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Though there is considerable interest in using wall-suction to increase boundary

layer stability, stability analyses suggest that porous walls are inherently destabilizing.

We explore this contradiction by performing a spatial linear stability analysis of the

asymptotic suction boundary layer using a realistic model of wall suction. The porous

wall is modelled as a layer of rigid, homogeneous, isotropic, porous material of small

permeability, in which inertial effects may be neglected. The porous layer is bounded

above by a semi-infinite region in which a boundary layer is driven by a constant free-

stream velocity. The wall suction is created by applying a suction pressure to a semi-

infinite region below the porous layer. Our stability analysis takes account of the full

coupling between the flow fields in the boundary layer and suction region, governed by

the Navier-Stokes equations, and the flow in the porous layer, governed by the volume-

averaged Navier-Stokes equations. We find that small amounts of wall permeability

destabilize the Tollmien-Schlichting wave and cause a substantial broadening of the

unstable region. As a result, the stabilization of boundary layers by wall-suction is

substantially less effective and more expensive than what is predicted by classical

boundary layer theory.
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Nomenclature

Roman symbols

c = phase speed

d1 = boundary layer displacement thickness when the permeability is zero

d99 = boundary layer thickness when the permeability is zero

D = indicates d/dy

D = discrete holes diameter

f = admittance

F = non-dimensional frequency 106ω/Re

Fc = critical non-dimensional frequency

F = Forchheimer’s tensor

i = imaginary unit
√
−1

k = permeability

lf = characteristic length associated with the fluid phase of the porous layer

lsl = characteristic length associated with the solid phase of the porous layer

Lp = thickness of the porous layer

p = pressure

p̂ = planar wave pressure perturbation

p̃ = amplitude of planar wave pressure perturbation

pw = perturbation pressure at the wall

〈p〉f = intrinsic volume-averaged pressure

Ps = suction pressure

P∞ = free-stream pressure

r = radius of the averaging volume V

Re = Reynolds number

Rec = critical Reynolds number

t = time

ũ = amplitude of the streamwise velocity perturbation

U = non-dimensional streamwise laminar flow velocity
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〈U〉 = non-dimensional volume-averaged streamwise laminar flow velocity

U∞ = free-stream velocity

v = [u v w]T = velocity vector and its components

v̂ = [û v̂ ŵ]T = velocity vector of the planar wave perturbation and its components

ṽ = amplitude of the wall-normal velocity perturbation

ṽp = amplitude of the wall-normal velocity perturbation in the porous layer

v̌ = deviation velocity vector, i.e. v−〈v〉f

vmax = maximum allowed suction velocity

vmin = minimum allowed suction velocity

vs = suction velocity

vw = wall-normal perturbation velocity at the wall

〈v〉 = superficial volume-averaged velocity

〈v〉f = intrinsic volume-averaged velocity

〈v〉 = non-dimensional volume-averaged wall-normal laminar flow velocity

V = non-dimensional wall-normal laminar flow velocity

V = spherical volume used in the volume averaging process

Vf = volume of fluid in the averaging volume V

x, y, z = rectangular coordinates

Greek symbols

α = streamwise wavenumber

αi = imaginary part of the streamwise wavenumber α

αr = real part of the streamwise wavenumber α

β = spanwise wavenumber

δ1 = boundary layer displacement thickness when permeability is nonzero

δ99 = boundary layer thickness when permeability is nonzero

ε = porosity

γ = (1/
√
ε)− τ

κ = magnitude of the wave vector,
√
α2 + β2

µ = fluid viscosity
3



ν = kinematic viscosity

ω = frequency

ρ = fluid density

σ = non-dimensional permeability

σmax = maximum allowed non-dimensional permeability

σmin = minimum allowed non-dimensional permeability

τ = fluid-porous interface coefficient

η̃ = amplitude of the wall-normal vorticity perturbation

η̃p = amplitude of the wall-normal vorticity perturbation in the porous layer

Subscripts

c = indicates critical Reynolds number

f = identifies a quantity associated with the fluid phase of the porous layer

i = indicates imaginary part

max = indicates maximum value allowed

min = indicates minimum value allowed

p = indicates flow quantities evaluate within the porous layer

r = indicates real part

s = suction flow quantities

sl = identifies a quantity associated with the solid phase of the porous layer

w = wall flow quantities

1 = indicates boundary layer displacement thickness

99 = indicates boundary layer thickness

∞ = flow quantities at infinity

Superscripts

T = transpose vector

′ = indicates d/dy

′′ = indicates d2/dy2
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I. Introduction

This study is motivated by the increasing use of porous surfaces for passive and active flow

control in aerodynamic applications. Passive flow control using wall-suction, in which fluid is bled

from a high-pressure region to a low-pressure region through a porous surface, has been investigated

since the 1970’s for a broad range of applications. These include the reduction of drag on bluff

bodies [1], the reduction of shock-induced separation on transonic airfoils [2], laminar flow control

[3], aerodynamic maneuver control of tailless fighter aircraft [4], the reduction of unsteady lift forces

on airfoils [5], and the reduction of yawing moments on porous projectile forebodies [6, 7]. Efforts

towards active flow control include the microfabrication of valve arrays [8, 9] to intelligently control

wall suction. Success has been reported by integrating a self-actuated check valve into a small, thin-

membrane, flapping wing [8]. Kearney and Glezer [10, 11] have also demonstrated that actively

controlled suction distributed over a Clark-Y airfoil can beneficially alter aerodynamic forces and

moments by modifying the airfoil’s apparent aerodynamic shape.

Continuously distributed suction and injection of fluid through porous surfaces has also been

widely investigated as a means of stabilizing boundary layers, attenuating wall turbulence and

reducing skin friction drag in wall-bounded shear flows [12–14]. Most of these studies model wall

suction and injection by prescribing a desired wall-normal velocity on the porous surface while also

applying the no-slip condition. The validity of this approach is unclear because it neglects the flow

occurring within the pores of the surface. Experimental [16, 17] and theoretical [17–20] studies of

shear flows bounded by passive porous surfaces have shown that the fluid flow occurring within

the pores of the surfaces tends to promote early transition to turbulence. This destabilizing effect

can be dramatic, even when the permeability of the surface is small [18–20], and it appears to

contradict the objective of attenuating wall turbulence using wall-transpiration. Existing models

of flow control using wall-transpiration cannot consider this contradiction because they neglect the

flow occurring within the porous material. This neglect may limit the accuracy of these control

models, particularly because such models are usually based on the assumption that wall-bounded

shear flows are sensitive to near-wall phenomena.

The current study shows that the stabilization of boundary layers by suction through a porous
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surface is possible, but may not be as effective as predicted by classical stability analyses. To this

end, we extend previous theoretical stability analyses of fully developed channel flows bounded by

porous walls [17–19] to a new linear stability analysis of the asymptotic suction boundary layer

(ASBL) [21]. The ASBL is the simplest example of a drag reduction method that uses wall suction

to increase boundary layer stability. The ASBL forms through the application of uniform constant

wall suction to a flat plate boundary layer with constant free-stream velocity, U∞. Due to the

suction, the boundary layer stops growing after a sufficient downstream distance from the leading

edge, and is significantly more stable than a Blasius boundary layer [22]. The wall suction increases

stability by reducing the boundary layer’s thickness and by altering the laminar velocity profile

such that less energy is transferred from the base-flow to disturbances. As a result, the ASBL has

a critical Reynolds number around 54370 [23], which is two orders of magnitude greater than that

for a Blasius boundary layer, which is around 520 [24]. Unless otherwise specified, the Reynolds

number throughout this study is defined as Re = ρU∞δ1/µ, where ρ and µ are the fluid density and

viscosity, respectively, U∞ is the free-stream velocity, and δ1 is the boundary layer displacement

thickness.

Experimentally, wall suction has been implemented using spanwise slots, discrete holes, and

wholly porous materials. One advantage of applying suction through discrete holes is that a skin with

discrete holes can continue to act as a continuous structural member [25]. The main disadvantage is

that discrete holes can produce three-dimensional effects, such as streamwise vortices, that provoke

early transition. MacManus and Eaton [26] have shown that discrete holes do not provoke early

transition when the ratio of their diameter, D, to the boundary layer’s displacement thickness is

less than 0.6, i.e. D/δ1 < 0.6. Wholly porous materials are often used [27–29] because they provide

a uniform suction velocity without provoking three-dimensional effects, and can be manufactured

cheaply. In wind-tunnel experiments of a NACA 64A010 airfoil with a fully porous sintered bronze

skin, Braslow et al. [30] observed full chord laminar flow up to a chord Reynolds number of 1.98 x 107.

This corresponded to a net drag reduction of around 60 %. Reynolds and Saric [28] and Reed and

Nayfeh [31] have also found that suction applied through wholly porous strips can be as effective

as suction applied continuously over a much longer streamwise length. For discussion of the design
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Suction Region

Fig. 1 Geometry and laminar velocity profile, not to scale, of the asymptotic suction boundary

layer considered in the current study.

considerations of wall transpiration, we refer readers to references [12, 13, 27, 32–34].

Suction through a wholly porous layer is usually implemented experimentally by applying a

pressure gradient to a layer of homogeneous porous material [22, 27, 29, 30], as illustrated in Fig. 1.

The pressure gradient may be applied using a pump or by leveraging an existing pressure differential

between the two sides of the porous layer. In contrast, previous theoretical studies of the ASBL

model the effect of the porous layer on the laminar base-flow through a pair of boundary conditions.

These are the prescription of the no-slip boundary condition as well as a desired wall-normal velocity,

v = −vs where vs > 0, on the porous surface. Linear stability analyses also assume that velocity

perturbations vanish at the wall. These assumptions neglect the penetration of the base-flow and

perturbations into the porous layer and underlying suction region. In the current study, we find

these assumptions have a major impact on the stability of the ASBL at medium-high Reynolds

numbers (i.e. Re ∼ 104). For the limited range of low Reynolds numbers previously studied,

300 ≤ Re ≤ 1200, however, there is generally good agreement between classical modelling and

experimental studies [29, 35–39].

The geometry of the ASBL considered in the current study is shown in Fig. 1. We consider

a fluid-saturated, homogeneous, isotropic, rigid, porous layer of thickness Lp at a zero angle of

incidence. The porous layer is bounded above by a semi-infinite fluid region at constant pressure,

P∞, in which a boundary layer is driven by a constant free-stream velocity, U∞. The porous layer is
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bounded below by a semi-infinite fluid region maintained at a constant suction pressure, Ps < P∞.

The pressure difference across the porous layer drives a wall-normal suction velocity, vs. We refer to

the regions above and below the porous layer as the “boundary layer region” and “suction region,”

respectively. Note that the streamwise laminar flow, u(y), extends from the boundary layer region

into the porous layer (see Fig. 1). We restrict our study to porous layers of sufficiently large

thickness and sufficiently small permeability such that the laminar streamwise velocity, u(y), decays

to zero within the porous region. We model the flow in the porous layer using a volume-averaged

approach developed by Whitaker [40] and Ochoa-Tapia and Whitaker [41]. Although, this model

is most readily applicable to wholly porous materials, it can be easily extended to the case of

densely packed discrete holes by considering an anisotropic porous layer with zero permeability in

the directions tangential to the wall. We perform a fully coupled, three-dimensional, spatial, linear

stability analysis of the laminar flow in the boundary layer, porous layer, and suction regions. Our

results are most applicable to suction controlled boundary layers whose thickness is nearly constant,

and for which the magnitude of the suction velocity is small with respect to the freestream velocity.

To put the model we use for the flow in the porous layer in perspective, we briefly outline

previous pertinent work. In 1856, Darcy developed the first empirical law governing Stokes flow

through porous media [42]. Beavers and Joseph [15] proposed the first interface condition coupling

a laminar channel flow with an adjacent porous flow governed by Darcy’s law. The condition results

in a velocity discontinuity at the interface. Whitaker [40] analytically derived general porous flow

equations by volume averaging the Navier–Stokes and continuity equations. Subsequently, Ochoa-

Tapia and Whitaker [41, 43, 44] analytically derived interfacial momentum transfer conditions that

couple a homogeneous fluid flow with an adjacent porous flow. Recently, these interface conditions

have been further developed by Valdés-Parada and co-workers [45, 46]

To our knowledge, Beavers, Sparrow and Magnuson [16] were the first to experimentally investi-

gate the destabilizing effects of wall permeability in channel flows. Subsequently, Sparrow et al. [17]

experimentally investigated the critical Reynolds numbers for channels with one porous wall, and

performed a two-dimensional linear stability analysis using Darcy’s law with the Beavers and Joseph

[15] interface condition. They found, both experimentally and numerically, that wall permeability
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decreased the critical Reynolds number with respect to the value for a channel flow with imperme-

able walls. Tilton and Cortelezzi [18, 19] performed a three-dimensional linear stability analysis of

channel flows with one or two porous walls using the governing equations of Whitaker [40] with the

interface conditions of Ochoa-Tapia and Whitaker [41]. Their results are restricted to small perme-

abilities for which inertial effects in the porous regions can be neglected. They found that the overall

stability of a channel flow with porous walls is dictated by several competing mechanisms. Briefly,

the penetration of wall-normal velocity perturbations into the porous walls is destabilizing, while

the presence of a wall-tangential interface velocity is stabilizing. In the majority of the parameter

space explored, Tilton and Cortelezzi [19] found the destabilizing effects dominated.

The volume-averaged approach used in the current study helps address the broader issue of how

to best model porous surfaces for boundary layer control. Previous studies have mainly investigated

the stability of boundary layers over porous walls by assuming the wall-normal perturbation velocity

passing through the porous wall, vw, can be coupled to the perturbation pressure at the wall, pw, by

introducing the concept of an admittance f , such that vw = f pw [3, 48, 49]. The no-slip condition

is applied to the fluid velocity tangential to the wall, and the laminar base-state is unaffected by the

porous surface. This approach has produced mixed results. Lekoudis [49] derived a relationship for

f for the case of perforated plates. Unfortunately, several inconsistencies in his derivation limit the

reliability of his results (see Tilton [20] for details). Subsequently, Carpenter and Porter [3] treated

the admittance as a complex number that is prescribed. This, however, neglects the flow within the

porous wall, and does not address the more fundamental question of how f could be determined for

actual porous materials. To our knowledge, the volume-averaged approach considered in the current

study has never been applied to wall-suction; however, the interface conditions of Ochoa-Tapia and

Whitaker [41] have been successfully applied to investigate laminar boundary layers over permeable

wedges in the absence of suction [47].

This article is organized in the following manner. In §II, we outline the governing equations.

In §III, we derive a general analytic expression for the laminar profile and illustrate the effects

of permeability on the boundary layer thickness and displacement thickness. In §IV, we non-

dimensionalize the problem and derive the linear stability equations and interface conditions. In
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§V, we present the linear stability results and compare our results with the experimental results of

Fransson and Alfredsson [29]. We present our conclusions in §VI.

II. Governing Equations

The flow of an incompressible viscous fluid in the boundary layer and suction regions (see Fig.

1) is governed by the Navier–Stokes and continuity equations,

ρ

(
∂v

∂t
+ v·∇v

)
= −∇p+ µ∇2v, (1)

∇·v = 0, (2)

where v = [u v w]T , p, ρ, and µ, are the fluid velocity vector, pressure, density, and viscosity,

respectively.

The fluid flow within the porous layer (see Fig. 1) is also governed by equations (1)–(2) with

no-penetration and no-slip conditions at the fluid–solid interfaces of the medium. The resulting

boundary value problem, however, is prohibitively difficult due to the complex boundary conditions.

Figure 2 illustrates a general porous material in which the smallest length scales, lf and lsl, are on

the order of an average pore and particle diameter, respectively. The largest characteristic length

scale is the thickness of the porous layer, Lp. The method of volume averaging simplifies the problem

by averaging equations (1) and (2) over a small spherical volume, V, of radius r � Lp. The length

scales are assumed to be well separated, lsl ∼ lf � r � Lp [40]. Every point in a volume-averaged

flow field has a volume-averaged velocity and pressure such that the porous medium is treated as a

continuum. Two different averages are used [40]. The superficial volume average of some function,

ψ, associated with the fluid is defined as

〈ψ〉 = 1

V

∫
Vf

ψ dVf ,

and the intrinsic volume average is defined as

〈ψ〉f =
1

Vf

∫
Vf

ψ dVf ,

where Vf < V is the volume of fluid in the averaging volume, V. The two averages are related by

〈ψ〉 = ε〈ψ〉f , where ε = Vf/V is the porosity.
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Fig. 2 Sketch of a porous medium with complicated fluid–solid interfaces. Not to scale

The volume-averaged Navier–Stokes and continuity equations derived by [40] for an incompress-

ible viscous fluid flowing through a rigid, homogeneous, isotropic, porous medium are

ρ

ε

(
∂〈v〉
∂t

+
〈v〉·∇〈v〉

ε
+∇·〈v̌v̌〉

)
= −∇〈p〉f +

µ

ε
∇2〈v〉 − µ

k
〈v〉 − µ

k
F·〈v〉, (3)

∇·〈v〉 = 0. (4)

The superficial volume-averaged velocity, 〈v〉, is the preferred representation of the velocity because

it is always solenoidal. For the pressure, the intrinsic volume average, 〈p〉f , is preferred because it is

the pressure measured by a probe in an experimental apparatus. The permeability, k ≥ 0, measures

the resistance to fluid flow. If k = 0, the medium is impermeable. In equation (3), the Darcy

term, µ〈v〉/k, represents a volume-averaged viscous drag, while the Forchheimer term, µF·〈v〉/k,

where F is a second-order tensor, represents a drag due to inertial effects. The tensor F depends

on the structure of the porous medium. Experimentally it is often found to be a linear function

of the volume-averaged velocity, 〈v〉, [40]. The deviation velocity, v̌ = v−〈v〉f , is the difference

between the velocity, v, and the intrinsic volume-averaged velocity, 〈v〉f . It is important to note

that volume averaging the convective term, ρ(v·∇v), in the Navier–Stokes equation (1) generates

the terms ρ(〈v〉·∇〈v〉)/ε2, ρ(∇·〈v̌v̌〉)/ε, and µF·〈v〉/k in equation (3).

The adjacent fluid flows in the boundary layer region, porous layer, and suction region are

coupled at y = 0 and y = −Lp using momentum transfer conditions derived by Ochoa-Tapia and

Whitaker [41, 43, 44]. When inertial effects are non-negligible in the porous layer, these conditions

are quite complex and involve a vector and fourth-order tensor that must be determined experi-
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mentally [44]. Because there are currently no published data for these quantities, we restrict our

analysis to flows for which the inertial effects can be ignored in the porous layer. This also allows us

to neglect the convective terms ρ(〈v〉·∇〈v〉)/ε2, ρ(∇·〈v̌v̌〉)/ε, and µF·〈v〉/k in equation (3). This

assumption is only valid for porous media of small permeability in which the flow velocities are

small with respect to the characteristic velocity in the purely fluid regions. The convective effects

become negligible because the dense structures of the porous matrix impede motion between layers

of fluid. We thus limit our study to permeabilities for which the fluid velocity in the porous region

is much smaller than the free-stream velocity, 〈v〉 � U∞. Following this assumption, the temporal

term, ρ(∂〈v〉/∂t)/ε, in equation (3) is likely small compared to the Darcy term [17, 40]. However,

we retain it because we expect the unsteady effects of the purely fluid regions to penetrate slightly

into the porous layer.

The governing equations (3)-(4) for the porous layer reduce to

ρ

ε

∂〈v〉
∂t

= −∇〈p〉f +
µ

ε
∇2〈v〉 − µ

k
〈v〉, (5)

∇·〈v〉 = 0. (6)

The momentum transfer conditions at y = 0 and −Lp are

v = 〈v〉, p = 〈p〉f , (7)

1

ε

∂〈u〉
∂y

− ∂u

∂y
= ± τu√

k
,

1

ε

∂〈w〉
∂y

− ∂w

∂y
= ± τw√

k
. (8)

Note from (7)–(8) that the velocity and pressure at an interface are continuous, while the shear

stress has a jump proportional to the interface coefficient τ which accounts for the distribution of

momentum at the interface [41, 43]. The coefficient τ depends on a porous material’s structure as

well as the surface machining of the interface and must usually be determined experimentally. In a

comparison with experiments, Ochoa-Tapia and Whitaker [43] found that τ varied roughly between

−1.0 and 1.5 and can also be zero (Brinkman’s condition). When applying conditions (8) at the

lower interface, y = −Lp, a negative sign precedes τ because the normal vector is defined as pointing

into the purely fluid region. Hereinafter, we use the symbol ± to indicate that a positive sign is
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used at the upper interface, y = 0, and a negative sign is used at the lower interface, y = −Lp. The

converse is true of the symbol ∓.

III. Laminar Velocity Profile

In this section, we explore the effects of wall permeability on the fully developed laminar velocity

profile of the ASBL. We assume the free-stream velocity, U∞, free-stream pressure, P∞, and the

suction pressure, Ps, are all constant, see Fig. 1. Suction is applied from the leading edge of the

plate onwards. After a sufficient downstream distance, the fully developed laminar velocity profile

is a function of the wall-normal coordinate, y, only. Equations (1)–(2) governing the boundary layer

region, y ≥ 0, and suction region, y ≤ −Lp, simplify to

v
du

dy
= ν

d2u

dy2
, p =


P∞, y ≥ 0

Ps, y ≤ −Lp

, (9)

where v is constant. In the porous region, equations (5)–(6) simplify to

〈u〉 = k

ε

d2〈u〉
dy2

, 〈v〉 = −k
µ

d〈p〉f

dy
, (10)

where d〈p〉f/dy = (P∞ − Ps)/Lp is a positive constant. The adjacent flows are coupled by the

momentum transfer conditions at y = 0 and y = −Lp,

u = 〈u〉, v = 〈v〉, 1

ε

d〈u〉
dy

− du

dy
= ± τu√

k
. (11)

In the boundary layer region, we apply the freestream condition u → ∞ as y → ∞. In the suction

region, we require u to remain bounded as y → ∞.

We find the following solution to equations (9)–(11),

u = U∞ +

[
H
(
1 +Ae−2Lp

√
ε/k
)
− U∞

]
e−yvs/ν , v = −vs, y ≥ 0, (12)

〈u〉 = H

[
ey
√

ε/k +Ae(−2Lp−y)
√

ε/k

]
, 〈v〉 = −vs, −Lp ≤ y ≤ 0, (13)

u =
2H

1− τ
√
ε
e−Lp

√
ε/k, v = −vs, y ≤ −Lp, (14)

where

H =
vsU∞

ν

[
1√
kε

+
vs
ν

− τ√
k
−
(

1√
kε

− vs
ν

+
τ√
k

)
Ae−2Lp

√
ε/k

]−1

, A =
1 + τ

√
ε

1− τ
√
ε
,
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and vs = k(d〈p〉f/dy)/µ is the magnitude of the wall suction. In the current study, we consider

values of Lp, k, and ε such that exp(−Lp

√
ε/k) is always less than 10−100. Consequently, equations

(12)–(14) simplify to

u = U∞

(
1− γν

γν + vs
√
k
e−yvs/ν

)
, v = −vs, y ≥ 0, (15)

〈u〉 = U∞

(
vs
√
k

γν + vs
√
k

)
ey
√

ε/k, 〈v〉 = −vs, −Lp ≤ y ≤ 0, (16)

u = 0, v = −vs, y ≤ 0, (17)

where γ = (1/
√
ε)− τ .

When the permeability tends to zero, k → 0, equations (15)–(17) reduce to the following solution

used in all previous studies of the ASBL,

u = U∞

(
1− e−yvs/ν

)
, v = −vs, y ≥ 0. (18)

In this case, an infinite pressure gradient, d〈p〉f/dy, is necessary to provide a finite suction velocity,

vs. The laminar velocity profile (18) has a displacement thickness d1 = ν/vs, and a boundary

layer thickness d99 = d1 ln(100). We reserve the symbols d1 and d99 to represent the displacement

thickness and boundary layer thickness, respectively, when the permeability is zero, k = 0.

To investigate the effects of permeability on the laminar velocity profile (15)–(17), we non-

dimensionalize it using the characteristic length scale d1 = ν/vs and the characteristic time d1/U∞,

obtaining

U =
u

U∞
= 1− γ

γ + σ
e−y/d1 , V =

v

U∞
= − 1

Re
,

y

d1
≥ 0, (19)

〈U〉 = 〈u〉
U∞

=
σ

γ + σ
e(y/d1)

√
ε/σ, 〈V 〉 = 〈v〉

U∞
= − 1

Re
, −Lp

d1
≤ y

d1
≤ 0, (20)

U = 0, V = − 1

Re
,

y

d1
≤ −Lp

d1
, (21)

where Re = U∞d1/ν = U∞/vs, and σ =
√
k/d1 is the non-dimensional permeability that may be

interpreted as the ratio between a length scale characterizing the permeable material,
√
k, and
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Fig. 3 The streamwise laminar velocity profile of the ASBL using the parameters Lp = 2d1,

ε = 0.95, τ = 0.194, σ = 0 (dashed line) and σ = 0.3 (solid line).

a length scale characterizing the boundary layer thickness [15]. We use capital italics to repre-

sent the non-dimensionalized laminar flow in the purely fluid regions, [U V 0]T , and porous layer,

[〈U〉 〈V 〉 0]T .

The dashed line in Fig. 3 illustrates the profile of the laminar streamwise velocity of the ASBL,

when σ = 0. The streamwise velocity is zero for y ≤ 0. The solid line illustrates the profile when

ε = 0.95, τ = 0.194, and σ = 0.3. These values correspond to Foametal, a porous material used

in experiments by Beavers and Joseph [15]. The non-dimensional permeability, σ, is set to a large

value for illustration purposes. Due to the non-zero permeability, there is a streamwise laminar

velocity at the porous interface, y = 0, that decays monotonically within the porous layer. As a

result, the displacement thickness, δ1, and boundary layer thickness, δ99, of the laminar velocity

profile (15) decrease and can be expressed in terms of d1 and σ as

δ1 = d1
γ

γ + σ
, δ99 = d1 ln

(
100

γ

γ + σ

)
. (22)

We reserve the symbols δ1 and δ99 to represent the displacement thickness and boundary layer thick-

ness, respectively, when the permeability is nonzero, σ 6= 0. Note that δ1 and δ99 are independent

of U∞ in an ASBL. In an experiment, δ1 and δ99 can be varied by changing the suction velocity, vs.

For a fixed suction velocity, vs, the Reynolds number, Re = U∞/vs, can be varied by changing the

free-stream velocity, U∞.
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IV. The Fully Coupled Linear Stability Problem

Consistent with previous studies and with the non-dimensionalization of the laminar velocity

profile (19)–(21), we non-dimensionalize the governing equations (1)–(2) and (5)–(6) and interface

conditions (7)–(8) using the characteristic length, d1 = ν/vs, and characteristic time, d1/U∞. We

define the non-dimensional pressure as p/ρU2
∞. All subsequent equations and parameters are non-

dimensional except when explicitly noted. We refer to the non-dimensional thickness of the porous

layer as Lp. The non-dimensional governing equations in the boundary layer and suction regions

are

∂v

∂t
+ v·∇v = −∇p+ 1

Re
∇2v, ∇·v = 0, (23)

while the non-dimensional governing equations in the porous layer are

1

ε

∂〈v〉
∂t

= −∇〈p〉f +
∇2〈v〉
εRe

− 〈v〉
σ2Re

, ∇·〈v〉 = 0. (24)

The non-dimensional momentum transfer conditions at y = 0 and y = −Lp are

v = 〈v〉, p = 〈p〉f , (25)

σ

ε

∂〈u〉
∂y

− σ
∂u

∂y
= ±τu, σ

ε

∂〈w〉
∂y

− σ
∂w

∂y
= ±τw. (26)

We analyze the stability of the fully developed laminar flow in the boundary layer and suction

regions with respect to small planar wave perturbations, v̂ = [û v̂ ŵ]T and p̂, of the form v̂

p̂

 =

 ṽ(y)

p̃(y)

 ei(αx+βz−αct), (27)

where i =
√
−1. The perturbations v̂ and p̂ travel in the direction (α, 0, β) with streamwise and

spanwise wavenumbers α and β, respectively, a phase speed c, a frequency ω = αc, and a wall-normal

structure prescribed by ṽ(y) and p̃(y). We consider a spatial analysis for which ω and β are real,

while α = αr + iαi, ṽ(y) and p̃(y), are generally complex. Assuming x > 0, a velocity perturbation,

v̂(x, y, z, t) = ṽ(y)e−αixei(αrx+βz−ωt),

is unstable if αi < 0. As will be shown later, the spatial approach used here is more complicated than

a temporal linear stability analysis because the spatial approach produces a nonlinear eigenvalue
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problem for α. Increasingly, current studies prefer the spatial approach because it corresponds more

closely to experiments in which a disturbance is introduced at an upstream location and develops

spatially as it flows downstream.

The linear stability equations for the boundary layer and suction regions are obtained by sub-

stituting v = [U + û V + v̂ ŵ]T and p = P + p̂, into equations (23) and linearizing. Equation (27)

is then used to obtain the following linear stability equations

[
(αU − αc− iVD)

(
D2 − κ2

)
− αU ′′ − 1

iRe
(
D2 − κ2

)2 ]
ṽ(y) = 0, (28)

[
(αU − αc− iVD)− 1

iRe
(
D2 − κ2

) ]
η̃(y) = −βU ′ṽ, (29)

where a prime and D both denote d/dy, κ =
√
α2 + β2, ṽ is the amplitude of the wall-normal

velocity perturbation, and η̃ = ∂ũ/∂z − ∂w̃/∂x is the amplitude of the wall-normal vorticity per-

turbation, respectively. Equations (28) and (29) are modified forms of the Orr-Sommerfeld and

Squire equations, respectively, with added terms to account for the wall-normal laminar flow, V .

Throughout our study, we simply refer to equations (28) and (29) as the Orr-Sommerfeld and Squire

equations, respectively.

We assume that perturbations in the porous layer have wave-like forms given by 〈v̂〉

〈p̂〉f

 =

 ṽp(y)

p̃p(y)

 ei(αx+βz−αct), (30)

so that perturbations in the porous layer have identical wavenumbers and phase speeds as perturba-

tions in the purely fluid regions. The linear stability equations for the porous region are obtained by

substituting expressions (30) into equations (24) and rearranging the resulting equations for ṽp(y)

and p̃p(y) into the following counterparts to the Orr-Sommerfeld and Squire equations

[
− c

(
D2 − κ2

)
− 1

iαRe
(
D2 − κ2

)2
+

ε

iασ2Re
(
D2 − κ2

) ]
ṽp(y) = 0, (31)

[
− c− 1

iαRe
(
D2 − κ2

)
+

ε

iασ2Re

]
η̃p(y) = 0, (32)

where ṽp and η̃p are the amplitudes of the wall-normal velocity and vorticity perturbations, respec-

tively, in the porous layer. Because inertial effects have been neglected in the porous layer, equations
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(31)–(32) lack any term directly coupling the disturbances in the porous layer with the laminar ve-

locity in the porous layer. For the same reason, equation (32) is homogeneous unlike the Squire

equation (29). However, the stability equations (31) and (32) have new terms, ε
(
D2 − κ2

)
/iασ2Re

and ε/iασ2Re, respectively, arising from the Darcy drag term.

The current study is mainly interested in the least stable eigenmode, called the Tollmien-

Schlichting wave, because it determines the critical Reynolds number. Because the Tollmien-

Schlichting wave vanishes in the far-stream [50, 51], we apply the far-stream boundary conditions,

η̃

∣∣∣∣
y→∞

= ṽ

∣∣∣∣
y→∞

=
dṽ

dy

∣∣∣∣
y→∞

= 0, (33)

We impose similar boundary conditions in the suction region,

η̃

∣∣∣∣
y→−∞

= ṽ

∣∣∣∣
y→−∞

=
dṽ

dy

∣∣∣∣
y→−∞

= 0. (34)

Using the momentum transfer conditions (25)–(26), we derive the following coupling conditions at

the interfaces y = 0 and y = −Lp,

ṽ = ṽp,
dṽ

dy
=

dṽp
dy

, −σ
ε

d2ṽp
dy2

+ σ
d2ṽ

dy2
= ∓τ dṽ

dy
, (35)

1

εRe
d3ṽp
dy3

− 1

Re
d3ṽ

dy3
− iαU ′ṽ + V

d2ṽ

dy2

+

[(
1

ε
− 1

)(
iαc− κ2

Re

)
− 1

σ2Re
+ iαU

]
dṽ

dy
= 0, (36)

η̃ = η̃p,
σ

ε

dη̃p
dy

− σ
dη̃

dy
= ±τ η̃. (37)

For a given combination of ω, β, and Re, equations (28)–(29) and (31)–(32), coupled with

the appropriate interface and boundary conditions (33)–(37), pose an eigenvalue problem for the

eigenvalue α and eigenfunctions ṽ and η̃. The eigenmodes can be separated into two complementary

sets. The eigenmodes found by solving the coupled equations (28) and (31) are referred to as the

Orr-Sommerfeld modes [19, 52]. When ṽ = 0, the coupled equations (29) and (32) produce a second

set modes referred to as the Squire modes.

We solve the fully coupled linear stability problem using the Chebyshev spectral method de-

scribed in detail by [19] and [20]. We find that the required number of Chebyshev polynomials

increases as the permeability, σ, decreases. For this reason, we set the minimum allowable perme-

ability to σmin = 0.0001.
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Fig. 4 The laminar velocity profiles for Lp = 2, ε = 0.95, τ = 0.194, σ = 0 (dashed line) and

σ = 0.003 (solid line): (a) full view; (b) magnified view at the interface y = 0. The porous

region is shaded grey.

V. Results

We perform a series of numerical experiments in which we fix the porosity, ε = 0.95, and inter-

face coefficient, τ = 0.194, so the porous layer behaves like Foametal [15]. We choose this material

because Tilton and Cortelezzi [19] found it affects the stability of channel flows in a qualitatively

similar manner to a wide range of porous materials. We vary the non-dimensional permeability, σ,

between σmin = 0.0001 and σmax = 0.003. This procedure is similar to a laboratory experiment

in which σ =
√
kvs/ν is varied by changing the suction velocity. In a laboratory experiment, the

non-dimensional thickness of the porous layer, Lp, also varies with vs. In our numerical experiment,

however, the number of Chebyshev polynomials necessary for the numerical solution increases sig-

nificantly as Lp increases [20]. For numerical convenience, we fix Lp and vary only σ. We begin by

characterizing our results when Lp = 2, and then repeat our computations using Lp = 4, 6, and 8.

Tilton and Cortelezzi [19] found that inertial effects in the momentum transfer conditions of

Ochoa-Tapia and Whitaker [44] increase with the product of the laminar interface velocity, non-

dimensional permeability, and Reynolds number, i.e. U(0)σRe. We perform a similar analysis and

estimate that inertial effects are negligible below σmax = 0.003 when ε = 0.95, τ = 0.194, and

Lp ≤ 8 [20]. Figure 4(a) illustrates the laminar velocity profiles for σmax = 0.003 (solid line) and

σ = 0 (dashed line). Though the profiles appear indistinguishable, the magnified view in Fig. 4(b)
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demonstrates a small laminar interface velocity of U(0) = 0.359 % U∞ when σ = σmax.

We compare our stability results for 0.0001 ≤ σ ≤ 0.003, with the results of a linear stability

analysis that neglects the effects of wall-permeability. These are computed, as in all previous studies,

by substituting σ = 0 into equations (19)–(21) and solving the stability equations (28)–(29) with

the boundary conditions η̃ = ṽ = Dṽ = 0 at y = 0, and the far-stream conditions (33). We validate

our results for σ = 0 by comparison with previously published studies. We validate results for finite

permeabilities, 0.0001 ≤ σ ≤ 0.003, by verifying that our results for σmin = 0.0001 approach the

results for σ = 0, and by comparison with the experimental results of Fransson and Alfredsson [29].

A. Effects of Wall Permeability on the Tollmien-Schlichting Wave

The Orr-Sommerfeld and Squire spectra of the ASBL are composed of several continuous spectra

and a small number of discrete modes [20, 52]. We find that wall permeability destabilizes neither the

Squire modes nor the continuous spectra, but significantly destabilizes the discrete Orr-Sommerfeld

mode known as the Tollmien-Schlichting (TS) wave (consistent with [19]). Furthermore, we find

that Squire’s theorem [52] remains valid such that the stability of the TS wave is minimized for

two-dimensional perturbations with a spanwise wavenumber of zero, β = 0.

The solid line in Fig. 5(a) illustrates the trajectory of the complex eigenvalue, α = αr + iαi,

associated with the TS wave as the permeability increases from σmin = 0.0001 to σmax = 0.003

for the constant parameters Lp = 2, F = 0.803805, β = 0, and Re = 40000. To be consistent

with previous spatial linear stability analyses, we use the non-dimensional frequency F = 106ω/Re

[52]. The trajectory is generated using F = 0.830805 to facilitate comparison with the temporal

linear stability results of Tilton [20]. The dash-dotted line marks the real axis, αi = 0, and the circle

centered at α = 0.1994+i0.002997 shows the complex wavenumber of the TS wave for the case σ = 0.

At σmin = 0.0001, the TS wave is stable and has the complex wave number α = 0.1994 + i0.002939

that agrees with the result for σ = 0 up to four decimal places. Recall that a perturbation is

unstable when αi < 0. When σ = 0.00071, the TS wave is neutrally stable, αi = 0, and has the real

wavenumber α = 0.2. When σ = 0.003, the wave is unstable and has the complex wave number

α = 0.1908− i0.05526.

Figure 5(b), illustrates the eigenfunctions ṽ(y) (solid line) and p̃(y) (dashed line) of the TS
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Fig. 5 Effects of wall permeability on the TS wave when Lp = 2, β = 0, F = 0.803805, and

Re = 40000. (a) Trajectory of the complex eigenvalue, α = αr + iαi, as σ increases from

σmin = 0.0001 to σmax = 0.003. The eigenvalue for the case σ = 0 is circled. The real axis, αi = 0,

is represented as a dash-dotted line. (b) The eigenfunction magnitudes |ṽ| (solid line) and

|p̃| (dashed line) at σmax = 0.003. The porous region is shaded grey. (c) The eigenfunction

magnitude |ũ| (solid line) at σmax = 0.003. (d) Magnified view of |ũ| at the upper interface

y = 0. (e) Magnified view of |ũ| at the lower interface y = −2.

wave in Fig. 5(a) at σmax = 0.003. For brevity, only the magnitudes, |ṽ(y)| and |p̃(y)|, of the

complex eigenfunctions are shown. Hereinafter, all eigenfunctions are scaled so their maxima equal

unity. We observe that the wall-normal velocity of the TS wave has a significant magnitude, |ṽ|,

throughout the porous layer and vanishes asymptotically in the far-stream, y → ∞, and far suction

region, y → −∞. The wall-normal perturbation velocity in the porous layer is likely driven by

the perturbation pressure whose magnitude, |p̃|, has a maximum at y = 0 and a nearly linear

drop, d|p̃|/dy, across the porous layer. Figure 5(c) illustrates the eigenfunction |ũ| describing the
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Fig. 6 Velocity vectors (panel a) and streamlines (panel b) produced by the TS eigenfunctions

ũ and ṽ when Lp=2, β=0, F =0.803805, Re=40000, and σ = 0.003. In both panels, the range of

the x-axis covers two wavelengths, i.e. 0 ≤ x ≤ 4π/αr. In panel (a), the arrows representing

the velocity vectors have been scaled up for y < 0, in comparison to the scaling for y > 0, to

aid in visualization.

streamwise velocity of the TS wave when σ = σmax. Figures 5(d) and 5(e) show magnifications of

|ũ| at the upper (y=0) and lower (y=−2) fluid-porous interfaces, respectively. From Fig. 5(d), we

observe that |ũ| decreases rapidly from |ũ| = 0.098 at y=0 to less than 0.008 at y = −0.015. This

rapid decrease in |ũ| adjacent to the upper interface is qualitatively similar to the rapid decrease

in the laminar streamwise velocity, U , illustrated in Fig. 4(b). In the porous flow community,

these boundary layer type structures at the interface between a porous region and purely fluid

region are called transition layers or Brinkman layers. Brinkman layers play an important role

in the momentum transfer process at an interface and have received considerable attention in the

literature [53]. Figure 5(e) illustrates a similar Brinkman layer at y=−2.

To visualize the flow fields produced by the TS wave shown in figure 5, we consider that when

β = 0, the real velocity field produced by the TS wave may be written as,

< (v̂) =
[
ṽr(y) cos(αrx)− ṽi(y) sin(αrx)

]
e−αix. (38)

Figure 6 shows the velocity vectors (panel a) and streamlines (panel b) produced by the TS wave
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Fig. 7 (a) The neutral curves in the (Re, F ) plane using the parameters Lp = 2, β = 0, and

σ = 0, 0.0005, 0.001, 0.002, and 0.003. The unstable region for σ = 0 is shaded black. The

unstable regions for σ = 0.0005 (darkest shade of grey), 0.001, 0.002 and 0.003 (lightest shade

of grey) are shaded progressively lighter shades of grey. (b) The critical Reynolds number,

Rec, vs. σ using Lp = 2 (solid line), Lp = 4 (dashed line), Lp = 6 (dash-dotted line), Lp = 8

(dotted line).

in figure 5 when σ = 0.003. To aid the visualization, the exponential spatial growth of the wave,

exp(−αix), is ignored. Furthermore, because the perturbation magnitude in the boundary layer

region (y ≥ 0) is much larger than that in the porous layer and suction region (y < 0), the arrows

representing the velocity vectors have been scaled up for y < 0, in comparison to the scaling used

for y > 0. From figure 6, we observe that the TS wave is characterized by counter-rotating vortices

in the boundary layer region, as well as vortical-type structures in the underlying porous layer and

suction regions. The vortical structures in the porous layer and suction region are offset from those

in boundary layer region, such that they appear roughly 90◦ out of phase. The streamlines in panel

(b) suggest that the flow through the porous layer is primarily in the y-direction, except within the

thin Brinkman layers.

Figure 7(a) illustrates the effects of a porous layer of thickness Lp = 2 on the neutral curve

and unstable region in the (Re, F ) plane of disturbances with spanwise wavenumber β = 0. The

neutral curve for σ = 0 is illustrated in the lower right corner, with the unstable region shaded

black. We found the critical point for σ = 0 at (Rec, Fc) = (54379.3, 0.4285), compared to

(Rec, Fc) = (54370.0, 0.429) published by Hocking [23] and (Rec, Fc) = (54382.0, 0.429) published
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by Fransson and Alfredsson [29]. Note that published values of the critical point for boundary

layers in unbounded domains do not tend to agree as closely as those for Poiseuille or Couette flows

due to the different methods used to satisfy the far-stream boundary conditions numerically. As σ

increases from σmin = 0.0001 to σmax = 0.003, the critical point follows the dashed line in Fig. 7(a)

from (Rec, Fc) = (53497.7, 0.4387) to (Rec, Fc) = (10035.4, 3.8436). The critical Reynolds number

at σmax is 18.45 % the critical Reynolds number for σ = 0. The neutral curves for σ = 0.0005, 0.001,

0.002 and 0.003 are illustrated with the unstable regions shaded progressively lighter shades of grey

as σ increases. In addition to the decrease in critical Reynolds number with permeability, the size

of the unstable regions grows substantially and, consequently, the band of unstable frequencies, F ,

for a given Reynolds number, increases drastically.

B. Effects of the Porous Layer Thickness, Lp

To characterize how the porous layer thickness, Lp, affects the linear stability of the ASBL, we

repeat the calculation of the critical Reynolds number, Rec, using the parameters 0.0001 ≤ σ ≤

0.003, β = 0, Lp = 4, 6, and 8. Figure 7(b) illustrates the results for Rec using Lp = 2 (solid

line), Lp = 4 (dashed line), Lp = 6 (dash-dotted line) and Lp = 8 (dotted line). We observe that

the linear stability of the ASBL increase as Lp increases. At σmax = 0.003, the critical Reynolds

number was found to be Re = 10035.4 when Lp = 2, Re = 13503.6 when Lp = 4, Re = 15160.2

when Lp = 6, and Re = 15926.3 when Lp = 8. The increase in critical Reynolds number between

Lp = 6 and Lp = 8 is much smaller than the increase between Lp = 2 and Lp = 4. This is explained

by our observation that as Lp becomes large, Lp ≥ 8, the porous layer behaves like a semi-infinite

porous region, and the end effects at y = −Lp become negligible.

Figures 8(a) and 8(b) illustrate |ṽ| and |p̃|, respectively, for Lp = 2 (solid line) and Lp = 8

(dashed line) using the fixed parameters σ = 0.003, F = 0.803805, β = 0, and Re = 40000. Note

that the porous region for Lp = 2 has been shaded a darker shade of grey from that used for Lp = 8.

We observe that |ṽ| is significantly larger in the porous layer when Lp = 2 than when Lp = 8. Figure

8(b) demonstrates that this is due to the fact that the driving perturbation pressure gradient d|p̃|/dy,

across the porous layer, decreases as Lp increases. Though not shown, for brevity, we observe that

|ũ| is not significantly affected by changes in Lp. The results illustrated in Fig. 8 are consistent with
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Fig. 8 Using the parameters σ = 0.003, F = 2, β = 0, and Re = 40000: (a) The eigenfunction |ṽ|

of the TS wave for Lp = 2 (solid line) and Lp = 8 (dashed line). The porous region for Lp = 2

is shaded the darkest shade of grey. (b) The eigenfunction |p̃| of the TS wave for Lp = 2 (solid

line) and Lp = 8 (dashed line). The porous region for Lp = 2 is shaded the darkest shade of

grey.

the hypothesis of Tilton and Cortelezzi [19] that the presence of a wall-normal disturbance velocity

at an interface between a porous layer and a purely fluid region has a destabilizing effect, while

the presence of a wall-tangential disturbance velocity at an interface is stabilizing. The increase in

linear stability of the ASBL with increasing Lp may thus be explained by the observation that |ṽ(0)|

decreases while |ũ(0)| remains comparatively unchanged.

In a real laboratory experiment, the non-dimensional thickness Lp increases with the suction

velocity, vs. Consider, for example, a laboratory experiment in which σ is increased from σmin =

0.0001 to σmax = 0.003 by increasing the suction velocity from vmin = 0.0001ν/
√
k to vmax =

0.003ν/
√
k. If Lp = 2 when σ = 0.0001, then Lp = 60 when σ = 0.003. Initial increases in σ near

σmin will produce critical Reynolds numbers near those illustrated as a solid line in Fig. 7(b) for

Lp = 2. As the permeability increases further, the decrease in critical Reynolds number will be

attenuated by the increase in Lp. Near σmax, we would expect the critical Reynolds numbers to be

slightly above those illustrated as a dashed line in Fig. 7(b) for Lp = 8.
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Fig. 9 (a) The damping factor, αi, of the Tollmien-Schlichting wave vs. Re using the fixed

parameters Lp = 2, β = 0, F = 2.0, σ = 0 (solid line), σ = 0.001 (dashed line), σ = 0.002 (dash-

dotted line), σ = 0.003 (dotted line). The range of the Reynolds number is 2000 ≤ Re ≤ 55000.

(b) The damping factor, αi, of the Tollmien-Schlichting wave vs. F using the parameters

Lp = 2, β = 0, Re = 20000, σ = 0 (solid line), σ = 0.001 (dashed line), σ = 0.002 (dash-dotted

line), σ = 0.003 (dotted line). The range of the frequency is 0.2 ≤ F ≤ 4.0. (c) The magnitude |ṽ|

of the Tollmien-Schlichting eigenfunction for the parameters Lp = 2, σ = 0.003, F = 2.0, β = 0,

Re = 2000 (dashed line) and Re = 30000 (solid line). (d) The magnitude |ũ| of the Tollmien-

Schlichting eigenfunction for the parameters Lp = 2, σ = 0.003, F = 2.0, β = 0, Re = 2000

(dashed line) and Re = 30000 (solid line).

C. Effects of the Reynolds Number, Re, and Frequency, F

To characterize how the effects of permeability vary with Reynolds number, Re, and frequency,

F , we compute the damping factor, αi, of the TS wave using the parameters 0.2 ≤ F ≤ 4, 2000 ≤

Re ≤ 55000, β = 0, Lp = 2, and σ = 0, 0.001, 0.002, and 0.003. Figure 9(a) illustrates the behavior
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of αi as Re increases from 2000 to 55000 for fixed F = 2.0. Considering the neutral curves illustrated

in Fig. 7(a), this corresponds to travelling along a horizontal line of constant F = 2.0 that intersects

the neutral curves for σ = 0.002 and 0.003. In Fig. 9(a), therefore, the curves dip below αi = 0 when

σ = 0.002 and 0.003. We observe that though permeability generally has a destabilizing effect, the

effects become negligible below a Reynolds number around 2500. Figures 9(c) and 9(d) illustrate

|ṽ| and |ũ|, respectively, of the TS wave at Re = 2000 (dashed line) and Re = 30000 (solid line)

using the parameters Lp = 2, σ = 0.003, F = 2.0 and β = 0. When Re = 30000 (solid line), the

magnitudes of the eigenfunctions are significant in the porous layer. For Re = 2000 (dashed line),

however, the porous layer behaves like an impermeable wall, even though the permeability has been

set to its maximum value.

Figure 9(b) illustrates the behavior of αi as F increases from 0.2 to 4.0 for fixed Re = 20000.

Considering the neutral curves illustrated in Fig. 7(a), this corresponds to travelling along a vertical

line of constant Re = 20000 which intersects the neutral curves for σ = 0.002 and 0.003. In Fig.

9(b), therefore, the curves for αi dip below αi = 0 when σ = 0.002 and 0.003. We again observe

that permeability has a significant destabilizing effect.

D. Comparison With Experimental Results

Fransson and Alfredsson [29] have experimentally measured the characteristics of TS waves in

an ASBL for the conditions U∞ = 5 m s−1, ν = 1.491 x 10−5 m2 s−1, d1 = 0.00114 m, β = 0,

F = 59, and Re = 382. The porous layer was made of a sintered plastic material of thickness

0.0032 m (the non-dimensional thickness was Lp = 2.807) and permeability k = 3.7 x 10−12 m2

(the non-dimensional permeability was σ = 0.0017). The porosity, ε, and interface coefficient, τ , are

not known. Fransson and Alfredsson [29] found their experiments showed good agreement with the

predictions of a spatial linear stability analysis that neglected wall permeability, i.e. they assumed

σ = 0. The predicted TS eigenfunction, ũ(y), agreed well with the experimental measurements,

and the predicted phase speed, c = ω/αr, matched the experimental value, c = 0.48U∞. The only

discrepancy involved the damping factor, αi, for which the predicted value, αi = 26.3 m−1, was 1.72

times higher than the experimentally measured value, αi = 15.3 m−1. This was attributed to the

combination of a slight adverse pressure gradient, a deviation in the laminar velocity profile due to
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the presence of a spanwise slot, a low wave amplitude, and possible three-dimensional effects.

To compare the predictions of our model with those of Fransson and Alfredsson [29], we compute

the spatial linear stability of the TS wave for the parameters F = 59, β = 0, Re = 382, Lp = 2.807,

ε = 0.95, τ = 0.194, σ = 0 and 0.0017. For these parameters, we find that permeability has a

negligible effect. Our computations produce α = 0.046783 + i0.030024 when σ = 0, compared to

α = 0.046832+i0.030012 when σ = 0.0017, where α is non-dimensional. Both computations predict

c = 0.48U∞ and αi = 26.3 m−1. These computations use the properties of Foametal, ε = 0.95

and τ = 0.194. Because Fransson and Alfredsson [29] used a sintered plastic material, we repeated

our computations for the parameters 0.1 ≤ ε ≤ 0.9 and −1 ≤ τ ≤ 1, but found no appreciable

difference in the results. From this comparison, we can conclude that our model correctly predicts

that the effects of wall permeability become negligible for Re ≤ 2500. This explains why the

experimental results of Fransson and Alfredsson [29] show good agreement with theoretical results

that neglect wall permeability. It is interesting to note that both our and Fransson and Alfredsson’s

[29] computations predict the same value for the damping factor αi, a value that is 1.72 times higher

than the experimentally measured value. This fact reinforces the reasons (reported above) provided

by Fransson and Alfredsson [29] to explain this discrepancy in terms of experimental uncertainties.

VI. Conclusions

We performed a spatial linear stability analysis of the asymptotic suction boundary layer (ASBL)

using a new model of wall suction. To this end, we modelled a porous wall as a layer of rigid,

homogeneous, isotropic, porous material. The porous layer is bounded above by a semi-infinite fluid

region in which a boundary layer is driven by a free-stream velocity, U∞ at constant pressure P∞.

Wall suction is implemented by applying a suction pressure, Ps, lower than P∞ in the boundary

layer region, to a semi-infinite suction region below the porous layer. The fluid flows in the purely

fluid regions were coupled to the flow in the porous region using the volume-averaged approach of

Whitaker [40] and Ochoa-Tapia and Whitaker [41]. We restricted our study to small permeabilities

for which inertial effects in the porous region could be neglected, and we fixed the porosity, ε =

0.95, and interface coefficient, τ = 0.194, such that the porous material behaves like Foametal.

The stability of the ASBL was computed for permeabilities ranging between σmin = 0.0001 and
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σmax = 0.003, and for porous layers of non-dimensional thickness 2 ≤ Lp ≤ 8.

We found that wall permeability destabilizes neither the Squire modes nor the continuous spec-

tra, but significantly destabilizes the Tollmien-Schlichting (TS) wave. As the nondimensional per-

meability increases from σmin to σmax, for constant β = 0 and Lp = 2, the unstable region de-

limited by the neutral curve grows considerably, and the critical Reynolds number decreases from

Rec = 53497.7 at σmin = 0.0001 to Rec = 10035.4 at σmax = 0.003. The critical Reynolds number

at σmax is only 18.45 % the corresponding value for σ = 0, which is Re = 54379.3. This decrease in

stability is likely due to the effects of permeability on the wall-normal velocity of the TS wave. With

increasing permeability, the magnitude of the wall-normal velocity of the TS wave increases within

the porous layer. This wall-normal velocity is driven by the TS wave’s pressure, whose magnitude

|p̃| has a maximum at y = 0 and a nearly linear drop across the porous layer. In contrast, the

streamwise velocity of the TS wave generally has a small magnitude within the porous layer.

We observed that the destabilizing effects of permeability decrease as the nondimensional thick-

ness of the porous layer, Lp, increases. This occurs because an increase in Lp causes the wall-normal

velocity of the TS wave to decrease within the porous layer. We also found that as Lp increases,

the influence of Lp on the stability problem decreases because the porous layer behaves increasingly

like a semi-infinite porous region.

To characterize how the effects of permeability vary with Reynolds number, Re, and frequency,

F , we calculated the damping rate, αi, of the TS wave for the parameters 0.2 ≤ F ≤ 4.0, 2000 ≤

Re ≤ 55000, β = 0, Lp = 2, and σ = 0, 0.001, 0.002, and 0.003. In this region of the parameter

space, we found that the destabilizing effects of permeability increase with Reynolds number but

become negligible below a Reynolds number of approximately Re ≈ 2000. This explains why the

previous experimental results of Fransson and Alfredsson [29] show excellent agreement with linear

stability calculations that neglect the effects of wall permeability. Therefore, our model of wall

suction captures both the stabilizing effects of wall suction and the destabilizing effects of wall

permeability.

From our study, we can draw some important conclusions regarding the use of wall-suction for

stabilizing boundary layers. Though our results confirm that wall-suction through a porous wall of
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small permeability is a powerful means of stabilizing boundary layers and reducing wall turbulence,

we find that wall-suction is far less powerful than as predicted by classical boundary layer stability

theory. Classical theory, which neglects the effects of wall permeability, predicts that the best way

to stabilize a boundary layer by suction is to apply suction through a porous wall having the largest

possible permeability and smallest possible thickness. This choice maximizes the stabilization while

minimizing the power required to produce the wall-suction. Our results, however, show that the

mere presence of a porous wall substantially destabilizes the boundary layer flow over it, and that

the level of destabilization increases as the permeability of the porous layer increases and as its

thickness decreases. Therefore, from a stabilization point of view, it is desirable to choose a porous

material of small permeability and sufficient thickness. From an operative point of view, however,

the cost of applying suction increases as the permeability of the porous layer decreases and its

thickness increases.

Consequently, we predict that there is an optimal operating condition, different from the

maximum-permeability-minimum-thickness proposed by classical boundary layer theory, that ob-

tains a maximum stabilization for minimum suction. A preliminary investigation of these optimal

conditions may be found in reference [20], where it was determined that the optimization requires

consideration of the upstream developing region of the ASBL. As this is beyond the scope of the

current work, further consideration of these optimal conditions are left to future study. We want

to emphasize, however, that maximum level of stabilization obtainable is much lower than the level

predicted by the classical theory and the amount of suction needed much higher. In addition, while

the current study focuses on a linear modal stability analysis, future studies of the effects of porous

surfaces on by-pass transition, the ensuing non-linear regime, and fully developed turbulence, are

all natural extensions of the current work.

Funding was provided by NSERC under a Postgraduate Scholarship and under Contract No.

RGPIN217169.

References

[1] Tanner, M., “Reduction of Base Drag,” Progress in Aerospace Sciences, Vol. 16, 1975, pp. 369-384.

30



[2] Savu, G., and Trifu, O., “Porous Airfoils in Transonic Flow,” AIAA Journal, Vol. 22, 1984, pp. 989-991.

[3] Carpenter, P.W., and Porter, L.J., “Effects of Passive Porous Walls on Boundary-Layer Instability,”

AIAA Journal, Vol. 39, 2001, pp. 597-604.

[4] Hunter, C.A., Viken, S.A., Wood, R.M., and Bauer, S.X.S., “Advanced Aerodynamic Design of Passive

Porosity Control Effectors,” AIAA Paper 2001-0249, 2001.

[5] Tinetti, A. F., Kelly, J. J., Bauer, S. X. S., and Thomas, R. H., “On the Use of Surface Porosity to

Reduce Unsteady Lift,” AIAA Paper 2001-2921, 2001.

[6] Bauer, S. X. S., and Hemsch, M. J., “Alleviation of Side Force on Tangent-Ogive Forebodies Using

Passive Porosity,” Journal of Aircraft, Vol. 31, pp. 354-361,1993.

[7] Frink, N. T., Bonhaus, D. L., Vatsa, V. N., Bauer, S. X. S., and Tinetti, A. F., “Boundary Condition

for Simulation of Flow Over Porous Surfaces,” Journal of Aircraft, Vol. 40, 692-698, 2003.

[8] Ho, S., Nassef, H., Pornsinsirirak, N., Tai, Y-C., and Ho, C-M., “Unsteady Aerodynamics and Flow

Control for Flapping Wing Flyers,” Progress in Aerospace Sciences, Vol. 39, 2003, pp. 635-681.

[9] Lopera, J., Ng, T. T., and Patel, M. P., “Experimental Investigations of Reconfigurable Porosity for

Aerodynamic Control,” AIAA Paper 2004-2695, 2004.

[10] Kearney, J. M., and Glezer, A., “Aero-Effected Flight Control Using Distributed Active Bleed,” AIAA

Paper 2011-3099, 2011.

[11] Kearney, J. M., and Glezer, A., “Aerodynamic Control using Distributed Bleed,” AIAA Paper 2012-

3246, 2012.

[12] Joslin, R. D., “Aircraft Laminar Flow Control,” Annual Review of Fluid Mechanics, Vol. 30, 1998, pp.

1-29.

[13] Joslin, R. D., “Overview of Laminar Flow Control,” NASA TP-208705, 1998.

[14] Kim, J., “Control of Turbulent Boundary Layers,” Physics of Fluids, Vol. 15, 2003, pp. 1093-1105.

[15] Beavers, G. S., and Joseph, D. D., “Boundary Conditions at a Naturally Permeable Wall,” Journal of

Fluid Mechanics, Vol. 30, 1967, pp. 197-207.

[16] Beavers, G. S., Sparrow, E. M., and Magnuson, R. A., “Experiments on Coupled Parallel Flows in

a Channel and a Bounding Porous Medium,” Journal of Basic Engineering (Trans. ASME), Vol. 92,

1970, pp. 843-848.

[17] Sparrow, E. M., Beavers, G. S., Chen, T. S., and Lloyd, J. R., “Breakdown of the Laminar Flow Regime

in Permeable-Walled Ducts,” Journal of Applied Mechanics, Vol. 40, 1973, pp. 337-342.

[18] Tilton, N., and Cortelezzi, L., “The Destabilizing Effects of Wall Permeability in Channel Flows: A

Linear Stability Analysis,” Physics of Fluids, Vol. 18, 2006, 051702.

31



[19] Tilton, N., and Cortelezzi, L., “Linear Stability Analysis of Pressure Driven Flows in Channels With

Porous Walls,” Journal of Fluid Mechanics, Vol. 604, 2008, pp. 411-445.

[20] Tilton, N., “The Effects of Wall Permeability on the Linear Stability of Channel Flows and the Asymp-

totic Suction Boundary Layer,” Ph.D. Dissertation, Dept. Mechanical Engineering, McGill University,

Montreal, QC, Canada, 2009.

[21] Schlichting H., Boundary Layer Theory, 7’th ed., McGraw-Hill, New York, 1979.

[22] Kay, J. M. “Boundary-Layer Flow Along a Flat Plate With Uniform Suction.” Aeronautical Research

Council Reports and Memoranda No. 2628, 1953.

[23] Hocking, L. M., “Non-Linear Instability of the Asymptotic Suction Velocity Profile,” Quarterly Journal

of Mechanics and Applied Mathematics, Vol. 28, 1975, pp. 341-353.

[24] Jordinson, R., “The Flat Plate Boundary Layer. Part 1. Numerical Integration of the Orr-Sommerfeld

Equation,’ Journal of Fluid Mechanics, Vol. 43, 1970, pp. 801-811.

[25] Saric, W. S., and Reed, H. L., “Effect of Suction and Week Mass Injection on Boundary-Layer Transi-

tion,” AIAA Journal, Vol. 24, 1986, pp. 383-389.

[26] MacManus, D. G., and Eaton, J. A., “Flow Physics of Discrete Boundary Layer Suction - Measurements

and Predictions,” Journal of Fluid Mechanics, Vol. 417, 2000, pp. 47-75.

[27] Gregory, N., “Research on Suction Surfaces for Laminar Flow,” Boundary Layer and Flow Control,

edited by G.V. Lachmann, Pergamon Press, New York, 1961.

[28] Reynolds, G. A., and Saric, W. S., “Experiments on the Stability of the Flat-Plate Boundary Layer

With Suction,” AIAA Journal, Vol. 24, 1986, pp. 202-207.

[29] Fransson, J. F. M., and Alfredsson, P. H., “On the Disturbance Growth in an Asymptotic Suction

Boundary Layer,” Journal of Fluid Mechanics, Vol. 482, 2003, pp. 51-90.

[30] Braslow, A. L., Burrows, D. L., Tetervin, N., and Visconti, F., “Experimental and Theoretical Studies

of Area Suction for the Control of the Laminar Boundary Layer on an NACA 64A010 Airfoil,” NACA

Report No. 1025, 1951.

[31] Reed, L. H., and Nayfeh, A. H., “Numerical-Perturbation Technique for Stability of Flat-Plate Boundary

Layers With Suction,” AIAA Journal, Vol. 24, 1986, pp. 208-214.

[32] Braslow, A. L., and Fischer, M. C., “Design Considerations for Application of Laminar Flow Control

Systems to Transport Aircraft,” AGARD Report No. 723, 1985, 4.1-4.27.

[33] Braslow, A., “A History of Suction-Type Laminar-Flow Control With Emphasis on Flight Research,”

NASA Monographs in Aerospace History No. 13, 1999.

[34] Arwatz, G., Fono, I., and Seifert, A., “Suction and Oscillatory Blowing Actuator Modeling and Valida-

32



tion,” AIAA Journal, Vol. 46, 2008, pp. 1107-1117.

[35] Yoshioka, S., Fransson, J. H. M., and Alfredsson, P. H., “Free Stream Turbulence Induced Disturbances

in Boundary Layers With Wall Suction,” Physics of Fluids, Vol. 16, 2004, pp. 3530-3539.

[36] Levin, O., Davidsson, E. N., and Henningson, D. S., “Transition Thresholds in the Asymptotic Suction

Boundary Layer,” Physics of Fluids, Vol. 17, 2005, 114104.

[37] Byström, M. G., Levin, O., and Henningson, D. S., “Optimal Disturbances in Suction Boundary Layers,”

European Journal of Mechanocs B-Fluids, Vol. 26, 2006, pp. 330-343.

[38] Levin, O., and Henningson, D. S., “Turbulent Spots in the Asymptotic Suction Boundary Layer,”

Journal of Fluid Mechanics, Vol. 584, 2007, pp. 397-413.

[39] Davidsson, E. N., and Gustavsson, L. H., “Elementary Solutions for Streaky Structures in Boundary

Layers With and Without Suction,” Fluid Dynamics Research, Vol 40, 2007, pp. 212-231.

[40] Whitaker, S., “The Forchheimer Equation: A Theoretical Development,” Transport in Porous Media,

Vol. 25, 1996, pp. 27-61.

[41] Ochoa-Tapia, J. A., and Whitaker, S., “Momentum Transfer at the Boundary Between a Porous Medium

and a Homogeneous Fluid-I. Theoretical Development,” International Journal of Heat Mass Transfer,

Vol. 38, 1995, pp. 2635-2646.

[42] Lage, J. L. “The fundamental theory of flow through permeable media from Darcy to turbulence,”

Transport Phenomena in Porous Media, edited by D. B. Ingham and I. Pop, Pergamon, Oxford, 1998

[43] Ochoa-Tapia, J. A., and Whitaker, S., “Momentum Transfer at the Boundary Between a Porous Medium

and a Homogeneous Fluid-II. Comparison with Experiment,” International Journal of Heat Mass Trans-

fer, Vol. 38, 1995, pp. 2647-2655.

[44] Ochoa-Tapia, J. A., and Whitaker, S., “Momentum Jump Condition at a Boundary Between a Porous

Medium and a Homogeneous Fluid: Inertial Effects,” Journal of Porous Media, Vol. 1, 1998, pp. 201-

217.

[45] Valdés-Parada, F.J., Goyeau, B., and Ochoa-Tapia, J. A., “Jump momentum boundary condition at a

fluid-porous dividing surface: Derivation of the closure problem,” Chemical Engineering Science, Vol.

62, 2007, pp. 4025-4039.

[46] Valdés-Parada, F.J., Aguilar-Madera, C.G., Ochoa-Tapia, J. A., and Goyeau, B., “Velocity and stress

jump conditions between a porous medium and a fluid,” Advances in Water Resources, Vol. 62, 2013,

pp. 327-339.

[47] Breugem W. P., Boersma B. J. and Uittenbogaard, R. E., “The Laminar Boundary Layer over a

Permeable Wall,” Transport in Porous Media, Vol. 59, 2005, pp. 267-300.

33



[48] Gaponov, S. A., “Effect of the Properties of a Porous Coating on Boundary Layer Stability,” NASA

TM-75235, 1978.

[49] Lekoudis, S. G., “Stability of Boundary Layers Over Permeable Surfaces,” AIAA Paper 78-0203, 1978.

[50] Jordinson, R., “Spectrum of Eigenvalues of the Orr-Sommerfeld Equation for Blasius Flow,” Physics of

Fluids, Vol. 14, 1971, pp. 2535-2537.

[51] Mack L. M., “A Numerical Study of the Temporal Eigenvalue Spectrum of the Blasius Boundary Layer,”

Journal of Fluid Mechanics, Vol. 73, 1976, pp. 497-520.

[52] Schmid, P. J., and Henningson, D. S., Stability and Transition in Shear Flows, Vol. 142, Springer-Verlag,

2001

[53] Goharzadeh, A., Khalili, A., and Jørgensen, B. B., “Transition Layer Thickness at a Fluid-Porous

Interface,” Physics of Fluids, Vol. 17, 2005, 057102.

34


	FronteRivista
	Tilton_Cortelezzi_AIAAJ_v53_n10_2015_OA

