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Abstract 

The paper proposes a method for tolerance analysis on planar structures and mechanisms. As for 

generic assemblies, deviations on a functional requirement involving different parts are calculated 

from tolerance specifications on individual part dimensions. For a linkage the requirement is usually 

the position or orientation of a given element (link, joint) with respect to a fixed frame, and the 

solution of the problem has some additional difficulties such as the correct treatment of joint 

clearances. The paper points out that, for underconstrained or exactly constrained linkages, 

tolerance analysis can be treated by analogy with a force analysis problem. The static analogy is 

first introduced and justified from well-known concepts of classical mechanics, and then translated 

into a calculation procedure that is able to evaluate the propagation of deviations from different 

types of dimensions (lengths of links, diameters of pins and holes at joints), as well as from linear 

and angular actuators. Problems of high complexity are shown to be easily solvable by the proposed 

method by means of available software tools for the structural analysis of planar frames and trusses. 

Keywords: tolerance analysis, truss structure, mechanism, joint clearance, finite element analysis. 

1. Introduction 

In a mechanical assembly, the design of parts and connections is generally subject to a set of 

functional requirements defined as geometric entities. These can include the position or orientation 

of a body supported by a static structure, or the trajectory of the endpoint of a mechanism. It is often 

needed that some requirement is satisfied within a given tolerance, which however cannot be 

directly specified on individual parts because it involves features on different parts. To overcome 

this difficulty, tolerance analysis evaluates the resulting deviation on a requirement as a stackup of 

deviations on the dimensions of individual parts, for which either worst-case limits or statistical 

distributions are given [1]. Several methods are available in literature for this task under a wide 

range of assumptions on part geometries and connection types (see [2] for a recent survey). 

The stackup of deviations is of special concern for mechanical linkages, which are the building 

blocks of many high-precision mechanisms and structures. Such assemblies are typically made of 

slender parts (links), connected at their ends by some types of kinematic pairs (joints). Tolerance 

analysis on linkages can rely upon general-purpose methods, possibly adapted to the specific 

domain of geometric configurations through dedicated rules and procedures. More often, however, 

the problem is treated with due consideration to related design tasks (kinematic, static and dynamic 

analysis of mechanisms) that can in turn be influenced by geometric deviations. 
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This paper illustrates a method for tolerance analysis on structures and mechanisms, which extends 

a basic calculation procedure proposed for generic mechanical assemblies [3]. The method is based 

on a static analogy, which evaluates the influence of manufacturing errors on links and joints by 

solving an equivalent problem of force analysis. As a potential advantage over existing methods, the 

approach allows to calculate tolerance stackups by means of well-known methods and tools for 

structural analysis, such as finite-element software. The method applies to planar linkages 

composed by rigid links connected by translational and rotational kinematic pairs; at current stage 

of development, it assumes that the linkage assembly is not overconstrained and considers only 

deviations on linear and angular dimensions, with the exclusion of otherwise defined geometric 

characteristics (e.g. orientation, location and profile). 

The remainder of the paper is organized as follows. Section 2 reviews the literature on tolerance 

analysis for mechanisms, including a few existing methods based on similar analogies. Section 3 

illustrates the basic procedure based on force analysis and introduces some extensions on its 

previous formulation. Section 4 verifies the correctness of the method by comparison to explicit 

analytic solutions on two simple examples. Section 5 demostrates the application of the whole 

tolerance analysis procedure on a more complex example. Section 6 discusses the advantages and 

limitations of the proposed approach and outlines its future developments. 

2. Background 

Tolerance analysis has been extensively studied in the context of linkages. These are generally 

defined as mechanisms with one or more degrees of freedom (DOF), considering static structures as 

special cases. The complexity of the problem depends on the range of geometric properties that a 

mechanism is allowed to have. Basic assumptions include dimensionality (planar or spatial 

mechanisms) and mobility (number of DOF, degree of overconstraining). Joint types can either be 

limited to lower pairs with fixed contacts (e.g. cylindrical, prismatic, helical and spherical pairs) or 

include higher pairs with continuously changing contact surfaces (e.g. gear and cam profiles) where 

geometric deviations may cause jamming or other degenerate configurations. Further difficulties 

arise when the analysis is intended to cope with elastic deformations of parts or uncertainty regions 

around nominal trajectories, often relevant in robotic and function-generating mechanisms. 

Under the same assumptions of the present paper (planar linkages, rigid parts, fixed contacts, no 

overconstraining, linear and angular dimensions), stackups are usually calculated by methods 

developed for generic assemblies. As most standard approaches apply to static assemblies, 

mechanisms are regarded as stationary and analyzed over a representative sample of configurations. 

Functional requirements are usually linearized, thus reducing the problem to the evaluation of 

sensitivities (partial derivatives of a requirement with respect to individual dimensions). As pointed 

out in [4], analytic calculation of sensitivities is feasible for very simple mechanisms, while realistic 

problems can only be solved by algorithmic procedures suitable for software implementation. One 

of these is the direct linearization method, which builds a Jacobian matrix of the requirements from 

one or more vector loops identified in the linkage; the approach has been applied to planar and 

spatial mechanisms in [5, 6, 7] and recently revised in [8, 9] with some modifications allowing to 

deal with elastic deformations. Planar mechanisms with deformable links are also treated in [10, 11] 

by Monte Carlo simulation guided by statistical methods to limit computational efforts. In [12, 13] 

Monte Carlo simulation is avoided by using explicit sets of inequalities to identify regions of given 

probability of requirement deviations (mechanism reliability) in the space of the geometric 



variables. Alternatives to simulation are sought especially for mechanisms with local 

overconstrainings; these have been treated by analytic evaluation of direct kinematics on lower-

mobility manipulators [14, 15] and by other reliability-based methods  [16, 17, 18, 19, 20]. 

Kinematic tolerance analysis is an extended formulation developed to release the above 

assumptions. Functional requirements are not limited to relative positions and orientations, but can 

include complex kinematic functions such as the drive ratio or the amount of backlash. The problem 

is thus regarded as an extension of the kinematic analysis of mechanisms, and can take advantage of 

the graphical and analytical methods developed for that task (e.g. [21]). The concept has been laid 

down in early studies such as [22, 23, 24], which have proposed solutions based on Monte Carlo 

simulation and sensitivity analysis; however, such approaches are computationally inefficient and 

can be difficult to apply in the presence of higher pairs. These have been recently treated by a 

simulation-based approach where contact conditions are evaluated by perturbed geometric 

representations of joint features according to the skin model of ISO standards [25, 26]. Another 

approach suitable for higher pairs is based on the concept of configuration space, originally used for 

kinematic analysis [27, 28] and later extended to consider deviations on geometric variables [29]. 

By algorithms of computational geometry, the domain of valid configurations of the mechanism is 

built in the space of the DOF of individual links; in ideal conditions the configuration space is made 

of continuous lines, which grow and warp in the presence of deviations creating areas or volumes 

(clearances) and discontinuities (degenerate configurations). In [30, 31, 32] the approach has been 

demonstrated on general planar mechanisms, including some real cases of high complexity, while 

further developments and modifications have been later introduced in [33, 34, 35, 36, 37]. 

Even for mechanisms including only lower pairs, a further need recognized by many researchers is 

the correct treatment of joint clearances. As a consequence of deviations on the dimensions 

involved in a joint, e.g. diameters of holes and pins in cylindrical pairs, translational and rotational 

displacement (shifts) arise between the connected links; unlike deviations on link lengths, their 

amount and direction change continuously and cannot be compensated. A few methods for 

tolerance analysis, mostly developed for robotic mechanisms, provide a specific treatment of joint 

clearances by introducing modifications in well-known models of kinematic analysis (see [38] for a 

comparison). The vector-loop model has been enhanced by virtual links corresponding to clearances 

(clearance vector model) possibly considering the effect of lubrication [39]. The Denavit-

Hartenberg model has been extended with the addition of either differential terms [40], stochastic 

terms (kinematic reliability [41]) and composition rules among tolerance intervals (interval 

arithmetic [42]). The screw-theory model has been extended with virtual links [43, 44, 45, 46] and 

by an analogy with Kirchhoff�s laws of electrical circuits [47]. Other approaches emphasizing the 

treatment of joint clearances include rotatability [48, 49, 50], dual algebra [51] and inverse 

kinematic [52, 53]. Beside influencing the stackup of deviations, joint clearances have also a 

complex influence on jerk, impact and vibration of mechanisms, as widely discussed in the contexts 

of kinematic and dynamic analysis [54, 55, 56, 57, 58, 59, 60, 61]. 

The method proposed here is based on a static analogy of the tolerance analysis problem, which 

draws its justification by the principle of virtual work of rigid bodies [3]. Approaches relying on 

statics have been previously proposed for tolerance analysis on selected types of mechanisms, such 

as spatial linkages and closed-loop manipulators. In [62, 63, 64, 65], the principle of virtual work 

allows to predict the actual shifts at joints from the external forces acting on a mechanism. In [66], 

the sensitivities are calculated from the internal forces induced in the links by unit loads along 



reference directions: although not extensively discussed and developed into application rules, that 

method is actually very similar to the one proposed here.  

Tolerance analysis is a prerequisite to other design problems on mechanisms, which have received 

limited attention so far. These include optimal tolerance allocation [67], kinematic synthesis in the 

presence of deviations [68], and robust design of link dimensions to mimimize variation in 

functional requirements [69]. 

3. Static analogy 

After a brief definition of the tolerance analysis problem, the method based on static analogy is 

described in the following. A previous formulation [3] is recalled and then extended to cover a wide 

class of planar structures and mechanisms. 

3.1 Prior results 

A linkage is an assembly of parts (mainly links and hinge pins), which collectively fulfill a static or 

kinematic function depending on a set of dimensions 

) 2, ,1(   0 nixxx iii K=+= d  

where x0i is the nominal value and dxi is the deviation on a dimension. A deviation is caused by 

errors in the manufacturing process of a part and is assumed to take random values within a 

symmetric tolerance interval: 
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Tolerance Ti is specified at design stage for each dimension. The linkage is subject to a functional 

requirement, defined as the position of a given point of the system with respect to a fixed coordinate 

axis y. The deviation dy on the requirement is to be controlled according to an additional design 

specification, which can in turn be defined as a tolerance although it is referred to the whole 

assembly rather than on an individual part: 
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In the tolerance analysis problem, the tolerance Ty on the requirement must be calculated from the 

tolerances Ti on individual dimensions. For this purpose, the deviation dy is expressed as a function 

of the deviations dxi. This is not a trivial task as the functional equation 
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which relates the requirement to the dimensions, is nonlinear and usually not explicitly known. If 

deviations are small, however, an approximate linear relation can be assumed among the deviations: 
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The method calculates the sensitivities si of the dimensions on the requirement under the 

assumptions that the assembly is rigid and exactly constrained, and that all dimensions (y and xi) are 

linear distances. The calculation is based on a static analogy, which is described below in two steps. 



The first one considers only deviations on the lengths of links, while the second one broadens the 

analysis to the deviations on the dimensions of rotational joints (diameters of pins and holes). 

The linkage in Fig. 1a is an exactly constrained truss, where each link has length li and the position 

of a selected point (here coinciding with the center of a joint) is to be controlled along the direction 

y. Tolerance analysis aims at calculating the sensitivity si of each dimension li on the requirement y, 

i.e. the ratio of deviation dy to deviation dli. For this purpose an equivalent static model is built, 

where an external force F is applied along direction y to the control point (Fig. 1b). As the truss is in 

equilibrium, known methods of force analysis allow to calculate the support reactions and the 

internal forces Fi of the links (tensile or compressive depending on the sign). The desired 

sensitivities are then equal to 
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A formal justification of the above result can be given with reference to related concepts of statics. 

The deviation dli can be regarded as a virtual displacement of one end of the link with respect to the 

other along the lengthwise direction; similarly, the deviation dy corresponds to a virtual 

displacement of the control point along the reference direction, which is congruent to the link 

displacements since it is determined by the assembly relations of the system. For the principle of 

virtual work for rigid bodies, the system is in equilibrium if and only if the total virtual work of the 

external forces equals zero. If the i-th link is removed from the system, such condition is satisfied if 
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This can be rewritten as: 
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A rotational joint is now considered on a similar linkage. The dimensions involved in the joint (Fig. 

2a) are the diameter d of the pin and the diameters Dj of the holes at the ends of the connected links 

(in this case j = 1, 2, 3). Due to the radial clearances of the pin with the holes, the deviations on 

these dimensions contribute to the deviation on the functional requirement of the whole system. 

Their sensitivities can again be calculated through an equivalent static model, where the force F 

applied to the control point induces a force on each contacting feature. Specifically, each hole is 

subject to an outwardly-directed force Fj along the lengthwise direction of its link, while the pin is 

subject to three inwardly-directed forces Fj (Fig. 2b). If the Fj are regarded as unsigned force 

intensities, the desired sensitivities are equal to: 
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To justify that, it can be observed that the force F brings about translational shifts hj of the three 

links with respect to the pin along the directions of the forces Fj (Fig. 2c). Considering these shifts 

as virtual displacements and removing the pin from the system, the equilibrium condition is 
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This gives the sensitivities of the shifts on the functional requirement: 
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But the shifts are related to the dimensions through the following expression (Fig. 2c): 
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which can be differentiated to find the sensitivities of the dimensions: 
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The rule applies for any number of connected links. If the pin is connected to an external support, 

the intensity of the reaction is an additional force Fj to be included in the summation. If the external 

load is applied to the pin, its intensity must obviously be excluded from the summation. 

3.2 Extension 

The original intent of the static analogy was to allow an easy analysis of tolerances on assemblies 

where the internal forces on individual parts can be calculated by graphical constructions or direct 

application of equilibrium equations. This imposed the restrictive assumptions of rigid parts and 

exactly constrained assemblies. Although they cover only a small subdomain of applications for 

structural analysis, the same assumptions are consistent with all the cases that can be treated by 

commercial software tools for tolerance analysis. Precision requirements on overconstrained and 

compliant assemblies depend on built-in stresses created during assembly; tolerance analysis 

methods that deal with this complication are currently limited to very simple and specific assembly 

configurations. 

For planar linkages, force analysis is widely supported by dedicated methods and software tools. 

This is a further advantage for tolerance analysis, since it can allow to easily treat highly complex 

structures and mechanisms. To exploit such opportunity, the method needs to include additional 

cases that were not considered in the original formulation. Some useful extensions in this direction 

are introduced below. 

In the truss of Fig. 3a the requirement y depends not only on the lengths of the links, but also on the 

horizontal coordinate z of an external support whose sensitivity is to be calculated. The equivalent 

static model (Fig. 3b) includes an additional link with nonzero length along direction z. The link is 

connected to any support that can provide a reaction along the same direction; in this case the new 

link might also be connected to the other existing support as it is aligned to the link along z. Under 

the external force F, the additional link is subject to an internal force Fz that can be calculated by 

force analysis. Considering the deviation dz as a virtual displacement and removing the additional 



link, the virtual work of the external forces now includes also a term equal to -Fzdz. As in the case 

of link lengths, the desired sensitivity is then equal to 
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All the above examples are related to structures with rotational joints. This assumption can be 

released by also considering translational joints, which have special interest for mechanisms. Fig. 4a 

shows a mechanism with one DOF given by a slider, which is driven by an actuator to control the 

total length lm of the connected links with random deviation dlm. The effect of the positioning 

accuracy on the requirement y in a given configuration of the mechanism can be evaluated by a 

static model (Fig. 4b), where the two connected links are consolidated into a single link with length 

lm. The structure is exactly constrained, thus force analysis easily provides the internal force Fm to 

the solid link. The usual application of the principle of virtual work gives the sensitivity associated 

to the dimension lm: 
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Another assumption to be released is that only linear distances are considered for dimensions and 

requirements. Extending the static analogy to angular dimensions is essential for analyzing 

mechanisms with rotary actuators. In Fig. 5a the configuration of a four-bar linkage depends not 

only on the lengths of the links, but also on the angular position x1 of the crank, which is controlled 

with random deviation dx1. In the equivalent static model (Fig. 5b) the rotational DOF is removed 

by introducing a fixed end on the crank at the joint. The system is now exactly constrained and 

force analysis provides the internal forces on the crank in the fixed end section. These include the 

normal force F1 and the torque M1 (the shear force T1 will not considered further). Removing the 

fixed connection on the crank, the equilibrium condition gives 
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the sensitivity of x1 (i.e. of the angular positioning accuracy of the actuator) is thus equal to 
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A similar reasoning applies to structures or mechanisms where a functional requirement is 

associated to the angular dimension j of a link. In this cases the external load acting on the 

equivalent static model would be a torque M applied to the considered link with the same 

orientation as j. Again, force analysis would provide the internal forces Fi at the links (or possible 

bending moments corresponding to angular dimensions). As the virtual work of the external torque 

is Mdj, the sensitivities of link lengths would then be given by the following expression: 
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4. Validation 

The above justification of the static analogy rests upon the association of deviations with virtual 

displacements, which is a reasonable abstraction but cannot be regarded as a proof of correctness. 

For this reason, the method will be now verified on two simple examples by comparison to explicit 

analytic solutions. This will also allow a first demonstration of the calculation of sensitivities on 

both structures and mechanisms. 

4.1 Structure example 

Fig. 6a shows an exactly constrained truss including three links with lengths A, B and C, arranged as 

a right-angle triangle in the nominal configuration. The external supports (a hinge at joint 2 and a 

slider at joint 3) define the reference direction y along which the position of joint 1 is to be 

controlled. The equivalent static model (Fig. 6b) can be analyzed by solving the equilibrium 

equations to find the support reactions and the internal forces at the links (Fig. 6c). These allow to 

calculate the sensitivities of either link lengths: 
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and link holes: 
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where all lengths have nominal values, di (i = 1, 2, 3) is the diameter of the pin at joint i, and Dij (i = 

1, 2, 3; j = A, B, C) is the diameter of the hole in link j at joint i. 

The sensitivities of link lengths can be verified by finding the explicit relation of y with A, B and C. 

The diagram of the truss is redrawn considering a generic configuration with deviations (Fig. 7a), 

whose inspection gives the following expression: 
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where A, B and C are the actual values of link lengths; the partial derivatives of y at nominal values 

of dimensions (i.e. assuming again A
2
 + B

2
 = C

2
), coincide with the sensitivities calculated by the 

static analogy. 

For a geometric verification of the sensitivities of pin and hole diameters, the only dimensions D2C e 

d2 will be considered. In the nominal configuration the holes in links A and C at joint 2 can be 

assumed as perfectly aligned, due to either zero clearance with the pin or the centering effect of 

lubrication. Due to deviations on diameters, a shift occurs between the centers of the two holes. 

Considering the hole on link A as fixed, the displacement of the hole on link C has the same effect 

as an increase of the length C whose sensitivity is known. 

Specifically, a deviation dD2C (increase of hole diameter) involves a shift hC2 of the hole on C with 

respect to the pin (Fig. 7b). Its effect is equivalent to the following increase of length C: 
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A deviation -dd2 (decrease of pin diameter) involves again a shift hC2 as well as an additional shift 

h2A of the pin with respect to the hole on A (Fig. 7c). The effect of the two shifts is equivalent to the 

following increase of length C: 
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The total increase of length C equivalent to the two deviations is then 
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and its contribution to the deviation on the requirement is given by 
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This confirms the the sensitivities of D2C and d2 calculated by the static analogy. 

4.2 Mechanism example 

Fig. 8a shows a crank-slider mechanism with crank length A and rod length B, in the configuration 

where the crank angle is b. The position of the slider is to be controlled along the translational 

direction y. The tolerance analysis will be limited to the sensitivities of A, B and b, while the 

sensitivities of joint-related dimensions can be separately calculated as in the previous example. 

The equivalent static model (Fig. 8b) can be easily analyzed to determine explicit analytic 

expressions for the internal forces (Fig. 8c). These include the rod angle a, an additional variable 

related to the input dimensions: 
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According to the static analogy, the desired expressions of sensitivities are equal to the normal 

forces FA and FB on the two links and to the bending moment Mb in the fixed end section, divided 

by the external force F: 
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The analytic expression of y is needed for a verification of the above results. The additional variable 

gives the following expression: 
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which is differentiated with respect to the dimensions: 
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Considering also that 
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the partial derivatives of y are equal to the sensitivities calculated by the static analogy: 
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5. Application 

The examples discussed so far were simple enough for an analytic solution. Practical design cases 

often involve a larger set of dimensions, multiple functional requirements and relations among 

tolerances of different parts of the assembly. A further example is provided below to demonstrate 

the application of the proposed procedure in such situations. 

Fig. 9 shows a linkage for the generation of exact straight-line motion, of the type referred to as 

Peaucellier cell [70]. The mechanism has 7 links and 6 rotational joints, two of which (1 and 2) are 

connected to an external frame. An input rotation of link 1-3 (crank) about joint 1 determines a 

displacement of joint 6 along the normal to line 1-2. The coordinate system xy is fixed to the 

external frame with origin at joint 1, x-axis along line 1-2, and thus y-axis parallel to the direction of 

generated motion. The tolerance analysis problem consists in evaluating the deviations on the 

position of point 6 along x and y from the deviations on the dimensions of individual parts of the 

mechanism. These include the distance between the two external supports, the lengths and the hole 

diameters for each link, the pin diameter for each joint, and the angular position of the crank. The 

only nominal values of link lengths will be assumed for the moment (L12 = L13 = 1 m, L24 = L25 = 3 

m, L34 = L34 = L46 = L56 = 1.5 m), postponing further design specifications to a later phase. 

The equivalent static model is the exactly constrained frame in Fig. 10. To include the distance 

between the supports in the analysis, the frame has an additional link 1-2 and replaces the hinge at 

joint 2 with a slider. All the joints allow free rotation as in the original mechanism, except for the 

fixed connection between the two beams converging at joint 1 which corresponds to the angular 

dimension a imposed to the crank. The model should be replicated for a representative sample of 

configurations of the mechanism, which in this case will be limited to just two values of a (0, 30°). 

Unit loads along the two reference directions (Fx = Fy = 1 kN) are alternatively applied to joint 6 for 

each configuration. 



Although the frame might be easily analyzed by direct inspection of the free-body diagrams, 

software calculations are more advisable in practice to speed up the analysis and to avoid mistakes. 

The finite element method with plane-truss and plane-frame elements is suitable for the force 

analysis in the whole range of applications of the proposed approach. Figs. 11 and 12 show the 

results of the analyses for both configurations under the two loads Fx e Fy, calculated by the freely 

available software Ftool [71]. The diagrams include the data needed for the evaluation of 

sensitivities from the static analogy, namely the support reactions (R1, R2) and the normal forces in 

the links (F12, F13, F24, F25, F34, F35, F46, F56) in kN, and the bending moment at joint 1 (M1) in 

KNm. 

Tab. 1 shows the calculation of the sensitivities of individual dimensions on the position of the 

control point along directions x and y in the two configurations. Each sensitivity is expressed as a 

function of the above calculated forces; all equations are independent on the configuration and 

apply for any value of a within the physical limits of motion. Due to the symmetry of the 

mechanism, it is immediate to deduce the sensitivities for a = -30° and thus the variation in the 

absolute value of each parameter. As a further note, if the mechanism is scaled without changing the 

proportions of link lengths, all the sensitivities remain unchanged except for that of angle a which 

derives from a bending moment and is thus proportional to the scaling factor. 

The analysis can be enhanced by considering additional design constraints. It is reasonable to 

assume that all the pins and all the links with the same length are manufactured as a common part 

type. This choice leads to aggregating the tolerance specifications into as few as 7 distinct values, 

which involve the following dimensions: distance of the two supports in the external frame (TLA), 

lengths of the three types of links (TLB, TLC, TLD), common diameter of the holes in all links (TD), 

common diameter of all pins (Td); crank angle imposed by the actuator (Ta). 

The sensitivities of the aggregate dimensions depend on the stackup criterion adopted in the 

tolerancing study. A suitable choice in this case is the root sum square (RSS) stackup, which 

calculates the resulting tolerance Ty on a requirement from the tolerances Ti specified on n related 

dimensions by the following equation: 

2
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2
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i

iy TsT å
=

=  

This criterion is theoretically valid if every dimension has a normal distribution with mean equal to 

the nominal value and standard deviation in a constant ratio to the tolerance. These conditions may 

appear too limiting for linkages, as the shifts due to joint clearances (which are implicitly included 

in the sensitivities) are likely to violate the normality assumption if the centering effect of the 

lubricant films is disrupted by heavy loads and inertia forces. However, in the presence of a large 

number of dimensions such violations have a limited effect on the normality of the requirement. 

The RSS stackup can then be reasonably assumed, possibly with an inflation factor not considered 

here. The sensitivity of an aggregate dimension sa can thus be calculated from the sensitivities of the 

related dimensions sj (j = 1,� m) as 
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Tab. 2 shows the aggregate tolerances and their sensitivities. 



Tab. 3 shows the results of the analysis from a given set of tolerance specifications, selected in the 

medium tolerance class according to the ISO 2768-1 standard [72]. The individual contributions of 

each tolerance to the RSS stackups of the two requirements is also listed both in absolute value (not 

additive): 

iiii TsTs =22  

and in percentage value (additive): 
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Some final observations can be made within the limits of the specified tolerances and of the range 

of analyzed configurations. The tolerances on the two requirements are in the order of 2 to 4 times 

the tolerances on link lengths, with slightly higher values along the normal to the generated motion. 

For both of them, the main contribution (about half of the total amount) comes from the tolerance 

on the length of the links that form the four-sided polygon next to the control point. The tolerance 

on hole diameters has a negligible contribution on the requirements. The tolerance on pin diameters 

(which is not completely independent on the former for cost reasons) has a stronger yet limited 

contribution; however, it would have a predominant effect along the normal to the generated motion 

if the actual deviations on link lengths were statically compensated on the assembled mechanism. 

The angular deviation due to the actuator has an effect only along the motion direction, where it 

contributes to the deviation for about a third of the total amount (or for almost the whole amount if 

link length deviations are compensated). Except for verifications on a wider range of 

configurations, the symmetrical configuration of the mechanism (a = 0) has the minimum deviation 

along the direction of generated motion and the maximum deviation along the normal direction. 

6. Conclusions 

As demonstrated in the last example, the proposed method allows straightforward application to 

practical cases of tolerance analysis. In perspective the static analogy should be particularly suitable 

for highly complex structures and mechanisms, which are customarily designed with the aid of 

computer-aided tools for structural analysis; the opportunity to use the same tools for tolerance 

analysis as well should encourage the correct and systematic treatment of tolerance specifications 

throughout the design process. Another advantage of the static analogy is the wide availability of 

algorithms for finite element analysis, which can help the development of dedicated software tools 

in order to streamline and extend the tolerance analysis procedure. Also attractive from a theoretical 

side is the idea that some optimization problems in the context of tolerancing, such as tolerance 

allocation and robust design of assembly configurations, might be treated by borrowing concepts 

and methods from the emerging research field of structural optimization. 

Further developments of the work will try to improve the validation of the method, possibly by 

comparison with commercial software tools, and to remove some limitations of its current 

formulation. The main needed extensions (spatial mechanisms, higher pairs, overconstraining) seem 

to be naturally consistent with an approach based on static analogy. 
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Tables 

Tab. 1: Sensitivities of the dimensions on the requirements 

Dimension Equation 
Value, x Value, y 

a = 0 a = 30° a = 0 a = 30° 

L12 sL12 = F12/F  -2.688 -2.567 0 -0.904 

L13 sL13 = F13/F  -1.688 -1.809 0 0 

L24 sL24 = F24/F  1.500 1.745 -0.774 -0.513 

L25 sL25 = F25/F  1.500 1.255 0.774 1.317 

L34 sL34 = F34/F  -1.841 -1.952 0.949 0.574 

L35 sL35 = F35/F  -1.841 -1.403 -0.949 -1.473 

L46 sL46 = F46/F  1.091 1.079 -0.563 -0.317 

L56 sL56 = F56/F  1.091 0.776 0.563 0.814 

D13 sD13 = 1/2 |F13|/F  0.844 0.905 0 0 

D24 sD24 = 1/2 |F24|/F  0.750 0.873 0.387 0.257 

D25 sD25 = 1/2 |F25|/F  0.750 0.628 0.387 0.659 

D34 sD34 = 1/2 |F34|/F  0.921 0.976 0.475 0.287 

D35 sD35 = 1/2 |F35|/F  0.921 0.702 0.475 0.737 

D46 sD46 = 1/2 |F46|/F  0.546 0.540 0.282 0.159 

D56 sD56 = 1/2 |F56|/F  0.546 0.338 0.282 0.407 

d1 sd1 = -1/2 (|F12|+|F13|+|R1|) /F  -1.688 -2.682 -1.688 -2.140 

d2 sd2 = -1/2 (|F12|+|F24|+|F25|+|R2|) /F  -2.844 -3.236 -1.962 -2.555 

d3 sd3 = -1/2 (|F13|+|F34|+|F35|) /F  -2.865 -2.582 -0.949 -1.024 

d4 sd4= -1/2 (|F24|+|F34|+|F46|) /F  -2.216 -2.388 -1.143 -0.702 

d5 sd5 = -1/2 (|F25|+|F35|+|F56|) /F  -2.216 -1.717 -1.143 -1.802 

d6 sd6 = -1/2 (|F46|+|F56|) /F  -1.091 -0.928 -0.563 -0.566 

a sa = |M1|/F  (m/rad)  0 0 1.688 1.809 

 



Tab. 2: Aggregation of sensitivities 

Tolerance Related dimensions 
Sensitivity, x Sensitivity, y 

a = 0 a = 30° a = 0 a = 30° 

TLA L12 2.688 2.567 0 0.904 

TLB L13 1.688 1.809 0 0 

TLC L24, L25 2.121 2.149 1.095 1.413 

TLD L34, L35, L46, L56 3.026 2.747 1.560 1.806 

TD D13, D24, D25, D34, D35, D46, D56 2.032 1.956 0.954 1.148 

Td d1, d2, d3, d4, d5, d6 5.942 5.818 3.245 4.027 

Ta a 0 0 1.688 1.809 

 

 

Tab. 3: Results of the tolerance analysis 

Tolerance Value 
RSS stackup, x (mm) RSS stackup, y (mm) 

a = 0 a = 30° a = 0 a = 30° 

TLA ± 0.8 mm 2.15 (19.4%) 2.05 (19.5%) 0 0.72 (5.0%) 

TLB ± 0.8 mm 1.35 (7.6%) 1.45 (9.7%) 0 0 

TLC ± 2 mm 1.70 (12.1%) 1.72 (13.7%) 0.88 (10.1%) 1.13 (12.2%) 

TLD ± 1.2 mm 3.63 (55.2%) 3.30 (50.2%) 1.87 (46.3%) 2.17 (44.9%) 

TD ± 0.2 mm 0.41 (0.7%) 0.39 (0.7%) 0.19 (0.5%) 0.23 (0.5%) 

Td ± 0.2 mm 1.10 (5.0%) 1.16 (6.3%) 0.65 (5.6%) 0.81 (6.2%) 

Ta ± 1 mrad 0 0 1.69 (37.6%) 1.81 (31.2%) 

Total 
 

4.888 4.652 2.753 3.236 
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