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Abstract

Preventive maintenance is crucial for keeping the operational condition of ma-
chines but it affects the available productive time of the system. This influences
the lot completion time and the delivery dates. Therefore the choice of preven-
tive maintenance policies needs to be taken by jointly considering the actual
condition of machines and the service level of the system. In this context,
the main contribution of this paper consists in providing evidences of how the
completion time of a lot is significantly affected by the preventive maintenance
policy. This is done by means of numerical illustrations obtained by using both
ad-hoc models and a real industrial case. The second contribution relies in the
presented methodology that allows the modeling of general synchronous produc-
tion lines and, given a lot size, the computation of their corresponding service
level. The methodology is described in such a way that its extension to different
scenarios (such as different system layout and asynchronous machines) is fairly
straightforward.

Key words: Manufacturing systems, Performance evaluation, Preventive
Maintenance, Degrading Machines

1. Introduction

Manufacturing systems consist of processing machines, material handling
and other equipment that gradually deteriorate and are subject to failures dur-
ing operations. The occurrence of unplanned breakdowns can lead to costly
corrective repairs, which can negatively impact the available production time
of the system [1]. Therefore, in order to avoid producing in unsafe degradation
states that can lead to catastrophic failures, manufacturers carry out planned
preventive maintenance of critical production resources [2]. On the other hand,
current market trends characterized by highly customized products and shorter
delivery times push manufacturers to increasingly compete under a Make to Or-
der strategy and require to guarantee a higher equipment availability [3]. How-
ever, performing preventive maintenance requires machines to be temporarily
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stopped [4], thus causing planned down times. Although down times asso-
ciated to preventive maintenance are normally shorter and incur lower costs
compared to corrective repairs, very frequent preventive maintenance can also
lead to an overall decrease in the operational availability of production systems
[5]. Hence, effective maintenance planning, supported with appropriate decision
making tools is one of the essential activities to achieve high productivity and
cost efficiency in complex manufacturing systems [6]. In order to achieve this
goal, the decisions related to preventive maintenance need to consider actual
degradation level of machines, the downtimes associated to alternative main-
tenance actions and the desired availability of resources for satisfying existing
customer due dates[7]. Indeed, a robust maintenance and production planning is
one of the competitive strategies for meeting key customer requirements such as
production completion dates and product quality while preserving the condition
of high value processing equipment.

1.1. Industrial Motivations

Manufacturing industries with heavy investment on production equipment
spend a significant portion of their operating budget on maintenance. According
to [8], maintenance costs can account for 15-70% of the total production costs.
Therefore, one of the industrial challenges to implement an efficient maintenance
policy which is adapted for a specific manufacturing setting is the evaluation of
the impacts of alternative policies on costs and other key performance indicators
affected by maintenance decisions [9], [10]. For this reason, manufacturing sys-
tems composed of many production equipment require an overall system level
analysis.

In manufacturing, maintenance policies can be viewed into two main groups,
namely corrective maintenance(CM) and preventive maintenance (PM) [11].
Preventive maintenance consists of actions carried out based on a plan to keep
an equipment within a stated working condition through the process of checking,
reconditioning and replacing [12]. PM can be further classified into Time-Based
maintenance (TBM), where maintenance is performed at certain time intervals,
or condition-based maintenance (CBM), where maintenance is performed when
the state of the machine reaches a specific degradation conditions that require
a repair [13]. In particular, the system level impacts of condition based mainte-
nance and the specification of its corresponding parameters needs to be studied
using accurate and robust quantitative decision support tools. However, sur-
veys show that current industrial practices highly rely on decisions based on
experience, thus, maintenance decision support tools are not commonly applied
at a system level[14].

The choice of maintenance policies is mainly driven by target performances,
such as overall equipment availability, costs and the feasibility of enabling tech-
nologies [15]. Thus, advances in sensor and monitoring technologies have been
one of the major factors influencing industrial trends and their choice of main-
tenance policies. A survey conducted in 2010, including more than 170 Italian
manufacturers investigated the average mix of maintenance policies that were
adopted by the companies. In this study, on average, the companies applied
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55% of CM, 35% TBM and 10% CBM, for their identified reliability problems.
However, the same study recommended 30% of CM and 70% of combined TBM
and CBM [16] to obtain optimal results. Furthermore, the compound annual
growth rate for the CBM is estimated to be 39% in the period 2017 to 2022
[17]. Additional studies also forecast a growing shift from CM to CBM due
to the economic feasibility of advanced condition monitoring technologies and
powerful data analytics tools. However, besides the average industrial trend, the
choice of maintenance policies and the specification of maintenance parameters
needs to be considered depending on the nature of the individual equipment
and the manufacturing system layout. In this regard, manufacturing system
layout, which governs the production flow in a system, is highly influenced by
the nature of maintenance operations. Accordingly, research has investigated
the interaction between maintenance activities and production logistics, demon-
strating the economic benefits that can be achieved by triggering maintenance
considering production inventory conditions and choosing opportunistic time
windows [18]. Thus, joint maintenance and production logistics analysis tools
for supporting decision making can bring significant performance improvements
for industries [19].

Once the required decision support tools are developed, the implementation
of condition based maintenance is also dependent on the availability of enabling
information communication technologies (ICT) used for component condition
monitoring [17]. The quantitative models which are embedded in the decision
support tools elaborate the condition monitoring information at component level
and the production logistic data coming from manufacturing executive systems,
in order to evaluate the performance of alternative set of maintenance and con-
trol actions[20], [21]. For this purpose, a suitable condition monitoring system,
where signals are continuously gathered using sensor networks is needed to pro-
vide the information about health assessment of critical components [22], [23].
The information gathered through such a framework is used to make infer-
ence on various process monitoring variables, such as vibration, temperature,
power consumption, and acoustic emissions or on multi-sensor data fusion [24].
However, in today’s manufacturing systems, ICT platforms for supporting data
connectivity and computations are increasingly becoming integral part of mod-
ern production systems. This trend in the digital manufacturing is introducing
the concept of Cyber Physical Systems (CPS), which are defined as integra-
tions of computation and physical processes [25]. This provides an additional
opportunity to exploit the synergy between CPS enabled industries and em-
bedded decision support tools. The method proposed in this paper belongs to
these class of tools within the decision support system, which jointly considers
condition based maintenance and production plans.

1.2. Literature

In reliability engineering and maintenance policy analysis, various model-
ing approaches and quantitative solution methods have been proposed. In
the literature, modeling approaches such as, Markov chain models [26], [27],
[28], Petri nets [29],[30] Reliability Block diagrams [31],[32], Fault Tree Analysis
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[33],[34] and Analytic Hierarchy Process[8] are well investigated. Each of these
approaches have their own specific advantages depending on the modeling ob-
jectives [35]. Some of the criteria in selecting an approach include, the required
modeling resolution, size and complexity of the model, flexibility and general-
ity, analytical tractability, computational effort [36]. For instance, Markov chain
based approaches are powerful for modeling and studying the steady state and
transient behavior of state based stochastic systems. On the other hand, Petri
net based approaches are suitable for component and system fault verification,
diagnosis, detection of undesired states and support subsequent design of con-
trol and supervision systems. Reliability Block Diagrams and Fault Trees are
suitable to provide an intuitive representation in modeling reliability problems
and give a higher expression power to demonstrate how a component failure con-
tributes to the failure of complex system. Multi criteria decision making tools
such as Analytic Hierarchy Process allow to incorporate experience based inputs
by considering multiple objectives, in addition to maintenance policy analysis
[37]. Furthermore, there are other works based on hybrid use of two or more
of these approaches [38], [39] with the objective of combining the advantages of
the individual approaches.

In addition to the modeling approaches, commonly used quantitative so-
lution methods can be based on exact and approximate analytical methods,
simulation methods and heuristic methods. Each method can present specific
advantages and limitations. Simulation methods are suitable for modeling a
wide range of manufacturing system architectures and provide accurate esti-
mation of performance measures [40]. However, creating simulation models of
multi-stage manufacturing lines and the subsequent simulation time can be too
high for short term decision applications [41], [42]. In such cases, approximate
analytical methods represent a suitable alternative to simulation when estimat-
ing the performance of complex manufacturing systems in a short time. They
are accurate and fast in the estimation of the main performance measures. This
allows the evaluation of a large set of system alternatives and parameter set-
tings in a short time. The work presented in this paper is also grounded on a
growing body of research that is based on Markov chain based analytical meth-
ods. Such early models dealt with the analysis of serial transfer lines [26] and
asynchronous flow lines [43], with single failure mode machines. Later, these
methods were extended to deal with more complex machine models, featuring
multiple failure modes [44]. Recently, methods for studying complex system
layouts [45] have been proposed. These works have been foundation for the
development of various decision support system for the design and management
of complex manufacturing systems [46], [47]. Although these works bring signif-
icant advancement in this area, they do not take into account the degradation
dynamics of machines. Therefore, the main goal of this paper is also to extend
their applicability for supporting a more detailed maintenance decision.

Traditionally, the research on the decision support tools in maintenance of
manufacturing systems considers the analysis of condition based maintenance
and the analysis of production logistics performances separately. In recent years,
works focusing on the joint preventive maintenance and production performance
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optimization are attracting researchers and industrial interests. A review of such
works [18] presents the growing interest and the motivation behind the joint
analysis of preventive maintenance and production logistics problem while also
indicating that fewer works have embedded the condition based maintenance in
the analysis. Among these works covering condition based preventive mainte-
nance policies, many of them analyze and optimize the problem at single stage
level [48], [49],[50],[51], thus neglecting their impact on the production logistics
performance of the multi-stage system as a whole. Other works show that the
impact of alternative maintenance policies taken on individual machines can be
very different from its impact on the performance of the overall system, which
affects the productive time and the completion times of the customer orders.
Recent research is also targeting the systemic aspect of the problem, highlighting
that single stage level analysis undermines the efficiency of the condition based
maintenance policies on the whole system, by prioritizing local improvement
actions which might be detrimental at system level [52].

With a similar goal of addressing the maintenance problem at a system
level, the research in opportunistic maintenance aims to optimally group repair
operations [53], [54] and develop methods to schedule maintenances consider-
ing less disruptive opportunities,[55], [56], [57]. Detailed classification of these
approaches and the performance measures targeted by works in this area are
reviewed in [58]. On the other hand, works focusing on the production per-
formance modeling and analysis of multi-stage manufacturing systems mainly
consider simplified assumptions of machine reliability parameters. Mainly, these
works consider machine failure parameters as the average values of mean time
to failures (MTTF), without the explicit representation of the machines’ degra-
dation dynamics.

The importance of a decision making process by jointly considering condi-
tion based maintenance and production logistics performance has been recently
stressed in [46]. In [59] the authors developed a model of a multi-stage asyn-
chronous serial line where machines are subject to deterioration. While going
through deteriorated states, increasing failure rate and decreasing yield are ob-
served. The authors have demonstrated that in multi-stage systems, while se-
lecting the optimal maintenance thresholds, the solutions obtained by neglecting
the system dynamics are always sub performing in terms of effective production
rate and always overestimate the length of maintenance cycles. These recent
works are mainly focused on the analysis of the interaction among preventive
maintenance policies and first order performance measures of the system, such
as the average system throughput and the average work in progress. If properly
controlled, preventive maintenance operations can potentially reduce the vari-
ance of the output, thus increasing the service level, paving the way to a robust
joint maintenance and production planning approach.

1.3. Scope of the paper

The primary objective of this paper is to show how preventive maintenance
affects the time to completion of a lot. We provide insights on this fairly new
research area by means of experiments are that are divided in two parts: the
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first that takes in consideration three simple ad-hoc models and studies the
behavior of their time to complete a lot as function of different parameters; and
the second part that focuses a real Flexible Manufacturing System (FMS) for
the production of complex titanium parts in the aeronautic sector.

All the underlying models used in the experiments are synchronous pro-
duction lines composed of two machines connected by a buffer controlled by a
blocking before service policy. Only one of the machines of these models is al-
ways characterized by a degrading component that is subject to both corrective
and preventive maintenance. Indeed, this is only one of many possible scenarios
since many different modeling assumptions exist (see [60] for a detailed list).
For the sake of brevity, we have chosen the model whose assumptions were the
best fit for the real use case.

Despite this, we describe in detail a methodology that holds for:

• production lines composed of an arbitrary number of machines connected
by buffers having arbitrary sizes;

• machines with general behavior.

Furthermore, the method for the computation of the lot completion time
can be applied to any type of system layout as long as it is possible to generate
the underlying DTMC of the model and discriminate the states of the machine
that generates the output of the system. This is straightforward for closed loop
systems and assembly line (see [61] where a similar method has been defined for
the computation of the lead-time distribution).

Additionally, the method can be easily adapted to deal with asynchronous
machines. In this case the underlying stochastic process corresponds to a Con-
tinuous Time Markov Chain (CTMC ) instead of a Discrete Time Markov Chain
(DTMC ). Therefore, the state transitions become more complex because their
computation involves a matrix exponentiation but the structure of the matrices
and the recursive schema of the method remains unchanged. We refer the reader
to [62] for a description of how manage the transitions in a CTMC and to [63]
for a description of general asynchronous machines by using Kronecker products
in a continuous time setting. To the best of our knowledge, the method can be
easily adapted to any system with a discrete state space. For these reasons, we
believe that the methodology can be adapted to cover a large set of systems and
its extension to different scenarios is straightforward.

The paper is structured as follows: in Section 2, the modeling assumptions
are introduced. In Section 3, the methodology for modeling degrading machines
is described and the analytical method for evaluating the target performance
measures of the system is presented. Section 4 presents numerical results of
the impact of condition based preventive maintenance of degrading machines
on the system performance measures. In addition, this section includes a real
case study analysis and the resulting system behavior. Conclusions are given in
Section 5.
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2. System Modeling

2.1. Main Modeling Assumptions

The proposed methodology can be applied to any manufacturing line with
multiple number of stages. The typical serial manufacturing line is composed
of K unreliable and degrading machines separated by K − 1 limited capacity
buffers, as represented in 1. The machines (squares) perform operations on parts
flowing in the system. Buffers (circles) have the role of decoupling the machines
in the system. They can be either inventory storages or automated material
handling systems that transport semi-finished materials between machines. The
ith machine and buffer are denoted with Mi and Bi (with i = 1, ,K − 1,K)
respectively: Bi has capacity equal to Ni and it contains only pieces already
worked by Mi. A generic Mi is blocked if the downstream Bi is full. A generic
Mi is starved if the upstream dedicated buffer Bi−1 is empty. The first machine
is never starved, meaning that there is continuous supply of raw parts at machine
M1, and the last machine is never blocked, meaning that there is always place
to store finished products.

B1M 1 M2 B2 MK-1 MKBK-1

Figure 1: Representation of multi-stage serial manufacturing line

The underlying DTMC of the model can be built by iterating the construc-
tion of a system composed of two machines connected by a buffer (building block
from now-on). The flow of material in a building block is modeled as a discrete
flow of parts. Each machine Mi, i = 1, 2, is characterized by a set of states Si

with dimensionality Ni. The dynamics of each machine in these states is cap-
tured in the transition probability matrix Ti that is a NixNi matrix. Moreover,
a quantity reward vector µi is considered, with dimensionality Ni and binary
entries: µj

i = 1 if the machine is operational and it processes 1 part per time

unit while in state j; µj
i = 0 if the machine is down and it does not process

parts in state j. The generic state indicator for this system assumes the form
s = (b, α1, α2), where b is the number of parts in the buffer and αi assumes
values in the set Si . In total (B+ 1)×N1×N2 states exist. For each machine,
the states are partitioned into up states (the machine is operational), denoted
as U , and down states (the machine is not operational), denoted as D. Because
of such partitioning, the transition probability matrix of Mi, denoted with Ti,
can be divided into blocks as follows

Ti =

∣∣∣∣ P̄i Pi

Ri R̄i

∣∣∣∣ (1)

where, considering machine i, the block P̄i contains the transition probabilities
among the up states, R̄i among the down states, Pi from up states to the down
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Q =

0, D, U 1, U, U 1, D, U 1, D,D 2, U, U 2, U,D 2, D, U 2, D,D · · ·

0, D, U R̄1 ⊗ I R1 ⊗ I
1, U, U P1 ⊗ P̄2 P̄1 ⊗ P̄2 P1 ⊗ P2 P̄1 ⊗ P2
1, D, U R̄1 ⊗ P̄2 R1 ⊗ P̄2 R̄1 ⊗ P2 R1 ⊗ P2
1, D,D R̄1 ⊗ R2 R1 ⊗ R2 R̄1 ⊗ R̄2 R1 ⊗ R̄2
2, U, U P1 ⊗ P̄2 P̄1 ⊗ P̄2 P1 ⊗ P2
2, U,D P1 ⊗ R2 P̄1 ⊗ R2 P1 ⊗ R̄2
2, D, U R̄1 ⊗ P̄2 R1 ⊗ P̄2 R̄1 ⊗ P2
2, D,D R̄1 ⊗ R2 R1 ⊗ R2 R̄1 ⊗ R̄2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

Table 1: Upper left corner of the transition matrix of the DTMC of a building block with
general Markovian machines.

states (leading to a break down) and Ri from down states to up states (leading
to repair).

We further assume that, in each time slot, the state of the machine is de-
termined at the beginning of the time unit and the buffer content is changed
accordingly at the end of the time unit. Operational Dependent Transitions
are assumed, i.e. a machine cannot make transitions to other states if it is
starved or blocked. The Blocking Before Service (BBS) mechanism is assumed.
Therefore, when a buffer is full (empty) its upstream (downstream) machine is
blocked (starved) and it can only be in the up state. This means that states
(B−1, D, U) and (1, U,D) are transient states. The transition matrix of DTMC
associated with the system, denoted with Q, can be built by blocks by using
Kronecker products. In order to give an example, we provide Table 1 which
describes the upper left corner of the transition matrix. The symbol ⊗ denotes
the Kronecker product operator which is used in this context to describe the
parallel evolution of the two machines. Let us discuss just two blocks of Table 1
in detail. The block that contains the transitions that lead from the states in
(1, D,D) to the states in (0, D, U) is given by R̄1 ⊗ R2 because if the first ma-
chine remains down (described by R̄1) and the second machine gets repaired
(R2) then the buffer becomes empty. The block that provides the transitions
from (0, D, U) to (1, U, U) is given by R1 ⊗ I, because in this case the first
machine gets repaired (R1) and the second machine maintains its up state (I)
since it is starved.

The extension to K machines can be carried on recursively. Let Mi ∗B Mj

be a binary operator that creates the transition matrix of a building block
(as described in Table 1) by using the description of machines i and j and a
buffer having capacity B. Furthermore, let us denote the transition matrix
representing the dynamics of the first i machines of the line with Q[i]. It is
easy to verify that Q[2] = M1 ∗B1

M2. By separating the states in which the
downstream machine of the building block is processing items from those in
which it is starved or down, we can partition the matrix Q[2] in order to satisfy
equation (1) and create a reward vector µ̃2 for the entire building block. By
doing this, we define a meta-machine M̃2 whose output corresponds to the
output of M1 and M2 as taken in isolation. As defined, M̃2 can be combined

8



with M3 to generate Q([3]). By induction we have that:

Q[i] =

{
M1 ∗B1

M2 i = 2

M̃i−1 ∗Bi−1 Mi i > 2

Matrix Q[i] can be partitioned according to equation (1) by filtering the matrix
according to the state of the last machine of the building block. Formally:

P̄i = F (Mi=UP ∧ bi>0)Q[i]F (Mi=UP ∧ bi>0)

Pi = F (Mi=UP ∧ bi>0)Q[i]F (Mi=DOWN ∨ bi=0)

R̄i = F (Mi=DOWN ∨ bi=0)Q[i]F (Mi=DOWN ∨ bi=0)

Ri = F (Mi=DOWN ∨ bi=0)Q[i]F (Mi=UP ∧ bi>0)

(2)

where F<cond> is a filtering matrix whose entries are defined as follows:

f<cond>
i,j =

{
1 i = j ∧ < cond > is true in i
0 otherwise

The reward vector µ̃i follows the same principle and is equal to:

µ̃i = 1F (Mi=UP ∧ bi>0)

where 1 is a vector of ones having the same dimension of the filtering matrix.
As last, it is important to point out that more elegant strategies based

on formal methods can be used to generate the state space of large complext
multistage systems and enhance the corresponding Markov process with general
PH distributions. Above all, we suggest some works based on Stochastic Petri
nets [64, 63, 65].

2.2. Modeling of a single machine as superposition of components

Each machine can be described as a superposition of independent compo-
nents having their own failure and repair probabilities. This makes easier to
plug Phase Type (PH) distributions in the dynamics of each component. We
remind the reader to [66, 67] for a detailed description about the use of PH
distribution in reliability modeling.

Let us assume that a machine i is composed of Wi components and that the j
component of Mi is described by a proper DTMC whose matrix is denoted with
Ti,y, and a reward vector µi,y. Then, the overall behavior of Mi is described by
matrix

Ti =

Wi⊗
y=1

Ti,y (3)

and the reward vector µi =
⊗Wi

y=1 µi,y.
Each matrix Ti,y must represent a DTMC but it can be arbitrarily complex

having multiple up and down states having general Markovian distributions.
Therefore the assumption of independence between components is not restric-
tive. In fact, the dynamics of components that depends on each other can be
represented through a single matrix that describes their combined behaviour.
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For example of how PH distribution can be used, assume component y as
having failures characterized by a order-2 hyper-geometric distribution and two
failure modes both with hypo-geometric time to repair; then, the transition
matrix is∣∣∣∣∣∣∣∣∣∣∣

1− pi,1 0 pi,1ai,1 0 pi,1(1− ai,1) 0
0 1− pi,2 pi,2ai,1 0 pi,2(1− ai,1) 0
0 0 1− ri,1 ri,1 0 0

ri,1bi,1 ri,1(1− bi,1) 0 1− ri,1 0 0
0 0 0 0 1− ri,2 ri,2

ri,2bi,1 ri,2(1− bi,1) 0 0 0 1− ri,2

∣∣∣∣∣∣∣∣∣∣∣
where bi,1 gives the initial probabilities of the hyper-geometric times to failure

and pi,1 with pi,2 the parameters of the involved geometric distributions; ai,1
is the probability of failure mode 1; ri,1 and ri,2 are the parameters of the
hypo-geometric times to repair.

2.3. Modeling of a Degrading component with CBM

In this paragraph, the general machine modeling framework introduced in
the previous section is used to capture the behavior of unreliable components
going through progressive degradation states. Degradation is a progressive pro-
cess that increases the probability of breakdown over time and it is due to the
wear of tools, fixtures, etc... The degradation states of the machine are par-
tially observable and inference might be needed. Therefore, the representation
of a degradation process might be complex. In sake of clarity we will focus
on a monodimensional process. However, it is important to point-out that our
method supports any degradation process that can be represented with DTMC.

The sketch of the state-transition diagram for degrading components is rep-
resented in Figure 2, where states l = 1, 2, .., L denote the operational states
and state CM denotes the breakdown state, where corrective maintenance is
required to bring the component back to as good as new condition. In practice,
these states may correspond to specific physical component or tool conditions,
or they can represent a discretization of the deterioration process, modeled by
using PH distributions.

When the component is in the operational state l = 1, 2, .., L it processes
µl = 1 parts per time unit. The breakdown state is simply characterized by
µCM = 0. In the maintenance literature, it is typical to assume Increasing
Failure Rates (IFR). In this paper, IFR can be included by assigning failure
probabilities pl1 > pl for each state l1 > l. If the breakdown occurs, corrective
maintenance is needed. The mean time to repair the component is 1/rCM . The
goal of a degradation control policy is to keep the process in desired states by
activating preventive maintenance, whenever the component is detected to be in
an undesired state, characterized by degraded performance. In our framework,
states l = 1, .., L− 1 are desired states, and state L is the undesired state where
a further degradation activates preventive maintenance. The selection of the
undesired state threshold L is typically a decision variable of the control pol-
icy. Since PM entails less severe repair operations than CM (repair probability
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· · ·1 2 L− 1 L PM

CM

rCM

p1

p2
pL−1 pL

rPM

Figure 2: General state-transition diagram of a degrading machine. Black arcs represents
degradations, Red arcs represents failures, Green arcs represents recovery from failures and
Blue arcs represents recovery from preventive maintenance. Note that, in sake of readability,
not all the arcs have been depicted; dashed lines are used to underline the missing transitions.

rPM > rCM ) this strategy may increase the production rate of the degrading
station. After preventive maintenance may or not return to the lowest degra-
dation level.

Figure 2 depicts a degradation that is monodimensional. As a consequence,
there is no point in considering more than one threshold L. Nonetheless, our
method allows the user to consider multi-dimensional tresholds. In general, our
model remain feasible for any kind of degradation and policy that is based on
a discrete state space. The analysis of these complex scenarios is left as future
work.

2.4. Performance Measures

The main performance measures of interest for this set of systems are:

• Lot completion time, C(x), that is the time to complete a lot of x parts.

• Service level, SL(x, t), which is defined as:

SL(x, t) = Prob(C(x) ≤ t)

3. Performance Evaluation Method

In this section, we describe in details the calculations required to compute
the distribution of the amount of time necessary to produce a given lot x, namely
completion time. Formally, the completion time is defined as:

C(x) = min [n ≥ 0 : Z(n) = x] (4)

where Z(n) is a random variable corresponding to the number of items processed
after n time units. By denoting with X the state of the system, the quantity
characterizing the completion time is

Gi,j(n, x) = {X(C(x)) = j, C(x) = n|X(0) = i}
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which corresponds to the joint probability of the completion time and the sys-
tem state at completion supposing that the initial state is i. The measure
Gi,j(n, t) is conveniently described by a pure birth process whose probability
matrix, denoted with A, is absorbing and characterized by blocks of states hav-
ing dimension equal to Q. The structure of the matrix is level-dependent as
follows:

A =

0 1 2 · · · x− 2 x− 1 x
0 H̄ H 0 · · · 0 0 0
1 0 H̄ H · · · 0 0 0
2 0 0 H̄ · · · 0 0 0
...

...
...

...
. . .

...
...

...
x− 2 0 0 0 · · · H̄ H 0
x− 1 0 0 0 · · · 0 H̄ H
x 0 0 0 · · · 0 0 I

(5)

where:

• H contains only those transitions that brings an item outside the system.

• H̄ contains all the remaining transitions of the system in such a way that
the relation H̄ = Q−H holds.

• I corresponds the identity matrix.

Note that matrix H can be computed easily by filtering matrix Q; In formula,
this corresponds to H = F (bK>0) ·Q·F (MK=UP ). The vector describing the joint
probability of the completion time and the system state at completion after n
time units is composed of (x+1) blocks; one for each level of matrix A. Let us
denote such vector with ν(n) and its entries with νi(n), 0 ≤ i ≤ x.

By starting from an initial condition ν0(0), the computation of the comple-
tion time can be carried on recursively as follows:

νi(n) =

 ν0(n− 1)H̄ i = 0
νi(n− 1)H̄ + νi−1(n− 1)H 1 ≤ i ≤ x− 1
νx−1(n− 1)H + νx(n) i = x

The probability that the completion time is smaller or equal to n is equal to the
sum of the entries composing block νx(n).

As final remarks, we observe that the method allows the user to:

• compute the time to completion for any initial condition. This include
steady state a.k.a. we impose the steady state distribution as initial con-
dition ν0(0);

• the method remains feasible for different system layout as long as it is
possible to define the matrices H̄ and H by isolating the states of the
machine that generates the output of the system.

12



4. Numerical Results

In this section the proposed method is used to provide experimental evi-
dences of how the time to completion of a lot is affected by the critical degra-
dation level in which a machine is stopped to perform preventive maintenance.
The first part of the section is used to present the problem. This is done by
analyzing the optimal behavior of three systems according to different require-
ments.

In the second part of the section, we describe the use of the method in the
context of a real industrial case.

4.1. Numerical illustrations

This section is used to show how preventive maintenance affects the lot
completion time of a given lot size when degrading components are present in
the system. In order to better appreciate the impact of the degrading component
we decided to work in a flattened scenario i.e. we considered a building block
composed of two single failure machines having geometric up and down times
connected by a buffer having capacity B = 10. The two machines are identical
and are characterized by a mean time to failure equal to 100 and mean time to
repair equal to 10 time units. Accordingly, their transition diagram corresponds
to the one depicted in Figure 3.

U

D

0.01 0.1

Figure 3: DTMC two single failure machine with geometric up and down times.

The decision to use these parameters as base-ground model is due to two
main reasons: i) having a production line that is balanced and composed of
machines characterized by an efficiency that is consistent with real-world pa-
rameters allows us to appreciate only the effect of the degrading component;
ii) Having geometrically distributed failures and repairs reflects the scenario in
which the only statistics available are the average of the failure and repair times.
Therefore, no estimation of the distributions can be performed.

The building block is coupled with a degrading component characterized
by a DTMC depicted in Figure 4 where: i) d corresponds to the degradation
probability; ii) pC,l corresponds to the failure probability of the lth degradation
level; 1/rCCM and 1/rCPM are the mean durations of corrective and preventive
maintenance, respectively.
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· · ·
1− pC,1 − d

d

d dd1 2 L− 1 L

pC,1

pC,2 pC,L−1

rCPM CPM

CCM

rCCM

1− pC,2 − d 1− pC,L−1 − d 1− pC,L − d

d

pC,L

1− rCCM

1− rCPM

Figure 4: DTMC describing the degrading component.

Without losing generality, the degrading component is assumed to be part of
the upstream machine1, M1. Thus, T2 coincides with the state diagram depicted
in Figure 3 whereas T1 arises from the Kronecker product between the diagrams
in Figures 3 and 4.

We considered three degrading components that differ from each other be-
cause of a single parameter. This allows us to show that a slight change in a
parameter corresponds to significant changes in the time of completion of a lot.
The failure probability of the degrading component is equal to pC,l = l·0.001 and
the average time for performing preventive maintenance is equal to rCPM = 0.5
for all the systems. After preventive mainenance the degrading component is
assumed to return in an as good as new state. Therefore, the effect between
CM and PM relies only on the average length of the maintenance.

The degrading component of the first system has degradation probability
equal to d = 0.1 and the average time required for corrective maintenance is
rCCM = 0.1. The second system has a degrading component with the same
time to repair as the first, but with a degradation probability equal to d =
0.2. The degrading component of the third system has degradation probability
equal to d = 0.1, but the average time required for corrective maintenance is
rCCM = 0.05. As a consequence, if L is fixed, system 1 has the highest efficiency
whereas system 2 and 3 have the same efficiency due to the fact that system
2 reaches preventive maintenance twice faster than system 3 but its corrective
maintenance requires half the time of system 3. Table 2 provides a summary of
the parameters of the three systems.

Since the lot completion time is dependent on the service level, the lot size
and makespan, we analyzed these three parameters in isolation by means of two
different optimization problems. The first optimization problem focuses on the
service level and the lot size whereas the third focus on the makespan.

The computation of a single evaluation requires less than a second whereas
each optimization problem has been computed in 45 seconds by using a JAVA
prototype on common hardware.

1Reversibility of the completion time has been experimentally shown in [68].
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System p1, p2 r1, r2 pC,1 pC,l − pC,(l−1) d rCCM rCPM

1 0.01 0.1 0.001 0.001 0.1 0.1 0.5
2 0.01 0.1 0.001 0.001 0.2 0.1 0.5
3 0.01 0.1 0.001 0.001 0.1 0.05 0.5

Table 2: The three different systems used for the experiments.

4.1.1. Minimal completion time as function of the service level

The first optimization problem aims to find the value of L that minimizes
the time to completion of a lot for a given service level. Assume Cl(x) to be the
time to completion of a lot composed of x items of a system where preventive
maintenance is performed when the component reaches the (l+ 1) degradation
level. We can formally define the optimization problem as:

L∗ = min
l

[Cl(x)] . (6)

subject to
SL(x,C(x)) ≥ y (7)

where y is the service level.
We considered a lot size x = 250 items and a maximum degradation level

equal to 10. The service level is varied between 0.1 and 0.99. At the beginning
of the analysis, the initial state of the system is as follows: both machines are
operative, the degrading component is at its lowest degradation level and the
buffer is empty.

The behavior of L∗ for all the three cases is depicted in Figure 5. It can
be noticed that the three curves differ from each other significantly but they
share the same trend, i.e., as the required service level increases then L∗ goes
decreasing. This phenomenon can be explained by the fact that by performing
preventive maintenance at large values of L, we increase the probability to find
the upstream machine in corrective maintenance but we decrease the probability
to put the upstream machine under preventive maintenance. Thus, there is a
small probability that the lot is completed without observing down states. On
the contrary, to meet high service levels, we have to admit the possibility that
the upstream machine will end up in maintenance before completing the lot. In
this scenario, small values of L guarantee shorter down times because preventive
maintenance is more likely than corrective maintenance.

Furthermore, we can observe that all the curves differ because of their max-
imum and minimum. This is remarkable considering that the three systems
share all the parameters but one. System 1 has the optimal L∗ that changes the
least whereas system 3 is the one whose optimal value changes the most. This
was expected because system 1 has the degrading component with the smallest
degradation probability and the smallest mean time to repair. Therefore, it
is very unlikely that system 1 will reach large degradation levels before going
in corrective maintenance and, even if it goes in preventive maintenance, the
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difference between time spent in preventive maintenance and the time spent in
corrective maintenance is not large as for system 3.
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Figure 5: Optimal degradation level for the time to completion of a lot composed of 250 items
as function of the service level.

Figure 6 depicts the time required to complete the lot under different pre-
ventive maintenance policies. The plots depict the curve corresponding to the
optimal policies for the smallest and the largest service levels in Figure 5, the
smallest degradation level possible (L = 1), the largest degradation level (L=10)
and the curve generated by applying the optimal policy for each service level.

We can observe that system 3 is characterized by the largest differences
between policies. This difference is an expected behavior because the degrading
component of system 3 has the largest difference between rCCM and rCPM .
Furthermore, it can be noticed that L = 1 always leads to a significant increment
of the time to completion.
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Figure 6: Time to completion of a lot composed of 250 items as function of the service level
by applying different preventive maintenance policies.

4.1.2. Minimal completion time as function of the lot size

Here we apply the optimization problem described in equation (6) as function
of the lot size instead of the service level.

We considered a service level equal to 99% and considered a maximum degra-
dation level equal to L = 10. The lot size is varied between 1 and 250. The initial
state of the system is: both machines are operative, the degrading component
is at its lowest degradation level and the buffer is empty.

Results for all the three systems are depicted in Figure 7. We can notice that
the optimal policies of system 1 and 2 have the same trend; namely, the maximal
degradation level increases while the lot sizes increases. The optimal policy of
system 3 instead remain stable to L = 2 for lot sizes greater than 10. This can be
explained by the large mean time to repair of the degrading component of system
3. The gap between the corrective maintenance and preventive maintenance
is such that it is more convenient to stop the machine immediately after the
component degrades from L = 2 than to remain operative with a higher failure
probability. For system 1 and 2, the difference between rCCM and rCPM is
small enough to compensate an higher failure rate with a smaller number of
preventive maintenances.
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Figure 7: Optimal degradation level for the completion of a lot with 99% of confidence as
function of the lot size.System 1 (top left), System 2 (top right) and System 3 (bottom).

Figure 8 reports the time required to complete the lot for different preventive
maintenance policies. The plots depict the optimal policies for the smallest
and the largest lot sizes in Figure 5, the smallest degradation level (L = 1),
the largest degradation level (L=10) and the curve generated by applying the
optimal policy for each service level (additional values of L are reported for the
cases in which some of these values coincide).

We can observe that the impact of the policies becomes more marked for
large lot sizes. This is expected because, for large lot sizes, the systems reach
their steady state. Therefore, the completion of a larger part of the lot can
be considered as the sum of i.d.d. random variables that depends only by the
overall efficiency of the system. As a consequence, the largest is the lot and the
more the optimal policy coincides with the degradation level that provides the
best system efficiency.
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Figure 8: Time to completion of a lot with service level with 99% of confidence as function of
the lot size by performing preventive maintenance at different degradation levels.

4.1.3. Maximum number of items as function of the makespan

The second optimization problem aims to find the degradation level L that
maximizes the number of items completed with a service level of 99% for a given
time interval (called makespan from now-on). Assume Zl(x) to be the number
of items completed with 99% of confidence after n time units of a system where
preventive maintenance is performed when the component reaches the (l + 1)
degradation level. By using the definition of completion time in equation (4),
we can formally define the optimization problem as:

L∗ = max
l

[Zl(n)] (8)

subject to
Pr{Cl(x) = n} ≥ y (9)

where n is the desired makespan and y is the service level.
We considered a service level y = 0.99 and a maximum degradation level

equal to L = 10. We varied the makespan between 1 and 400 time units. At the
beginning of the analysis, machines are operative, the degrading component is
at its lowest degradation level and the buffer is empty.

The behavior of L∗ for all the three systems is depicted in Figure 9. We can
notice that the optimal policy of system 1 changes significantly while increasing
the makespan whereas the one of other two systems remain almost stable around
L = 2. This phenomenon is explained by noticing that the optimization problem
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described in (8) depends only on the average downtime of the machines. System
1 has the degrading component with the highest efficiency; therefore, for large
makespans there is still a possible trade off between trying to reduce the number
of preventive maintenances by increasing the failure probability and accepting
a large number of corrective maintenances to reduce the number of corrective
maintenances.
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Figure 9: Optimal degradation level for the maximization of the number of items completed
with a confidence of 99% as function of the makespan.

Figure 10 depicts the number of items completed for different preventive
maintenance policies. The plots depict the optimal policies for the smallest
and the largest makespans in Figure 5, the smallest degradation level (L = 1),
the largest degradation level (L=10) and the curve generated by applying the
optimal policy for each service level (additional values of L are reported for the
cases in which some of these values coincide). We can observe that the systems
that provide the largest differences between policies are system 2 and 3 which
are the systems with the lowest efficiency.
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Figure 10: Number of completed items with 99% of confidence as function of the makespan
by performing preventive maintenance at different degradation levels.

4.2. Application to a Real Industrial Case

The proposed method has been applied to a real Flexible Manufacturing
System (FMS) used for machining titanium parts for the aeronautics industry,
in the context of a tier 1 part supplier. This production scenario is characterized
by a high pressure on the quality of the processed parts coupled with strict
requirements on the respect of the fixed due-date performance. Due to the large
amount of material removed in machining, machine deterioration is observed.
Thus, the main challenge in this context is to develop effective condition based
maintenance policies which do not interfere with the service level of the system.

4.2.1. Description of the system

The FMS considered in this study is composed of two highly automated
flexible machining centers and additional material handling units. The high
flexibility of the system allows the production system to be capable of running
several part types concurrently. Before production, the parts are clamped on
pallets. A schematic representation of the system is shown in Fig. ??. A
description of the main components follows:

• M1 a 4-axis milling machine

• M2 a 5-axis milling machine

• Pallet storage unit on 3 levels - PSU
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• Three loading/unloading stations for parts - L/U S

• Shuttle for moving pallets inside the system - SH

• Cutting tools storage units - TSU

The main interactions of the FMS system units during operation can be
described as follows:

1. Raw work-pieces enter into the system at one of the three load/unload
station.

2. The transportation shuttle transports the loaded raw part-fixture assembly
either to the roughing machine M1 or to the pallet storage unit.

3. A raw part is transported by the shuttle to M1 (4-axes) machine for rough
machining operation. After the end of the rough machining operation the
part is unloaded from M1 by the transportation shuttle and then proceeds
either to the finishing machine M2 (5-axes) or to the pallet storage unit.

4. The transportation shuttle loads the finish machining, M2 with a part that
has just finished the roughing operation.

5. After a part completes finish machining operation at M2, the shuttle un-
loads the finished part from the machine and stores it in the pallet storage
unit. Finally all the finished parts are disengaged from the fixtures at the
load/unload station and exit the system.

Figure 11: Schematic layout and material part flow in the FMS system

Currently, age based maintenance is carried out based on the information
available in the maintenance manual, which is provided by the machine tool
builder. Therefore maintenance is performed based on predetermined time
intervals and this policy does not consider condition monitoring information
about machine components. However, in the proposed approach a newly devel-
oped sensor network for condition monitoring is installed for the (4-axes) rough
milling machine M1, therefore the degradation modeling is considered only for
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this machine. The signals collected from the sensor networks are used as indi-
cators for the degradation level of critical components in which the degradation
modeling is based on.

4.2.2. FMS Modeling

A specific set of assumptions is used to model the behavior of the considered
FMS.

• The transportation time required by the transportation shuttle is very
short compared to the machining cycles of both the M1 and M2. Therefore,
it can be neglected.

• Small amount of time is required for loading raw parts if compared to the
machining cycle time. Hence, M1 is never starved.

• The available storage spaces in the storage unit are sufficiently big to
handle the finished parts that exit from M2 and the unloading of a finished
part requires negligible time. Therefore, M2 is never blocked.

• The processing times of the two machines have been scaled to the time
units. As a consequence, M1 and M2 are synchronized.

Under these realistic assumptions the system can be modeled as a two-machine
line with a roughing machine (M1) and a finishing machine (M2), connected by
a buffer of capacity B = 20.

Figure 12: Flexible manufacturing system model.

4.2.3. Machine Degradation Models

In order to capture the behavior of the machines and to make an estimation
of the model parameters, data about failure modes and their duration were
collected from the production monitoring system. From such analysis, that
does not take in consideration the effect of degrading components, three different
classes of interruptions for each machine were classified. For each failure, the
corresponding mean time to failure (MTTF) and mean time to repair (MTTR)
were estimated. The values are reported in Table 3. The behavior of the two
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i pi,1 pi,2 pi,3 ri,1 ri,2 ri,3
1 0.002976 0.000937 0.000142 0.370370 0.709219 0.15432
2 0.002232 0.000267 0.000083 0.460829 0.571428 0.132100

Table 3: Estimated failures and repair probability of the roughing and the finishing machine

machines in isolation from degrading components is described by the DTMC
depicted in Figure 13

1− ri,1

CMi,1

ri,1 pi,2

1− ri,2 1− ri,3

ri,3

1− pi,1 − pi,2 − pi,3

pi,1 pi,3
ri,2

CMi,2 CMi,3

OPi

Figure 13: DTMC describing the machine behavior isolated from degrading components.

where OPi corresponds to the state in which Mi is operative and state CMi,j

represents the jth failure of Mi. Accordingly, pi,j is the probability with which
Mi fails because of the occurrence of the jth failure and ri,j is the probability
with which Mi will return operative from failure j in the next time unit. In
reference to Figure 13, the DTMC probability matrix, denoted with A, is defined
as follows ∣∣∣∣∣∣∣∣

1− pi,1 − pi,2 − pi,3 pi,1 pi,2 pi,3
ri,1 1− ri,1 0 0
ri,2 0 1− ri,2 0
ri,3 0 0 1− ri,3

∣∣∣∣∣∣∣∣
and its corresponding reward vector is µA = |1, 0, 0, 0|.

For what concern the finishing machine, degrading components having a
significant impact on the overall machine behaviour were not identified, as the
material removal rate is lower than the roughing machine. As a consequence, the
transition probability matrix of the M2 is T2 = A and its reward vector is equal
to µ2 = µA. On the contrary, with respect to the roughing machine, a sensor
network allowed us to monitor a degrading critical component in such a way that
we were able to distinguish different degradation levels. The state-transition
diagram of the DTMC describing the degradation of the critical component for
the roughing machine corresponds to the one depicted in Figure 4 where:

• pC,l is the probability to incur in a failure at the lth degradation level with
pC,1 = 0.001 and pC,i = pC,l−1 + 0.001, 2 ≤ l ≤ L;
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• rCCM = 0.1 and rCPM = 0.5 corresponds to the MTTR of corrective and
preventive maintenances, respectively;

• d = 0.1 represents the probability to go through degradation states.

In sake of synthesis, we do not report the full transition matrix describing the
behavior depicted in Figure 4. The DTMC describing the overall behavior of the
roughing machine is generated by the synchronization of the DTMC describing
the failures of M1 and the failures of its degrading component. More formally:

T1 = A⊗ C

Similarly, the reward vector associated to M1 is equal to µ1 = µA ⊗ µC . The
partitioning of T1 and T2 described in equation (1) is straightforward by con-
sidering the associated reward vectors.

4.2.4. System Behavior

The proposed method is used to evaluate the lot completion time distribu-
tion and drive specific decisions on the preventive maintenance policy of the
system described in 4.2. Such analysis has practical significance considering
the frequency of carrying out maintenance and production planning and their
direct impact on respecting customer order due dates. Thus, the numerical ex-
periments conducted in this section show how the proposed approach supports
the joint maintenance and production plan analysis and demonstrate its vital
contribution in decision making.

In practice, such a joint analysis can explore all the possible combinations
of maintenance policies and production plans, but for the sake of brevity here
we limit the demonstration on two production lots sizes and three maintenance
policies. Two different production lot sizes of 50 units and 200 units are se-
lected. In addition, the three maintenance policies are defined based on the
degradation level of the critical component from which the maintenance action
is triggered. With reference to the specific component modeled in Figure 4 these
degradation states are indicated by index L and they are the basis for defining
the maintenance policies indicated by πL below.

• (π2): Preventive maintenance at degradation state L = 2 i.e., early degra-
dation.

• (π5): Preventive maintenance at degradation state L = 5 i.e., average
degradation.

• (π10): Preventive maintenance at degradation state L = 10 i.e., higher
degradation.

The three maintenance policies are analyzed under the two production sce-
narios which are defined based on the lot sizes. The results obtained under the
two scenarios are presented as follows.
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Scenario 1: The service level of the system as a function of the target
lot completion time is reported in Figure 14 (a). Considering a lot size of 50
parts and a target lot completion time of 55 time unit, the maintenance policy
preference order is π5 → π10 → π2, providing a service level of 0.58, 0.80 and
0.84, respectively. However if we change the target lot completion time of the
same lot size to 52 time units (indicated in broken lines) the preference order of
the maintenance policies changes to π10 → π5 → π2 with a service level of 0.20,
0.60 and 0.68.

Scenario 2: In this scenario the service level is evaluated for a production
lot size of 200 parts. The same analysis of Scenario 1 is performed. Results
are reported in Figure 14 (b). In this case we focus our attention on comparing
two of the best performing maintenance strategies for improved lot completion
time, i.e., π10 and π5. As it can be noticed, the choice of the best maintenance
policy is dependent on the target lot completion time. The maintenance policy
that offers a higher service level for a lot size of 200 parts and a completion
time of less than 211 is the (π10) policy. Considering a completion time of 211
both (π10) and (π5) give the same service level. However, for a completion time
greater than 211 the maintenance policy with high service level changes from
(π10) to (π5). The switchover of the two maintenance policies and the point
where the switching takes place is schematically shown in Figure 14 (b).

This analysis highlights the importance of considering the impact of pre-
ventive maintenance policies on the service level of the system, as the same
maintenance policy can prove to be sub-performing for different target lot com-
pletion times. In other words, if the preventive maintenance policy is kept fixed
while changing the production plan, then the service level of the system may
drastically decrease. It is worth to remind that different degradation dynam-
ics can lead to different optimal policies. This motivates the need for system
engineering tools supporting these decisions.

Figure 14: Service level as a function of time for lots of 50 parts (a) 200 parts (b)
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5. Conclusions

The paper has shown that the preventive maintenance policy significantly
affects the time to completion of a lot. We focused on production lines com-
posed of two synchronous machines decoupled by a buffer. First, we considered
three baseline systems and analyzed them in detail; the analysis has put on
the spotlight the sensitivity of optimal maintenance policies to small variations
of the parameters. Secondly, we illustrated a real industrial case characterized
by multi-stage processing of parts in the aeronautics industry. This use case
has shown the impact of different maintenance policies and their relevance in
decision making where machines’ components are subject to degradation and
target service levels has to be guaranteed robustly.

The method used for obtaining the results have been illustrated in such a
way that it is feasible for production lines of arbitrary length and extremely
general synchronous machines. As defined, the method has a broad sphere of
application for different system layouts, only requiring minor modifications.

Due to its flexibility, the proposed method enables a fast evaluation of so-
lutions that are needed for day to day and shift to shift decisions considering
dynamic changes at the shop floor level. This makes the method suitable for
being part of decision support tools where information is continually gathered
about critical equipment health and dynamic customer orders and production
deadlines need to be met.

The paper opens many possible research developments. The first is to exploit
the generality of the method by coupling it with the inference of PH distributions
for the modeling of failures and repairs of the components. Secondly, we aim
to introduce complex multi-dimensional degradations in order to investigate the
application of multi-dimensional preventive maintenance policies.

Extension of this work will consider further challenges such as, multiple and
heterogeneous lots, correlated degradations of multiple critical components, the
analysis of state-based opportunistic maintenance policies and production plans
with different product mixes and deadlines. Furthermore, this research plans
to investigate completely different approaches in the future, such as continuous
degradations instead of discrete.
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