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Abstract 13 

A simple and reliable homogenization approach coupled with rigid elements and 14 

homogenized interfaces for the analysis of out-of-plane loaded masonry panels is 15 

presented. 16 

The homogenization approach proposed is a coarse FE discretization where bricks are 17 

meshed with a few elastic constant stress triangular elements and joints reduced to 18 

interfaces with elasto-plastic softening behavior with friction, tension cutoff and a cap in 19 

compression. Flexural behavior is deduced from membrane homogenized stress-strain 20 

relationships through thickness integration (Kirchhoff-Love plate hypothesis). The 21 

procedure is robust and allows obtaining homogenized bending moment/torque curvature 22 

relationships (also in presence of membrane pre-compression) to be used at a structural 23 

level within a Rigid Body and Spring Mass model (RBSM) implemented in the 24 

commercial code ABAQUS. The model relies in rigid quadrilateral elements 25 
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interconnected by homogenized bending/torque nonlinear springs. The possibility of 26 

extending the procedure to the FE-package ABAQUS, with standard built-in solution 27 

procedures, allows for a robust reproduction of masonry out-of-plane behavior beyond 28 

the peak load, in presence of global softening. 29 

The procedure is tested on a set of windowed and full masonry panels in two-way 30 

bending. Excellent agreement is found both with experimental data and previously 31 

presented numerical approaches. 32 

Introduction 33 

Out-of-plane failure of masonry occurs at very low levels of the horizontal actions and 34 

there are three main features to deal with in a numerical model devoted to the analysis of 35 

masonry in bending: (1) the role of vertical membrane pre-compression, (2) masonry 36 

orthotropic behavior due to the arrangement of the units, and (3) possible failure due to 37 

out-of-plane shear in case of thick walls. A vertical membrane pre-compression, typically 38 

due to masonry self-weight and gravity loads in general, plays a fundamental role in the 39 

increase in the ductility and the out-of-plane strength, as extensively shown by Milani 40 

and Tralli (2011). 41 

Masonry orthotropy is evident for walls exhibiting a regular texture. Masonry units 42 

staggering is responsible for a horizontal bending (i.e. with rotation along a vertical axis) 43 

stiffer and more resistant than the vertical one (i.e. with rotation along a horizontal axis), 44 

as the bed joint contributes in torque to increase stiffness and strength. Orthotropy tends 45 

to become more evident with the progressive degradation of the material. The different 46 

topology of the continuous horizontal joints with respect to the vertical ones, interrupted 47 

by the blocks, implies that tangential stresses acting on bed joints tend to play a significant 48 

role in the horizontal bending increase, while they are not relevant in vertical bending. 49 

Micro-modelling, relying into the distinct discretization of units and mortar (usually 50 
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reduced to interface to speed up computations) is certainly capable of well reproducing 51 

out-of-plane orthotropy, see for instance Macorini & Izzuddin (2011) and Macorini & 52 

Izzuddin (2013), but such procedure is characterized by long processing times and a large 53 

number of degrees of freedom, sometimes requiring parallelization.  54 

Considering the difficulties, it can be affirmed that at present a macro-scale computational 55 

approach is still needed. Macro-modelling (Dhanasekar et al. 1985; Lourenço 1997, 2000; 56 

Pelà et al. 2013) allows studying large scale structures without the drawbacks exhibited 57 

by micro-modelling, because the heterogeneous assemblage of mortar and bricks is 58 

substituted at a structural scale with a fictitious homogeneous anisotropic material. The 59 

calibration of the model is however cumbersome, as a consequence of the high level of 60 

sophistication, usually needing several inelastic parameters to set, requiring expensive 61 

experimental campaigns and data (Lourenço et al. 1998). 62 

It is noted that it is not straightforward to account for tangential stresses acting along the 63 

out-of-plane direction. This would require to deal with 3D models at the meso-scale, as 64 

well as to adopt 3D strength domains and 3D inelastic strain evolution laws for mortar 65 

joints reduced to interfaces. For running bond and generally for single or two-wythes 66 

walls (e.g. English or Flemish bond) with slenderness greater than 8-10, it has been shown 67 

by different authors (Casolo and Milani 2010; Cecchi et al. 2007; Cecchi and Milani 2008; 68 

Milani et al. 2006) that the assumption of the thin plate Kirchhoff–Love hypothesis is 69 

adequate and that out-of-plane sliding can occur on limited portions of the walls, mainly 70 

near corners or under concentrated loads. Therefore, at the macro-scale, damage 71 

mechanisms can be reasonably described assuming a thin plate hypothesis, i.e. where 72 

inelastic dissipation is mainly due to the combination of vertical, horizontal bending and 73 

torsion. Considering the aforementioned key issues characterizing masonry subjected to 74 
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out-of-plane loading, a simple two-step model is used here to analyze efficiently masonry 75 

panels in bending.  76 

In such a framework, homogenization (see e.g Luciano and Sacco 1997; de Buhan and de 77 

Felice 1997; Mistler et al. 2007; Milani 2011) is probably the most efficient compromise 78 

between micro- and macro-modelling, because it allows in principle to perform nonlinear 79 

analyses of engineering interest without a distinct representation of bricks and mortar, but 80 

still taking into account their mechanical properties and masonry texture at a cell level.  81 

Homogenization (or related simplified approaches) is essentially an averaging procedure 82 

performed at a meso-scale on a representative element of volume (RVE), which generates 83 

the masonry pattern by repetition. On the RVE, a Boundary Value Problem BVP is 84 

formulated, allowing an estimation of the expected average masonry behavior to be used 85 

at structural level. The resultant material obtained is orthotropic, with softening in both 86 

tension and compression. A straightforward approach to solve BVPs at the meso-scale is 87 

based on Finite Elements (FEs) (Massart et al. 2007; Mercatoris and Massart 2011), where 88 

bricks and mortar are either elasto-plastic with softening or damaging materials. It is also 89 

known as a multilevel finite element method (FE2), which essentially is a twofold 90 

discretization, the first for the unit cell and the second at structural level. However, FE2 91 

appears still rather demanding, because a new BVP has to be solved numerically for each 92 

load step, in each Gauss integration point. 93 

In order to circumvent such a limitation, a two-step homogenization procedure is hereafter 94 

proposed. In the first step, masonry is substituted with a macroscopic equivalent material 95 

through a simplified homogenization model in which the unit cell is subdivided into 96 

several layers along the thickness. The choice of concentrating non-linearity on the 97 

interfaces appears particularly suitable because: (1) it allows limiting the computational 98 

effort required to perform full scale analyses to a great extent, and; (2) it seems in 99 
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agreement with experimental evidence, clearly showing a damage propagation 100 

zigzagging along joints. Considering a single masonry layer, the RVE is discretized 101 

through triangular elastic plane stress elements (blocks) and nonlinear interfaces (mortar 102 

joints). The procedure is robust and allows obtaining homogenized bending 103 

moment/torque curvature relationships (also in presence of membrane pre-compression) 104 

to be used at a structural level. 105 

In the second step, entire masonry walls are analyzed in the nonlinear range by means of 106 

a Rigid Body and Spring Mass model (RBSM) implemented in the commercial code 107 

Abaqus (2006). The RBSM model relies into a discretization with rigid quadrilateral 108 

elements interconnected by homogenized bending/torque nonlinear springs. It is stressed 109 

that the RBSM model is not available in ABAQUS, but it can be easily implemented 110 

utilizing the FEs gallery available in any commercial code. Standard arc-length routines 111 

already built in Abaqus (2006) allow for a robust reproduction of out-of-plane masonry 112 

behavior beyond the peak load, in presence of global softening. The latter addresses the 113 

main drawback of previous work (Milani and Tralli 2011) whereby an energy-based 114 

formulation at a structural scale was used, through a quadratic-programming approach, 115 

which assumed linear piecewise discontinuous functions for the homogenized bending 116 

curves to be able to account for material softening. The main novelty of the present study 117 

is that it allows using homogenized curves, derived from the foregoing scale, without the 118 

need of further simplifications to reproduce softening. 119 

Two sets of structural comparisons are discussed here to show the capabilities of the 120 

procedure proposed, the first on solid walls and the second on windowed panels in two-121 

way bending, for which global pressure-displacement and crack patterns are available 122 

from both experimental data and previously presented numerical models. 123 
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Out-of-plane homogenized model 124 

A multi-scale approach is presented for the out-of-plane study of running-bond masonry 125 

panels, as schematically described in Fig. 1a. The figure briefly shows the proposed flow-126 

work and the two-step strategy that firstly relies in a homogenization procedure at a meso-127 

scale. This theory focuses on the periodicity feature of a given media and it is therefore a 128 

proper strategy for masonry (Pegon and Anthoine 1997). Again, the concept is based on 129 

the mechanical characterization of a representative volume element (hereafter, RVE) by 130 

solving a boundary value problem. Then, the study of the structure is accomplished 131 

through the assemblage of these RVE units. The strategy allows defining the mechanical 132 

properties of each material at the unit cell only, and obtaining the damage stress and strain 133 

response by introducing considerations at the component level. 134 

Several studies showed the clear advantages of this process. It allows a good trade-off 135 

between consumed time and results accuracy and enables the study of real scale buildings, 136 

see Milani and Tralli (2011), Milani and Venturini (2011), Casolo and Milani (2013), 137 

Akhaveissy and Milani (2013) and Milani et al. (2007). The present out-of-plane 138 

homogenization model is based on the initial in-plane identification of an elementary cell. 139 

The main features of the in-plane homogenized model will be explained in what follows, 140 

for further information the reader is recommended to Milani and Tralli (2011). 141 

The RVE Y (or elementary cell) contains all the information necessary for describing the 142 

macroscopic behavior of an entire wall. In brief, homogenization consists in introducing 143 

averaged quantities for macroscopic strain and stress tensors (E and Σ, respectively). This 144 

is the main concept of the homogenization process and implies that the macroscopic 145 

stress 𝜮 and strain 𝜠 tensors are calculated as given by Eq. (1): 146 

𝑬 = 〈𝜺〉 =
1

𝑉
∫ 𝜺(𝒖) 𝑑𝑌  ;  

𝑌
𝜮 = 〈𝝈〉 =

1

𝑉
∫ 𝝈 𝑑𝑌

𝑌
    (1)147 
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where <*> is the average operator, 𝜺 is the local strain value, which is directly dependent 148 

on the displacements field 𝒖, 𝝈 is the local stress value and V is the volume of the 149 

elementary cell.  150 

The homogenization procedure allows to describe the macroscopic level through the 151 

meso-scale by means of an upward scheme. All the mechanical quantities are considered 152 

as additive functions and periodicity conditions are imposed on the stress field σ (see 153 

Eq.(2) and the displacement field u (see Eq.(3)) (Anthoine 1995), so that: 154 

𝛔 periodic on ∂Y and 𝛔𝐧 antiperiodic on ∂Y1 (2) 155 

𝐮 = 𝚬y + 𝐮𝐩𝐞𝐫 periodic on ∂Y1 (3) 156 

where uper stands for a periodic displacement field. It may be noted that the periodic 157 

displacement fluctuation uper in Eq.(3) enforces the boundary segments of the RVE to 158 

have the same deformed configuration, see Fig. 1b. 159 

In the present model, the RVE is constituted by joints reduced to interfaces with zero 160 

thickness and elastic bricks. Bricks are discretized by means of a coarse mesh constituted 161 

by plane-stress triangles, Fig. 1b. Likewise, brick-brick interfaces are elastic and therefore 162 

they do not contribute on the inelastic deformation of the unit cell. The utilization of 163 

brick-brick interfaces may be useful when dealing with low strength units. Here, it is 164 

assumed that all the nonlinearity in the RVE is concentrated exclusively on joint 165 

interfaces. The elastic domain of joints is bounded by a composite yield surface that 166 

includes tension, shear and compression failure with softening. A multi-surface plasticity 167 

model is adopted, with softening, both in tension and compression (see Fig. 1b). The 168 

joints failure is ruled by a classical Mohr-Coulomb type strength criterion, with a tension 169 

cut-off and a linear compression cap. The parameters ft and fc are, respectively, the tensile 170 

and compressive strength of the mortar, c is the cohesion,  is the friction angle, and  171 

is the angle which defines the linear compression cap. For the tension mode, exponential 172 
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softening on the tensile strength is assumed with an associated flow-rule. The yield 173 

function reads: 174 

𝑓1(𝝈, 𝜅1) = 𝝈 − 𝑓0ℯ
𝑓𝑡0
𝐺𝑓

𝜅1
(4) 175 

where 𝑓𝑡0 is the initial joint tensile strength, 𝐺𝑓
𝐼 is the mode-I fracture energy and 𝜅1 is a 176 

scalar that controls the amount of softening. For the shear mode, a Mohr-Coulomb yield 177 

function with a non-associated flow rule is considered: 178 

𝑓2(𝝈, 𝜅2) = |𝜏| + 𝝈 × (tan(𝜙0) +
(tan(𝜙𝑡)−tan(𝜙0)(𝑐0−𝑐)

𝑐0
) − 𝑐0ℯ

𝑐0

𝐺𝑓
𝐼𝐼𝜅2

(5) 179 

where 𝑐0 is the initial cohesion, tan(𝜙0) the initial friction angle, tan(𝜙𝑡) the residual180 

friction angle and 𝐺𝑓
𝐼𝐼is the mode-II fracture energy. For the compression mode, an181 

associated elastic-perfectly plastic behavior is assumed, with a yield function described 182 

as follows: 183 

𝑓3(𝝈) = |𝜏| + (𝝈 + 𝑓𝑐)tan (Ψ) (6)184 

where 𝑓𝑐 is the uniaxial compressive strength and  is the angle that defined the linear 185 

compression cap. The properties adopted for the present study are gathered on Table 1. 186 

The latter information is related with the experimental data used for the validation step at 187 

a structural level of the proposed discrete model. 188 

The response of the RVE under out-of-plane actions is obtained subdividing the thickness 189 

into several n layers (40 layers are assumed). A displacement driven approach is adopted, 190 

meaning that macroscopic curvature increments ,  are applied through 191 

suitable periodic boundary displacement increments. Thus, each layer undergoes only in-192 

plane displacements and may be modelled through plane stress FEs. Each increment 193 

defines the number of discrete data points of - and M- curves. 194 

Thus, a bending moment-curvature relationship is obtained for each interface angle; 195 

through the obtained RVE macroscopic mode-I stresses. The latter failure mode 196 
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assumption is valid once masonry presents in general low compressive stresses at failure. 197 

Being a low-tensile strength material, the cross-section failure is ruled by tensile cracking 198 

and a linearized behavior in compression is considered, with stiffness degradation present 199 

only in tension. Towards the derivation of the M- curve for each interface, the cross-200 

section equilibrium is iteratively calculated accounting for potential pre-compression 201 

states. The bending moment capacity M of the cross section is calculated by the 202 

summation of each ni layer contribution by means of the following equation: 203 

𝑀 = ∑ 𝜎𝑖�̅�𝐿 𝑑𝐴𝑖
𝑛
𝑖=1  (7) 204 

where σi is the mean stress at each layer, 𝑑𝐿
̅̅ ̅ is the distance between the centroid of each205 

layer and the neutral axis and dAi is the area of each layer. The resultant moment M can 206 

also be simply written as the integral of stress multiplied by its distance from the middle 207 

section through the wall thickness: 208 

𝑀 = 〈𝝈𝑦3〉 =
1

𝐴
∫ 𝝈𝑦3 𝑑𝑌

𝑌
  (8)209 

In this way, homogenized curves are approximated to define the nonlinear flexural 210 

behavior of the interfaces. The on-thickness integration hypothesis allows evaluating 211 

moment-curvature diagrams for solid brick masonries, but can be easily adapted to hollow 212 

bricks assuming different mechanical properties for, e.g. internal and external layers. The 213 

latter procedure is represented in Fig. 2 for a horizontal interface, hereafter labelled with 214 

orientation 𝜃 = 90 degrees, i.e. vertical bending. A similar strategy is performed to derive 215 

the torsion moment curve. Interface orientations are guided by the mesh representation of 216 

the discrete model at a structural scale. So, the implementation in a finite element package 217 

at a macro-scale allows to represent and study three-dimensional structures under out-of-218 

plane actions.  219 
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Structural discrete model 220 

On a macro-scale level, the out-of-plane analysis of the masonry walls is performed 221 

through a novel discrete element mechanical system. The latter has support and 222 

background in the works by Kawai (1977) and employs the information of the 223 

homogenized curves at a structural scale. Simply, the discrete model is described as the 224 

assemblage of quadrilateral rigid plates inter-connected on interface vertices by a set of 225 

rigid beams and deformable trusses. The system of deformable trusses carries the material 226 

information required for interfaces. A decoupled characterization of flexural and torsional 227 

actions is adopted. In the mid-span of each interface a spherical hinge is positioned. The 228 

aim is to allow the rotation for torsional movements as well as to guarantee the deformed 229 

shape compatibility between adjoining elements. For a clear understanding of the model, 230 

the discrete system is represented in Fig. 3. 231 

Such discrete element approach is implemented into a commercial finite element 232 

software, namely Abaqus (2006). The inherent advantages are mainly two. Firstly, the 233 

robustness of the software to solve nonlinear static problems in presence of material 234 

softening is obtained by means of an established arc-length procedure (Memon and Su 235 

2004). Secondly, this allow a great potential to extend the model to structural applications 236 

in any finite element software and the possibility to be used by professionals and 237 

researchers.  238 

Material Properties: from meso- to macro-scale 239 

The masonry behavior when out-of-plane loaded is highly dependent on its anisotropy at 240 

failure (Gilbert et al. 2006; Milani and Lourenço 2010). Experimental information 241 

conducted on masonry walls in two-way bending shows that failure occurs for a relatively 242 

ductile behavior and forming a well-defined path, see Chong et al. (1994) and 243 

Southcombe et al. (1995). 244 
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Aiming at developing the required material information at a macro-scale, an identification 245 

of the desired mesh dimensions and geometrical characteristics of the walls may be 246 

performed. Bearing in mind that quadrilateral elements are assumed, two different angles 247 

are considered for the interfaces: 0 and 90 degrees. The behavior of the interfaces is 248 

obviously orthotropic with softening, because it derives from the aforementioned 249 

homogenization strategy. In this way, the homogenized bending moment-curvature and 250 

torsional moment-curvature curves of the interfaces is depicted in Fig. 4. 251 

The procedure described in what follows is required to convert the latter information in 252 

valid input data for the FE package used at a structural scale. To accomplish this goal, 253 

obtaining stress and strain curves for each angle of the interface and for each bending 254 

moment direction is mandatory. Thus, the approach offers the possibility to reproduce the 255 

material orthotropy by defining different input stress-strain relationships according to the 256 

trusses’ plane. The conversion between bending and torsion moment and stress values is 257 

achieved by Eq.(9) and (10): 258 

𝜎𝐴𝑥𝑖𝑎𝑙 𝑡𝑟𝑢𝑠𝑠 =
𝑀𝑙𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒

𝐴𝐴𝑥𝑖𝑎𝑙𝑡
(9) 259 

𝜎𝑇𝑜𝑟𝑞𝑢𝑒 𝑡𝑟𝑢𝑠𝑠 =
𝑀𝑙𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒

𝐴𝑇𝑜𝑟𝑞𝑢𝑒𝐻
(10) 260 

Here, M is the bending moment, linfluence is the influence length of each truss, t is the 261 

thickness of the wall, H the length of each quadrilateral panel, AAxial is the axial truss area 262 

given by 0.25×t×H and ATorque is the torque truss area given by 0.5×e×H, where e (value 263 

of 10 mm) is the gap between the rigid plates, which ideally should be zero but in practice 264 

is assumed small enough to be able to place trusses between elements. 265 

At last, the stress homogenized input curves may be properly calibrated. An elastic 266 

calibration for the stress curves is conducted. Briefly, by assuring the energy equivalence 267 

between the discrete mechanism and a homogeneous (for the masonry data, see Table 1) 268 

continuous shell element. The latter is guaranteed separately for both flexural and 269 
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torsional movements and so, a decoupled behavior is derived. For the sake of conciseness, 270 

the theoretical demonstration is not shown, but it can be easily derived that the Young’s 271 

moduli of axial (Eflexural) and torque trusses (Etorque) are: 272 

𝐸𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙 =
𝐸𝑚𝑎𝑠𝑜𝑛𝑟𝑦𝑒

12𝑙𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒+6𝑒

𝐸𝑚𝑎𝑠𝑜𝑛𝑟𝑦

(1−𝑣2)
𝑎𝑛𝑑 𝐸𝑡𝑜𝑟𝑞𝑢𝑒 =

𝑡4

3(2𝑙𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒+𝑒)𝐻2𝑒

𝐸𝑚𝑎𝑠𝑜𝑛𝑟𝑦

(1+𝑣)
(11) 273 

It is important to state that the present study focuses on the nonlinear static analysis of 274 

two sets of masonry panels. The walls under study were already experimentally out-of-275 

plane tested at the University of McMaster and Plymouth by Gazzola and Drysdale (1986) 276 

and Chong et al. (1994), respectively. Also, it is highlighted that a refined mesh was 277 

defined for both case studies. The size of the interfaces (H), i.e. the side length of each 278 

quadrilateral panel, is only 100 mm. 279 

In the first step, the holonomic homogenization model allows obtaining the macroscopic 280 

masonry material properties accounting for the strain softening regime. In the second step, 281 

this information should serve as input for the analysis at a structural level. Thus, the novel 282 

discrete element model implemented in the finite element package ABAQUS must be 283 

able to receive such data. The concrete damage plasticity model is selected for this 284 

purpose, as it allows to fully represent the inelastic behavior of masonry, by defining 285 

stress-strain curves for axial and torque trusses of the system. For further details 286 

concerning the model and its implementation, see Wahalathantri et al. (2011). 287 

Simplified softening curves are considered for each truss, see for instance Fig. 5. To avoid 288 

convergence and run time problems, a small plateau near the peak of the curves is adopted 289 

in order to avoid abrupt stiffness losses. For the simulations, the post-failure stress-strain 290 

behavior must be introduced in the material information parameters. Specifically, 291 

ABAQUS requires the introduction of the cracking strain �̃�𝑡
𝑐𝑘, which can be obtained for292 

each point of the homogenized curve by Eq.(12): 293 

𝜀�̃�
𝑐𝑘 = 𝜀𝑡 − 𝜀0

𝑒𝑙  (12)294 
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where 𝜀𝑜
𝑒𝑙 is the elastic strain corresponding to the undamaged material and 𝜀𝑡 is the total295 

strain of the holonomic curve. Damage parameters dt should also be introduced, which 296 

link the undamaged elastic modulus with that of the damaged material in the unloading 297 

phase, as 𝐸𝑑 = 𝐸(1 − 𝑑𝑡), see also Fig. 5.298 

Macro-scale validation: out-of-plane loaded masonry panels 299 

The macro-scale validation of the homogenization model is achieved by analyzing 300 

masonry panels subjected to out-of-plane loads. The aim is to conclude about the ability 301 

of the model to reproduce the nonlinear out-of-plane response of masonry. Available 302 

experimental data of windowed and full panels in two-way bending are used. The panels 303 

result from the studies of Gazzola and Drysdale (1986) at the University of McMaster 304 

and Chong et al. (1994) at the University of Plymouth. 305 

The first set of panels that are being studied refers to three running bond masonry panels 306 

tested at the University of McMaster (Gazzola and Drysdale 1986). The panels are 307 

designated as WII, WF and WPI. The geometry of the panels is similar, being the 308 

boundary conditions the main difference, see Fig. 6. Such analyses allow to conclude 309 

about the ability of the model to describe the response in terms of pressure vs. out-of-310 

plane displacements, and if the homogenized model is able to reproduce a pre-311 

compression state (due to the analysis in WPI panel). 312 

Information concerning the assumed mechanical properties is reported in Table 1. The 313 

out-of-plane behavior of a masonry wall is essentially ruled by the flexural strengths along 314 

vertical and horizontal directions, which are available for both studied panels. The 315 

properties identification is achieved by fitting the flexural strengths values with the ones 316 

reported by Lourenço (1997). The same values for the horizontal flexural strength, ftx = 317 

0.81 (N/mm2), and for the vertical flexural strength, fty=0.40 (N/mm2), are adopted. The 318 

bricks dimensions are 390×190×150 mm3 and the thickness of the joints is 10 mm. The 319 
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same strategy is conducted for the Plymouth panels. Assuming bricks elastic and that the 320 

non-linearity is restricted to the tensile regime, only mortar tensile strength and cohesion 321 

can be tuned, with a fixed softening with pre-assigned fracture energy. It is believed that 322 

the model is able to reproduce and predict well the response of masonry in the cases where 323 

sufficient experimental information on its constituents is available. 324 

The refined mesh with 100 mm of size has 1196 discrete elements for each panel (each 325 

discrete element has 4 quadrilateral rigid plates). Whilst only collapse loads are reported 326 

in Gazzola and Drysdale (1986), the results discussion addresses also the obtained 327 

capacity curves. For each studied panel, Fig. 7 illustrates a comparison on global force-328 

displacement curves between the present model and: (i) the experimental collapse load 329 

(McMaster university data), (ii) an anisotropic macro-model by Lourenço (2000) and (iii) 330 

an upper and lower bond limit analysis by Milani et al. (2006). 331 

For all the panels and regarding the collapse load, the present model allows to reach an 332 

acceptable maximum error of 11% on peak experimental loads. Moreover, the pushover 333 

curves present a similar shape when compared with those provided by the macro-model 334 

proposed by Lourenço (2000). As aforementioned, the conducted analyses include a pre-335 

compression state only for the panel WPI. The homogenized model was prepared also to 336 

compute the final stress-strain curves bearing a defined pre-compression state, assuming 337 

that it is maintained constant during the out-of-plane loading. 338 

The second set of out-of-plane experimental data is constituted by the panels tested at the 339 

University of Plymouth by Chong et al. (1994). Five panels in running bond masonry 340 

texture using solid clay bricks were tested and designated by SB (Chong et al. 1994; 341 

Southcombe et al. 1995). The panels SB01 and SB05 have the same geometry, thus only 342 

four panels (SB01-SB04) are considered and represented in Fig. 8. The boundary 343 

conditions are the same for the four panels, i.e. laterally simply supported and fixed at the 344 
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base. The experimental investigation aimed at a better insight on the role played by the 345 

openings size and shape. 346 

The panels were loaded by air-bags until failure, whereas both the pressure and 347 

displacement at the middle span of the free edge were monitored. Thus, the comparison 348 

is here done in terms of pressure load and displacement in each masonry panel. 349 

At a meso-scale, the mechanical properties adopted for the RVE characterization were 350 

already presented in Table 1. Bearing that according to the experimental data (Chong et 351 

al. 1994; Southcombe et al. 1995), the flexural uniaxial strengths ftx and fty are 2.28 and 352 

0.97 N/mm2, respectively, the mechanical properties adopted were tuned in order to fit 353 

the latter values. The bricks dimensions are 215×65×102.5 mm3 and the thickness of the 354 

joints is 10 mm. 355 

The refined mesh with 100 mm of size has 1122 discrete elements for panel SB01/05, 356 

892 elements for panel SB02, 987 elements for panel SB03 and 960 elements for panel 357 

SB04. It is important to stress that the mesh at the macro-scale is independent from the 358 

mesh adopted in the RVE at a meso-scale and from the masonry texture, i.e. units’ 359 

geometry. Each nonlinear analysis, with the present refined mesh, took around 9 minutes 360 

in a computer with an Intel Core i7-4710MQ 2.50 GHz processor. This running time 361 

accounts for the pre-homogenization and calibration steps required before the analysis 362 

and could be minimized, if (1) a coarser mesh is adopted or (2) by analyzing a half part 363 

of the wall due to symmetry conditions. It is also important to understand that softening 364 

is being represented and the associated convergence problems cannot be avoided. 365 

Fig. 9 shows the comparison between the numerical and experimental results (Chong et 366 

al. 1994), concerning pressure load and displacement at the middle node of the free edge. 367 

In addition to the present model, other results are represented, namely an anisotropic 368 

macro-model (Lourenço 2000), an elastic perfectly-plastic homogenized model 369 
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designated as EPP-model (Milani and Tralli 2011), a simplified deteriorating model based 370 

on homogenized limit analysis designated as SD model (Milani and Tralli 2011) and 371 

finally a simplified quadratic programming elastic-plastic model by Milani and Tralli 372 

(2011), in which deterioration of interfaces (ultimate bending moment) is considered. For 373 

the sake of conciseness, the reader is referred to Lourenço (2000) and Milani and Tralli 374 

(2011), in order to analyze with further detail each of the aforementioned models. 375 

In general, the comparison allows concluding that the obtained results are good, both in 376 

terms of collapse load and displacements prediction, see Fig. 9. For the panel SB01/05 377 

the failure pattern indicates that cracking occurs as expected due to flexural failure at the 378 

fixed base of the wall, see Fig. 10. The cracking formation near the lateral supports, i.e. 379 

diagonal cracks, is also clear. For further comparison with the experimental failure modes, 380 

see  Lourenço (1997). The peak load results are similar to the ones obtained 381 

experimentally, even if the softening range starts slightly before than the other reference 382 

curves. 383 

For the second panel, designated as SB-02, the initial stiffness is marginally 384 

overestimated. This panel is the one with the largest opening in height. Nevertheless, 385 

reasonable agreement is found regarding the obtained peak load with a relative error of 386 

around 20% with the experimental curve. The damage patterns show cracking due to 387 

horizontal bending in the fixed base, vertical bending above the opening and the 388 

formation of diagonal cracks surrounding the corners and lateral supports.  389 

To what concerns panel SB03, both peak load and curve shape are quite similar to the 390 

results by Lourenço (1997). The post-peak behavior is again characterized by the 391 

formation of the vertical crack above the opening. Also, as expected, the formation of 392 

diagonal cracks is evident at the opening sides and with the direction of the lateral 393 

supports. 394 
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At last, the present model leads to a capacity curve with a reasonable agreement for the 395 

panel SB04, in which the peak load has a relative error of around 10% with the macro-396 

model by Lourenço (1997). Similarly, a vertical crack above the opening is developed. 397 

Failure due to torsional movements is also visible around the lateral supports, as well as 398 

failure due to flexion at the base fixed support. The model is not able to directly follow 399 

diagonal yield lines (zig-zag instead). Even so, the used quadrilateral mesh is refined 400 

enough to minimize the mesh dependence and the differences concerning the 401 

experimental results are not significant. 402 

The results show the capacity of the model to obtain good representations of the nonlinear 403 

behavior in panels with complex geometries, using refined meshes. The analyses of the 404 

Plymouth panels are repeated with less refined meshes, see Fig. 11. The goal is to evaluate 405 

the mesh dependence both in terms of results accuracy and running time duration. For the 406 

first panel (SB-01/05) three medium-high refinement meshes (in respect with the brick 407 

size) with edge size equal to 100, 150 and 200 mm, and two very coarse meshes, with 408 

edge size equal to 500 and 1000 mm, are compared. Fig. 11a demonstrates that the mesh 409 

dependency is low as the obtained difference on the pressure-displacement curve among 410 

the meshes is less than 15%, for such large variation of mesh sizes, which is acceptable 411 

from an engineering standpoint. In addition, it is worth noting that the required 412 

computational time is impressively reduced for the coarse meshes (less than one minute), 413 

but still reasonable for a strong mesh refinement, Fig. 11a (exponential reduction with the 414 

increase of mesh size). The deformed shapes of panel SB-01/05 for the four refinement 415 

levels studied are also presented in Fig. 11b. 416 

On the other hand, only two refined meshes (150x150 mm2 and 200x200 mm2) were 417 

considered for the SB-02-04 panels to avoid geometrical misrepresentations, due to the 418 

existence of openings. Regarding the running time duration, the coarser mesh (200x200 419 
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mm2) allows to obtain analyses times within 3 minutes only. For the peak load, the 420 

differences between the studied meshes are lower than 5%, being therefore not relevant 421 

for engineering applications. Some difference may be noted in the post-peak behavior, 422 

but it is well known that rigid elements, where nonlinearity is concentrated on interfaces, 423 

intrinsically suffer from limited mesh dependence on softening.  424 

Conclusions 425 

A two-step procedure was presented to study the nonlinear static behavior of masonry 426 

panels subjected to out-of-plane loading, and allowing the use of any standard advanced 427 

nonlinear finite element code. The first step concerns the homogenization model based 428 

on an elastoplastic approach. This is performed at a meso-scale through a FE 429 

discretization of the unit cell, the so-called representative volume element (RVE) and 430 

allows obtaining the curvature-bending moment diagrams for each direction, i.e. masonry 431 

orthotropy. For each layer, a plane-stress boundary problem was solved in which the 432 

nonlinearity is concentrated only on joint interfaces, accounting for both tensile and 433 

compressive strength and strain softening. 434 

Being a new methodology, at a structural scale, the simulations were done within a novel 435 

discrete element model implemented in the Finite Element software package Abaqus 436 

(2006). The latter is composed by quadrilateral rigid plates connected by a system of rigid 437 

beams, axial and torque trusses. This system represents the behavior of the homogenized 438 

interfaces obtained previously. The obtained homogenized curves were calibrated and 439 

then scaled in order to be readable by the software. 440 

The validation of the model was performed through nonlinear static analyses on masonry 441 

panels. The obtained peak loads have a good agreement with the experimental values with 442 

an error less than 20% for the peak load. Also, the shape of the capacity curves was 443 

compared with an anisotropic model. Good agreement was obtained between the capacity 444 
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curves and damage patterns between the complex anisotropic model and the new discrete 445 

model, whereas a maximum peak load error of about 10% may be observed for the panel 446 

SB-02. In addition, a mesh dependency test was conducted to deepen the knowledge on 447 

refinement issues. One may note the importance of addressing the two following 448 

recommendations to practitioners interested in a fast and reliable analysis of masonry 449 

panels out-of-plane loaded: (i) the proposed homogenization-discrete element model does 450 

not show critical mesh dependence issues. Very coarse meshes proved to predict well the 451 

initial stiffness, ultimate load carrying capacity and ultimate ductility. The advantage of 452 

the utilization of coarse meshes is certainly the considerable reduced computation effort 453 

needed, see Fig. 11a. The only constraint is obviously in the correct definition of the 454 

possible location of yield lines compatible with the real ultimate behavior of the walls. 455 

On the other hand, (ii) as far as the previous precautions on the mesh generation are kept, 456 

the only limitation in the utilization of few rigid elements is the impossibility to obtain a 457 

detailed description of the actual crack patterns, to be compared with either experimental 458 

ones or those obtained from expensive micro-modelling strategies. When such output is 459 

needed, the user is recommended to refine the discretization. 460 

At last, it is important to note the advantage of the procedure and its efficiency in respect 461 

with a detailed heterogeneous micro-modelling strategy (i.e. a separate discretization of 462 

bricks and mortar). The use of rigid plates minimizes the complexity regarding inelastic 463 

phenomena problems. Using standard commercial FE packages, the effectiveness and 464 

robustness of the software to solve problems accounting for the post-elastic behavior with 465 

softening can be used. This also allows the possibility to extend the use of the proposed 466 

model at professional level to fields such as earthquake or blast engineering. Regarding 467 

the former, the use of truss beam elements that reproduces the homogenized behavior of 468 

interfaces within a Concrete Damage Plasticity model at a macro-scale allows, in 469 
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principle, to conduct numerical analyses in the non-linear dynamic range. In addition, the 470 

utilization of a robust commercial code like ABAQUS allows running analyses in the 471 

non-linear dynamic range without any special difficulty, because the ex-novo 472 

implementation of global solvers is not needed and proper hysteresis models are 473 

available. On the other hand, in what concerns the latter, the application of the model in 474 

the field of blast and impact engineering deserves a separate discussion because, in such 475 

case, mechanical properties of the constituent materials are rate-dependent. A practical 476 

way of proceeding would be to define the material properties using dynamic increase 477 

factors. 478 
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585 

Fig. 1. (a) Flow-chart of the present two-step procedure; (b) Micro-mechanical model 586 

adopted for the present homogenized model; and (c) strength domain for joints reduced 587 

to interfaces. 588 
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589 

Fig. 2. Adopted procedure to derive out-of-plane homogenized bending moment-590 

curvature curves (e.g. vertical bending). 591 

592 

Fig. 3. Description of the novel discrete element system proposed. 593 
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594 

Fig. 4. Calibrated bending moment and torsional moment homogenized curves for the 595 

study of the panels tested by Chong et al. (1994). 596 

597 

Fig. 5. The calibrated stress-strain curves obtained for the panels tested experimentally 598 

by Chong et al. (1994) at the University of Plymouth; input curves for each truss beam of 599 

the discrete system. 600 

601 

Fig. 6. Masonry panels out-of-plane loaded at University of McMaster (Gazzola and 602 

Drysdale 1986); description of the geometry and boundary conditions. 603 
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604 

Fig. 7. Numerical and experimental curves of the panels experimentally tested by Gazzola 605 

and Drysdale (1986): pressure load vs displacement. 606 
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607 

Fig. 8. Masonry panels out-of-plane loaded at University of Plymouth (Chong et al. 608 

1994); description of the geometry and boundary conditions. 609 

610 

Fig. 9. Numerical and experimental curves of the panels experimentally tested by Chong 611 

et al. (1994): pressure load vs displacement and deformed shapes at ultimate load level. 612 
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613 

Fig. 10. Damage patterns obtained from the numerical analyses (ultimate load). 614 
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615 

Fig. 11. (a) Mesh dependence for the SB-01/05 panel; (b) deformed shapes for the less 616 

refined meshes for Panel SB-01/05; (c) mesh dependence study for the SB-02, SB-03 and 617 

SB-04 panels. 618 
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Table 1. Mechanical properties adopted for the homogenization step for both McMaster 619 

and Plymouth University panels. 620 

Parameter 
Panels 

McMaster Plymouth 

Young’s Modulus of the mortar (MPa) 4000 3500 

Young’s Modulus of the brick (MPa) 15000 10000 

Poisson coefficient (-) 0.20 0.20 

Shear Modulus (MPa) 2000 1500 

Cohesion, c (MPa) 1.6 x ft 1.2 x ft 

Tensile strength ft (MPa) 0.35 0.52 

Compressive strength fc (MPa) 20.0 2.0 

Friction angle () (degrees) 30.0 30.0 

Linearized compressive cap angle () (degrees) 45.0 50.0 

Mode I fracture energy, 𝐺𝑓
𝐼 (N/mm) 0.018 0.010 

Mode II fracture energy, 𝐺𝑓
𝐼𝐼 (N/mm) 0.022 0.012 

Elastic Parameters (for a mesh size: H = 100 mm; e=10 mm) 

Kn - axial truss (MPa) 236.74 157.83 

Kn - torque truss (MPa) 191761 27874 

Axial truss area (mm2) 3750 2562.5 

Torque truss area (mm2) 500 500 

621 
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