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Limitations of the Inherent Strain Method in Simulating Powder Bed Fusion
Processes

Matteo Bugattia,∗, Quirico Semeraroa

aDipartimento di Meccanica, Politecnico di Milano, via La Masa 1, 20156, Milano (MI), Italy

Abstract

Process optimization has always been a crucial step for effective usage of metal additive manufacturing (AM)
processes: it consists in establishing quantitative relations between final part’s characteristics and process
parameters to find their optimal combination and obtain a fully functional mechanical component. Experimental
investigation techniques are usually employed for this purpose but they can be extremely expensive and time-
consuming, especially when the output of the process depends on a large number of parameters, like for AM.
Numerical simulation could represent an alternative solution: by reproducing the real process characteristics,
a simulation could provide useful insights, allowing to evaluate the performance of the process for different
parameter combinations without relying exclusively on expensive experimental campaigns.
In this work, a finite element AM simulation based on the Inherent Strain (IS) method was developed and

the prediction performance in terms of part’s residual deformation was evaluated by comparing the numerical
results with the measurements carried out on an experimental campaign. A new model calibration approach for
prediction improvement was also implemented and it allowed to discover an unexpected behaviour of the model
that strongly affects the validity of this method for AM simulation.
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Keywords: Additive Manufacturing (AM), Inherent Strain (IS), Simulation, FEM, Calibration, Validation

1. Problem Statement

In the last years, Additive Manufacturing (AM) pro-
cesses gained popularity in manufacturing industry
thanks to their unmatched characteristics in terms of
product design flexibility. However, a few key issues
(e.g. dimensional accuracy, residual tension, porosi-
ties) affect the final products and they are limiting
the diffusion of this new technology. For this reason,
process optimization is always required to produce a
fully functional mechanical component: it consists in
testing different combinations of process parameters
to find the optimal process window, that is the param-
eters combination region that meets the performance
requirements. There are many different parameters
that must be set for an AM process, a few of them
are reported in the following list:

• scan strategy (path and speed);

• pre-heating temperature;

• layer thickness;

• beam size and power;
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• powder size and morphology;

Their influence on the output quality of every new
build should be carefully evaluated. This is clearly a
multi-variable problem because the process window
for the production of each component will be a specific
combination of the aforementioned parameters.
Today’s process optimization is exclusively carried out
relying on expensive experimental campaigns. This
approach has the advantage of being the most accurate
solution, since results come directly from the machine,
but it is a slow iterative approach which is highly
expensive both in terms of times and costs because it
relies on quality measurements of parts which must be
directly built, thus wasting material and energy. For
these reasons, a new process optimization approach
based on simulation would be extremely appealing.
Following the same iterative optimization path, it
would allow to avoid all the wastes (build/quality mea-
suring costs and times) of the test-based approach,
supporting the design with useful process insights
by simulating the process performance with different
combinations of process parameters without building
the component. The fully functional part can then
be built the “first time right”, once its production
is optimized. In this work, the AM simulation topic
is thoroughly discussed and the capabilities of this
kind of approach in improving the process design are
evaluated and directly tested by developing a new AM
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simulation model.
The paper is focused on obtaining an accurate predic-
tion of the residual stress state of the built component.
This output determines the final part deformation and
cracks formation, which are two of the most critical
defects that must be avoided with proper process de-
sign.
For validation purposes, all the simulation results
were compared to the deformation measurements of
real parts built with a laser-based Powder Bed Fusion
(PBF) (a.k.a. SLM) machine, the Renishaw AM250
SLM System, and studied in a recent experimental
campaign described in Appendix A.
The paper is organized as follows:

• in Section 2, a comparison and a classification
of the models described in literature is carried
out, evaluating the features that an AM process
simulation should have.

• In Section 3, a complete characterization of the
process is made to define the simulation input pa-
rameters (material properties, thermal boundary
conditions, process parameters) and the numeri-
cal AM model studied in this paper is thoroughly
described both in terms of applied method and
implementation.

• In Section 4, the numerical results of each model
are discussed using the data obtained from an
experimental campaign to validate and evaluate
the performance of the developed model. At last,
different approaches are compared to improve the
simulation prediction accuracy.

• In Section 5, based on the results obtained
throughout the work, general conclusions are
drawn about the strengths and the limitations
of the developed AM simulation. In addition,
some suggestions for further improvements are
reported and a possible research path is traced
for future developments on this topic.

2. State of the Art

Despite being a relatively new topic, due to its in-
dustrial appealing, AM simulation literature is already
vast. Researchers have come up with several possible
solutions, which have been categorized in Fig. 1: for
each category, in round brackets, it is reported the
employed numerical method, which depends on the
simulated process and on the desired output, and in
squared brackets the number of papers analysed for
each category. Before creating a new simulation, all
the possible options have been considered.

Micro-scale models were found to be capable of pre-
dicting local defects formation mechanisms and in-
stabilities (e.g. porosity, spatter, denudation and
balling) correlating them to specific combinations
of process parameters [1, 2, 3, 4]. These com-
plex multiphysics models simulate a large number

Figure 1: Literature solutions for AM simulation

of process-related thermo-fluid dynamics phenomena
(conductivity, molten pool convective flow, wettabil-
ity, capillary/thermo-capillary forces, plasma plume
recoil pressure etc.) but they require extensive com-
putational power: only extremely small domains and
time periods can be simulated with these models in
reasonable times (in the order of few ms and a frac-
tion of mm3). In addition, they are developed with
non-standard numerical methods (e.g. LBM = Lat-
tice Boltzmann Method) implemented in unavailable,
closed-source codes or proprietary software: therefore,
this option could not be further investigated.

Thermo-mechanical finite element method (FEM)
models couple the thermal and the mechanical as-
pect of the process within a single simulation. By
defining the thermo-mechanical properties of the ma-
terial, it is possible to find the temperature induced
stress and deformation state at each time frame of the
transient simulation. With this kind of coupled analy-
sis, the viscous dissipation phenomenon can be taken
into account. During the process, in fact, the thermal
field is influenced by the heat generated by the plastic
deformation. Its contribution to the temperature field
can be modelled as an additional volumetric heat flux
by implementing a proper strain hardening model.
Shen and Chou [5] ran a 2 layers, small-scale (4×2 mm)
coupled thermo-mechanical simulation. The powder/-
solid phase-change is implemented together with an
unspecified model that takes into account the viscous
dissipation. However, the mechanical behaviour of
the powder is not clearly outlined and the results are
only validated with literature data.
Labudovic and Hu [6] developed a small single-scan
multi-layer direct energy deposition (DED) simula-
tion. Continuous material addition is implemented
but powder behaviour is not modelled. The output
of the simulation is directly validated measuring the
molten pool size and the residual stresses.
Aggarangsi [7] simulated the effect of DED localized
preheating on the final stress distribution in a sim-
ple 2D analysis. Continuous material addition is not
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implemented and no experimental validation is pre-
sented.
Denlinger and Irwin [8] developed a 107 layers model
to predict the distortion of the working plate. The
results are validated by measuring the distortion of
the real part. Quiet layer activation is implemented
but specific powder properties are not considered.
Zhang and Chou [9] studied a DED process imple-
menting the additive mechanism. Sensitivity of the
numerically computed distortion to different process
parameters is studied but details about the implemen-
tation are not provided.
Hussein [10] studied the effects of process parameters
on the temperature distribution, melt pool size and
thermal stress. Powder properties and the additive
mechanism are also considered but only a single layer
scanning is simulated.
All the papers presented here simulate the addition of
real micro layers which are sequentially activated and
scanned by a realistic energy source in a layer-by-layer
fashion. However, most of the models simulate the
building of a few layers of thin walls or small blocks.
This is because the increased complexity of the prob-
lem requires extensive computational power to handle
the material non-linearity, state and phase change for
a coupled thermo-mechanical analysis. This kind of
simulation approach seems to be not applicable to
bigger models.

Another drawback of thermal models is the incom-
plete addressing of the fluid-dynamics aspects of the
process. Within the molten pool, liquid metal fluxes
arise due to the forces acting on the fluid. Heat ex-
change behaviour deeply influences the efficiency and
the evolution of an AM process, so a full understand-
ing of all the heat transfer mechanisms is extremely
important. Convective fluxes within the molten pool
are caused by thermal and concentration gradients
and their influence on the local temperature field is
generally much higher than that of the sole conduction
[11]. Some authors completely neglect this aspect, as-
suming a low influence of the fluid-dynamic behaviour
for the chosen set of parameters (e.g. for high scan-
ning speeds); others include the macroscopic effect of
the enhanced thermal diffusion by locally adjusting
some thermal properties [12]. This kind of approach
is indeed incomplete: the two physics, heat exchange
and fluid-dynamics, interact between each other and
neglecting this aspect can lead to an unacceptable
approximation.
Thermo-fluid dynamics (TFD) models face the resolu-
tion of the problem in a more rigorous and quantitative
way. Generally, for the sake of simplicity, the liquid
metal is considered to be an incompressible Newtonian
fluid and its flux within the molten pool is assumed to
be laminar [11, 13]. This last hypothesis might be too
strict and reduce the model accuracy: for this reason,
some researchers [14, 15] implemented a turbulence
model assigning effective conductivity and viscosity
to the system. Regardless of the initial hypotheses,
the two Navier-Stokes continuity and momentum con-

servation equations are solved at every iteration.
Despite the generally good results reported by re-
searchers, the implementation of a TFD simulation
has not been considered in the present paper because
of the additional numerical complexity given by the
implementation of the Navier-Stokes equations, which
is only useful to study the metal molten pool dynam-
ics and not to simulate the complete process.

To simulate the building of bigger geometries, it is
necessary to drastically reduce the size of the problem.
Two different techniques have been implemented:

• Inherent Strain (IS) Method: this method
consists in simulating the thermal stress build up
at component scale by using a residual plastic
strain (inherent strain) tensor which is activated
in the individual hatching regions of a macro-
scale mechanical model in a layer-by-layer fashion.
This technique was originally developed to simu-
late welding processes and it has been adapted
and modified for PBF simulation applications
[16, 17, 18].

• Equivalent Scanning Method: a representa-
tive surface heat flux or body heat flux is applied
to a target volume (e.g. hatching volume) or an
entire layer for an arbitrary time period. The
magnitude of the heat fluxes and the application
time depend on the machine specific laser power
and scanning speed [19, 20].

To scale down the problem, both of these two ap-
proaches simulate the building of bigger parts adding
macro-layers, which represent a group of real lay-
ers. Despite the several simplifications, the numerical
results of these simulations seem to show a good cor-
relation with the experimental measurements.
Keller et al. [16] implemented the IS method using
a multi-scale approach. A first, thermo-mechanical
model was developed to simulate the scanning of a
hatching-scale region and to determine the inherent
strain tensor components. The obtained IS values
were then activated in the mechanical simulation of a
real component for fast stress/strain prediction. The
numerically computed residual distortion shows a re-
markably good agreement with the experimental mea-
surements.
Alvarez et al. [17] studied the influence of the macro-
layer size on prediction accuracy of their IS based
macro-scale mechanical model. This allowed them to
find the minimum required number of layers needed to
approximate the experimentally measured distortion.
However, inherent strain coefficients (via thermal ex-
pansion coefficients setting) were set up arbitrarily as
no information is given regarding their determination.
Li et al. [18], similarly to Keller, followed a multi-scale
approach to determine eigenstrain values and exper-
imentally validated the output of their macro-scale
model. Despite the good final results, the two ther-
mal and thermo-mechanical simulations developed in
this study were set up using temperature independent
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material properties, which commonly leads to inac-
curate predictions. Moreover, the results of the two
intermediate simulations were not openly discussed
and no detail was given on how the IS values were
extracted.
In addition to these research papers, it is worth to
notice that most of the new commercial AM simula-
tion software that are being released in beta-version
in these months implement the IS technique. Among
others, there are:

• Simufact

• Amphyon

• GeonX

but a knowledge gap is evident as only a few studies
deal with this method compared to the large number
of papers that describe other simulation solutions. For
this reason, this work is focused on the implementation
and on the application of the inherent strain method to
fully understand its capabilities and limitations. The
details about this technique are thoroughly described
and discussed in Section 3.

3. Proposed Solution

To enable a practical usage of a FEM based method
for AM process simulation, calculation times and
model complexity must be kept to a minimum.

A different approach is necessary to solve the prob-
lem. This is why a few researchers have tried to reduce
the size of the simulation applying different techniques
and simplifications (cfr. Section 2). In this section,
the models based on the new IS method-based multi-
scale approach proposed by Keller and Ploshikhin [16]
are described and developed using Abaqus FEA.
This new technique is used to predict the stress state
and residual deformation of the real part in a fraction
of the time required by a complete thermo-mechanical
analysis. It is based on the inherent strain (or eigen-
strain) theory: the term was first introduced by Ueda
in 1975 [21] to refer to the sum of all the incompatible
internal permanent strains induced by inhomogeneous
inelastic deformation, temperature gradients, or phase
transformations that cause residual stresses after a
welding process.
Based on the concept of eigenstrain, Mura [22] devel-
oped a mathematical framework for the determina-
tion of the residual stresses corresponding to a given
eigenstrain distribution in case of an infinite three-
dimensional body. However, it was Ueda himself who
presented, between 1975 and 1994, a series of papers
in which he applied the inherent strain method to
finite element models. This method consists in the
activation of experimentally measured or numerically
computed eigenstrains within a simple finite element
mechanical model to evaluate the welding residual
stress and deformation. Specifically, for a simple elas-
tic FE model, the relation of the inherent strain ε∗

with elastic strains εel or stress σ produced by εel at

an arbitrary point of a three-dimensional body can be
expressed by the following elastic response equations:

f =
∫

V

BT D ε∗ dV (1)

u = K−1 f (2)
εtot = B u (3)
εel = εtot − ε∗ (4)
σ = D εel (5)

where

B = strain-displacement matrix
D = stress-strain matrix
K = stiffness matrix

To experimentally measure the inherent strains ei-
ther X-ray/neutron diffractometric or extensometric
measurements must be carried out. This experimental
measurements based procedure is the one followed in a
large number of papers about inherent strain method:
once the welding is performed, the residual stress/s-
train state is measured along the weld at different
distances near the bead. Arbitrary shape functions
are fitted on the experimental values to reconstruct
the inherent strain state as a function of spatial coordi-
nates. The experimentally estimated eigenstrains are
then activated in the macro-scale mechanical model
for final stress/deformation prediction [21, 23].
On the other hand, for the numerically computed in-
herent strains a short welding path is simulated with
a coupled thermo-mechanical analysis to directly find
the eigenstrain components.

This sort of numerical “submodelling” approach is
the one followed in [16]. The work is based on the
consideration that the complete part is generated by
a build-up of micro-welding processes and that each
micro-weld seam experiences an identical or compa-
rable thermo-mechanical history. This assumption is
used to reduce the size of the problem, setting up a
meso-scale nonlinear thermo-mechanical analysis only
to simulate the scanning on a small hatching region.
The hatching region is in fact a small block, with
a constant temperature history during the scanning,
which is replicated several times for every layer and
within each layer to build up the desired part.
The numerically computed strains are then applied
as inherent strain in a macro-scale elasto-plastic FE
model to predict residual stresses and deformations
of the real part.
Compared to the complex thermo-mechanical analy-
sis, only a very short computational time is needed
to complete the simulation even for large and com-
plex structures. The inherent strain FE analysis is
also simpler to set up since temperature dependent
material properties are not needed: it only uses the
material constitutive law and its Poisson’s ratio at
ambient temperature.
In the following two sections, the two models and

their implementation are described while the results
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and the performance of this method are discussed
in Section 4. For model validation, the results of
the experimental campaign described in Appendix A
were employed; therefore, the characteristics of the
Renishaw AM250 SLM machine and of the maraging
18Ni300 material used for the experiment were studied
and implemented in the model. In particular, the
18Ni300 material properties are reported in Table 1
and Fig. 2, while the process parameters used in the
experimental work are reported in Table 2.

Table 1: Maraging steel (18Ni300) properties

Property Unit Value

Solidus temperature, TS [K] 1698
Liquidus temperature, TL [K] 1728
Latent heat of fusion, Lf [J·(kgK)−1] 242500
Poisson’s ratio, ν [-] 0.31

Table 2: Default building process parameters for 18Ni300
steel

Parameter Unit Value

Power, P [W] 200
Exposure time, texp [µs] 80
Focus distance, f [mm] 0
Scan strategy Hatching
Point distance, dp [µm] 65
Hatch distance, dh [µm] 80
Layer thickness, LT [µm] 40

3.1. Meso-Scale Submodel

A small hatching-scale, two-layers, uncoupled
thermo-mechanical simulation is developed using
Abaqus FEA. The geometry is shown in Fig. 3: it is
a 5×5 mm, 80 µm thick powder island deposited over
a 18Ni300, 2 mm thick substrate that represents the
previously built layers.
A larger shape was modelled in order to have con-
duction as heat transfer mode also on the sides of
the scanned island, instead of assigning unrealistic
boundary conditions directly on the sides of the rep-
resentative region [6, 24, 25].

In this analysis, the metallic powder in the simula-
tion space is modelled as a continuum. Powder bed
characteristics strongly depend on its discrete nature
but modelling each single grain in a macro/mesoscopic
analysis would be computationally infeasible. In order
to approximate the real powder bed behaviour, equiv-
alent material properties are assigned to the powder.
Only density and conductivity are affected by the
powder discrete nature, the other properties are the
ones of bulk material [26, 27]. The relative density
ρrel of the powder bed at ambient temperature was
computed from the ratio between the apparent density

of the powder, ρpowder, and the density of the solid
18Ni300 material, ρbulk:

ρrel = ρpowder

ρbulk
= 4400

7425 ≈ 59.26% (6)

This value is considered constant for all the tempera-
tures up to liquidus temperature, TL, so:

ρpowder(T ) = ρrel · ρbulk(T ) (7)

The conductivity of the powder bed is computed from
the Tolochko model [28], which assumes that each
powder grain is approximately spherical, like for gas-
atomized powders which are commonly used in AM.
The model considers the total equivalent conduction
coefficient (keq) in a porous media as the sum of dif-
ferent contributions: radiative thermal conduction
through the pores (krad) and contact thermal conduc-
tion between the particles (kcond):

keq = krad + kcond (8)

where

krad = 16
3 lphσSBT

3 (9)

kcond = Λk0rc (10)

where lph is the mean photon path, σSB is the Stefan-
Boltzmann constant, T is the temperature, Λ is the
normalized contact conductivity, k0 is the bulk con-
ductivity and rc is the contact size ratio b

r (Fig. 4),
which is set to 0.2 [11].
The mean photon path between the powder particles
lph is approximately the pore size and it is estimated
to be equal to the solid powder mean particle size:
30.5 µm [11]. The normalized contact conductivity
Λ values are reported on Table 3 for four different
regular packing structures.

Table 3: Normalized contact conductivity of regular
structures [28]

Packing structure ρrel n Λ

Diamond 34% 4 0.433
Simple cubic (SC) 52.4% 6 1
Body-centered cubic (BCC) 68% 8 1.732
Face-centered cubic (FCC) 74% 12 2.828

Gusarov et al. [29] report a simple formula (eq. (11))
to find the Λ value for a random packing structure.
Assuming a mean coordination number n equal to
7 and using the previously calculated powder bed
packing density from eq. (6), the normalized contact
conductivity can be easily computed:

Λ = nρrel

π
= 7 · 59.26%

π
= 1.3204 (11)

According to literature, all the other thermal proper-
ties (specific heat, latent heat) are treated as material
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Figure 2: Temperature dependent 18Ni300 properties
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Figure 3: Meso-scale submodel geometry

Figure 4: Contact zone between two particles [11]

dependent only, so they do not change with its aggre-
gation state [26, 27].
The powder layer is scanned by a pulsating Gaus-

sian surface heat flux which follows the meandering
pattern shown in Fig. 6a; a DFLUX subroutine was
written for this purpose using the scanning properties
reported in Table 2.
The phase change of powder material is programmed
using the USDFLD subroutine to define a temper-
ature dependent state variable. The phase change
in this model affects both thermal and mechanical
properties. At powder state, the material is set to
have a null expansion coefficient and a small elastic
modulus (it is not set to zero only to avoid any numer-
ical instability): this is because the powder is loose
and its aggregation state makes it irrelevant for the
stress and strain state computation of the hatching
region. Once the powder temperature exceeds TL,
its thermo-mechanical properties are switched to the
ones of solid 18Ni300 (Fig. 2).

Fixed temperature boundary condition (BC) is set
at the bottom of the substrate, while forced/natural
convection and radiation boundary conditions are ap-
plied on the top surface.
In the first step of the thermal analysis, the second
layer is deactivated and the surface heat flux scans
the hatching region of the first layer following the me-

andering pattern. The argon recirculation pump is on
when the laser scans the powder layer, therefore forced
convection coefficient (hf = 42.86 [W·(m2K)−1]) is
imposed using the FILM subroutine. Once the beam
finishes scanning the region, the second layer is reac-
tivated, simulating the new layer deposition; in this
step, the recirculation pump is off and natural con-
vection (hn = 8.15 [W·(m2K)−1]) is imposed on the
top surface of the model. Forced convection is then
reactivated together with the laser scan to build the
second layer. A final steady-state cooling step with
natural convection closes the analysis simulating the
end of the building process. Details about the convec-
tion coefficients calculations are reported in Appendix
B.

The temperature history obtained from the thermal
analysis is loaded as input of the mechanical analysis.
The FE mesh is kept the same to avoid incompatibility
between the models and the geometry is constrained
with a fixed displacement boundary condition at the
bottom of the substrate.
At the end of the simulation, the final plastic strain
state of the scanned island is obtained (Fig. 5). The
distribution of plastic strain seems to be fairly regular
across the layer for all of its 6 components. In order
to be applied to the macro-scale model, an equivalent,
mean inherent strain tensor must be extracted from
the scanned region. A weighted average (Eq. (12))
was computed for each of the 6 strains using their
centroid values and the element volume as weight:

ε̄∗
ij =

∑Nel

k Vk · ε∗
ij,k∑Nel

k Vk

(12)

where Nel is the total number of elements in the
hatching region, Vk is the k-th element volume, and
ε∗

ij,k is the ij component of the plastic strain tensor at
the centroid of the k-th element. The values computed
are reported on Table 4.

Table 4: Average plastic strain tensor components

Strain component Value

Normal x, ε̄∗
11 2.05× 10−3

Normal y, ε̄∗
22 0.30× 10−3

Normal z, ε̄∗
33 −2.35× 10−3

Shear xy, ε̄∗
12 −3.29× 10−8

Shear xz, ε̄∗
13 −1.56× 10−6

Shear yz, ε̄∗
23 4.45× 10−5

Normal strain components are roughly two orders of
magnitude larger than the shear ones. This result
is in agreement with what is reported in [16], where
only the more relevant normal components have been
considered for the macro-scale analysis.

3.2. Macro-Scale Model
The plastic strains determined in the hatching sub-

model are applied as inherent strains in the macro-
scale model. The real part is sliced into macro-layers
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(Avg: 75%)
PE, Max. Principal
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+1.732e−02

X
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Z

Figure 5: Hatching region plastic strain magnitude

that are sequentially activated with the corresponding
eigenstrain values, simulating the layer build-up along
the z-axis. The base plate of the PBF process is rep-
resented as a fixed displacement boundary condition
at the bottom nodes of the manufactured part.
The strains computed with the submodel provide

the fundamental strain components of each single
“scanned island”. By rotating this original eigenstrain
tensor ε∗computed for Fig. 6a scanned island, every
other orientation can be considered:

ε∗
rot(ϑ) = R ε∗ RT (13)

where R is the xy-plane rotation matrix, which is
a function of the orientation angle ϑ of the scanned
island.

R =

 cos(ϑ) sin(ϑ) 0
− sin(ϑ) cos(ϑ) 0

0 0 1

 (14)

Virtually every hatching-based scanning strategy can
be mapped within the macro-scale model by simply
activating differently oriented eigenstrain tensors in
different regions of the same layer. In fact, the orien-
tation of the scanned islands can change across the
same layer, therefore ϑ becomes a function of x and
y position. This operation allows to determine the
so-called “Mechanical Layer Equivalent” (MLE) for
each generated layer, which will specifically depend
on the applied scan strategy.

This macro-scale, inherent strain method-based FE
model was developed using Abaqus FEA and it im-
plements the following general characteristics:

• the material properties of 18Ni300 maraging steel
at ambient temperature were approximated to

(a) Original orientation,
ε∗

(b) 90° rotated, ε∗
rot(90°)

Figure 6: Example of differently oriented scanned islands
with their corresponding strain tensor

have an elastic-perfectly plastic mechanical be-
haviour. The implemented properties are re-
ported in Table 5 [30];

Table 5: 18Ni300 mechanical properties at Tamb

Material properties Value

Young’s modulus, E [MPa] 191000
Yielding strength, σy [MPa] 1250
Poisson’s ratio, ν 0.31

• before the end of the analysis, after the stepwise
activation of layers and inherent strains, the fixed
displacement boundary condition is removed at
the bottom of the model except for a small region
where it is kept active to avoid stiffness matrix
singularity. This operation simulates the part re-
lease from the base plate and allows to obtain the
final residual stress distribution and deformation.

A simple thermo-mechanical analysis was set up to
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implement the inherent strain method [23].
Anisotropic thermal expansion coefficients were added
to the material properties: each coefficient is equal to
its corresponding inherent strain (e.g. α11 = ε∗

11). A
unitary temperature change is then imposed and the
equilibrium solution for residual stress is computed
for each layer activation.
The orientation of the scanned islands is considered
by changing the material orientation in the different
regions of each layer, while the macro-layer addition
is handled using the Model Change feature, which is
set up to deactivate all the layers except for the first
one and to sequentially add them during the analysis.

A detailed study on the characteristics and on the
performance of these two models is presented in the
following section.

4. Results and Validation

For model validation, the results of the experimen-
tal campaign described in Appendix A have been
employed. The test specimen geometry is reported in
Fig. 7. Two factors were analysed in the full factorial
experimental campaign:

• 3 scanning strategies:

1. meandering pattern in x-direction (“mx”,
Fig. 8a);

2. meandering pattern in y-direction (“my”,
Fig. 8b);

3. chessboard pattern (“chess”, Fig. 8c);

• 2 upper thicknesses:

1. nominal thickness, 2.2 mm;
2. half of the nominal thickness, 1.1 mm;

for a total of 6 treatments replicated 4 times. The
response variable analysed in this experimental cam-
paign was the maximum displacement along the build-
ing direction after part detachment from the working
plate. The same value will be extracted from the
simulations for model validation.

4.1. Submodelling Performance
The average plastic strains computed with the meso-

scale submodel of Section 3.1 provide the inherent
strain tensor components and they are now activated
in 6 different macro-scale mechanical models created
to numerically reproduce the 6 treatments described
at the beginning of this section. To test their ca-
pabilities in predicting the final deformation of the
experimental specimens, the bending values obtained
from the macro-scale numerical models are directly
compared to the measured mean deformation of the
6 corresponding experimental treatments in Table 6.
The treatments’ mean 95% confidence interval is plot-
ted together with the numerical predictions in Fig. 10.

Table 6: Submodelling performance

Scan Upper Bending [µm]
strategy thickness Exp. mean Abaqus

mx
1.1 mm -568.6 -576.9
2.2 mm 228.9 -453.8

my
1.1 mm -1294.3 -294.5
2.2 mm -315.4 -187.7

chess
1.1 mm -1235.7 -408.5
2.2 mm -49.8 -307.4

All the 6 macro-scale models, when the computed
inherent strains are activated, show a negative defor-
mation value. This means that, with the computed
inherent strain tensor, the simulated AM parts bend
in the same direction of almost all the experimental
treatments. In fact, only for one treatment (scan
strategy: mx, upper thickness: 2.2 mm) the numer-
ical model of the part did not deform in the same
direction.
By comparing the results, the model of 1.1 mm

geometry and mx scan strategy treatment seems to
predict extremely well the experimental final deforma-
tion after the activation of the submodel’s IS tensor.
Even the residual deformation computed for the 2.2
mm geometry and my scan strategy treatment falls
just slightly outside of the 95% mean confidence in-
terval.
All the other numerically computed bending values
are extremely far from the experimental observations.
In addition, the only two treatments that show a good
correlation with the numerical models do not seem to
give any indication about an experimental subgroup
for which the computed eigenstrain tensor is valid,
since they belong to different scanning strategies and
geometries.

In conclusion, under the assumption that the in-
herent strain method, as applied in [16], can actu-
ally predict the residual stress/deformation state, this
poor performance can only indicate that the IS values
obtained from the thermo-mechanical simulation of
the scanned island of Section 3 are not accurate. A
new approach to improve the performance of eigen-
strain method-based AM simulation is presented in
the following section.

4.2. Calibration
According to the framework presented in section 3

and followed in section 4.1, the two developed models
are made to be used together. The solution of the
first meso-scale thermo-mechanical model provides
the eigenstrain tensor that is activated in the macro-
scale mechanical simulation. This method allows to
leave out any kind of experimental work, relying com-
pletely on the results of the FE analysis. Despite
being extremely convenient, this approach can hide
some flaws.
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Figure 10: Experimental vs. numerical bending

First of all, the output of the thermo-mechanical anal-
ysis almost completely depends on the values of the co-
efficients used to define the material properties. Given
the wide temperature range covered during the pro-
cess and the simulation, most of the properties must
be defined as a function of temperature: this makes
everything more difficult because the coefficients are
not always available in literature and should be ex-
perimentally evaluated, taking into account the fact
that material thermo-mechanical characterization can
be extremely costly and critical, especially at high
temperatures.
Nevertheless, even if the material properties are avail-
able in literature, the data might not perfectly fit the
material in use.
Also powder properties in these simulations are crucial
and they are usually derived from models that are
based on strong simplifying hypotheses.
A few researchers decided to apply calibration on

their thermo-mechanical simulations with respect to
a few parameters (e.g. absorption, laser power distri-
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bution) [4, 16, 31], but, probably due to the computa-
tional effort, a complete and exhaustive work on the
uncertainty of all the parameters and on its propaga-
tion on the final results has not yet been made to this
date.

A hybrid, experimental-numerical approach is pro-
posed here to avoid all the problems related to the un-
certainty of the parameters of the thermo-mechanical
simulation. Instead of solving the meso-scale model to
get the values of the inherent strain tensor, with this
approach the values are obtained by calibrating the
large-scale mechanical analysis on the experimental
data.
Compared to the thermo-mechanical model, the

macro-scale model requires only ambient temperature
material mechanical properties, which are much easier
to find in literature or to experimentally measure with
a much lower uncertainty.
Keller, in his first work on the eigenstrain method

[16], reported that all the off-diagonal terms of the
inherent strain tensor in the scanned island region
tended to 0. This was also confirmed by the results
obtained in 3.1. Furthermore, a sensitivity analysis
carried out on the macro-scale model showed that the
eigenstrain component in the building direction ε∗

zz

has no influence on the residual stress state. Therefore,
only the normal strain components on the layer plane
(ε∗

xx and ε∗
yy) are assumed have a significant effect on

the final bending value.

4.2.1. Regression-based Optimization
The response of the model, in terms of maximum

displacement, for different sets of layer-plane inherent
strains was computed and a regression equation was
fitted. This operation was carried out for each of the
6 treatments models and, in each case, bending was
found to be a linear function of x and y strains:

f̂i = ai · ε∗
xx + bi · ε∗

yy + ci (15)

where, for each i-th treatment, f̂i is the estimated
numerically computed residual bending value, and ai,
bi and ci are the three regression estimated coefficients.

Therefore, optimal inherent strains could be com-
puted by solving a simple system of linear equations.
This procedure represents indeed an approximation
of the actual solution but it allowed to carry out a
much broader investigation on the calibration perfor-
mance, because regression-based parameters optimiza-
tion only requires a fraction of the time needed for
software-based calibration.
In the next section, the post calibration performance
of the Abaqus FEA macro-model for all possible cali-
bration subsets is reported and the stress/deformation
prediction capabilities of the eigenstrain method ap-
plied to a PBF process is discussed.
In section 4.2.3, a more detailed study with software-
based eigenstrain optimization will be presented but it
will be focused only on the most significant calibration
strategies.

Figure 11: Example of model response for different IS
combinations

4.2.2. Cross Validation
Let A be the set of the experimental campaign spec-

imens; Scal is the arbitrary calibration/training subset
and Scal ⊂ A. The performance of the calibration
is evaluated computing the Root Mean Square Error
(RMSE) on the so-called validation subset, which is
defined as Sval = S{

cal ∩ A, and on the calibration
subset (Eqs. (16) and (17)):

RMSEval =

√√√√∑
k

(f̂k(ε∗
xx,cal, ε

∗
yy,cal)− fk)2

|Sval|
,

∀k ∈ Sval (16)

RMSEcal =

√√√√∑
k

(f̂k(ε∗
xx,cal, ε

∗
yy,cal)− fk)2

|Scal|
,

∀k ∈ Scal (17)

where fk and f̂k(ε∗
xx,cal, ε

∗
yy,cal) are respectively the

measured and the numerical residual bending of the
k-th specimen; ε∗

xx,cal and ε∗
yy,cal are the two eigen-

strains obtained after model calibration on the train-
ing set Scal.
All the possible calibration strategies have been

investigated. For this purpose, the complete set of
24 measurements was split into the 6 experimental
treatments. The calibration subsets analysed in this
section are composed by every possible combination
of the 6 treatments. Therefore, each experimental
treatment is a factor of an approximately 2k factorial
plan with k = 6 and a total of 62 treatments, which
is equal to the 64 combinations of the 6 treatments
minus the Scal = ∅ and the Scal = A treatments. The
studied calibration subsets are composed by:

• 6 single treatments;

• 15 combinations of 2 treatments;

• 20 combinations of 3 treatments;

• 15 combinations of 4 treatments;
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• 6 combinations of 5 treatments.

To clearly identify each treatment and simplify data
handling, a number from 1 to 6 was assigned to each
experimental treatment. The 6 treatments/factors
names are reported in Table 7.

Table 7: Treatment/factors coding

Upper Scan strategy
thickness mx my chess

1.1 mm 1 2 3
2.2 mm 4 5 6

For simplicity, the two RMSEs were plotted against
another factor named Strategy whose value describes
the combination of the treatments used for calibration
(e.g. “126” is a calibration subset composed by the mx
and my scan strategy of upper thickness 1.1 mm and
the chess scan strategy of 2.2 mm). Figure 12 clearly
shows that the worst performance on the validation
subset is obtained when the models are calibrated com-
bining the 2 treatments with the same scan strategy
(Strategy: 14, 25 and 36 show all a RMSEval > 4000
µm), while all the other calibration subsets seem to
perform similarly (RMSEval = [500; 1000] µm). From
Fig. 12 it is also possible to notice that when the
model is calibrated on less than three treatments, the
calibration procedure finds inherent strain values that
fit the model very well on the experimental observa-
tions (RMSEcal < 50 µm).
The model seems to fit fairly well also on the 123 and
456 calibration subsets, which are the two separate
geometries calibration subsets, but their correspond-
ing validation RMSEs are above 700 microns. This
behaviour seems to point out some sort of underlying
incompatibility between the calibrations of the two ge-
ometries. In fact, increasing the size of the calibration
subset by mixing treatments coming from different
geometries slightly improves the performance on vali-
dation but makes drastically increase the calibration
RMSE. This confirms the fact that the models of the
two geometries do not fit well on the same IS tensor,
thus compromising the IS global validity on which the
method is founded: in fact, the IS should be depen-
dent only on material and process parameters and not
on the geometry of the built component. The optimal
IS tensor found for these strategies is only a compro-
mise tensor whose activation in the macro-scale model
produces bad results on all the treatments, making it
a useless tool for prediction.
To summarize, it was observed that, for some con-

ditions, calibrated models produce very good results
within the calibration region but they all fail in pre-
dicting the bending of the treatments in the corre-
sponding validation region. It is generally very easy
to find a suitable set of residual strains that fit the
calibration subset data, but this is not sufficient: only

by validating the results it is possible to determine
the real capabilities of this approach.

According to the fundamental assumption of IS
method [16], the inherent strain values only depend
on the thermal history of the “scanned island” and
should not be a function of macroscopic dimensional
characteristics such as the upper thickness h. In fact,
all the AM eigenstrain method-based simulations are
founded on this hypothesis but, from the calibration
strategies analysis, this claim of global validity of the
eigenstrain tensor seems to fall short.
This hypothesis could either be wrong, and the va-
lidity of the method be compromised, or the thermal
history experienced by the specimens of the two ge-
ometries during the building process is so different
that it significantly influences the residual stress state.
In fact, it must be noticed that the two geometries
were built together on the same plate and, due to
the difference in height, the building of the additional
layers of the 2.2 mm specimens could have affected
the final stress distribution.

Before drawing any conclusion, a more in-depth
analysis on the separate geometries calibration strate-
gies is carried out using the more accurate software-
based parameters optimization.

4.2.3. Software-based Optimization
As reported in Section 4.2.1, the RMSE values

analysed in the previous section were computed us-
ing regression models to find approximate eigenstrain
values: this approach allowed to study a very large
number of calibration strategies without relying com-
pletely on slow software-based parameters optimiza-
tion. These results provided an interesting insight of
the calibration performance, allowing to draw some
general conclusions about the inherent strain method
and to pick the best calibration subsets.
Nevertheless, relying completely on regression models
only approximates the optimal solution: to achieve
the maximum accuracy for eigenstrains estimation, an
iterative parameters optimization based on the real
results of the FEM model is the only possible solu-
tion but, since this approach is very computationally
expensive, optimal eigenstrain values were computed
only for the few, best performing calibration strate-
gies.

The optimization procedure was implemented using
the Abaqus built-in Python interpreter. The Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) optimization
algorithm [32] included in the SciPy library [33] was
used to minimize the objective function (Eq. (18))
with respect to the two layer-plane inherent strains
(ε∗

xx, ε
∗
yy):

min
ε∗

xx,ε∗
yy

∑
i

4∑
j=1

(f̄i(ε∗
xx, ε

∗
yy)− fi,j)2, ∀i ∈ Scal (18)

where f̄i(ε∗
xx, ε

∗
yy) is the numerically computed resid-

ual bending of the i-th treatment and fi,j is the de-
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formation measured on the j-th replicate of the i-th
treatment.
Among all the possible optimization algorithms (e.g.
Nelder-Mead simplex, conjugate-gradient, genetic al-
gorithm etc.), a quasi-Newton method, was chosen
because the objective function is supposed to have
only one absolute minimum, given the linear rela-
tion between the inherent strains and the residual
bending found in Section 4.2.1. Therefore, Eq. (18)
minimization does not require computationally heavy
algorithms (e.g. genetic algorithm) which are more
effective in presence of local minima. The regression-
estimated shape of the generic objective function
(Eq. (18)) is shown in Fig. 13.

*
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Figure 13: Regression-estimated objective function
shape

Table 8 compares the optimal eigenstrain values
computed from regression and from parameters opti-
mization. A general linear model was fitted on these
data to determine the influence on the computation
of the optimal eigenstrains of the three factors:

• Calibration Geometry: 1.1 or 2.2 mm upper thick-
ness;

• Calibration Strategy: mx+my, mx+chess or
my+chess;

• Calibration Method: regression or software-based.

From the results of the ANOVA analysis (Table 9),
it is clear that the optimization method does not influ-
ence the results, since the regression-estimated strains
are very close to the ones obtained with optimization.
This means that for fast parameter optimization, the
regression approach in this case is very reliable: in fact,
the parameter optimization of each strategy based on
the BFGS algorithm required to run several analy-
ses, thus resulting in 5-10 hours of computation time,
while the regression approach only required to solve a
simple system of linear equations (cfr. Section 4.2.1).
However, since the implemented optimization proce-
dure works directly on the software and since it is not
sure that every geometry has the same linear relation
between eigenstrains and residual bending, optimiza-
tion algorithms are the most reliable solution, despite
being more computationally expensive.

The two other factors, Geometry and Strategy, and
their interaction significantly influence the optimal
eigenstrains computation, in contrast with the funda-
mental principle of AM IS theory, according to which
the eigenstrains should only be a function of the ther-
mal history and nothing else. To further analyse this
critical result, a pairwise comparison of these factors
combinations was performed.

Optimal IS Tukey

Comparisons for eps_x

Tukey Pairwise Comparisons:
Response = eps_x, Term = Geometry*Strategy

Grouping Information Using the Tukey Method
and 97.5% Confidence

Geometry*Strategy N Mean Grouping
1 my+chess 2 0.0026980 A
1 mx+my 2 0.0002461 B
1 mx+chess 2 -0.0003598 B
2 mx+chess 2 -0.0015325 C
2 mx+my 2 -0.0016035 C
2 my+chess 2 -0.0020520 C

Means that do not share a letter are
significantly different.

%----------------------------------------------

Comparisons for eps_y

Tukey Pairwise Comparisons:
Response = eps_y, Term = Geometry*Strategy

Grouping Information Using the Tukey Method
and 97.5% Confidence

Geometry*Strategy N Mean Grouping
1 mx+chess 2 0.0062810 A
1 mx+my 2 0.0047320 B
1 my+chess 2 0.0037705 C
2 my+chess 2 0.0020275 D
2 mx+my 2 0.0019025 D
2 mx+chess 2 0.0016190 D

Means that do not share a letter are
significantly different.
c@FancyVerbLineefferent.

The inherent strains of every calibration strategy of
geometry 2 do not appear to be significantly different
from each other but they are significantly different
from the eigenstrains computed using the treatments
of geometry 1. This kind of incompatibility between
the calibrated results of the two geometries was al-
ready indirectly pointed out in the previous analysis
and these results support this conclusion.
Moreover, this comparison allows to discover another
problem: the strains computed for geometry 1 vary
significantly depending on the chosen calibration strat-
egy. This clearly highlights another critical behaviour
of the IS model: the tension build-up of geometry 1
treatments does not seem to respect the “Mechanical
Layer Equivalent” (MLE) principle, based on scan
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Table 8: Regression vs. software-based optimal inherent strains

Geometry Strategy Method ε∗
xx ε∗

yy

1 (1.1 mm)

mx+my
Regression 2.360E-04 4.699E-03
Software 2.561E-04 4.765E-03

mx+chess
Regression -3.741E-04 6.270E-03
Software -3.456E-04 6.292E-03

my+chess
Regression 2.668E-03 3.754E-03
Software 2.728E-03 3.787E-03

2 (2.2 mm)

mx+my
Regression -1.610E-03 1.887E-03
Software -1.597E-03 1.918E-03

mx+chess
Regression -1.573E-03 1.754E-03
Software -1.492E-03 1.484E-03

my+chess
Regression -1.778E-03 1.934E-03
Software -2.326E-03 2.121E-03

Table 9: ANOVA table for ε∗
xx and ε∗

yy analyses

Source DF P-Value

Geometry 1 0.000
Strategy 2 0.000
Method 1 > 0.500
Geometry*Strategy 2 0.000
Error 5
Total 11

strategy dependent inherent strain tensor rotation,
for residual stress state prediction.
The three couples of layer-plane eigenstrains com-

puted for the two geometries are plotted in Fig. 14.
From this graph it is possible to see that the optimal
x and y-direction inherent strains estimated for the
three strategies of geometry 2 fit in a much smaller
region than the ones of geometry 1.
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0.007
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Figure 14: Software optimized IS values

The smaller dispersion of the optimal strains com-
puted for the geometry 2 calibration strategies is the

reason of the better performance in prediction: in
fact, regardless of the chosen 2-treatments calibration
subset, the optimal set of strains does not vary sig-
nificantly. This means that the residual stress and
deformation state for all the treatments of this partic-
ular geometry is actually a function of the IS tensor
orientation.
On the contrary, for geometry 1, the choice of the
calibration subset affects much more the computation
of optimal eigenstrain values, which result to be much
more spread: this leads to a bigger error in predic-
tion on the validation treatment because the optimal
inherent strain values of the training subset are too
different from the optimal values of the validation
treatment.
The IS tensor compatibility found for geometry 2
treatments is not quite as valid for geometry 1 and
the calibration of the two geometries are incompat-
ible between each other because the optimal values
computed for the treatments of one geometry are
significantly different from the optimal values of the
other one.

In Tables 10 and 11, the numerical bending values
obtained for the 3 treatments of each geometry and
for the 3 calibration subsets are reported next to the
treatment’s mean 95% confidence interval (CI) upper
and lower bounds (UB, LB).
It is possible to notice that, while the calibrated subset
values always fall in the confidence interval region, the
predicted bending value for the validation treatment
of each strategy, highlighted in the tables, is always
outside.

The absolute difference between each numerical
bending value and the corresponding treatment mean
is reported in Table 12. A simple 1-sample t-test
(α = 0.05, null hypothesis H0: µi = f̄i,k) was also
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Table 10: Residual bending [µm] computed with geometry 1 calibration strategies

Treatment
CI [95%] Calibration strategy

LB UB mx+my mx+chess my+chess

1 -612.7 -524.5 -568.6 -568.6 -1124.0

2 -1381.6 -1207.0 -1294.3 -946.3 -1294.3

3 -1332.8 -1138.5 -1017.0 -1235.7 -1235.6

Table 11: Residual bending [µm] computed with geometry 2 calibration strategies

Treatment
CI [95%] Calibration strategy
LB UB mx+my mx+chess my+chess

4 201.6 256.2 228.9 231.5 372.1

5 -377.7 -253.0 -315.4 -229.4 -316.7

6 -58.2 -41.4 -121.5 -53.7 -50.2

Table 12: Absolute difference between numerical prediction and treatment mean [µm], t-test p-value in brackets

Treatment
Calibration strategy

mx+my mx+chess my+chess

1 0 (*) 0 (*) 555.4 (0.0000)
2 0 (*) 348 (0.0011) 0 (*)
3 218.7 (0.0056) 0.05 (*) 0.05 (*)

4 0 (*) 2.6 (*) 143.2 (0.0005)
5 0 (*) 86 (0.0219) 1.3 (*)
6 71.7 (0.0001) 3.9 (*) 0.4 (*)

(*): p-value � 0.05

carried out to statistically compare how far the pre-
dicted bending value f̄i,k for each k-th strategy is
from the experimental confidence interval of the i-th
treatment. Before doing the t-test, the normality of
the observations of all the 6 treatments was checked.
In absolute terms, the calibration strategies perform
better in prediction on geometry 2: for two out of
three calibration strategies, the difference between
the predicted bending and the validation treatment
mean is less than 100 µm. However, despite the larger
difference, from the comparison of the t-test p-values
it is possible to see that some predicted values of ge-
ometry 1 validation treatments, due to their larger
experimental variance, are less significantly different
from the treatment mean with respect to the ones
of geometry 2. Therefore, the results obtained from
separate calibration of the two geometries are not very
different in relative terms.
Furthermore, it is important to notice that calibration
strongly depends on the experimental mean of the
training subset’s treatments: in fact, the model proved
to be extremely flexible and the absolute difference
between calibrated model bending and the treatment

mean tends to 0. To improve the calibration perfor-
mance in prediction, it is crucial to correctly estimate
the real treatment mean, therefore the number of
replicates should be as high as possible.

In conclusion, inherent strain method worked very
well for one particular condition, but the bad per-
formance on the 1.1 mm geometry and the evident
incompatibility between the calibrated eigenstrains
of the two geometries still leave some questions open
about the real capabilities of this method for AM
simulation.

5. Conclusions and Future Developments

The in-depth analysis of the inherent strain method-
based AM simulation carried out in this paper allowed
to outline the strengths and the limitations of this
new technique for fast prediction of the residual stress
and deformation state.

The performance of two methods for inherent strain
components determination were studied against the
experimental results: (i) the original procedure, based
on the coupled simulations technique described in
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Section 3, and (ii) a new calibration-based approach,
in which part of the experimental measurements are
used to calibrate the output of the macro-scale IS
model.

The prediction capabilities of this original “submod-
elling” procedure were found to be very poor and far
from the extremely good results reported in [16]. This
behaviour could be caused by the lack of accuracy
of the thermo-mechanical simulation. The output
of the AM macro-scale model completely relies on
the computed eigenstrains of the meso-scale analysis
but a big uncertainty lies behind the results of the
thermo-mechanical simulation: this is because the
determination of the analysis parameters and coeffi-
cients is extremely critical and the propagation of the
possible input errors on the final results is not control-
lable. However, to clearly determine the accuracy of
the thermo-mechanical simulation, future studies will
focus on the experimental validation of the results of
the submodel via residual stress characterization.
The calibration-based approach, which was origi-

nally created to improve the prediction results, al-
lowed to examine in depth the IS method mechanisms.
The results of this study evidenced a departure from
the fundamental hypothesis on which the adapted
IS method for AM simulation is based. It was dis-
covered that when the calibration is carried out on
a subset of treatments of one geometry, the model
predicts fairly well the residual bending of the remain-
ing treatment of the same geometry, confirming the
validity of the eigenstrain tensor rotation method to
find the “Mechanical Layer Equivalent” (MLE); on
the other hand, this calibration strategy fails to pre-
dict the deformation of the other geometry. This kind
of incompatibility is the reason of the poor global
performance of most calibration strategies.
This discovery drew the attention on an unexpected
behaviour of the IS model. According to the fun-
damental hypothesis of this method, the inherent
strain values only depend on the thermal history of
the “scanned island” and should not be a function
of macroscopic dimensional characteristics such as
the upper thickness h. Since both of the geometries
were built using the same laser parameters they both
should have experienced the same thermal history but
they do not seem to respect the hypothesis of global
validity of the inherent strain tensor.
The only possible reason of this incompatibility is that
the thermal history experienced by the two geometries
is significantly different. If this is true, simulation re-
sults could be influenced by the total scanning area
size or by the job’s variety of components. Therefore,
to avoid affecting the simulation accuracy, serious
productivity limitations, such as maximum total scan-
ning area or job’s components homogeneity, would be
added to an already slow technology, thus reducing
the appeal of the simulation approach.

As evidenced by the results reported in this paper,
it is very easy to obtain a good fitting of the numer-
ical results after model calibration. In fact, the IS
based macro-scale model proved to be very flexible for

fitting on specific subsets of experimental data, but
it appeared very limited in providing real predictions.
Real prediction capabilities can only be checked with
proper validation because otherwise, if the model is
not tested outside of the calibration region, the effec-
tiveness of this method for AM simulation cannot be
judged.
This paper tries to bridge the literature gap on this
topic, featuring a complete validation procedure. How-
ever, additional experimental work will be required to
definitively determine if this simulation, after model
calibration, is really capable of predicting the residual
stress state outside of the calibration region.
In future studies it would be important to build the
calibration/validation geometries separately and on
a less “crowded” work plate to avoid any thermal
interactions:

• if the incompatibility problem is solved, further
testing should be carried out to assess the model
performance on completely different geometries,
keeping into account that thermal interaction can
strongly affect the residual deformation and thus
the accuracy of the simulation;

• otherwise, the fundamental geometry-
independence hypothesis of the inherent
strain tensor would be rejected. In this case,
the potential of this AM simulation technique
would be compromised due to the geometry
dependency and due to the limited prediction
capabilities, since the model, after calibration,
could only predict the residual stress state for
different scan strategies of the same calibration
geometry.

• to further investigate the geometry-independence
hypothesis, a third calibration option will be
tested: by using neutron diffraction [34, 35], the
residual strains can be measured over a small
representative region and then activated in the
macro-scale simulation to test again its prediction
capabilities. Neutron diffraction inspection will
then be employed to assess any residual strain dif-
ference between parts built with the same process
parameters but with different geometries.
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Appendix A. Experimental Campaign and
Results

For model validation, an experimental campaign
was carried out. The test specimen was built com-
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bining different process parameters and geometric
characteristics (see Fig. 7): it is a small cantilever
characterized by one principal post-process bending
direction. The parts were built using a laser-based
powder bed fusion machine, the Renishaw AM250
SLM system.
The FEA model implemented in this paper is capable
of reproducing the residual stress state of the compo-
nent; however, direct measurement techniques are very
complex and limited in experimentally reconstructing
the residual stress state of the real part. For this rea-
son, indirect evaluations are very practical: complex
residual stress states result in a global deformation of
the part after release from the working plate. In addi-
tion, deformation measurements are non-destructive
and much easier to carry out. Therefore, the response
variable analysed in this experimental campaign was
the maximum displacement along the building direc-
tion after part detachment from the working plate.
In the following sections, the experimental campaign
and the measuring technique is presented.

Appendix A.1. Experimental Campaign
A full factorial experimental campaign was created

to analyse the influence of two factors on the residual
stress state:

• 3 scanning strategies:

1. meandering pattern in x-direction (“mx”,
Fig. 8a);

2. meandering pattern in y-direction (“my”,
Fig. 8b);

3. chessboard pattern (“chess”, Fig. 8c);

• 2 upper thicknesses:

1. nominal thickness, 2.2 mm;
2. half of the nominal thickness, 1.1 mm;

for a total of 6 treatments replicated 4 times.

Figure A.15: Measuring technique
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Figure A.16: Individual value plot of the residual bend-
ing

In addition to these two factors, also x and y posi-
tion the specimen on the building plate are accounted
in the ANOVA analysis to reduce the sources of vari-
ability in the model.

The manufactured specimens attached to the work-
ing plate are shown in Fig. A.17. To avoid influencing
the specimen’s residual stress distribution, a “gen-
tle” release method, wire-cut EDM, was employed
to remove the parts from the base plate. Any other
technique could have affected the stress state and, as
a consequence, the residual bending of the cantilever.

Appendix A.2. Measuring Technique and Results
The measurements on the released specimens are

carried out using the Mitutoyo Quick Vision Pro, a
CNC vision measuring machine with edge detection
capabilities.
To measure the part residual bending, a 3 points

set, 1 point on each end of the cantilever and 1 cen-
tral point, has been acquired on the bottom of each
specimen, where the cut was performed, because of
the very low roughness. The central point is set to be
the origin of the reference system and the other points
are rotated around the origin by compensating the
slope of the linear polynomial that interpolates all the
points. Then, the mean vertical distance between the
central point and the two extreme points is computed.
Figure A.15 graphically displays the employed mea-
suring technique on the points acquired on specimen
1.

Each bending measurement was replicated 5 times
and its mean value was statistically analysed. For each
of the 24 specimens, the computed mean bending is
reported in Table A.13 next to the part number and
treatment description.

The data are plotted in Fig. A.16. Mean, standard
deviation and other descriptive statistics of the mea-
sured bending values for each treatment are reported
in Table A.14.
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Table A.13: Experimental plan results

Part Upper Scan x-coord y-coord Bending
thickness strategy [mm] [mm] [µm]

1 1.1 (-1) my (0) -0.991 -0.763 -1226.9
2 2.2 (1) mx (-1) -0.793 -0.863 250.7
3 1.1 (-1) mx (-1) -0.629 -1.000 -566.4
4 2.2 (1) chess (1) -0.268 -0.925 -52.0
5 1.1 (-1) chess (1) 0.024 -0.925 -1237.7
6 2.2 (1) mx (-1) 0.316 -0.925 228.1
7 1.1 (-1) chess (1) 0.607 -0.925 -1149.6
8 2.2 (1) my (0) 0.899 -0.925 -268.5
9 1.1 (-1) my (0) 0.899 0.010 -1281.3
10 2.2 (1) my (0) 0.607 -0.003 -310.0
11 1.1 (-1) mx (-1) 0.188 -0.127 -607.9
12 2.2 (1) my (0) -0.011 -0.041 -319.0
13 1.1 (-1) my (0) -0.198 0.084 -1311.3
14 2.2 (1) chess (1) -0.559 0.012 -54.0
15 1.1 (-1) chess (1) -0.851 0.012 -1266.5
16 2.2 (1) my (0) -1.000 0.171 -364.0
17 1.1 (-1) mx (-1) 1.000 0.729 -544.5
18 2.2 (1) mx (-1) 0.771 0.814 228.0
19 1.1 (-1) mx (-1) 0.607 0.948 -555.6
20 2.2 (1) chess (1) 0.316 0.950 -51.2
21 1.1 (-1) chess (1) 0.024 0.950 -1288.8
22 2.2 (1) mx (-1) -0.221 1.000 208.8
23 1.1 (-1) my (0) -0.559 0.948 -1357.7
24 2.2 (1) chess (1) -0.851 0.950 -42.1

Table A.14: Descriptive statistics of treatments

Scan Upper Descriptive stat. [µm]
strategy thickness Mean StDev Min Max Range

mx
1.1 mm -568.59 27.67 -607.85 -544.50 63.36
2.2 mm 228.88 17.13 208.76 250.65 41.89

my
1.1 mm -1294.31 54.84 -1357.74 -1226.91 130.82
2.2 mm -315.36 39.17 -363.98 -268.50 95.47

chess
1.1 mm -1235.68 61.06 -1288.85 -1149.64 139.21
2.2 mm -49.82 5.31 -54.03 -42.06 11.97
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(a) Magics plate top view (b) Built plate top view

(c) Lateral view (d) Lateral view

Figure A.17: Job’s digital model and built specimens

Appendix B. Auxiliary Models

The auxiliary models and the calculations made for
complete process characterization are developed in
this appendix section.

Appendix B.1. Convection Coefficients Computation
As reported in section 3, during the process, the

working area is subjected to forced convection during
the laser-on time and to natural convection during
the other operations. For forced convection, the mean
heat transfer coefficient hf can be computed from the
Nusselt number [36]:

Nu = hfL

k
= 0.664·Re1/2·Pr1/3 if Re < 5×105

(B.1)
The Reynolds and Prandtl numbers are defined as:

Re = ρwL

µ
(B.2)

Pr = cpµ

k
(B.3)

where ρ is the density, w is the velocity, µ is the
dynamic viscosity, cp is the specific heat and k is the
conductivity of the argon flow. L is a characteristic
length of the geometry analysed and, for the forced
convection case, it is equal to the length of the plate
(0.025 m). Table B.15 reports the physical properties
of argon.
The value of Pr can be easily computed and it is
equal to 0.6544. In order to compute Re, the velocity
of the fluid flow must be found. The recirculation

Table B.15: Physical properties of Argon

Physical property Unit Value

Density ρ [kg·m−3] 1.784
Dyn. viscosity µ [Pa·s] 2.23×10−5

Specific heat cp [J·(kgK)−1] 520
Conductivity k [W·(mK)−1] 0.01772
Molar mass MM [g·(mol)−1] 39.948
Adiabatic index γ [-] 1.67

compressor installed on the machine is a SCL K03-
MS MOR made by FPZ. The data-sheet reports a
maximum flow of 73 m3/h when rotating at 2900 rpm.
During the laser-on time, the compressor rotates at
20 Hz, 1200 rpm. Therefore, the new maximum flow
can be computed as:

Q1200rpm = 74 1200
2900 = 30.62 m3

h (B.4)

from the compressor affinity law.
Assuming a constant 0.03 friction factor, it is possible
to find the operating point intersecting the system’s
and the compressor’s curve (Fig. B.18).
The velocity of the fluid in the pipe (� 31.75 mm) is
equal to 10.22 m/s and the Mach number is equal to
0.0316, far below the 0.3 threshold, so the fluid can
be considered incompressible.
The gas is blown from 13 (� 12 mm) diffusers placed
on the right of the building chamber. The argon
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Figure B.18: Compressor’s operating point

velocity at the outlet can be found from:

w = V̇

Atot
= 0.0081

0.0015 = 5.5 m
s (B.5)

This value is used to compute Re from eq. (B.2), Nu
from eq. (B.1) and hf :

Re = 11003 (B.6)
Nu = 4.8832 (B.7)

hf = kNu

L
= 42.86 W

m2K (B.8)

For the computation of the natural convection coef-
ficient, the relation is [36]:

Nu = hnL

k
= 0.54 ·Ra1/4 (B.9)

where Ra is the Rayleigh number and the new char-
acteristic length L is defined as the ratio between the
area and the perimeter of the plate.
The Rayleigh number can be computed from the phys-
ical properties above, considering a mean ambient
temperature Tamb equal to 300 K (from the building
job’s log file), a mean top surface temperature Tsurf

equal to 324 K (obtained from a simplified thermal
simulation of the working plate) and approximating
argon to a perfect gas.

Ra = gβ(Tsurf − Tamb)L3ρ2cp

µk
= 802.46 (B.10)

where g is the gravity acceleration and β it the cubic
expansion coefficient, which is ≈ T−1

amb. The natural
convection coefficient hn can be computed from eq.
(B.9):

hn = kNu

L
= 8.15 W

m2K (B.11)
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Acronyms

ALE Arbitrary Lagrangian-Eulerian

AM Additive Manufacturing

BC Boundary Condition

CFD Computational Fluid Dynamics

DED Direct Energy Deposition

FEM Finite Element Method

FVM Finite Volume Method

IS Inherent Strain

LBM Lattice Boltzmann Method

LC Laser Cladding

PBF Powder Bed Fusion

RMSE Root Mean Square Error

SEBM Selective Electron-Beam Melting

SLM Selective Laser Melting
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