 

and Muller, 2008; Tucker et al., 2013; Zhou et al., 

2014). Other approaches have been studied by 

different authors (Altman and Villareal, 2004; 

Lindstrom and Bates, 1990; Ke and Wang, 2001; 

Gervini, 2014).  

The use of a continuous monotone registration allows 

overcoming the limitations of landmark registration 

and involves a transformation of the time axis, ℎ:ℝ →ℝ. Either parametric (Silverman, 1995), semi-

parametric (Gervini and Gasser, 2004) or non-

parametric (Ramsay and Li, 1998) methods have been 

proposed to define the transformation ℎ.  

In this study, we propose the use of parametric 

warping functions (i) to increase the computational 

efficiency, in order to comply with industrial 

implementation requirements, and (ii) to control the 

number of warping coefficients to be monitored. We 

remark that a quadratic or cubic model is usually 

sufficient for the transformation function, ℎ, to lead to 

a good registration in practical applications. 

The formalization of the time warping problem is 

briefly reviewed hereafter. Let {𝑦𝑗(𝑡𝑖), 𝑖 =1,… , 𝑛;  𝑗 = 1,… ,𝑀} be the sample of raw profiles 

acquired in the measurement process. Following the 

FDA approach, each raw datum is here assumed to be 

a collection of points sampled from an underlying 

curve 𝑦𝑗(𝑡), 𝑡 ∈ [0, 𝑇]. Hereafter, we assume each 

profile 𝑦𝑗 , 𝑗 = 1,… , 𝑀, to be a square-integrable 

function. This assumption is not restrictive for 

practical applications, since any bounded function on 

a bounded domain fulfils this requirement.  

To set the notation, we consider the following general 

model for the observations: 𝑦𝑗(𝑡𝑖) =  𝑔𝑗 (ℎ̃𝑗−1(𝑡𝑖)) + 𝜀𝑖𝑗 ,𝑖 = 1,… , 𝑛;  𝑗 = 1,… ,𝑀 

(1) 

where, ℎ̃𝑗: [0, 𝑇] → [0, 𝑇], 𝑗 = 1,… ,𝑀, are invertible 

functions which capture the phase variability; 𝑔𝑗, 𝑗 =1,… ,𝑀, are squared integrable functions, featured by 

amplitude variability only; 𝜀𝑖𝑗, 𝑖 = 1,… , 𝑛, 𝑗 =1,… ,𝑀, are i.i.d. zero-mean random errors with finite 

variance 𝜎2. The latter is generally assumed to be 

small, since FDA methods usually rely upon the 

assumption of a high signal-to-noise ratio. We note 

that the assumption of variance homogeneity across 

profiles is justified whenever the instrument used to 

acquire the profiles is the same for each observation. 

As a first step of the statistical analysis one needs to 

represent the acquired raw profiles in a functional 

form. In the presence of a high signal-to-noise ratio, 

either a smoothing or an interpolating basis can be 

used. In the following, we represent the functional 

profiles – denoted with 𝑦𝑗 for the sake of notation 

simplicity – via a cubic B-spline basis as: 𝑦𝑗(𝑡) = ∑ 𝑐𝑞,𝑗Φ𝑞(𝑡, 𝝉𝑄+𝐿−1𝑞=1 ),
𝑡 ∈ [0, 𝑇];   𝑗 = 1,2, … ,𝑀 

(2) 

where 𝑄 = 4 is the order of the B-spline functions, 𝐿 

is the number of subintervals separated by 𝐿 − 1 

interior knots, 𝝉 is the knot sequence 𝝉 = {𝜏𝑙 , 𝑙 =1,2,… , 𝐿}, 𝑐𝑞,𝑗 are the B-spline coefficients, and Φ𝑞 

are the B-spline basis functions. Hereafter, we will 

use the matrix notation 𝒚(⋅) = 𝑪𝚽(⋅), where 𝒚(⋅) =(𝑦1(⋅), … , 𝑦𝑀(⋅))′
 is the array of functional data, 𝑪 =(𝑐𝑞,𝑗) ∈ ℝ𝑄+𝐿−1,𝑀 is the coefficient matrix and 𝚽 =(Φ1, … ,Φ𝑄+𝐿−1)′
 is the basis function array. Note 

that, in case of interpolating B-splines, one has 𝝉 ={0,1,… , 𝑇}. 
Given a square-integrable reference profile �̃� (e.g., 

the sample mean of the 𝑔𝑗’s) and the 𝑗-th curve 𝑦𝑗, the 

registration of 𝑦𝑗 to �̃� via a functional time warping 

approach consists of estimating a function ℎ𝑗 within a 

given class of warping functions such that the 

similarity between the registered function 𝑦∗(𝑡) =𝑦𝑗(ℎ𝑗(𝑡)), 𝑡 ∈ [0, 𝑇], and the reference function �̃�(𝑡), 𝑡 ∈ [0, 𝑇], is maximized. The parametric time 

warping approach (Eilers, 2004; Ramsay and 

Silverman, 2005) involves the use of parametric 

warping functions induced by polynomials of degree 𝐾. Here, the generic warping function ℎ is assumed to 

be a monotonic increasing function such that ℎ(0) =0 and ℎ(𝑇) = 𝑇, and is obtained as  

ℎ(𝑡) = ∫ exp(ℎ𝐾(𝑧))[0,𝑡] 𝑑𝑧∫ exp(ℎ𝐾(𝑧))[0,𝑇] 𝑑𝑧 , 𝑡 ∈ [0, 𝑇] (3) 

where ℎ𝐾 is a polynomial function of degree 𝐾: 



ℎ𝐾(𝑡) = ∑ 𝑤𝑘𝑡𝑘 ,    𝑡 ∈ [0, 𝑇]𝐾𝑘=0  (4) 

The degree 𝐾 can be fixed ex-ante, or estimated, e.g., 

by a stepwise estimation method. The choice of the 

parameter 𝐾 is mostly problem-dependent, and needs 

to represent a compromise between the capability of 

dealing with arbitrary phase shifts and the avoidance 

of undesired shape distortions induced by the 

registration itself (see Section 7). We propose a 

method for the selection of the degree 𝐾 in Appendix 

A. Note that even if 𝐾 = 1, transformation (3) 

induces a non-linear warping function. Nevertheless, 

in case of anchored values at the boundaries of the 

domain (as in this case), the use of non-linear warping 

functions is a natural choice for the registration 

problem. In general, non-linear warping functions are 

likely to be required when the misalignment involves 

local effects, as in the real case study motivating this 

work.  

To determine the optimal function ℎ𝑗 within a given 

class of warpings – which in the following is the class 

defined in (4) –, Ramsay and Silverman (2005) 

advocates the use of the continuous fitting criterion, 

that is based on the minimization of the following 

statistics: 𝑀𝐼𝑁𝐸𝐼𝐺(ℎ) = 𝜆2[𝐓(ℎ)] (5) 

where 𝐓(ℎ)
= [ ∫{�̃�(𝑡)}2𝑑𝑡 ∫ �̃�(𝑡)𝑦𝑗[ℎ(𝑡)]𝑑𝑡∫ �̃�(𝑡)𝑦𝑗[ℎ(𝑡)]𝑑𝑡 ∫{𝑦𝑗[ℎ(𝑡)]}2𝑑𝑡 ] 

(6) 

and 𝜆2[𝐓(ℎ)] is the size of the second eigenvalue of 𝐓(ℎ). The size of the smallest eigenvalue of 𝐓(ℎ) 

quantifies the dissimilarity between the original curve 

and the aligned curve induced by a pure difference in 

phase (Ramsay and Silverman, 2005). In order to 

provide an intuitive justification for the Ramsay and 

Silverman’s procedure, suppose two curves, �̃�(𝑡) and 𝑦1(𝑡), differ only in amplitude but not in phase (Fig. 

2, panel a). Then, if we plot their function values 

against each other (Fig. 2, panel b), we observe a 

straight line (i.e., a one-dimensional set of points), 

such that the magnitude of the amplitude difference is 

reflected in the slope of the line. If the curves differ 

both in amplitude and in phase (Fig. 2, panel c), by 

plotting their function values against each other we 

observe a bidimensional curve (Fig. 2, panel d), i.e., a 

departure from unidimensionality, where the slope of 

semi-major axis reflects the difference in amplitude. 

Matrix 𝐓(ℎ) is such that the second eigenvalue 

measures departures from unidimensionality, and 

hence the minimization of the size of 𝜆2[𝐓(ℎ)] 
corresponds to minimizing the dissimilarity imposed 

by a pure difference in phase. Because of this, the 𝑀𝐼𝑁𝐸𝐼𝐺(ℎ) statistic is more effective than a least 

squares criterion, as the latter is intrinsically designed 

to minimize differences in amplitude, rather than in 

phase (Ramsay and Silverman, 2005). Other 

approaches different from the continuous fitting 

criterion proposed by Ramsay and Silverman are 

known. Indeed Sangalli et. al. (2013) and Vantini 

(2012) point out that the choice of the similarity index 

and the class of warping functions is problem-specific 

and needs to be done in agreement to a minimal set of 

requirements that guarantee coherence. By coherence 

they refer particularly (a) to the invariance of the 

similarity between two profiles if these are registered 

via the same warping function, and (b) to the 

invariance of similarity gained by registering a first 

curve to a second one or the second to the first. For 

the purposes of this paper, we set aside this deeper 

analysis and decided to resort to the similarity 

induced by MINEIG, since this criterion is already 

well established in the literature on functional data 

analysis. Further details are discussed in Section 7.  

 

FIGURE 2. Example of two curves that differ only 

in amplitude (top panels) and two curves that differ 

both in amplitude and phase (bottom panels) 



Once the optimal ℎ𝑗 has been estimated, the registered 

function, 𝑦𝑗∗, is calculated by applying the two 

following steps (Ramsay and Silverman, 2005): 

1. Estimation of the inverse warping function ℎ𝑗−1 

such that ℎ𝑗−1[ℎ𝑗(𝑡)] = 𝑡 for all 𝑡 ∈ [0, 𝑇]; 
2. Interpolation of the relationship between ℎ𝑗−1(𝑡) 

and 𝑦𝑗(𝑡), for 𝑡 ∈ [0, 𝑇]. 
The warping function ℎ𝑗 can be estimated by using the 

Newton – Raphson algorithm to minimize the 𝑀𝐼𝑁𝐸𝐼𝐺(ℎ) statistics. The stopping rule can be based 

on a tolerance threshold (e.g., 𝑡𝑜𝑙 = 10−4). 

4. Methodology 

The profile monitoring approach we propose involves 

three major steps: (i) profile registration via 

parametric time warping, (ii) analysis and 

dimensionality reduction of the registered data via 

FPCA, and (iii) application of multivariate control 

charts to monitor both the registered curves and the 

warping coefficients. Fig. 3 schematically depicts the 

proposed approach. The three major steps are 

discussed in the next Sub-Sections.  

 

FIGURE 3. Scheme of the proposed approach 

4.1 Profile registration 

Let {𝑦𝑗(𝑡), 𝑡 ∈ [0, 𝑇]} be the 𝑗𝑡ℎ acquired profile 

under natural process conditions, where 𝑗 = 1,… , 𝑀. 

These 𝑀 profiles represent the Phase I dataset, as they 

are used to design the control charts. Without loss of 

generality, we assume all the profiles to be sampled at 𝑇 + 1 equispaced data points, within the common 

temporal domain [0, 𝑇], and represented via a 

(smoothing or interpolating) cubic B-spline basis with 

equispaced knots as in (2).  

The proposed approach for the registration of the 

Phase I historical dataset consists of a coarse 

registration, followed by a fine registration, which 

represent the two stages of a Procrustes fitting 

criterion (Ramsay and Silverman, 2005): 

Coarse registration: Phase I profiles 𝑦𝑗(𝑡), 𝑡 ∈ [0, 𝑇], 𝑗 = 1,2,… ,𝑀, are registered by using the sample 

mean profile �̅�(𝑡), 𝑡 ∈ [0, 𝑇], as the reference pattern. 

To choose the degree 𝐾 of the polynomial ℎ𝐾, the 

following two options are available: (i) ex-ante 

selection of a degree 𝐾 (e.g., as a rule of thumb, a 

cubic model is assumed to be a good compromise in 

most practical applications), or (ii) stepwise selection 

of the degree 𝐾. In the latter case, the method 

proposed in Appendix A, based on the average 𝑀𝐼𝑁𝐸𝐼𝐺(ℎ) statistics, can be used. 

Fine registration: Once all the Phase I profiles have 

been preliminarily registered, one can compute the 

new sample mean profile 𝑦∗̅̅ ̅, which is a better 

estimation of the reference pattern. Thus, a second 

stage registration is applied, by registering all the 

original profiles 𝑦𝑗 with respect to 𝑦∗̅̅ ̅; the same 

degree 𝐾 is applied in this stage. 

This procedure represents a Procrustes approach 

because it involves estimating a transformation by 

registering to an iteratively updated reference curve. 

In many practical applications, the first registration 

stage may be sufficient (Ramsay and Silverman, 

2005). However, in the absence of a good reason for 

applying only the coarse registration stage (e.g., the 

need to reduce the computation time), we suggest to 

apply the two sequential stages, to guarantee a better 

estimation of the reference pattern. Indeed, an 

iterative refinement of this two-stage procedure 

would lead to the 1-mean alignment advocated by 

Sangalli et al. (2010). 

The nomenclature 𝑦𝑗∗ is used in this study to identify 

the final registered profiles. The registration of Phase 

II profiles simply consists of aligning each newly 

observed curve to the reference pattern 𝑦∗̅̅ ̅ by applying 

the continuous fitting criterion (Section 3) to choose 

the optimal warping function within the same class 

(3) used to register Phase I profiles. 



4.2 Functional PCA on registered 

curves 

The output of the profile registration procedure 

consists of a collection of registered curves and 𝐾 +1 warping coefficients 𝑤𝑗,𝑘, 𝑘 = 0,1,… , 𝐾, 𝑗 =1,2,… ,𝑀. An effective approach to control the 

stability over time of the registered patterns consists 

of monitoring a limited set of functional features 

representing the largest portion of data variability, as 

a result of a FPCA. The use of the Principal 

Component Analysis (PCA) (Jolliffe, 2002) for 

profile monitoring applications was proposed by 

Colosimo and Pacella (2007; 2010), and some 

variants were discussed by other authors (Kim et al., 

2006; Paynabar et al., 2013). Colosimo and Pacella 

(2007; 2010) apply the PCA on the discretized profile 

matrix obtaining loadings (i.e., the eigenvectors of the 

sample covariance matrix) of the same length as the 

profiles. Instead, we propose an FPCA approach 

leading to functional loadings, i.e., the eigenfunctions 

of the sample covariance operator (Ramsay and 

Silverman, 2005). In the following, the terms loading, 

functional principal component (FPC) and 

eigenfunction are used interchangeably.  

The reader is referred to Appendix B for a brief 

review of the FPCA methodology for squared 

integrable profiles. The FPCs, denoted by 𝜉𝑖, 𝑖 =1,… ,𝑚, play the role of the loadings in the classic 

multivariate PCA, whereas the scores, 𝑓𝑗,𝑖, , 𝑗 =1,… ,𝑀, 𝑖 = 1,… ,𝑚, are obtained by projecting the 

original functions onto a functional subspace spanned 

by the first 𝑚 eigenfunctions, where 𝑚 ≪ 𝑀 is 

chosen to capture a given portion of the original data 

variability.  

The score vector, 𝒇𝑗 = [𝑓𝑗,1, … , 𝑓𝑗,𝑚]′,  𝑗 = 1,… ,𝑀, 

associated to the aligned curves, represents a 

multivariate quality characteristic to assess the 

stability over time of the amplitude variability of the 

monitored profiles. Thus, the score vector on the one 

hand, and the vector of warping coefficients on the 

other hand, capture two complementary portions of 

information about the process. 

4.3 Control chart design and utilization 

The scores along the FPCs of the registered functions 𝑦𝑗∗, 𝑗 = 1,2,… ,𝑀, exhibit only (or mainly) the 

amplitude variability. Nevertheless, it is not possible 

to assume, in general, a zero-correlation between 

FPCs and warping functions (see Appendix C). To the 

best of our knowledge, finding classes of warping 

functions and associated similarities that guarantee 

the independence or zero-correlation between phase 

and amplitude variability is still an open problem. 

Because of this, to achieve a simultaneous monitoring 

of the stability over time of both the amplitude and the 

phase variability, we propose to control the (𝑚 + 𝐾 +1)-dimensional vectors 𝒛𝑗, 𝑗 = 1,… ,𝑀, obtained by 

concatenating the warping coefficients 𝑤𝑗,𝑘, 𝑘 =0,1,… , 𝐾, and the principal component scores 𝑓𝑗,𝑖 𝑖 =1,2,… ,𝑚, namely, 𝒛𝑗 = [𝑓𝑗,1, … , 𝑓𝑗,𝑚, 𝑤𝑗,0, … , 𝑤𝑗,𝐾]′ . 
These can be monitored by means of a Hotelling’s 𝑇2 

control chart. In this case, the control statistics is: 𝑇𝑗2(𝑚,𝐾) = (𝐳𝑗 − �̅�𝑗)𝐒𝑧−1(𝐳𝑗 − �̅�𝑗)′,𝑗 = 1,2,… ,𝑀 

(7) 

where �̅�𝑗 is the Phase I sample mean of the coefficient 

vector, and 𝐒𝑧 is its Phase I sample variance-

covariance matrix. We remark that the block-structure 

of the matrix 𝑺𝑧 can be exploited to efficiently 

compute the 𝑇2 statistics in case a high number 𝑚 of 

eigenfunctions is required to accurately describe the 

profiles: 𝐒𝑧 = 

[  
   
  𝜎𝑓112 0 00 … 00 0 𝜎𝑓𝑚𝑚2

𝜎𝑓1𝑤0 … 𝜎𝑓1𝑤𝐾… … …𝜎𝑓𝑚𝑤0 … 𝜎𝑓𝑚𝑤𝐾𝜎𝑓1𝑤0 … 𝜎𝑓𝑚𝑤0… … …𝜎𝑓1𝑤𝐾 … 𝜎𝑓𝑚𝑤𝐾
𝜎𝑤002 … 𝜎𝑤𝐾0… … …𝜎𝑤𝐾0 … 𝜎𝑤𝐾𝐾2 ]  

   
  
 

(8) 

where 𝜎𝑓∙ ∙2  is the FPC score variance, 𝜎𝑤∙ ∙2  is the 

warping coefficient variance, and 𝜎𝑓∙𝑤∙ is the 

covariance between FPC scores and warping 

coefficients. In addition, the FPCA model residuals 

can be monitored to detect deviations along directions 

orthogonal to the first 𝑚 directions. The sum of 

prediction error (𝑆𝑃𝐸): 𝑆𝑃𝐸𝑗(𝑚) = 

∑(�̂�𝑗∗(𝑡𝑖, 𝑚) − 𝑦∗̅̅ ̅(𝑡𝑖))(�̂�𝑗∗(𝑡𝑖, 𝑚)𝑛
𝑖=1 − 𝑦∗̅̅ ̅(𝑡𝑖)), 𝑗 = 1,… ,𝑀  

(9) 

can be used for such a task.  

Two control charts are designed to monitor 

respectively the 𝑇𝑗2(𝑚,𝐾) and the 𝑆𝑃𝐸𝑗(𝑚) statistics. 

The control limits may be estimated as 100(1 − 𝛼′)% 



percentiles of the empirical distributions of the two 

statistics, where 𝛼 is the overall Type I error, and 𝛼 =1 − (1 − 𝛼′)(1/2) is the Type I error associated to 

each chart, computed by using the Sidak correction 

(Montgomery, 2008). During Phase II, i.e., the actual 

monitoring phase, each newly observed profile 𝑦𝑗(𝑡𝑖), 𝑗 = 𝑀 + 1,𝑀 + 2,…, 𝑡𝑖 = 0,… , 𝑇, is represented in a 

functional form by using the same basis introduced in 

Phase I, it is registered with respect to the Phase I 

reference profile 𝑦∗̅̅ ̅, and the corresponding warping 

coefficients are estimated. The Phase I FPCA model 

is applied by using the number 𝑚 of principal 

components chosen during the control chart design 

phase. The result is a projection of the new registered 

profile 𝑦𝑗∗ onto the 𝑚-dimensional functional 

subspace spanned by the eigenfunctions estimated 

during the Phase I. Then, the two statistics 𝑇𝑗2(𝑚) and 𝑆𝑃𝐸𝑗(𝑚) are computed and their values are compared 

with the corresponding control limits. If at least one 

statistic violates the limit, an alarm signal is issued.  

5. Simulation study 

5.1 Data generation  

The performances of the proposed approach are firstly 

evaluated by means of Monte Carlo simulations. A 

benchmark signal inspired by the work of Tang and 

Muller (2008) is used to simulate the patterns. Two 

different scenarios are considered by using the same 

kind of signal: (i) Scenario A, characterized by a 

natural amplitude variability that predominates over 

the natural phase variability, and (ii) Scenario B, 

characterized by a natural phase variability that 

predominates over the amplitude variability. Scenario 

A is representative of practical situations where a 

rough alignment is applied (e.g., by using triggers or 

a synchronous resampling), but a fine registration 

may still be required. Scenario B is representative of 

situations where no preliminary alignment step is 

applied on raw data. The in-control models are 

generated as follows: 

Scenario A: 𝑦𝑗(𝑡𝑖) = ∑ 𝛽𝑖,𝑗 exp {𝛾𝑖,𝑗(𝑡𝑖 + 𝜔𝑖,𝑗)2} +5𝑖=1𝜀𝑖𝑗,   𝑡𝑖 = 0,1,… , 100 and 𝑗 = 1,… ,𝑀 

(10) 

where: 

(i) 𝜷𝑗 = [𝛽1,𝑗, … , 𝛽5,𝑗]~𝑀𝑁[𝝁𝛽,𝐴, 𝚺𝛽,𝐴],  
(ii) 𝜸𝑗 = [𝛾1,𝑗, … , 𝛾5,𝑗]~𝑀𝑁[𝝁𝛾,𝐴, 𝚺𝛾,𝐴], and  

(iii) 𝝎𝑗 = [𝜔1,𝑗, … , 𝜔5,𝑗]~𝑀𝑁[𝝁𝜔,𝐴, 𝚺𝜔,𝐴],  

with the following parameters: 

 𝝁𝛽,𝐴 = [0.88,−0.5, 0.6,0.6,−0.5], 𝚺𝛽,𝐴 =𝑑𝑖𝑎𝑔[(8.8,5,6,6,5)10−2] 
 𝝁𝛾,𝐴 = [−20,−50,−100,−150,−200], 𝚺𝛾,𝐴 =𝑑𝑖𝑎𝑔[2,5,10,15,20] 
 𝝁𝜔,𝐴 = [−0.5,−0.45,−0.3,0.7,−0.45], 𝚺𝜔,𝐴 =𝑑𝑖𝑎𝑔[(5,4.5,3,2,1.5)10−2] 
 𝜀𝑖𝑗  𝑖. 𝑖. 𝑑. ~𝑁(0, 𝜎𝜀2) (noise term), where 𝜎𝜀 =0.05 

 

 

FIGURE 4. Simulated in-control signals in Scenario 

A and Scenario B, and their sample mean (thick 

black line) 

Scenario B: 𝑦𝑗(𝑡𝑖) = ∑ 𝛽𝑖,𝑗 exp {𝛾𝑖,𝑗(𝑡𝑖 +5𝑖=1𝜏𝑗𝜔𝑖,𝑗)2} + 𝜀𝑖𝑗,   𝑡𝑖 = 0,1,… ,100, and 𝑗 =1,… ,𝑀  

(11) 

where: 

(i) 𝜷𝑗 = [𝛽1,𝑗, … , 𝛽5,𝑗]~𝑀𝑁[𝝁𝛽,𝐵, 𝚺𝛽,𝐵],  
(ii) 𝜸𝑗 = [𝛾1,𝑗, … , 𝛾5,𝑗]~𝑀𝑁[𝝁𝛾,𝐵, 𝚺𝛾,𝐵],  
(iii) 𝝎𝑗 = [𝜔1,𝑗, … , 𝜔5,𝑗]~𝑀𝑁[𝝁𝜔,𝐵, 𝚺𝜔,𝐵], and 



(iv) 𝜏𝑗~𝑁[𝜇𝜏, σ𝜏],  
with the following parameters: 

 𝝁𝛽,𝐵 = 𝝁𝛽,𝐴, 𝚺𝛽,𝐵 = 𝑑𝚺𝛽,𝐴 

 𝝁𝛾,𝐵 = 𝝁𝛾,𝐴, 𝚺𝛾,𝐵 = 𝚺𝛾,𝐴 

 𝝁𝜔,𝐵 = 𝝁𝜔,𝐴, 𝚺𝜔,𝐵 = 𝑑𝑖𝑎𝑔[(5,4.5,3,2,1.5)10−3] 
 𝜇𝜏 = 1.2 and σ𝜏 = 0.15 

 𝜀𝑖𝑗  𝑖. 𝑖. 𝑑. ~𝑁(0, 𝜎𝜀2) (noise term), where 𝜎𝜀 =0.05 

Fig. 4 shows 𝑀 = 50 realizations of the in-control 

profiles in Scenario A and Scenario B. 

 

 

FIGURE 5. Effects of simulated out-of-control shifts (at largest severity level) in Scenario A and Scenario B. 

Each panels shows: in-control profiles (background grey lines), out-of-control profiles (foreground red lines) and 

the corresponding sample mean (thick black lines)

TABLE 1. Simulated out-of-control shift conditions in Scenario A and Scenario B 

Scenario A Scenario B 

Shift a) 𝜇𝜔,𝐴,2𝑠 = 𝜇𝜔,𝐴,2/𝛿𝑎,𝐴 Shift a) 𝜇𝜔,𝐵,2𝑠 = 𝜇𝜔,𝐵,2/𝛿𝑎,𝐵 

Shift b) 𝜇𝜔,𝐴,3𝑠 = 𝜇𝜔,𝐴,3/𝛿𝑏,𝐴 Shift b) 𝜇𝜔,𝐵,3𝑠 = 𝜇𝜔,𝐵,3/𝛿𝑏,𝐵  

Shift c) 𝜇𝜔,𝐴,1𝑠 = 𝜇𝜔,𝐴,1/𝛿𝑐,𝐴 Shift c) 𝜇𝜔,𝐵,1𝑠 = 𝜇𝜔,𝐵,1/𝛿𝑐,𝐵  

TABLE 2. Severity levels associated to each out-of-control shift conditions 

Scenario A Scenario B 

Shift a) 𝛿𝑎,𝐴 ∈ [1.5,2,2.5,3] Shift a) 𝛿𝑎,𝐵 ∈ [1.5,2,2.5,3] 
Shift b) 𝛿𝑏,𝐴 ∈ [1.5,2,2.5,3] Shift b) 𝛿𝑏,𝐵 ∈ [1.5,2,2.5,3] 
Shift c) 𝛿𝑐,𝐴 ∈ [1.5,2,2.5,3] Shift c) 𝛿𝑐,𝐵 ∈ [1.15,1.2,1.3,1.4] 



In order to simulate unnatural departures from the in-

control pattern, we considered three kinds of signal 

perturbation that affect both the amplitude and the 

phase variability. They are representative of faults 

that modify the shape of the reference pattern, as in 

many practical situations. The shift conditions were 

simulated as shown in Table 1, where 𝝁𝜔,𝐴𝑠  and 𝝁𝜔,𝐵𝑠  

are the sample mean of the model parameters in 

Scenario A and B in presence of a shift, respectively.  

The shifts are applied on one term of 𝝁𝜔,𝐴 or 𝝁𝜔,𝐵 at 

a time, i.e., on 𝜇𝜔,𝐴,𝑢 or 𝜇𝜔,𝐵,𝑢, where 𝑢 = 1,… ,5. 

The severity levels are shown in Table 2. The effect 

of the different shifts on the profile pattern, 

corresponding to the largest severity level, is shown 

in Fig. 5. Note that the model used to generate both 

the in-control and the out-of-control profiles can be 

interpreted in the light of the general model (Eq. 1). 

5.2 Analysis of data under in-control 

conditions 

The degree of the polynomial warping functions was 

assessed by computing the mean values 𝑀𝐼𝑁𝐸𝐼𝐺̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝐾(ℎ) 

of the MINEIG statistic at different values of the 

warping function degree 𝐾 for 𝑀 = 50 realizations of 

in-control profiles, represented via interpolating cubic 

B-splines (Fig. 6, top panels). According to the 

criterion proposed in Appendix A, the choice of 𝐾 =3 appears to be the most appropriate in both scenarios. 

In addition, Fig. 6 reports the registration results for 𝐾 = 3, namely the registered profiles (central panels) 

and the warping functions used to align the data 

(bottom panels). 

 

 

FIGURE 6. 𝑀𝐼𝑁𝐸𝐼𝐺̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝐾(ℎ) statistic for different degrees 𝐾 of the polynomials ℎ’s (top panels), aligned curves by 

using 𝐾 = 3 (central panels), and corresponding warping functions (bottom panels). 



We recall that, in Scenario A, the amplitude 

variability was predominant: this still affects the 

profiles variability after the registration. Instead, in 

Scenario B, the phase variability was predominant: a 

higher similarity among the curves is achieved after 

the registration, with a corresponding higher 

variability of the warping functions ℎ𝑗(𝑡), 𝑗 =1,2,… ,𝑀. To evaluate how the phase and the 

amplitude variability affect the principal components, 

we now focus on the pattern presented by the 

loadings. Fig. 7 and Fig. 8 show, for Scenario A and 

B respectively, the first 𝑚 = 2 eigenfunctions 

estimated by applying the FPCA on the unregistered 

curves, and on the registered profiles in the central 

panels of Fig. 6 (bottom panels). 

 

 

FIGURE 7. First 𝑚 = 2 PCs in Scenario A, for unregistered (top panels) and aligned (bottom panels) profiles. 

Each panel shows the mean curve (solid thick line), the mean curve plus the eigenfunction (solid fine line) and the 

mean curve minus the eigenfunction (dashed line) 

With regard to Scenario A, when the FPCA is applied 

to unregistered data, there is some misalignment 

between the eigenfunction peaks and the salient 

features of the profile. Such a shift is minimized by 

applying the FPCA on the registered curves, meaning 

that the registration allows enhancing the 

localizations of the points of largest local variability.

 



 

FIGURE 8. First 𝑚 = 2 PCs in Scenario B, for unregistered (top panels) and aligned (bottom panels) profiles. 

Each panel shows the mean curve (solid thick line), the mean curve plus the eigenfunction (solid fine line) and the 

mean curve minus the eigenfunction (dashed line)

With regard to Scenario B, when the FPCA is applied 

to unregistered data, the second FPC is nearly a phase-

shifted version of the first one. This means that those 

FPCs are considerably influenced by the phase 

variability. After the registration, the FPCs resemble 

the ones of Scenario A (Fig. 7, bottom panels), but in 

inverted order. Thus, after the misalignment errors are 

removed by the warping functions, the FPCs mainly 

capture the amplitude variability. In all those cases, 

the first two FPCs account for about 80% of the global 

variability. 

5.3 Simulation results 

We compare three different implementations of the 

FPCA-based control charting approach: (i) profile 

monitoring without registration (hereafter denoted by 

Unreg approach), (ii) profile monitoring after 

warping-based registration, but without including the 

warping coefficients into the monitored statistics 

(denoted by Reg approach) and (iii) the proposed 

approach for profile monitoring (denoted by 

RegWarp approach). The Unreg approach is 

representative of what is done in practice when no 

alignment (or only a rough alignment) is applied 

before analysing the data, whereas the Reg approach 

is representative of what is usually done in the 

mainstream literature. 

The Phase II performances are compared in terms of 

the Average Run Length, 𝐴𝑅𝐿, for a targeted Type I 

error 𝛼 = 0.01. Without loss of generality, an in-

control 𝐴𝑅𝐿 (𝐴𝑅𝐿0) equal to 100 is used to keep 

affordable the duration of the overall simulation tests.  



In each simulation scenario, we performed 100 runs. 

In each run, we used as Phase I dataset a set of 𝑀 =50 randomly generated in-control profiles. The Phase 

II dataset comprises a tuning set and a testing set. The 

tuning dataset, consisting of 𝑀1 = 1000 in-control 

profiles, is generated to estimate the empirical 

distribution of the monitored statistics (i.e., the 𝑇2 and 

the 𝑆𝑃𝐸 statistics) and to guarantee that the Phase II 

performance comparison is made under statistically 

equivalent values of 𝐴𝑅𝐿0. To guarantee the 

achievement of the targeted 𝐴𝑅𝐿0, we estimate the 

empirical percentiles by applying the Kernel Density 

Estimation (KDE) technique (Chou et al., 2001). To 

this end, we resort to the KDE algorithm by Bowman 

and Azzalini (1997), with normal kernel and 1000 

equally spaced points. We based the estimation of the 

Phase II performances on a testing set consisting of 𝑁 = 2000 profiles. 

To avoid the inclusion of outlier profiles within the 

in-control dataset, we imposed the 97.5% percentile 

as cut-off threshold for the Mahalanobis distance of 

the retained FPCs (Varmuza and Filzmoser, 2009). To 

perform registration and FPCA, we exploited the 

routines available in the R package FDA (Ramsay et 

al., 2012). Finally, the number of FPCs to be retained 

was chosen according to an 80% cut-off of the 

explained data variability.

 

TABLE 3. Out-of-control detection results in Scenario A: ARLs and 95% Confidence Intervals 

 Severity 
Scenario A - ARLs and 95% Confidence Intervals 

Unreg Reg RegWarp 

IC - 101.17 [91.00, 111.34] 101.29 [83.45, 119.14] 100.85 [92.03, 109.67] 

Shift a) 1.5 3.24 [2.91, 3.56] 4.10 [3.56, 4.64] 4.52 [4.16, 4.88] 

2.0 1.74 [1.60, 1.87] 2.53 [2.35, 2.72] 2.65 [2.45, 2.85] 

2.5 1.64 [1.52, 1.77] 2.31 [2.06, 2.57] 2.29 [2.08, 2.51] 

3.0 1.71 [1.56, 1.88] 1.90 [1.71, 2.09] 1.99 [1.81, 2.16] 

Shift b) 1.5 7.82 [5.99, 9.64] 26.06 [18.83, 33.30] 2.01 [1.90, 2.11] 

2.0 6.46 [5.31, 7.61] 15.05 [13.15, 16.94] 1.07 [1.06, 1.08] 

2.5 5.65 [4.28, 7.02] 5.89 [5.28, 6.50] 1.04 [1.03, 1.05] 

3.0 5.48 [4.70, 6.25] 3.46 [3.19, 3.73] 1.06 [1.05, 1.08] 

Shift c) 1.5 8.13 [7.35, 8.90] 6.03 [5.45, 6.61] 5.50 [5.20, 5.80] 

2.0 5.16 [4.85, 5.47] 4.09 [3.81, 4.37] 3.82 [3.68, 3.97] 

2.5 2.78 [2.66, 2.89] 2.38 [2.29, 2.48] 2.20 [2.12, 2.27] 

3.0 1.87 [1.80, 1.94] 1.69 [1.65, 1.73] 1.57 [1.54, 1.61] 

Table 3 and Table 4 show the simulation results, in 

Scenario A and B respectively, in terms of Phase II 

performances for the different kinds of unnatural 

pattern modification. These are also graphically 

depicted in Fig. 9. For each simulated condition, a 

95% confidence interval for the estimated 𝐴𝑅𝐿 values 

is shown.  

In Scenario A (Table 3 and Fig. 9 - left), the RegWarp 

and the Reg approaches provide statistically 

comparable results for shift a and shift c, where the 

pattern modification mainly involves the amplitude 

variability. The RegWarp outperforms the Reg 

approach for shift b, where the pattern modification 

largely affects the phase variability. 

In the out-of-control condition of shift a, the best 

detection results are achieved by the Unreg approach, 

although this is outperformed by the RegWarp 

approach for shift b and shift c. This means that the 

out-of-control effect on the unregistered curves may 

be sometimes more evident than the effect after the 

warping-based registration, especially when the 

original variability of the data is dominated by the 

amplitude term. This can be caused by a shape 

distortion introduced by the time warping operation, 

as discussed in Section 7.

 



 

FIGURE 9. ARLs and 95% Confidence Intervals for different out-of-control shifts in Scenario A (left) and 

Scenario B (right)

TABLE 4 – Out-of-control detection results in Scenario B: ARLs and 95% Confidence Intervals 

 Severity 
Scenario B - ARLs and 95% Confidence Intervals 

Unreg Reg RegWarp 

IC - 100.43 [85.46, 115.40] 100.30 [94.32, 106.29] 100.32 [92.85, 107.78] 

Shift a) 1.5 55.18 [38.86, 71.50] 9.45 [8.80, 10.11] 1.78 [1.64, 1.92] 

2.0 36.80 [16.73, 56.87] 2.40 [2.32, 2.49] 1.46 [1.38, 1.55] 

2.5 26.47 [15.59, 37.35] 1.63 [1.59, 1.67] 1.32 [1.26, 1.39] 

3.0 23.00 [12.33, 33.67] 1.43 [1.39, 1.47] 1.22 [1.17, 1.27] 

Shift b) 1.5 10.69 [7.16, 14.22] 72.98 [61.93, 84.02] 1.06 [1.00, 1.20] 

2.0 8.63 [5.90, 11.36] 67.07 [54.82, 79.32] 1.00 [1.00, 1.00] 

2.5 7.60 [5.49, 9.70] 23.86 [19.07, 28.65] 1.00 [1.00, 1.00] 

3.0 5.96 [4.83, 7.10] 2.18 [1.96, 2.39] 1.01 [1.00, 1.01] 

Shift c) 1.15 10.60 [7.76, 13.45] 10.89 [7.33, 14.45] 4.46 [3.71, 5.22] 

1.2 9.95 [6.17, 13.74] 5.52 [5.09, 5.96] 1.27 [1.22, 1.33] 

1.3 7.16 [5.57, 8.76] 1.14 [1.13, 1.16]  1.00 [1.00, 1.00] 

1.4 5.00 [4.13, 5.87] 1.01 [1.01, 1.01] 1.00 [1.00, 1.00] 



In Scenario B (Table 4 and Fig. 9 - right), where the 

misalignment of original profiles is larger, the 

RegWarp approach considerably outperforms the two 

competitor implementations of the FPCA for shift a, 

shift b and shift c. The performance enhancement 

produced by the RegWarp approach over the Reg 

approach is caused by the fact that the registration 

operation mitigates the effect of the fault when only 

the amplitude variability is considered, as it forces the 

current out-of-control observations to resemble the 

in-control reference pattern. Such a dissimilarity 

reduction is desired when the process operates under 

in-control conditions, but it may have detrimental 

effects on fault detection capabilities when traditional 

control charting methods are applied only on 

registered curves. The performance enhancement 

over the Unreg approach is instead a consequence of 

the separation of the shape variability sources: the 

proposed approach allows reducing the variability 

inflation caused by profile misalignment, which may 

mask the effect of faults, without losing any 

information about the warping functions.  

A discussion about the possible shape distortion 

effects introduced by the time warping operation, 

together with further analysis of different time 

warping algorithms, is reported in Section 7. 

6. A real case study 

We present a real case study to demonstrate the 

performances of the proposed approach in an actual 

industrial application. It consists of a waterjet cutting 

operation, where water pressure fluctuations are 

monitored during the process itself, to detect faults 

affecting either the Ultra High Pressure (UHP) pump 

or the cutting head components. 

Due to challenging pressure conditions, cyclic 

pressure loadings, aggressiveness of abrasives and 

other factors, most of the machine components are 

subject to wear and unpredictable faults. Thus, the in-

process monitoring of machine health conditions is of 

great industrial interest, as it allows implementing 

condition-based maintenance strategies, and 

providing an automatic reaction to critical faults. Fig. 

10 shows the dynamic pressure profiles, i.e., the 

pressure fluctuations around the static level, acquired 

during a cutting process by using a 45 kW positive-

displacement pump that includes three single-acting 

pistons (we refer to Annoni et al., 2008 for a 

description of the plant). The water pressure set value 

was 350 MPa, by using a 0.25 mm orifice. The 

acquired profiles came from a synchronous re-

sampling procedure, leading to a fixed profile length 

of 820 data points.  

 

 

FIGURE 10. Dynamic pressure profiles under in-

control conditions 

The pressure signal is a suitable source of information 

for monitoring purposes, as it is featured by 

fluctuations that are influenced by both upstream and 

downstream flow rate modifications. The cutting 

process is characterized by repeating pressure 

profiles, one for each pumping cycle. Real data were 

acquired under normal health conditions and in the 

presence of actual faults. The following faults 

scenarios were considered, as they involve the most 

critical components and refer to common 

contingencies in WJ/AWJ shop floors: A) cracked 

high pressure cylinder, B) cracked discharge check 

valve, C) worn discharge check valve seat, and D) 

broken orifice. With regard to faults A, B and C, 

different faulty components coming from actual faults 

were available, and they were ranked on the basis of 

the severity of the crack or the wear level. With regard 

to fault D, three different broken orifices were tested. 

The effects of those faults on the pressure profile are 

shown in Fig. 11. We refer to Grasso et al. (2013; 

2014a) for further details about the fault scenarios. 

6.1 Implementation details 

The Phase I dataset consists of 𝑀 = 130 profiles 

corresponding to the in-control pumping cycles. Each 

profile, after the synchronous-resampling step (see 

Section 2), consists of 820 data points, and the 

duration of a pumping cycle is about 4.7 s. In the 

frame of in-process SPC, one has to deal with a trade-

off decision about the accuracy of the functional 

model fitting and the time devoted to registration 

algorithm: the higher the number of basis functions, 



𝑛𝑏, the higher the computational time. An 

interpolating cubic B-spline basis would require 𝑛𝑏 =820 + 2 basis function, considerably slowing the 

registration procedure. By using a regression B-spline 

basis, the computational time can be reduced, but 

some smoothing is attained. Smoothing filters out 

high frequency components which might be due to 

measurement noise. This may cause a potential 

information loss, but, it may enhance the shape 

variability characterization when large-scale pattern 

features are of predominant interest. Fig. 12 shows the 

CPU time2 for registering the 𝑀 in-control profiles for 

different numbers of cubic B-spline basis functions 

with equally spaced knots, and the corresponding sum 

of squared error, 𝑆𝑆𝐸, i.e., the sum of squared error 

between the estimated regression B-spline curves and 

the original observations.

 

 

FIGURE 11. Effect of real faults (foreground red lines) on the dynamic pressure signal, for different severity 

levels; the in-control pattern is shown in background, grey lines

                                                      

2 CPU time refers to an Intel® Core™ i7-3740QM CPU 

@ 2.70 GHz 

 



 

FIGURE 12. CPU computational time for single profile registration under in-control conditions, and 

corresponding 𝑆𝑆𝐸 of the regression B-spline model

For the present analysis, we compare the results 

achieved by using an interpolating basis and a 

regression B-spline basis consisting of 𝑛𝑏 = 100 

cubic functions with equispaced knots. The regression 

B-spline basis appears to be a good balance between 

the CPU time and the 𝑆𝑆𝐸. A more effective 

smoothing may be achieved by using different knot 

selection strategies (e.g., Goldenthal and Bercovier, 

2004, Zhou and Shen, 2001; Molinari et al., 2004, 

Sangalli et al., 2009b), but the additional 

computational effort for the automatic selection of the 

knot sequence has to be taken into account. If the high 

frequency and transient components filtered out by 

the smoothing process are deemed relevant for shape 

characterization, an additional control chart may be 

added to monitor the B-spline residuals.  

Fig. 13 shows the aligned in-control profiles and the 

corresponding warping functions using the regression 

B-spline basis, which highlight an initial moderate 

misalignment (the parameter 𝐾 controlling the 

complexity of the warping function being set to 𝐾 =3).

 

 

FIGURE 13 – Aligned pressure profiles and the corresponding warping functions

By way of example, Fig. 14 shows the first 𝑚 = 2 

FPCs resulting from applying the FPCA to 

unregistered and registered data respectively. Since 

the misalignment was moderate, the eigenfunctions 



look very similar, but after the registration the phase 

error between the FPCs and the salient features of the 

curve is minimized. In both cases, the first 𝑚 = 2 

FPCs account for about 75% of the overall variability. 

6.2 Analysis of the results 

To collect signal data, the same type of cutting 

process – consisting of cutting 75 x 75 x 2.5 mm 

square aluminium plates – was performed under each 

machine health condition, both in-control and with 

faulty components installed. The fault detection 

percentages provided by the three competitor 

methods are shown in Table 5. The empirical control 

limits were estimated by using the KDE technique 

(Chou et al., 2001), with a target Type I error 𝛼 =

0.0027 as per common industrial practice. Table 5 

shows that the use of a regression B-spline basis not 

only drastically reduces the computational effort, but 

slightly improves the detection percentage yielded by 

the RegWarp approach. The Unreg and the Reg 

methods, instead, perform slightly better when an 

interpolation basis is used. A smoothing basis 

enhances the registration by removing the high 

frequency noise component: the result is an increase 

of the fault mitigation affecting the Reg method, and 

an improvement of the RegWarp method that is robust 

against such an effect. On the other hand, the removal 

of high frequency components may reduce the fault 

detectability when the Unreg method is used.

 

 

FIGURE 14. First 𝑚 = 2 FPCs of the pressure signal, for unregistered curves (top panels) and aligned curves 

(bottom panels). Each panel shows the mean curve (solid thick line), the mean curve plus the eigenfunction (solid 

fine line) and the mean curve minus the eigenfunction (dashed line)

Regardless of the selected basis, Fault A is always 

detected by all the methods. With regard to fault B, C 

and D, the RegWarp approach is the one that provides 

the highest performances, i.e., a 100% detection 

capability for fault B and fault D, and a slightly lower 

detection percentage for fault C, at low and medium 



wear levels. The Reg approach performs worse than 

the Unreg one in the presence of fault B, which 

mainly affects the phase variability (see Fig. 13), and 

in presence of fault C, when a barely worn salve seat 

in installed (also in this case the fault effect mainly 

involves the phase variability). Both the Reg and the 

Unreg approaches yield poor detection performances 

when the “broken 1” orifice is installed and better 
performances for the other two faulty orifices (this is 

more evident when a smoothing basis is used). 

Globally, the Reg and the Unreg approaches allow 

detecting about the 83-84% of out-of-control profiles 

with a smoothing basis, and about 86-88% with an 

interpolating basis. The RegWarp approach, instead, 

yields a detection rate of about 98-99%, with a slight 

performance improvement when smoothed profiles 

are monitored.

 

TABLE 5. Fault detection percentages of Unreg, Reg and RegWarp approaches, for different kinds of fault, 

different severity levels and different choices of the B-spline basis 

Fault  Fault severity 

Fault detection percentage (%) 

Interpolating basis Smoothing basis 

Unreg Reg RegWarp Unreg Reg RegWarp 

A 

Severe  100 100 100 100 100 100 

Medium  100 100 100 100 100 100 

Small  100 100 100 100 100 100 

B 
Medium  100 75.86 100 100 82.76 100 

Small  96.55 63.64 100 89.66 81.82 100 

C 

Severe  100 100 100 100 100 100 

Medium  92.31 76.92 92.31 84.62 84.62 96.15 

Low 69.23 30.77 88.46 53.85 3.85 92.31 

D 

Broken 1 23.53 98.84 94.12 17.65 35.29 100 

Broken 2 100 100 100 91.43 100 100 

Broken 3 71.43 100 100 68.54 100 100 

Total 88.40 86.01 97.95 83.96 83.28 98.98 

7. Discussion: on the distortion 

effect imposed by the warping 

operation 

The time warping operation aims at minimizing a 

dissimilarity measure between a reference pattern and 

any newly observed patterns. This operation improves 

the profile variability characterization when the 

process is in-control, but leads to a shape distortion 

when the process is out-of-control. Indeed, the out of 

control profiles are forced in this stage to resemble the 

in-control reference one, leading to a “fault mitigation 

effect”, which can be dealt with by monitoring both 
the registered profiles and the warping functions used 

to align them. Moreover, when the process is out-of-

control, the Phase I reference profile, 𝑦∗̅̅ ̅(𝑡), is no 

longer a consistent reference for the new 

observations. This may lead the registration 

procedure to converge to a highly distorted profile by 

inflating or denaturing the outcome of the fault itself, 

resulting into a “fault alteration effect”. As 
illustration of this, we here consider the same Phase I 

data as that in Scenario B of Section 5, and a fault 

effect consisting of a pure shift of the time reference 𝑡, such that 𝑡𝑠 = 𝑡 − 𝛿𝑑  in equations (8) and (9). Even 

though a pure shift is unlikely produced by an actual 

fault, it represents an event that may occur in practice, 

especially when profile monitoring is applied to 

signal data. Indeed, it may be caused by a wrong 

profile segmentation or by an error involving the 

triggering signals used to define the profile time 

window.

 



 

FIGURE 15. Effect of pure shift on unregistered profiles (a), aligned profiles (b) and warping functions (c) for a 

severity level equal to 0.15. Each panels shows: in-control profiles (background grey lines) and a realization of the 

out-of-control profiles (red line); in-control sample mean profile is depicted with thick black lines

Fig. 15 a) depicts the effect of such a kind of shift for 

a severity level of 𝛿𝑑 = 0.15 (red line), compared to 

the 50 in-control profiles (grey line). In this case, 

registration based on the MINEIG criterion and the 

family of polynomial warping functions of order 𝐾 =3, fails to converge to the aligned profile, resulting 

into the distorted pattern shown in Fig. 15 b). We note 

that the largest the severity of the shift is, the more 

likely the pattern alteration, as the first peak of the 

out-of-control profiles may be erroneously aligned to 

the second peak of the in-control profiles. The 

unnatural shape alteration, due to a local minimum 

entrapment, is worsened in this case by a border effect 

caused by the truncation of the out-of-control profiles 

within the [0,1] time window. 

The problem of alteration effect is well-known in the 

literature on functional data registration. To cope with 

such a problem, different approaches can be adopted, 

depending on the problem at hand. A possible 

parameter to be tuned is the order of the polynomial 

determining the warping functions. Indeed, the higher 

the order of the warping functions is, the most likely 

severe deformations occur. For instance, Fig. 16 

shows the results of applying the registration 

procedure with the MINEIG criterion when 𝐾 = 1,2. 

In this case, the use of polynomials of lower degree 

allows to solve the fault alteration effect, eventually 

avoiding Phase I profiles alteration for 𝐾 = 1. 

A different approach to cope with the alteration effect 

is to adopt a different registration criterion for the 

registration procedure. A relatively large body of 

literature has been recently devoted to this topic with 

particular focus on the characterization of the most 

suitable classes of warping functions to be used for 

registration, depending on the minimization criteria 

(Sangalli et al., 2013; Vantini, 2012). As a way of 

example, we here illustrate the results of two 

alternative methods: (a) the 1-mean alignment 

(Sangalli et al., 2010) and (b) the registration based 

on the Fisher-Rao metric (Srivastava et al., 2011). We 

performed the 1-mean alignment with similarity 

measure determined by the Pearson metric and affine 

warping functions – advocated by Sangalli et al. 

(2013); results are reported in Fig. 17 a) and b). The 

solution obtained with the Fisher-Rao metric 

(Srivastava et al., 2011) and warping functions class 

of diffeomorphism is displayed in Fig. 17 c) and d). 

The results appear pretty similar and in both cases the 

fault alteration effect seems overcome. From a 

monitoring viewpoint, the 1-mean alignment is 

performed with parametric warping functions at the 

expense of modifying the profile domain. Here the 

monitoring of the phase variability could be 

performed by monitoring the two parameters of shift 

and dilation determining the affine warping. The 

monitoring of the diffeomorphisms singled out when 

registering according to the Fisher-Rao metrics would 

instead require a phase variability dimensionality 

reduction. In both cases, an extensive study to assess 

the performance of both methods in profile 

monitoring will be scope of future work. 

 



 
FIGURE 16 - Registration of an out-of-control profile with warping functions determined by polynomials of order 𝐾 = 1 ((a) and (b)) and 𝐾 = 2 ((c) and (d)): registered profiles ((a) and (c)) and warping functions ((b) and (d)) 

 

 
FIGURE 17 - Registration of an out-of-control profile based on alternative criteria. Results with 1-mean 

alignment based on the Pearson Metrics with affine functions ((a) and (b)) and Fisher-Rao Metrics with 

diffeomorphism ((c) and (d), with smoothing parameter 𝜆 = 0.5): registered profiles ((a) and (c)) and warping 

functions ((b) and (d))



It is worth to notice that the avoidance (or mitigation) 

of the shape alteration effect might be achieved at the 

expense of a worst registration (this is evident in Fig. 

17 c)). Generally speaking, the choice of the warping 

approach may be problem-dependent and it involves 

a compromise between the goodness of the 

registration itself and the avoidance of undesired 

shape distortions. To this aim, both the flexibility of 

the warping function and the registration criterion 

play a relevant role.  

We finally remark that, from a profile monitoring 

viewpoint, when a shape distortion occurs only under 

out-of-control conditions, the result is likely to be an 

increase of the fault detectability when the Reg 

method or the RegWarp method are applied. If it 

occurs when the process is in-control, outlier data will 

appear in the Phase I historical dataset, with a 

detrimental effect on the performances of both the 

Reg and the RegWarp methods. For this reason, one 

has to pay close attention to the alteration effect, 

particularly during Phase I, when a careful analysis – 

and possibly a decontamination operation – may be 

needed to tune the monitoring parameters and choose 

the most appropriate registration criterion. 

8. Conclusions 

Functional data registration, in the frame of profile 

monitoring applications, is required to guarantee a 

proper decoupling of the amplitude variability from 

the phase variability, and to minimize the undesired 

inflation of the phase variability due to disturbance 

factors. Even though an effective method to keep 

under statistical control both the phase and the 

amplitude variability of the process is essential for 

profile monitoring, the mainstream literature typically 

focuses the control only on the amplitude variability. 

Moreover, some signal processing techniques 

commonly employed, including automatic triggering 

or synchronous re-sampling, are not completely 

effective, and do not guarantee an actual registration 

of the profile data.  

Our study is a first contribution aimed at investigating 

the integration of time warping algorithms into a 

profile monitoring framework. We proposed a novel 

approach to jointly monitor the stability over time of 

the registered profiles and of the warping functions 

used to align them.  

The simulated scenarios show that the inclusion of the 

warping coefficients into the monitored statistics 

improves in most cases the process monitoring 

performances with respect to monitoring only the 

aligned profiles. The larger the original misalignment 

of the acquired profiles is, the larger the provided 

improvement. Furthermore, a profile monitoring 

without registration is likely to be more reliable than 

a profile monitoring of aligned curves without 

keeping track of the registration parameters, as the 

registration itself may even mitigate the effect of the 

fault. The proposed approach is expected to be more 

effective in detecting small shape modifications, 

thanks to an improved shape variability 

characterization. The real case study concerning an 

actual waterjet cutting process confirmed the results 

achieved in simulated scenarios. In particular, the 

information loss is minimized by including the 

warping coefficients into the monitored statistics. 

This allows enhancing the fault detection capability, 

even when the registration procedure produces a 

mitigation of the actual fault effects. However, when 

the original phase variability is very large and/or in 

the presence of strong departures from the natural 

pattern, the registration operation may introduce some 

shape distortion that may alter the nature of the 

occurred events. We discussed possible ways to cope 

with the fault alteration effect, while highlighting that 

the determination of the most appropriate solution 

appear to be highly problem-driven. Future research 

streams should address the development of 

registration criteria coupled with a proper choice of 

warping functions to enhance the monitoring 

performances. 

In the end, time warping algorithms may be 

computationally expensive, and their use in practical 

applications should be driven by a trade-off analysis 

between the desired enhancement of profile 

characterization and the reactivity of the process 

monitoring tool. The computational time of functional 

warping algorithms may be influenced by the number 

of basis functions used to represent the sampled 

profiles as functional forms, and hence this parameter 

can be controlled to find the best compromise 

between monitoring performances and computational 

efficiency.  

 



Nomenclature 𝐴𝑅𝐿, 𝐴𝑅𝐿0  Average Run Length, Average Run Length under in-control conditions 𝒃𝑗   Vector of the 𝑗𝑡ℎ eigenfunction B-spline coefficients 𝑪 = (𝑐𝑞,𝑗)  B-spline coefficient matrix �̅�   Vector of the sample mean B-spline coefficients 𝐷𝐾,𝑖 Relative improvement (or worsening) by passing from a degree 𝐾 to a degree 𝐾 + 𝑖 warping function 𝒇𝑗   𝑗𝑡ℎ score vector associated to the 𝑚 retained FPCs (𝒇𝑗 = [𝑓𝑗,1, … , 𝑓𝑗,𝑚]′) , 𝑗 = 1,2, … 

FPC   Functional Principal Component  

FPCA   Functional Principal Component Analysis ℎ(𝑡)   Warping function 𝐉   (𝑄 + 𝐿 − 1) × (𝑄 + 𝐿 − 1) matrix used in equation (B7) 𝐾   Degree of the warping function 

KDE   Kernel Density Estimation 𝐿 Number of B-spline sub-intervals (𝐿 − 1 is the number of internal knots) 𝑚   Number of retained FPCs 𝑀   Number of profiles in Phase I dataset 𝑀𝐼𝑁𝐸𝐼𝐺(ℎ)  Similarity index used for registration  𝑛𝑏   Number of B-spline basis functions 

PC   Principal Component 

PCA   Principal Component Analysis 𝑄   Order of the B-spline function 

Reg   Profile monitoring based on monitoring only the registered curves 

RegWarp  Proposed approach for profile monitoring 𝑆𝑃𝐸𝑗(𝑚)  𝑗𝑡ℎ realization of the sum of prediction error statistic 𝑆𝑆𝐸   Sum of squared errors statistic 𝐒𝑧   Sample variance-covariance matrix of multivariate variable 𝒛𝑗 𝑇+1   Number of data points of monitored profiles (𝑡, 𝑡𝑖 ∈ [0, 𝑇]) 𝐓(ℎ)   2 × 2 matrix used to compute the 𝑀𝐼𝑁𝐸𝐼𝐺(ℎ) statistics 𝑇𝑗2(𝑚, 𝐾) 𝑗𝑡ℎ realization of the Hotelling’s 𝑇2 statistics for the multivariate variable 𝒛𝑗 

UHP   Ultra High Pressure 𝒖𝑗   𝑗𝑡ℎ eigenvector in FPCA eigenfunction 

Unreg   Profile monitoring without any registration 𝑣(𝑠, 𝑡)   Sample covariance function 𝑉   Sample covariance operator (with kernel 𝑣(𝑠, 𝑡)) 𝒘𝑗   𝑗𝑡ℎ warping coefficient vector (𝒘𝑗 = [𝑤𝑗,1, … , 𝑤𝑗,𝐾]′) , 𝑗 = 1,2, … 

WJ/AWJ  Waterjet/Abrasive Waterjet �̅�(𝑡)   Sample mean profile in Phase I before registration 𝑦∗̅̅ ̅(𝑡)   Sample mean profile in Phase I after registration 



𝑦𝑗∗(𝑡)   𝑗𝑡ℎ registered profile, 𝑗 = 1,2, … 𝑦𝑗(𝑡𝑖)   𝑗𝑡ℎ sampled profile, 𝑗 = 1,2, …  𝑦𝑗(𝑡)   𝑗𝑡ℎ functional profile, 𝑗 = 1,2, …  �̂�𝑗∗(𝑡,𝑚) 𝑗𝑡ℎ reconstructed profile by using the first 𝑚 FPCs 𝒛𝑗 𝑗𝑡ℎ  monitored vector that includes the PC scores and the warping coefficients (𝒛𝑗 =[𝑓𝑗,1, … , 𝑓𝑗,𝑚, 𝑤𝑗,0, … , 𝑤𝑗,𝐾]′) 𝛼, 𝛼′   Type I error 𝛽𝑖,𝑗, 𝛾𝑖,𝑗 , 𝜇𝑖,𝑗 , 𝜇𝑖,𝑗𝑠 , 𝜔𝑖,𝑗 , 𝜏𝑗 Parameters used to generate the simulate datasets, 𝑗 = 1,2, …; 𝑖 = 1,… ,5 𝛿∙,𝐴, 𝛿∙,𝐵   Shift parameter used to simulated out-of-control shape modifications 𝜀𝑗(𝑡)   𝑗𝑡ℎ error term in simulated scenarios (𝜀𝑗(𝑡)~𝑁(0, 𝜎𝜀)) 𝜉𝑗   𝑗𝑡ℎ FPC (eigenfunctions), 𝑗 = 1,2, … 𝜆2   Size of the second eigenvalue of a 2 × 2 matrix 𝜌𝑗   𝑗𝑡ℎ eigenvalue in FPCA eigenfunction 𝜎𝑓∙ ∙2    FPC score variance 𝜎𝑤∙ ∙2    Warping coefficient variance 𝜎𝑓∙𝑤∙   Covariance between FPC scores and warping coefficients 𝜏   Knot sequence (B-spline basis) 𝚽   B-spline basis functions array 
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Appendix A: Selection of the warping 

function degree, 𝑲 

An iterative procedure for the automatic selection of 

the most appropriate warping function degree, 𝐾, 

should be based on the same statistic adopted by the 

warping algorithm. Thus, we propose the following 

procedure based on the average 𝑀𝐼𝑁𝐸𝐼𝐺(ℎ) 

statistics, which can be computed at increasing values 

of 𝐾: 𝑀𝐼𝑁𝐸𝐼𝐺̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝐾(ℎ)
= 1𝑀 ∑ 𝑀𝐼𝑁𝐸𝐼𝐺𝑗,𝐾(ℎ)𝑀𝑗=1 ,   𝐾 = 1,2, … 

(A1) 

The relative improvement (or worsening) produced 

by passing from a degree 𝐾 function to a degree 𝐾 +𝑖 function, can be expressed as follows:  

𝐷𝐾,𝑖
= 100(𝑀𝐼𝑁𝐸𝐼𝐺̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝐾(ℎ) − 𝑀𝐼𝑁𝐸𝐼𝐺̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝐾+𝑖(ℎ)𝑀𝐼𝑁𝐸𝐼𝐺̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝐾(ℎ) )%,    

𝑖 = 1,2,… ; 𝐾 = 1,2,… 

(A2) 

We propose to choose the degree 𝐾 for the warping 

function when: (i) the relative improvement 𝐷𝐾,𝑖 is 

lower than a given threshold (e.g., 𝐷𝐾,𝑖 < 5%) for at 

least two consecutive steps (𝑖 = 1,2), or (ii) the 

relative change 𝐷𝐾,1 is negative. Notice that a 

negative value of 𝐷𝐾,1 is possible. A negative value is 

likely to occur for high values of 𝐾, when a too 

complex warping function introduces a detrimental 

curve distortion. 

Appendix B: Brief review of the FPCA 

methodology 

Principal Component Analysis (PCA) is a 

multivariate statistical technique aiming to search the 

directions of maximum variability (i.e., the main 

modes) of the dataset. In the context of statistical 

process control, PCA allows monitoring complex 

signal patterns without selecting a model in advance, 

thanks to the identification of a limited number of 

features (i.e., the principal components), which are 

mutually uncorrelated linear combinations of the 

measured profiles. In the presence of functional 

observations (e.g., profiles observed along time), the 

FPCA plays the same role as PCA for multivariate 

data.  

Given a (possibly registered) functional dataset {𝑦𝑗(𝑡), 𝑡 ∈ [0, 𝑇]}, 𝑗 = 1,… ,𝑀, the first FPC is its 

direction of maximum variability.  In the following, 

we will assume each datum 𝑦𝑗 to be a square 

integrable real valued functions, and we will denote 

this with 𝑦𝑗 ∈ 𝐿2([0, 𝑇]). In this case, the first FPC is 

found by maximizing, over 𝜉 ∈ 𝐿2, with ||𝜉||2 =∫ |𝜉(𝑡)|2𝑑𝑡 = 1𝑇0 : 1𝑀 ∑∫ 𝑦𝑗𝑇
0

𝑀
𝑗=1 (𝑡)𝜉(𝑡)𝑑𝑡 (B1) 

The remaining FPCs, 𝜉𝑖, 𝑖 = 2,… ,𝑀, capture the 

remaining modes of variability subject to be mutually 

orthogonal, and are thus obtained by solving problem 

(B1) with the additional orthogonality constraint ∫ 𝜉𝑘(𝑡)𝜉𝑖(𝑡)𝑑𝑡 = 0𝑇0 , 𝑘 <  𝑖. 



We recall that the sample covariance function 𝑣(⋅,⋅) 

of the functional dataset can be expressed as:  𝑣(𝑠, 𝑡) = 1𝑀 − 1∑ (𝑦𝑗(𝑠) − �̅�(𝑠)) (𝑦𝑗(𝑡) − �̅�(𝑡)) ,𝑀𝑗=1 𝑠, 𝑡 ∈ [0, 𝑇]  
(B2) 

where �̅�(𝑡), 𝑡 ∈ [0, 𝑇], is the sample mean. The 

covariance operator is then defined as the kernel 

operator 𝑉: 𝐿2([0, 𝑇]) → 𝐿2([0, 𝑇]), acting on 𝑥 ∈ 𝐿2 

as:  𝑉𝑥 = ∫𝑣(∙, 𝑡)𝑥(𝑡)𝑑𝑡 (B3) 

As proved, e.g., in Horvàth and Kokoszka (2012), and 

analogously to the multivariate case, the FPCs 𝜉𝑖, 𝑖 =1,… ,𝑀, are the eigenfunctions of the sample 

covariance operator  𝑉, which are obtained by solving 

the eigenequation: 𝑉𝜉𝑖 = 𝜌𝑖𝜉𝑖 ,    𝑖 = 1,2,… , 𝑀 (B4) 

where 𝜌𝑖 is the 𝑖𝑡ℎ eigenvalue, or, equivalently, ∫𝑣(𝑡, 𝑠) 𝜉𝑖(𝑠)𝑑𝑠 = 𝜌𝑖𝜉𝑖(𝑡),     𝑡 ∈ [0, 𝑇], 𝑖 = 1,2,… ,𝑀 

(B5) 

We note that the eigenfunctions can be expressed on 

the same basis {Φ𝑘(⋅)}𝑘≥1 as that used in (2) for the 

data: 𝜉𝑖(𝑡) = 𝒃𝑖′Φ(𝑡),   𝑡 ∈ [0, 𝑇], 𝑖 = 1,2, … ,𝑀 (B6) 𝒃𝑖 ∈ ℝ𝑄+𝐿−1 being the vector of coefficients 

corresponding to 𝑖th the eigenfunction. Hence, 

equation (B5) becomes: 1𝑀 − 1Φ′(𝑡)(𝐂 − �̅�)′(𝐂 − �̅�)∫Φ(𝑠)Φ′(𝑠)𝑑𝑠 𝒃𝑖 = 𝝆Φ′(𝑡)𝒃𝑖, 𝑖 = 1,2, … ,𝑀   (B7) 

where �̅�.𝑖 = �̅� for 𝑖 = 1,… ,𝑀, if �̅�(𝑡) = �̅�′Φ(𝑡), 𝑡 ∈[0, 𝑇]. Expression (B7) reduces to the symmetric 

eigenequation: 1𝑀 − 1 𝐉12(𝐂 − �̅�)′(𝐂 − �̅�)𝐉12𝒖𝑖 = 𝜌𝒖𝑖 ,   (B8) 

 𝑖 = 1,2,… ,𝑀 

subject to 𝒖𝑖′𝒖𝑖 = 1, with 𝐉 = (∫Φ𝑘(𝑠)Φ𝑙′(𝑠)𝑑𝑠) ∈ℝ𝑄+𝐿−1,𝑄+𝐿−1 and having defined 𝒖𝑖 = 𝐉1/2𝒃𝑖 ∈ℝ𝑄+𝐿−1,   𝑖 = 1,2,… ,𝑀. This allows using standard 

software tools to find the eigenvectors 𝒖𝑖 of the 

modified eigenequations (B8), eventually back-

transforming the result to obtain the coefficients 𝒃𝑖 of 

the target eigenfunctions 𝜉𝑖, for 𝑖 = 1,… ,𝑀. 

The dimensionality reduction task is then 

accomplished by retaining the first 𝑚 ≪ 𝑀 FPCs, 

where 𝑚 is such that 𝜉1, 𝜉2, … , 𝜉𝑚 explain a sufficient 

percentage of the original data variability. For this 

purpose, one may proceed analogously to the classical 

multivariate PCA, e.g., by associating a threshold to 

the cumulative explained variance or to the 

eigenvalues (e.g., the 80%). When the first 𝑚 

principal components are retained, each profile can be 

expressed as: �̂�𝑗(𝑡, 𝑚) = �̅�(𝑡) + ∑𝑓𝑗,𝑖𝜉𝑖(𝑡)𝑚
𝑖=1 ,   𝑗

= 1,2, … ,𝑀 

(B9) 

where: 𝑓𝑗,𝑖 = ∫ (𝑦𝑗(𝑡) −𝑇
0 �̅�(𝑡))𝜉𝑖(𝑡)𝑑𝑡

= (𝑪𝒋 − �̅�)′𝐉𝒃𝑗  (B10) 

for 𝑗 = 1,… ,𝑀, 𝑖 = 1,… ,𝑚, are the FPC scores. The 

scores 𝑓𝑗,𝑖 can be then monitored to detect any 

unnatural behaviour that affects the amplitude 

variability of the observed profiles along the first 𝑚 

principal directions.  

Appendix C: On the correlation 

between FPCs and warping 

coefficients 

Fig. C1 shows the scatterplot of the first 3 FPC scores, 

i.e., {𝑓𝑗,1, 𝑓𝑗,2, 𝑓𝑗,3, 𝑗 = 1,… ,50} and the 3 warping 

coefficients {𝑤𝑗,1, 𝑤𝑗,2, 𝑤𝑗,3, 𝑗 = 1,… ,50} of 50 in-

control profiles generated in Scenario B. Fig. C1 

shows that a non-zero correlation exists between 

some FPCs and warping coefficients. This justifies 

the choice of jointly monitoring phase and amplitude 

coefficients via a Hotelling’s 𝑇2 statistic.

 



 

FIGURE C1 – Scatterplot of first three FPCs vs warping coefficients, Scenario B, 𝑀 = 50
 

 


