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Abstract—The problem of sensor positioning for condition 

monitoring of Systems, Structures and Components (SSCs) has 

been recently proposed to be addressed by Value of 

Information (VoI) optimization. VoI is a metric that quantifies 

the benefit of taking a measurement prior to adopting it. This 

metric lacks the characteristics of sub-modularity, i.e. the 

benefit of adding a measurement to a small set of measurement 

is higher than adding it to a bigger set. This causes the VoI 

optimization to not guarantee optimal results when the 

problem is solved by greedy optimization algorithms. In this 

work, the sub-modularity issue is considered with reference to 

the thickness gauge sensor positioning on a Steam Generator 

(SG) of Nuclear Power Plant (NPP), and ways forward to 

overcome the sub-modularity issue are suggested. 

Keywords-Value of Information; Sensor Positioning; Greedy 

Optimization; Sub-modularity; Steam Generator. 

 

I.  INTRODUCTION  

The health condition of Systems, Structures and 
Components (SSCs) can be monitored by positioning sensors 
that measure specific properties. Locations where these 
sensors are to be placed are usually recommended by norms 
[1]. Recently, sensor positioning has been proposed to be 
addressed by solving an optimization problem that 
maximizes the Value of Information (VoI) metric [2-7] by 
Bayesian decision theory [8,9]. 

VoI is used to quantify the benefit of taking a 
measurement regarding specific properties of the SSC in one 
location rather than another. A measurement is more 
beneficial than another if it has larger VoI value. Therefore, 
VoI provides a clear indication on the benefits gained by 
positioning sensors in specific locations [10]. 

In principle, given n sensors and j possible sensor 
locations, to find the optimal subset of locations that 
maximizes VoI, all possible combination of the n sensors in 
all candidate locations j are to be evaluated. This 
optimization problem brings complexity that dramatically 
increases when n and j increase (e.g., n=30 sensors in j=160 
candidate locations, imply 2.74e32 VoI evaluations to be 
performed) [11]. To overcome this problem, greedy 

optimization methods have been proposed that consist in 
looking for the optimal positioning of the sensors by 
iteratively adding one single sensor, until the optimum 
arrangement is achieved. By so doing, the number of 
evaluations reduces to n×j evaluations (e.g., n=30 sensors in 
j=160 candidate locations, imply 30×160 VoI evaluations to 
be performed) [12,13]. 

Greedy optimization can guarantee optimal or near 
optimal results, for metrics that satisfy the characteristics of 
sub-modularity [11], that is, the larger the already identified 
set the lower the benefit of adding new measurements. For 
example, the metric M is sub-modular when its increase 
when it is evaluated at both locations a and b is smaller than 
when it is evaluated only at location b, (i.e. [M(a&b)- M(a)] 
≤ M(b)). Incidentally, the VoI metric is not sub-modular, as 
we shall see in what follows, making the VoI-based greedy 
optimization for sensor positioning not effective [14].  

For engineering discussion purposes, a case study is 
adopted regarding the positioning of sensors in a Steam 
Generator (SG) of a Nuclear Power Plant (NPP) that is 
degrading under creep. The remainder of the paper is as 
follows: in Section II, a brief description of VoI and 
optimization problem by the greedy approach are given; in 
Section III, the sub-modularity is discussed in detail; Section 
IV presents the case study and the evidence that VoI metric 
does not have the sub-modularity property; in section V, 
concluding remarks are given and ways forward to overcome 
the shortcoming of sub-modularity issue are presented. 

 
 

II. VOI-BASED GREEDY OPTIMIZATION 

Let F be a spatial model of a system where each physical 
characteristic can be measured by random quantities f(x̄) at 
each location x̄ resulting in a vector f̄(x̄) representing a 
multivariate random field in which the various characteristics 
are jointly described. Vector ȳ consists in a subset of 
measurements Ȳ that can be used to update the prior 
distributions of the multivariate random field p̄F in the 
posterior distributions p̄F|ȳ, by the Bayesian inference method 
[15,16]. Based on the distributions, the decision maker can 
take actions ā to counteract the degradation progression of 
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the SSC that can result in a loss (i.e., a negative utility) 
described by a loss function L(f̄, ā).  

The decision can either be taken based on the prior 
knowledge p̄F by minimizing the prior expected loss: 

 
𝔼𝐿 ∅ = 𝑚𝑖𝑛

𝒂𝜖𝐴
{𝔼𝐹𝐿(𝑓 , �̄�)} 

 () 

or on the random field properties updated by the 
Bayesian inference p̄F|ȳ, whose expected loss is: 

 
𝔼L y  = 𝔼�̄�̄ ̄min

𝒂𝜖𝐴
{𝔼𝐹|𝑦̄𝐿(𝑓 , �̄�)} 

 () 

The benefits of making decisions supported by the 
information acquired, namely based on p̄F|ȳ are measured by 
the VoI, which is calculated as the difference between the 
prior and posterior expected loss as: 

 
𝑉𝑜𝐼  𝑦  =  𝔼𝐿 ∅ − 𝔼𝐿 𝑦   

 () 

VoI quantifies the loss reduction (i.e., the benefit) of 
decisions taken based on the posterior p̄F|ȳ, when the set of 
measurements ȳ has been collected. Taking measurements in 
different locations could bring different effects on the 
posterior and, ultimately, on the benefits on decision making. 
Therefore, measurement source locations (i.e., sensors 
positioning) are to be optimally identified. One strategy 
might be to simulate monitoring sensors on each location x̄ 
and quantifying the consequent VoI: the maximum VoI 
would correspond to the optimal positioning for collecting 
the optimal set of measurements Ȳ*. This can be done by 
solving the optimization problem in (4): 

 

𝑌̄ ̄∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 �̄̄�̄⊆𝛺𝑌̄  (𝑉𝑜𝐼 𝑌̄  − 𝐶 𝑌̄  ) 
 (4) 

 
where C(Ȳ) is the cost of measurement and ΩY is the 

spatial domain where the j locations for taking measurements 
are assumed to be. 

This is, in principle, manageable if the number of sensors 
n and the number of candidate locations j are limited. In this 
case, greedy optimization can be used to solve the 
optimization problem iteratively, assuming that sensor 
locations are added one at a time: first, the optimal location 
is found for one sensor; then, another sensor is added 
considering p̄F as the previous iteration’s posterior p̄F|ȳ; the 
process is continued iteratively until the optimal set of 
measurements Ȳ* is found. In other words, the set of optimal 
measurements Ȳ* comprises of n sensors that are selected 
individually, and not as a number of n sensors optimally 
selected as a whole. 

 

III. SUB-MODULARITY 

The greedy optimization correctness requires the solution 
of the optimization problem to be based on a metric that is 

sub-modular [17]. In general terms, a sub-modular metric 
implies that when a specific measurement ȳ is added to a 
measurement set Y, its benefit decreases as the size of the 
measurement set Y increases. In mathematical terms, let Ȳ1 to 

be a smaller set of measurements than Ȳ2 and ȳ a specific 
measurement added to both these sets. Metric M is sub-

modular when for every Ȳ1⊆ Ȳ2⊆ ΩY, ȳ ∈ΩY and ȳ ∉ Ȳ2: 

 

𝑀 Y 1 ∪ 𝑦  −  𝑀 Y 1   ≥  𝑀 Y 2 ∪ 𝑦  −  𝑀 Y 2    (5) 
 
In other words, sub-modularity implies a “diminishing 

return” property, meaning that when a new set ȳ is added to a 
smaller set Ȳ1, the metric improves more than when the same 
set ȳ is added to a bigger set Ȳ2 (which also includes the 
smaller set Ȳ1). 

VoI is a metric that does not satisfy the sub-modularity 
property [11]. This means that when a measurement set ȳ, 
that may consist of measurements at one or more sensor 
locations, is added to another measurement set Y, there is no 
guarantee that the VoI value is less than (or equal to) the VoI 
value for the set ȳ alone. Therefore, when solving the VoI-
based optimization problem by greedy optimization, which 
individually selects single locations to build up the optimal 
set of locations, there is no guarantee to find the optimal 
solution. Indeed, since information taken by one sensor is 
different from that taken from another sensor, it is possibile 
that a sensor that might be individually selected by the 
greedy approach because bringing the max VoI, may not be 
selected when considering a combined set of sensors since 
the combination of the whole set of sensors not only covers 
the information of the single sensor but may also cover other 
sensors in locations with high importance and higher VoI, as 
it will be shown in the case study. 

 
 

IV.  CASE STUDY 

A manifold of the SG of a Prototype Fast Breeder 
Reactor (PFBR) whose geometric characteristics (Length L 
and outer diameter De) are shown in Fig. 1 is selected as the 
case study, to show the sub-modularity issue that VoI-based 
greedy optimization suffers from, when used for optimal 
sensor positioning. The manifold is here modeled as a 
spatially distributed rectangular plate Ωx of length L and 
width πDe, whose surface is discretized into 160 squares of 
100×100 mm. it is assumed that there is a circumferential 
welding at the middle of the manifold. Ultrasonic thickness 
gauges that measure the thickness of base material can be 
placed at the center of the squares (shown by bold circles in 
Fig. 1, i.e., j = 160 candidate locations where sensors can be 
placed).  

 

 



 

Figure 1.  Sketch of the manifold of the SG and its spatially distributed 

model Ωx 

The thickness model of the manifold f(x̄) is assumed to 
be a Gaussian process model where thickness of each 
location is normally distributed ℕ~(20mm, 1mm), except for 
the welding area and adjacent Heat Affected Zones (HAZ), 
where the uncertainty on thickness is larger and, therefore, 
the Gaussian process is assumed to be ℕ~(20mm, 2mm). 
Fig.2 shows the standard deviation of the thickness random 
field where the majority of the manifold has 1 mm standard 
deviation except the welding and HAZ area in center that has 
2 mm standard deviation. 

 

 

Figure 2.   Standard deviation of the thickness random field 

The lower the thickness of the SG is, the larger is the 
probability of failure due to creep. The failure threshold at 
this SG operational conditions is taken equal to 16.9 mm 
[18].  

Since the decision maker is unaware of the true state s̄ of 
the manifold (i.e., failed (s = 0), operational (s = 1)), based 
on his/her prior knowledge p̄F, he/ she can make decision 
about the so-called prior actions ā: 1. do nothing to 
counteract creep escalation (a = 0) or 2. preventing failure (a 
= 1) for example by weld repair or reducing operational load. 
However, if a set of measurements ȳ is taken, the random 
field p̄F can be updated to the posterior field p̄F|ȳ, that 
represents posterior knowledge that supports the decision 
maker in deciding on so-called posterior actions. The loss 
function that relates the actions and states with the random 
field characteristics is defined as: 

 

𝐿 𝑓 , �̄� =   

0                                             𝐼𝑓 𝑠 = 1 𝑎𝑛𝑑 𝑎 = 0
𝐶𝑓 = 200𝐾€                         𝑖𝑓 𝑠 = 0 𝑎𝑛𝑑 𝑎 = 0 

 𝐶𝑝 =  5𝐾€                                                  𝑖𝑓 𝑎 = 1
  

(6) 
 
where Cf and Cp are the costs of failure and failure 

prevention, respectively.  
 

A. Greedy optimization solution for optimal sensor 

positioning 

 
Sensors can be placed in j = 160 candidate locations. In 

this case study, the objective is to position n sensors in every 
one of 160 locations.  

The greedy optimization method includes calculating the 
prior expected loss EL(∅) of (1) and the posterior expected 
loss EL(ȳ) of (2) to quantify the VoI of (3), by assuming 
placing sensors one at a time in their optimal location. The 
first location resulting in the max VoI is then identified as 
shown in Fig. 3 (red circle). 

 

 

Figure 3.  Contour of VoI 

The procedure continues iteratively, until the VoI 
improvements are less than a predefined negligible benefit 
(here arbitrarily taken equal to 4000 in arbitrary units of 
costs), resulting in the set of 5 sensors locations, shown in 
Fig 4. It must be pointed out that even though the number of 
possible arrangements for n=5 sensors in j=160 locations is 
8.2e8, by using the greedy optimization, the VoI evaluation 
number has been reduced to 800 to find this solution (i.e., 5 
iteration× j=160 candidate locations = 800 VoI evaluations). 

 
 

 

Figure 4.  Sensor positioning by greedy optimization 

 
It is worth mentioning that, as expected, all the n=5 

sensors are placed in locations with larger uncertainty on the 



thickness (labeled with a to h as in Fig. 4): this is to say that 
acquiring information under this condition provides the 
highest benefit (i.e., VoI), because it allows reducing the 
posterior uncertainty. The detailed VoI value of these single 
sensor locations are presented in Table I.  

TABLE I.  VOI FOR SINGLE SENSOR LOCATIONS 

 

 Sensors 

a b c d e f g h 

VoI 6203 5691 5693 6132 6177 6091 5701 5682 

 
The sensor location labeled as a has the highest VoI 

value as a single sensor configuration and is selected as the 
first sensor location by greedy optimization. The values of 
the VoI in the step by step iterations followed by the greedy 
method are given in Table II.  As it can be seen, since the 
VoI improvements in the sixth iteration are less than 4000 
(i.e., 30043-26495=3548), the first n=5 sensors locations are 
selected as the final optimal set. 

TABLE II.  VOI FOR GREEDY SENSOR POSITIONING IN EACH ITERATION 

 

 Sensors 

Iteration 1 2 3 4 5 6 

Location a a, b a, b, c a, b, c, d a, b, c, d, e a, b, c, d, 

e, f 

VoI 6203 12463 17745 22464 26495 30043 

 

B. The sub-modularity issue 

In this Section, we practically show the sub-modularity 
issue in the case study. As shown in Table II, when at the 
second iteration, location b is added to a, the resulting 
benefit (i.e. {a,b}-{a}=12463- 6203 = 6260 in VoI units) is 
higher than the VoI value of b alone (shown in Table I (i.e. 
5691)). This implies that the inequality of (5), with Ȳ1=∅ 
Ȳ2={a} and ȳ ={b}, is not satisfied since adding b to a 
results in an increasing return, rather than in a diminishing 
return (see Fig. 5).  
 

 

Figure 5.  Sub-modularity issue with a sbset od locations 

 
This shows that the VoI metric is not sub-modular, 

causing the sensor positioning not to be optimum (but still, 
sub-optimal). If we rely on a non-greedy optimization 

method such as Particle Swam Optimization (PSO) to 
optimize the objective function of (4) constrained by the 
requirement that in j=160 candidate locations only a set of 
n=5 sensor locations are to be selected, a different result is 
obtained as shown in Table III. 

TABLE III.  VOI OF 5 SENSOR LOCATIONS BY GREEDY AND NON-
GREEDY METHODS 

Optimization type Greedy Non-Greedy 

Sensors selected a, b, c, d, e a, b, c, f, g 

VoI 26495 26926 

  
The non-greedy optimization results in a VoI 2% larger 

(26926) than that of the greedy optimization result (26495), 
since locations f and g are selected instead of d and e. Fig. 6 
compares the VoI values obtained with the non-greedy 
optimization (dot) and those obtained by greedy  
optimization adding one location at a time (line). 

 

 
 

Figure 6.  Comparison of the VoI values in greedy and non-greedy 

optimizations 

V. CONCLUDING REMARKS 

In this work, the sub-modularity issue of the VoI metric 
and challenges in its optimization by greedy approaches have 
been discussed. A case study of a FPBR-SG manifold is 
presented whose aim is to find the optimal locations of the 
sensors that measure its thickness reduction, to avoid failure 
due to creep. The lack of the sub-modularity property of the 
VoI metric is practically shown and a non-greedy 
optimization method (PSO) is used to show that this 
approach can yield better results than greedy approach. 
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