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Abstract  

The mechanical behavior of granular materials is characterized by strong non-linearity 

and irreversibility. These properties have been differently described by a variety of 

constitutive models. To test any constitutive model, experimental data relative to the 

nature of the incremental stress-strain response of the material is desirable. However this 

type of laboratory data is scarce because of being expensive and difficult to obtain. The 

discrete element method has been used several times as an alternative to obtain 

incremental responses of granular materials. Crushable grains add one extra source of 

irreversibility to granular materials. Crushability has been variously incorporated into 

different constitutive models. Again, it will be helpful to obtain incremental responses of 

crushable granular materials to test these models, but the experimental difficulties are 

increased. Making use of a recently introduced crushing model for discrete element 

simulation, this paper presents a new procedure to obtain incremental responses in 

discrete analogues of granular crushable materials. The parallel probe approach, 

previously used for uncrushable discrete analogues, is here extended to account for the 

presence of crushable grains. The contribution of grain crushing to the incremental 

irreversible strain is identified and separately measured. Robustness of the proposed 

method is examined in detail, paying particular attention to aspects such as dynamic 

instability or crushing localization. The proposed procedure is later applied to map 

incremental responses of a discrete analogue of Fontainebleau sand on the triaxial plane. 

The effect of stress ratio and granular state on plastic flow characteristics is highlighted. 
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List of notation  

F is the contact force 

 lim
   is the limit strength of the material 

R  is the particle radius and  

0
  is the contact angle defining the contact area 

AF is the contact area 

 lim0
  is the mean limit strength of the material 

d is the particle diameter 

d0 is the reference particle diameter  

m is the Weibull modulus 

kN is the normal contact stiffness 

kS is the shear contact stiffness 

G  is the particle shear modulus  

 is the particle Poisson ratio 
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  is the total strain increment 

 e
 is the elastic strain increment 

 pu
 is the plastic -uncrushable strain increment 

 pc  is the crush induced plastic strain increment 

 ep
 is the elasto-plastic strain increment 




  is the stress probe direction  

 z
 is the stress increment in the z direction 

 r
 is the stress increment in the r direction 




 is the direction of total strain increment  




pu
 is the direction of plastic strain increment  




pc
 is the direction of crush strain increment  
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1 Introduction 

Grain fragmentation is significant for several important geotechnical problems, such as side 

friction on driven piles (Yang et al. 2010) or railway ballast durability (Indraratna et al. 2011).  

This has driven many efforts, both to incorporate grain crushing into constitutive models for soils 

(e.g. Cecconi et al. 2002; Muir Wood, 2007; Einav, 2007; Daouadji & Hicher, 2010; Liu et al. 

2013) and to model soil crushing using DEM (Cheng et al. 2004; McDowell & DeBono, 2013; 

Ciantia et al. 2015). As it happens in other areas of geomechanics (e.g. Jiang et al 2007) these 

efforts are best seen as complementary. For instance, DEM models can provide ancillary 

experiments to supplement expensive and/or difficult laboratory tests.  

 

This is the case of studies of the incremental response of granular materials. By incremental 

response is understood the deformation responses to a series of “small” incremental 

solicitations (probes) that, starting from a unique initial state, point towards various directions in 

the stress space. The incremental response (Gudehus, 1979; Tamagnini et al. 2000; Darve & 

Nicot, 2005; Froiio & Roux, 2010) is a powerful tool for the verification of basic constitutive 

postulates – existence and characteristics of incremental nonlinearity, associative behaviour, 

uniqueness of flow rule, etc.  

 

Obtaining incremental responses in the laboratory is possible, (Constanzo et al. 2006), but 

difficult because of the tight control in terms of strain measurements that is required and 

because of the need for testing several identical samples (one for each probe).  For this reason 

DEM models have been used to study the incremental behavior of granular materials, first in 2D 

(Bardet, 1994, Calvetti & di Prisco 1993) and later in 3D (Calvetti et al 2003; Tamagnini et al 

2005; Plassiard  et al 2009; Thornton & Zhang 2010; Wan & Pinheiro, 2013). None of these 

previous studies of incremental responses using DEM has considered the case of crushable 

soils. 

 

In this work the practice of stress probing using DEM is extended to cases where significant 

particle breakage is present. A DEM model calibrated to represent Fontaineblau sand is 

incrementally tested exploring a variety of initial state conditions within the triaxial plane. To do 

so it is first necessary to introduce the basic features of the discrete modelling approach here 

employed. Next, the procedure followed to obtain an incremental strain response is described, 

indicating how such response can be decomposed in three different contributions: elastic, 

plastic-unbreakable and plastic-crushing. Section 4 presents the first numerical results, obtained 

in oedometric conditions. These results are used to clarify a number of important computational 

aspects of the proposed procedure: selection of an appropriate representative volumetric 

element (REV); characteristics of spatio-temporal crushing patterns; effect of some discrete 

model hypothesis. Finally, in section 5 the method is systematically applied to explore the effect 
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of stress obliquity and grading index on the plastic flow pattern on triaxial conditions. A few 

conclusions follow to encourage further applications of the proposed method. 

 

2 Discrete model 

Recently (Ciantia et al. 2014, 2015), the authors have proposed and tested a crushable soil 

DEM modelling approach that, while biased towards effective computation, showed good ability 

to reproduce macroscopic responses of a variety of soils. In this section the main traits of that 

approach are briefly outlined. All models are built using the PFC3D code (Itasca, 2008).  

2.1 Particle failure criteria 

The failure criteria used in the model was inspired by Russell and Wood, 2009a and Russell et. 

al, 2009b. The authors combined a two-parameter material strength criterion with the analysis of 

the elastic stress distribution induced by point loads on a sphere to obtain a failure criterion. 

Without entering into the details of the mathematical formulation, the end result of their analysis 

can be summarized as follows: a particle subject to a set of external point forces will reach 

failure when the maximum acting force reaches the following limit condition: 

    2 2

lim 0 limsin FF R A   (1) 

where  lim
  is the limit strength of the material, R is the particle radius and 0

 the contact angle 

defining the contact area. As indicated, the limiting force is obtained as the product of a limit 

strength value, lim
, dependent on material parameters, and a contact area AF. 

To incorporate within-size variability into the simulation, the limit strength,  lim
, is assumed as 

normally distributed for a given sphere size, with a mean value indicated as  lim0
  and 

coefficient of variation, var. A size effect correction is also incorporated as a dependency of the 

mean strength value on particle diameter: 

 



 
  

 

3/

lim lim,0

0

m

d

d
  (2) 

2.2 Contact law 

In this work the contact law is the simplified Hertz-Mindlin one, and the standard formulation 

(Itasca, 2008) is used. The normal and shear stiffness are calculated as: 

 

 
 

 

 
 
 
 
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G

D D
k U   (3) 
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 



  
  

  
  


 
 
 

1/3

2 1 2

1/31 2

2 3 1

2
S

D D
G

D D
k F   (4) 

where U is the sphere overlap, F is the magnitude of the normal contact force and the   

brackets  indicate the mean value of the quantity considered of the two balls in contact (shear 

modulus G and Poisson ratio ).  

 

To evaluate the contact area AF in (1) Hertzian contact theory is also applied. For smooth 

spheres the radius of the contact area is: 

 

1/3
3

4
H

Fr
r

E

 
  

    (5) 

where 

 

1
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1 1
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 
   

    (6) 

 

1
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E

E E

 


  
   

    (7) 

where r1 and r2 are the radius of the contacting spheres and E1, ν1 their moduli. 

2.3 Particle splitting configuration 

Once the limit condition is reached, a particle, modeled as a sphere in PFC, will split into smaller 

inscribed tangent spheres. The daughter fragments assume the velocity and material 

parameters of the mother particle except for the intrinsic strength ( lim0
) that is randomly 

assigned in accordance with the normal distribution criteria. 

 

Ciantia et al (2015) compared alternative splitting configurations, concluding that the 14-ball 

crushed configuration represented in Figure 1 is accurate enough to represent macroscopic 

behavior. The same splitting configuration has been adopted here for incremental probing. The 

particle split proposed implies some mass loss. The influence of this assumption on the 

proposed procedure is discussed below in section 4.   
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Figure 1 a) Initial particle, b) Particle splitting configuration. 

2.4 Grading and grading index 

The particle mass not retained into the discrete model is accounted for in postprocessing.  

Thus, particle mass deleted upon breakage is assumed to distribute in particles smaller than 

those begotten by the particle split, fitting a limiting size distribution, which is assumed fractal 

(see Ciantia et al. 2015, for details). At every instant the size distribution of the particles retained 

in the discrete model is complemented by the distribution assumed for those excluded. This 

allows tracking the evolving grain size distribution (GSD) of a test specimen on a certain loading 

path.  

An evolving GSD can be described in a number of ways. In this work we will sometimes present 

directly the evolved GSD, but to achieve a more compact discussion we would also follow the 

proposal of Muir Wood (2007), who introduced a grading state index, IG. As illustrated in Figure 

2, IG can be computed as the area ratio of the current grading, to the limiting grading.  
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Figure 2 Muir Wood (2007) grading state index 

 
 

3 Incremental strain response: methods 

3.1 Stress probes 

In the particular case of axisymmetric (triaxial) loading, the number of independent stress and 

strain variables reduces to two, and a convenient graphical representation can be given in a 

Rendulic plane. In the Rendulic plane of stress increments see Figure 3a, the magnitude of 

stress probes is  

                

  

              

    

22 2 2 2
:

2 2

x y z r z

r x y

 (8) 

and the stress probe direction is defined by the angle 



 between the  r

 axis and the 

stress increment vector: 

  


 





 

 
  

 

1tan 0;360z

r

  (9) 

The magnitude of the stress probes in this study was typically selected as 1% of the initial  

mean stress.  
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Figure 3 Stress probes: IC/E = isotropic compression/expansion, TC/E = “triaxial” (axi-
symmetric) compression/extension; DC/E = purely deviatoric compression/extension; RE/C = 
radial extension/compression; EDO = oedometric compression within the range of k0 developed 
in the whole simulation. b) Representative response envelope to stress probes  
 

The response is depicted by using the so-called incremental strain response envelope 

(Tamagnini et al. 2000a). This is plotted in a Rendulic plane for strain increments, (   :z r
) 

(Figure 3b). The direction of strain increment is defined by the angle 



, between the  r

axis 

and the strain increment vector: 

  


 





 

 
  

 

1tan 0;360z

r

 (10) 

In Figure 3b the strain increment directions corresponding to pure deviatoric and pure 

volumetric strain are also indicated for reference. 

3.2 Strain response decomposition 

For small strains and additive decomposition into reversible (or “elastic”, used here as 

synonymous of reversible),  e , and  irreversible (or “plastic”) parts is appropriate: 

     e p  (11) 

There are two possibilities to separate the reversible and irreversible parts using DEM. The first 

one is to reproduce the laboratory approach: a load-unload cycle is performed for each stress 

probe, the strain remaining after complete unloading is plastic; that recovered upon unloading is 

elastic. We will call this the load-unload approach. 

 

Tamagnini et al (2005) proposed a different approach. To obtain the elastic strains an identical 

loading probe is performed on a different model, which was an elastic counterpart of the original 

DEM specimen. Such elastic counterpart was obtained by inhibiting all the mechanisms 
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responsible for plasticity before starting the probe. This was done by artificially raising contact 

friction so that contact sliding is impossible. Every other single aspect of the original model (i.e. 

particle arrangement and contact forces) is preserved. We will call this the parallel probe 

approach. 

 

Wan & PInheiro (2013) explicitly compare the parallel probe and load-unload approach. 

Identical plastic strains were obtained and therefore the two approaches were deemed 

equivalent. Of course, they were always using uncrushable particles. 

 

If particles are allowed to crush, the total incremental strain   can still be seen as the sum of 

elastic and plastic components. But the plastic strain has now two contributions, one that will 

appear even if all particles were unbreakable, which is here called “plastic-uncrushable” and 

noted  pu
.  Another is the extra plastic strain that appears due to particle crushing. These 

extra plastic strain increments induced by crushing are here noted  pc
and called “plastic-

crushable”. 

     e p
 (12) 

     p pu pc
 (13) 

 

At this stage it is practical to introduce the concept of conventional elasto-plastic strain,  ep
 

which is the incremental strain that would be observed upon probing a DEM model in which 

particle breakage has been inhibited. It follows that 

      ep e pu
 (14) 

      ep pc
 (15) 

 

A generalization of the parallel probe approach is proposed to separate the elastic, plastic-

uncrushable and plastic-crushable incremental strain contributions. Three tests are run in 

parallel for each stress probe.  

 

1. The first one runs on a specimen described by the reference discrete model. It provides 

the total strain increment   

2. The second one runs in a non-crushable counterpart of the original specimen, in which 

crushing is inhibited. It provides the conventional elasto-plastic strain increment  ep
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3. The third one runs on an “elastic” counterpart of the DEM specimen, in which all the 

mechanisms responsible for plasticity (interparticle sliding and particle crushing) are 

inhibited. It provides the elastic strain increment  e
 

 

The two incremental plastic strain contributions are then obtained as follows 

     pu ep e
 

 (16) 

       pc e pu
 

 (17) 

The robustness of the proposed procedure for incremental strain decomposition is examined in 

the following section.  

4 Incremental strain response: computational issues 

4.1 A REV of Fontainebleau sand 

A response envelope (RE) is obtained by repeatedly testing a representative volumetric element 

(REV) of the material under study. The DEM model of a REV should be as small as possible to 

ease computation, but large enough so that the response observed at the boundaries would not 

change with further size increases. Previous experience with uncrushable sands was not 

unanimous in this respect, with particle numbers in REV ranging from 3500 (Calvetti et al 2004) 

to 27000 (Thornton & Zhang, 2010).  Here three different numerical specimens with side lengths 

of 3, 4 and 6 mm and filled with about 5000, 10000, and 35000 particles respectively (Figure 4) 

were initially explored.  

 

 

Figure 4. The three (small, mid, large) candidate DEM models for incremental testing, visualised 

with different magnification. 

 

These cubic specimens are filled with randomly assembled weightless spherical particles. The 

grain size distribution corresponds closely to that of Fontainebleau sand (Yang et al. 2010) with 



12 
 

particle diameters ranging from 0.1 to 0.4 mm. Specimen boundaries are defined by introducing 

smooth “wall” elements, to which displacement rates can be imposed. Target stress values are 

applied using a servo-control to adjust wall displacement. The smooth rigid boundaries ensure 

that the principal axes of stress and strain are coincident with the cube axis. Principal strains 

are then calculated directly from wall displacements, while the corresponding principal stresses 

are obtained from boundary forces.  

 

The large model was used for parameter calibration. Standard contact law parameters (G, ν and 

ϕ) were calibrated using uncrushable particles to simulate the drained triaxial compression of a 

dense specimen under 100 kPa confinement (marked “Dr 0.7” in Figure 5a). A validation was 

performed using a similar test for a loose sample (“Dr 0.3” in Figure 5a). Parameters controlling 

particle failure (m, CV and σlim0) were initially estimated using fused silica material properties 

and single-particle crushing data for other sands. These estimates were later refined to match a 

one dimensional high pressure compression test (Fig3b). More details on calibration procedures 

for this crushable DEM approach can be found in Ciantia et al, (2014a and 2015); the calibrated 

parameters used here are summarized in Table 1. 
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Figure 5 DEM-simulation of drained triaxial compression test (cell pressure 100 kPa) a) 
deviatoric stress vs axial strain and volumetric strain vs axial strain and b) oedometric 
compression and of Fontainebleau sand. Point A B and C represent three initial conditions for 
the stress probe analyses, c) stress paths for small, medium and large samples, d) GSD at point 
A for the three samples and for the mid sample at point B and point C. 
 

 

Table 1 Discrete-element method input parameters for simulation 

d50 

[mm] 


[rad] 

G 
[kPa] 





lim,0 

[kPa] 
m 

d0 
[mm] 

CV 

0.21 0.27 3e6 0.3 5e6 10 2 1 

4.2 An example: incremental response at oedometric loading  

The first initial state selected for probing was reached by one dimensional or oedometric 

compression up to  z
 = 31.5 MPa (point A in Figure 5b). Following (Cheng et al 2004) the 

apparent yield point of the loading curve can be taken as an indication that crushing had already 

started at this stage. Grain size distribution and fabric will change on crushing. A first judgement 

on the quality of the differently sized models can be obtained  comparing their behavior up until 

this probing point.  
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At the reference stress level, the small-N specimen porosity is slightly above that of the 

experimental result. The medium and large-N specimens are almost coincident with the 

experiment. The differences in grain size distribution (Figure 5d) appear relatively small, but it is 

also apparent that the smaller specimen followed a different stress path, (Figure 5c) with lower 

K0 than the other two. This (Ciantia et al, 2015) is indicative of smaller relative crushing and 

indeed the micromechanical variables reported in Table 2 confirm that impression. It was thus 

established that the small-N specimen was inadequate as REV. 

 

Table 2 Initial conditions of the numerical samples 

sample point   
1st 

generation 
2nd 

generation 
3rd 

generation 
z x y n 

small A 4389 4675 4367 308 0 31.5 10.0 10.0 0.336 

mid A 10397 13231 10180 3037 14 31.5 11.1 11.3 0.319 

large A 35083 40361 34679 5654 28 31.5 12.0 12.0 0.324 

mid B 10397 21785 9583 11334 868 50 22 22 0.268 

mid C 10397 21785 9583 11334 868 31.5 20 20 0.281 

 
 

Points B and C highlighted in Figure 5 refer to the initial state of the medium sample that has 

been loaded up to a vertical stress of 50 MPa and subsequently unloaded to the same vertical 

stress characterizing point A, respectively. In Table 2 the micromechanical variables at these 

two conditions are also reported. The incremental responses obtained at those points are 

discussed in section 5.1, for the moment we focus on the response obtained at point A using 

the large sample. 

 

In Figure 6 the strain response envelopes obtained from stress probing at point A on the 

oedometric path is presented. The upper panel shows the strain response envelopes for the 

elastic, elasto-plastic and elasto-plastic-crushable case. The elastic envelope is symmetrical 

about the origin, whereas the envelopes in which plastic mechanisms are active are markedly 

asymmetric. Asymmetry of the strain envelope response indicates incremental non linearity. 

This first test suggests then that grain crushing increases the non-linearity of incremental 

response. 
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Figure 6. Elastic, elasto-plastic and elasto-plastic with crushing strain envelopes at point A on 
the oedometric loading path. a) elastic, elasto-plastic (uncrushable) and elasto-plastic-crushable 
strain envelopes. b) plastic and plastic-crushable incremental strains. All responses obtained 
obtained using the large specimen (shown in the inset) 



16 
 

 

 

The incremental plastic strain components are shown in Figure 6b. They lie very close to two 

different lines, which correspond to the direction of plastic flow due to crushing and that due to 

other mechanisms. Without crushing plastic flow is practically aligned with a purely deviatoric 

strain (see Figure 3 b).  The crushing induced plastic strains are neither purely deviatoric nor 

purely volumetric, aligning at 105°. Because of their larger magnitude they dominate total plastic 

strain. Activating crushing induces more volumetric plastic strains and rotates the plastic flow 

direction away from the purely deviatoric case.  

 

This is confirmed in more detail in Figure 7, where in the left column the magnitude of the total (

 ), plastic-uncrushable (  pu
), and plastic-crushable (  pc

) strain increments is 

represented as a function of the loading direction, while in the right column the direction of total 

strain increments ( 
 ), plastic-uncrushable strain increment ( 



pu
), and plastic-crushable strain 

increment ( 


pc
), defined as 

      

 
   

 

 

   

    
      

    

1 1tan 0;360 and tan 0;360
pu pc

pu pu pc pcz z

pu pc

r r

 (18) 

are plotted as a function of stress probe direction 
 . Following Calvetti et al (2003) a 

truncated cosine fit has been included in the figures to guide the eye. The response in some 

loading directions remains purely elastic, for instance in those around 250°, diametrically 

opposed to the ongoing oedometric path direction (Figure 3a). Plastic-crushable strains are 

larger but appear in fewer probes than plastic-uncrushable strains. Maximum plastic strains 

appear in the direction of pure deviatoric compression (DC Figure 3a) which is some 60° more 

deviatoric than the ongoing oedometric path. Interestingly, the plastic strain direction is fixed for 

each mechanism, but it does vary when the two separate plastic mechanisms are combined.  
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Figure 7. Total, plastic-uncrushable, plastic-crushable and complete plastic strain analysis: norm 
(a-d) and direction (e-h) of strain increment vectors vs. stress probe direction. Plastic strain 
orientation only shown for probes with significant plastic strain magnitude. 



18 
 

4.3 Robustness of the strain decomposition 

The parallel-probe approach proposed here to separate plastic-uncrushable and plastic-

crushable incremental strain contributions can be checked using several alternative procedures.  

One possibility is to perform two load-unload probes, one with crushing activated another 

without crushing. This was done for point A (Figure 8) and, at the end of the procedure (Figure 

8d), the same results were obtained as with the parallel-probe approach.  

 

Figure 8 Obtention of the response envelope at point A by a load-unload method a) load-unload 
strain vectors for elastic (black) elasto-plastic-uncruahbale (blue) and elasto-plastic-crushable 
(red) with corresponding elastic, elasto-plastic and elasto-plastic-crush RE b) load-unload 
plastic crushable and uncrushable strain vectors for DC probe with the identification of the 
corresponding plastic-uncrushable RE point (diamond) c) determination of the crushing induced 
RE: subrtruction of the plastic-uncrushable vector to the load-unload strain vector for the elasto-
plastic-crushable case, d) plastic and plastic-crushable incremental strains obtained using the 
load-unload method. 
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Probing from other initial states It appeared that sometimes crushing events would also occur 

on the incremental unload path. That complicated the comparison with the parallel-probe 

approach and an alternative verification method was devised, based on separate computation 

of a pure-crushing incremental response. 

 

In this method,   

1. A stress probe is applied to the specimen described by the reference discrete model. It 

provides the total strain increment   

2. The same stress probe is applied to the non-crushable counterpart of the original 

specimen, in which crushing is inhibited. It provides the conventional elasto-plastic 

strain increment  ep
 

3. In a specimen described by the reference discrete model all the particles that failed in 

the initial probe are simultaneously broken. Stress is kept constant. The response thus 

observed is purely plastic –breakage is unrecoverable- and this provides the plastic 

strain due to crushing i.e. the plastic-crushable incremental strain  pc

 

 

This procedure allows direct verification of the identity in equation (15).  As illustrated in Figure 

9, the identity holds with a very close degree of approximation. The slight differences are 

probably caused by the fact that in the reference probe crushing events are not simultaneous.  

 

Using this pure-crushing method a number of verifications were carried at different initial states 

and the strain-decomposition results were always very close to those obtained using the parallel 

probe method. This latter method is computationally more efficient and was adopted henceforth 

for systematic testing.  
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Figure 9 Plastic strain decomposition: a) elastic and elasto-plastic response envelopes, b) one 
example of crushing strain path c) separately computed crushing strain paths added to an 
elasto-plastic envelope d) comparison of the precedent with the reference elasto-plastic-
crushable probe 

4.4 Effect of splitting configuration on strain response envelopes  

As stated above, Ciantia et al (2015) compared alternative splitting configurations, concluding 

that, despite the inherent mass loss, the 14-ball crushed configuration represented in Figure 1 

resulted in the same macroscopic behavior obtained with more numerous splitting 

configurations. An example of this kind of result for an oedometric path is shown in Figure 10.  
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Figure 10 Effect of splitting configuration choice on the oedometric response of a granular 
material 

 
Incremental probing obviously results in much less crushing and mass loss than that appearing 

on a whole test. It seemed likely that the same splitting configuration would work as well for 

incremental paths. As a check, the strain response envelope at point A was re-evaluated using 

three sets of parallel simulations: one in which every broken particle was completely deleted 

(particle mass loss 100%); a second using the preferred 14 particle split (particle mass loss 

47%) and finally a third in which instead a 57 particle split was used (particle mass loss 37%). 

As shown in Figure 11, the response envelopes obtained in the three cases were practically 

identical. This confirms that the extra volumetric strain appearing upon crushing is not caused 

by mass loss, but rather by post-breakage rearrangement (crushing induced plastic 

deformation).   
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Figure 11 Strain response envelope at point A on the oedometric path evaluated with different 
post-beakage assumptions a) complete particle deletion, b) 14 particle split and c) 57 particle 
split. 

 
This result is not surprising because the amount of mass lost in these incremental probes is 

minimal. Table 3 reports the maximum % of deleted mass in the simulations presented in the 

paper (with a 14-particle split) as well as what would have resulted using the alternative splits. It 

was thought that 0.1% of mass loss in a probe was a reasonable upper limit, and that gave 

another reason why the small REV model was discarded. 

 
Table 3 Deleted mass during stress probe 

 
Small REV Mid REV Large REV 

% Deleted mass if whole particle is deleted 0.39 0.17 0.05 

% Deleted mass if 14 split configuration is used 0.18 0.08 0.02 

% Deleted mass if 57 split configuration is used 0.07 0.03 0.01 

 

4.5 Spatio-temporal localization 

Results of incremental probing will be difficult to interpret if crushing events would gather in a 

particular spatial zone of the specimen. For instance, cemented DEM specimens had been 

shown to form localized compaction bands when crushing was simulated using a similar method 

(Marketos & Bolton, 2009).The spatial localization of crushing events was then examined for a 

number of probes. Crushing events did not show any clear localization pattern, as shown in 

Figure 12 illustrating a typical result. These results are similar to those observed by Esnault & 

Roux (2013), who went on to note that although crushing events were not localized in space 

they were typically grouped in time, or in their words, had a cascading nature.  
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Figure 12. Spatial disposition (perspective and coordinate plane projections) and order of 
crushing events for a probe alongside DC on large sized sample. Numbers indicate the crushing 
sequence. 
 

Indeed, that cascading nature was also visible here. Particularly important symptoms of this 

were stress oscillations that appeared upon probing (Figure 13). Particle crushing induces a 

local dynamic instability in the granular network that complicates stress path control. In some 

cases the time-clustering of crushing events might overcome the capacity of the servo control to 

maintain the target stress path. The imposed stress probe magnitude is then unclear and the 

validity of the response envelope obtained may be questioned.  



24 
 

 
Figure 13. Stress history imposed on the sample for DC probe at point A in the case of: a) 
medium-sized sample and low damping (0.05), b) large-sized sample and low damping (0.05), 
c) medium-sized sample and high damping (0.6)  d) large-sized sample and high damping (0.6). 
Ncr: number of crushing events during the probe. 
 

Initial exploration of this phenomenon showed that it was clearly influenced by specimen size. 

Dynamic instability was more intense in the medium sized specimen (Figure 13a, c) that in the 

larger sized one, (Figure 13 b,d), despite the fact that the number of breakage events was 

smaller in the former case. A likely explanation is that a larger number of particles does imply a 

more redundant force network to carry the applied stress from one wall to its opposite.  

 

Increasing specimen size to achieve dynamical smoothing is inconvenient because of a 

significantly increased computational cost and alternatives were sought. Alternative strategies to 

reduce instability may include, for instance, improved stress-wall control algorithms or 

introducing fluid coupling on the simulation (Climent et al. 2013). The simplest one, however is 

to increase damping. Indeed, as shown in Figure 13, increased damping resulted in much 

reduced dynamic instability –compare panels a and b in Figure 13, with panels c and d. 

 

A non-viscous local damping, δ, (Cundall, 1987) is used here. A sensitivity study to the value of 

this parameter was performed. Increasing damping in a stress probe reduces the number of 

crushing events and the magnitude of plastic-crushable strain (Figure 14). Above a certain 

damping threshold, both crushing events and  pc
 magnitude stabilize. The orientation of 

incremental crushing strains is insensitive to damping (Figure 14f). Damping does not affect the 

magnitude or orientation of the plastic-uncrushable component (Figure 14b, 6e).  
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In a case in which parallel experimental results are available the numerical damping level may 

be calibrated to recover the observed incremental strain magnitude. Here the value of local 

damping was chosen for pragmatic reasons, as a large value (0.6) so that the systematic stress-

probing presented later could be performed using the medium-size specimen as REV. 
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Figure 14 Effect of damping on incremental strain magnitude and orientation for DC probe at 
point A: Magnitude of total, plastic-uncrushable and plastic-crush strains as function of damping 
(a-c) and corresponding strain orientation (d-f). g) Effect of damping on number of crushing 
events for DC probe.  
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5 Incremental strain response on the triaxial plane 

5.1 The effect of OCR: oedometric case 

In this section the effect of over consolidation ratio (OCR) on the incremental response of the 

material is investigated. Three points alongside an oedometric path (Figure 5c) have been 

selected for investigation.  In particular, the response envelope at point B (z = 50 MPa, 

OCR=1) and point C (z= 31.5 MPa OCR=1.59) are compared with that at point A (z = 31.5 

MPa OCR=1).  

Figure 15a compares the GSD for the three initial stress states. Clearly, increasing the load 

from point A to B causes the GSD to evolve increasing the % of fines. On the other hand,  the 

GSD remains unchanged upon unloading (going from B to C). Indeed no particle crushing was 

recorded during the unloading phase.  

 

The results of the stress probes performed at these three distinct initial conditions are reported 

in Figure 15b-d where the elastic, elasto-plastic and elasto-plastic + crush RE for points A, B 

and C are drawn. Comparing the responses at points A & B it appears that continuous 

oedometric loading has resulted in incremental hardening. The amount of incremental plastic 

strain recorded at B is far smaller than that at A. That reduction is mostly due to the crushable 

component, which is very much diminished in going from A to B.  

 

At the over-consolidated state (point C) no crushing is observed for any stress probing direction. 

On the other hand the material develops plastic deformations for probing directions that are 

diametrically opposite to the ones inducing irreversible deformations in the normally 

consolidated state at the same stress level (point A). The existence of incremental plastic 

strains at pre-loaded states had been previously noted by Calvetti et al (2003).   
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Figure 15 a) GSD of the medium sample at points A, B and C, b-d) response envelopes at 
points A, B and C respectively. 

5.2 Effect of stress ratio and grading index 

In this section response envelopes were obtained at 12 distinct stress states in the triaxial 

plane. The initial conditions lay on radial compression stress paths, in which the numerical 

sample was continuously loaded at a fixed stress ratio ( = q/p’) of either 0 (isotropic), 0.3, 0.75 

and 1. During these radial stress paths the specimen GSD evolution was tracked and the 

grading index computed.    

 

Figure 16a shows the radial compression stress paths in the triaxial plane and the 12 initial 

conditions selected for incremental testing. On Figure 16b the grading index evolution of the 

same numerical tests is plotted as a function of the mean effective stress. It may be noted that 

the sigmoidal shape that described IG evolution is very similar to that observed in previous 

experimental work on crushable soils (Coop et al 1993; Vilhar et al. 2013). Despite this 
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encouraging similitude, it is beyond the scope of the present work to further explore factors 

affecting IG evolution (e.g. stress path, model parameters…). The focus instead is on 

incremental responses, and tracking IG is useful so that conditions with the same degree of 

GSD evolution can be selected alongside the different stress paths. As indicated in Figure 16b 

the IG levels selected for analysis correspond to different stages of the GSD evolution.  

 

A summary of the initial conditions selected for incremental testing is given in Table 4. The 

stress increment magnitude for each probing point, also reported in Table 3, was obtained as 

1% of the maximum principal stress of the initial condition. 

 

 
Figure 16 a) Radial stress paths indicating initial conditions for response envelope evaluation b) 
IG evolution during radial stress paths; horizontal lines indicate the levels selected for stress 
probing. 
 

Table 4. Initial conditions for iso-IG stress probes in triaxial plane  

Stress path Test ID IG p [kPa] q [kPa] [kPa] Ni 

=0 

A0 0.75 33175 0 332 10618 

B0 0.8 52183 0 522 24736 

C0 0.818 103770 0 1038 42130 

=0.3 

A03 0.75 31083 9325 373 10644 

B03 0.8 51456 15437 617 25568 

C03 0.818 100000 30000 1200 40115 

=0.75 

A075 0.75 23387 17540 351 10696 

B075 0.8 41964 31473 629 26075 

C075 0.818 86579 64934 1299 41155 

=1 

A1 0.75 18500 18500 308 10748 

B1 0.8 37311 37311 622 26205 

C1 0.818 72915 72915 1215 41896 

The main results of this probing campaign are presented in Figure 17 to Figure 21. Figure 17 

presents at the 12 initial states the total (elasto-plastic-crushing), elasto-plastic (no crush), and 
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elastic response envelopes. Each panel in Figure 17 also includes the two incremental plastic 

strain components, uncrushable and crush.  

 

The elastic RE have an elliptic shape, and are centered at the origin of the strain increment 

space. As the stress ratio increases from =0 to =1, the elastic response envelope becomes 

larger and more elongated while presenting a slightly anticlockwise rotation. On the other hand, 

for a fixed stress ratio increasing grading evolution (hence higher mean stress) does not seem 

to affect the elastic RE.  

 

For the more isotropic stress ratios =0 and 0.3 plastic-uncrushable strains are very small and 

elasto-plastic RE practically coincide with the elastic ones. Increased deviatoric conditions 

(=0.75 and =0.1) result in much increased plastic-uncrushable incremental strains. This is in 

agreement with observations made by Calvetti et al 2003 when probing uncrushable specimens 

at smaller stress levels.  

 

Plastic-crushable incremental strains appear instead at all deviatoric stress levels. They appear 

to decrease with increased IG. Both components of plastic strain appear always aligned in one 

direction, with the crushable component direction always found clockwise from the uncrushable 

one (i.e. having a larger volumetric component). 

 

A clearer view of the incremental plastic strains obtained at each probing point is given in Figure 

18 to Figure 21. Magnitude and orientation of each incremental plastic strain component as well 

as their sum, the total plastic strain, are presented as a function of stress probe orientation.  

Examining these figures several observations can be made: 

 

1) At every probing point each separate plastic strain component (crushable and 

uncrushable) always has a well-defined flow direction. These directions (panels a, b) 

are not affected by IG (i.e. by GSD evolution).  

2) For both plastic flow components the direction of plastic flow rotates clockwise (i.e. 

becoming more deviatoric) as increases. Whenever both the components appear the 

plastic-uncrushable one is always more deviatoric than that due to crushing, (compare 

panels a & b) 

3) There is no simple pattern as to which incremental plastic strain component is larger, 

except at isotropic conditions where all the plastic strains are due to crushing. At the 

other deviatoric stress levels the relative magnitude of both components (compare 

panels d & e) varies with IG and stress probe orientation. 

4) Because of those changes in relative magnitude of the incremental plastic strain 

components, the resultant total plastic strain flow direction may vary with stress probe 

direction. This is particularly visible in Figure 19c & Figure 20c. 
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5) The effect of IG on incremental plastic strain is systematic for the uncrushable 

component. The magnitude of this plastic strain component always increases as IG 

increases (panels d). 

6) The effect of IG on the crush incremental plastic strain component is less clear. At =0 

and =0.75 the magnitude decreases with increased IG; but this is not the case at other  

values. 

7) As stress obliquity increases the effect of probing direction on crushable component 

magnitude (panels e) becomes closer to that of the uncrushable component (panels d) 

8) For the uncrushable component stress probe directions causing larger strains –i.e. with 

smaller tangent stiffness- are further away from the stress path direction than for the 

crushable component.  

 

Finally in Figure 22 the direction of plastic flow is represented in the deviatoric plane for the 12 

initial conditions analyzed in this section. Directions for each component are always well 

defined, whereas for the total incremental plastic strain sometimes not (i.e. they can vary within 

the sector indicated, depending on incremental stress probe direction).  It is clear from this 

representation that, except at the largest stress obliquity, the crushable component of flow is 

better aligned with the previous stress path than the uncrushable component, always more 

deviatoric.     

 

.  
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Figure 17 Response envelopes for the 12 initial conditions considered. Each row corresponds to 
a different radial loading path (from top to bottom n=0, 0.3, 0.75 and 1, respectively) and each 
column corresponds to a grading index level. 
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Figure 18 Plastic flow analysis for =0; a-c) plastic flow direction and (d-f) norm of plastic 
deformation as a function of loading direction. The loading direction is at 45 degrees 
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Figure 19 Plastic flow analysis for =0.3; a-c) plastic flow direction and (d-f) norm of plastic 
deformation as a function of loading direction. The loading direction is at 53 degrees 
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Figure 20 Plastic flow analysis for =0.75; a-c) plastic flow direction and (d-f) norm of plastic 
deformation as a function of loading direction. The loading direction is at 63 degrees 
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Figure 21 Plastic flow analysis for =1; a-c) plastic flow direction and (d-f) norm of plastic 
deformation as a function of loading direction. The loading direction is at 68 degrees 
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Figure 22. Plastic flow direction: No crush, only crush and plastic+crush. 
 

 

5. Concluding remarks 

A new procedure has been proposed to obtain incremental responses of DEM analogues of 

crushable soils. The robustness of the method has been discussed in detail. Its potential has 

only being indicated by a few examples. 

 

A direct experimental verification of the parallel probe approach would be desirable. It is 

perhaps worth speculating, how that may be arranged. A possible scenario would include, for 

instance, an artificial highly crushable soil (e.g. LECA, Casini et al. 2013) tested with and 

without some crushing-inhibiting coating. Until that or other procedure is applied, experimental 

support for the proposed method would have to be obtained by matching responses of 

crushable materials on different scenarios (e.g. Ciantia et al (2015); Ciantia et al. (2014b)). 
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No attempt has been made to evaluate the energy balance of the probes. This is certainly a 

subject worth of future research, for instance by evaluating energy efficiency (Esnault & Roux, 

2013) alongside different loading paths. 

 

A large variety of continuum models have been proposed for crushable granular materials: 

based on single-mechanism elasto-plasticity (Cecconi et al. 2002; Liu et al. 2013), multi-

mechanism plasticity (Daouadji & Hicher, 2010; Kikumoto et al. 2010), generalized plasticity (Liu 

& Zhou, 2012) or hypoplasticity (Engin et al 2014). Although the observations made in the 

probing campaign described above are perhaps easier to synthetize using multimechanism 

plasticity, the purpose of this contribution was not to endorse one particular constitutive 

approach. 

 

Indeed, despite their different conceptual framework, all these models share one characteristic: 

plastic irreversible strains are modified in magnitude and tensorial direction –i.e. proportion 

between tensorial components- when crushing is considered. With an appropriate choice of 

parameters, crushing can be also suppressed in these continuum models. Therefore all these 

models can produce response envelopes with and without crushing, regardless of how explicit 

are in their statements about the plastic flow modifications due to crushing. Because all of them 

have this capability, a systematic exploration of the triaxial and/or deviatoric planes using DEM 

simulations such as those described here seems worthwhile. 
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