Journal of Physics Communications

PAPER « OPEN ACCESS

Entropic measurement uncertainty relations for all the infinite
components of a spin vector

To cite this article: Alberto Barchielli and Matteo Gregoratti 2020 J. Phys. Commun. 4 055003

View the article online for updates and enhancements.

This content was downloaded from IP address 82.84.132.21 on 12/05/2020 at 15:01


https://doi.org/10.1088/2399-6528/ab8f03

10P Publishing

® CrossMark

OPENACCESS

RECEIVED
24 February 2020

REVISED
29 April 2020

ACCEPTED FOR PUBLICATION
30 April 2020

PUBLISHED
12 May 2020

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 4.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

J. Phys. Commun. 4(2020) 055003 https://doi.org/10.1088/2399-6528 /ab8f03

Journal of Physics Communications

PAPER

Entropic measurement uncertainty relations for all the infinite
components of a spin vector

Alberto Barchielli"*>*® and Matteo Gregoratti'

! Politecnico di milano, Dipartimento di Matematica, piazza Leonardo da Vinci 32, 20133 Milano, Italy
? Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Milano, Italy

* Istituto Nazionale di Alta Matematica INDAM-GNAMPA), Italy

*  Author to whom any correspondence should be addressed.

E-mail: alberto.barchielli@polimi.it and matteo.gregoratti@polimi.it

Keywords: measurement uncertainty relations, relative entropy, joint measurements, information loss, spin s

Abstract

The information-theoretic formulation of quantum measurement uncertainty relations (MURs),
based on the notion of relative entropy between measurement probabilities, is extended to the set of all
the spin components for a generic spin s. For an approximate measurement of a spin vector, which
gives approximate joint measurements of the spin components, we define the device information loss
as the maximum loss of information per observable occurring in approximating the ideal
incompatible components with the joint measurement at hand. By optimizing on the measuring
device, we define the notion of minimum information loss. By using these notions, we show how to
give a significant formulation of state independent MURSs in the case of infinitely many target
observables. The same construction works as well for finitely many observables, and we study the
related MURSs for two and three orthogonal spin components. The minimum information loss plays
also the role of measure of incompatibility and in this respect it allows us to compare quantitatively the
incompatibility of various sets of spin observables, with different number of involved components and
different values of s.

1. Introduction

In the last twenty years the idea of quantum uncertainty relations has been deeply developed and formalized by
introducing different related notions. Measurement uncertainty relations (MURs) for joint measurements
quantify to which extent one can approximate a set of measurements of incompatible observables by means of a
single joint measurement [1—13]. On the other side, MURs of noise/disturbance type quantify the total
uncertainty generated by an approximate measurement of a first observable disturbing the measurement of a
second one [10—-17]. Finally, one speaks of preparation uncertainty relations (PURs) when some lower bound is
given on the ‘spreads’ of the distributions of some observables measured in the same state [8—12, 18-24]. An
important point in MUR:s for joint measurements and PURs is to arrive to formulate them for more than two
observables [5, 8, 11, 20-24]. Various approaches have been proposed to quantify the ‘errors’ involved in
uncertainty relations, such as variances [19, 23], distances for probability measures [3, 4, 7, 8, 10, 13], entropies
[11,18,20], conditional entropies [14—16].

In this work, our aim is to develop entropic MUR:s for all the infinite components of a spin s in the case of an
approximate measurement of the full spin vector. The idea of formulating MURSs for all the components of a
generic spin s was introduced in [8]: the measurement of a spin vector is seen as an approximate joint
measurement of its infinite components and the aim is to have a quantitative bound on the accuracy with which
all these observables can be jointly approximated by such a device. In [8] the approximation error is quantified
by Wasserstein distances between target and approximating distributions. Our approach instead is to see a
measurement approximation as a loss of information and to quantify it by the use of the relative entropy
[25-27]. In information theory, the relative entropy is the notion which allows to quantify the loss of
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information due to the use of an approximate probability distribution instead of the true distribution. This
quantification is independent of a dilation of the measurement units and of a reordering of the possible values. In
this context it is possible to arrive to MURSs for any set of observables and to quantify their amount of
incompatibility.

In [25] we succeeded in formulating state independent MURSs for any set of # general observables taking a
finite number of possible values. The lower bound appearing in these MURs was named entropic incompatibility
degree, and it was shown to play the role of an entropy-based measure of incompatibility. The generalization to
position and momentum was given in [26]. However, the formulation given in these two articles does not extend
to infinitely many observables. In [27] we treated the case of all the infinite components of a spin 1/2 system, by
an approach based on a mean on the directions. However, this approach cannot be extended to sets of
observables for which a natural mean does not exist, and, in any case, it is very difficult to apply it to higher spins.

In this article we show how to quantify the ‘inaccuracy’ in an approximate measurement of the full spin
vector, for any value of s, by introducing the notion of device information loss (section 3.1). Then, by optimizing
on the measuring apparatus, we define the minimum information loss (section 3.2), by which the entropic MURs
for a spin vector can be expressed, in a state independent form (section 3.3). A key point in the formulation of the
MURs is the characterization of the class of approximate joint measurements of all the components of the spin
vector (section 2.2). The main difference between the present approach and the one introduced in [25] is that
now our focus is on the worst loss of information per observable, while previously it was on the total loss of
information.

An important point is that the construction we propose for the spin case allows to formulate MURs also for
finite and infinite sets of target observables on the same footing, always in a way that ensures independence from
the measurement units, as invariant information theoretical quantities are involved. As a byproduct, this
approach will produce also a ‘normalized quantity of incompatibility’ (the minimum information loss) for
different choices of the target observables; this index can be used to compare sets of different numbers of
observables from the point of view of incompatibility. So, after the construction of MURs for all the spin
components in a measurement of the full spin vector, we study also the case of an approximate joint
measurement of only 2 or 3 orthogonal spin components and show how the minimum information loss allows
the quantitative comparison of the various cases (different numbers of components, different values of s). As
already stressed in [8], a joint measurement of three orthogonal components is not equivalent to a joint
measurement of all the components, in arbitrary directions, and only the case of infinite components respect the
rotation symmetry of an angular momentum. So, it is meaningful to enlighten the differences between the case
of the spin components in all directions and the case of orthogonal components.

1.1. Scheme of the article

In section 2 we present the approximate joint measurements of all the spin components that we are going to analyze.
These are based on approximate measurements of a spin vector, that is generalized observables on the sphere
(section 2.2): given a positive operator valued measure (POVM) on the sphere, we process it into an approximate joint
measurement of all the spin components by a projection and discretization procedure of its output (section 2.2.1).
After a general analysis of the rotational covariant approximate measurements of a spin s, more explicit results are
given for small spins in section 2.3. In section 3 we introduce the minimum information loss associated to any
approximate measurement of a spin vector. Such a quantity is the lower bound in the state independent MURs for
all the spin components, formulated in remarks 9 and 11. We also show that the information loss is minimized in the
family of rotational covariant POVM:s on the sphere. In section 3.4 we show the connections between our entropic
quantity and the incompatibility measures based on generalized noisy versions of the target observables. The
numerical values of the minimum information loss are computed in section 3.5 for s = 1/2, in section 3.6 fors = 1
and in section 3.7 for s = 3/2.In section 3.5 we present also a state dependent form of MURs in the special case

s = 1/2. The MURs for two and three orthogonal components and the corresponding bounds for these cases are
introduced in section 4. We show also that the minimum information loss has the role of figure of merit to quantify
the incompatibility. The ordering from the least incompatible set to the more incompatible one is given in

section 4.3, for different number of spin components (including the case of infinite components) and different spin
values s. Section 5 presents conclusions and outlooks.

2. Approximate joint measurements of all spin components

In this section we introduce the general notations we shall use, our target observables (the set of all spin
components) and the class of their approximating joint measurements.

We fix a Cartesian system x, y, z determined by the orthogonal unit vectors i, j, k.Let S, = S;, S, = S,
S; = S3beanirreducible representation of the commutation relations [S,, S,] = iS, (and cyclic relations) in the
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Hilbert space # = C**!,so that S? + S}% + 82 =s(s + DI, s = 1/2, 1, 3/2,.... The corresponding state
space (the space of all the statistical operators on #’) will be denoted by .%;. In particular, in some discussions, we
shall need the maximally mixed state, given by

1
= . 1
P st M
2.1. Target observables
Wedenoteby X = X;, Y = X;, Z = X; the projection valued measures associated with the self-adjoint
operators S,, S, S, (respectively) and by 2 the set of possible eigenvalues m:
meX={—s, —s+1,...,5s— 1, s} )

More in general, for a direction n (n € R?, |n| = 1), we denote by A,,(m) the eigen-projections of the spin
component in thedirectionn: n - 8§ =3 _,mA,(m). Asusual weshallidentify n - § and A, by callingboth
them ‘spin component’.

The set of observables which we are going to approximate by joint measurements (the reference or target
observables) consists of all the spin components (the full spin vector):

A= {Ap:nc R, |n| =1} 3)

Let us introduce now the usual polar angles 6, ¢ in the fixed reference system and denote by n(6, ¢) the unit
vector in the direction determined by the polar angles # and ¢:

sin 6 cos ¢
0 €l0,n], ¢ €l0,2m), n(, ¢) =|sinfsing |- 4
cosf
In the following we shall need the rotation operator
V (0, ¢) = exp {—i6S,}, Sp = 8,cos¢ — Sysing = e 195§, ei0%, (5)

corresponding to a counterclockwise rotation of an angle 6 around the unit vector n(w/2, ¢ + 7/2), see
appendix A. Such a rotation brings the k axis to the n(6, ¢) one, so that

V(e) ¢)SZV(97 ¢)T = n(e) (b) - S, (6)

V0, ))Z(m)V (0, ¢ = Aup,p)(m), mex. (7

Finally, the spin components enjoy the covariance property
URA(mUR)" = Aga(m), ®

where U(R) is the (projective) representation of SO; introduced in appendix A.

2.2. Approximate joint measurements
We are interested in a measurement of a spin vector, which can be only an approximate measurement otherwise
it would be a joint measurement of its components which are all incompatible. Then, an approximate
measurement of a spin vector will be seen as an approximate joint measurement of its infinite components. In
some sense, this is even an equivalence if one follows the idea of [8, Section 4.1] that a joint measurement of all
components of a vector is a positive operator value measure (POVM) whose output is a vector. We shall come
back on this point in remark 4 and in section 5. For a presentation of POVMs, called also resolutions of the
identity, see [10, Sections 4.6,9.3] and [19, Section 2.2]. We shall denote by .# (%) the set of all the POVMs with
value space % for instance, we have A, € .#(Z'). The distribution of an observable A in a state p will be
denoted by A”.

The first step is to introduce the set of the approximate measurements of the spin vector. As formally the
length of a spin is constant, we normalize it to 1 and we consider POVMs on the unit sphere S, in R?,

S, ={£ el |¢ =1} ©)
We denote by 7 (S,) the set of all the POVM on S,.
The second step will be to approximate the target observables A, with compatible observables M, that share
the same output space Z as A,; this will be done in section 2.2.1 by processing the output of a POVM on the
sphere.
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On the physical ground ([19, Chapter 4], [8, Section 4.4]), an essential physical property of a measurement of
an angular momentum vector is its covariance under the rotation group. Moreover, also when any POVM on
the sphere is considered to model a possible measurement of an angular momentum, even if it is not rotational
covariant, one could expect that covariance emerges naturally from any reasonable optimality requirement; it
happens in [8] and the present paper does not make an exception. Of course, the special properties of rotational
covariant POVMs on S, will be the basis of some of our results. So, here we introduce the covariant POVMs on
the sphere and give their properties.

Remark 1. We denote by % (S,) the set of all the rotation covariant POVMs on S,. The covariance ofa POVM
F € Z(S,) means that, for any Borel subset of the sphere B C S, and any rotation R € SO(3), we have
UR)F(B)U (R)' = F(RB), where the representation U (R) is introduced in appendix A.

The structure of the POVMs in % (S;) has been completely characterized in [19, Section 4.10], [8, p 24]; any
covariant POVM on S, can be expressed as

+s +s
Fx(dfdo) = > A Fr(ddo), Ae=0, > A=1, X={Ner>
f=—s {=—s

FA(d0de) = (25 + DA () 004040

47 (10)

In particular, the normalization of the measure Fy for any choice of the \’s implies the normalization of the
measures Fy, which means

f f F(dodg) =1, V£ ed. (11)
0e[0,m] Yoe[0,2m)

Let us note that the choice of the z-axis is arbitrary.

Remark 2 (Uniform distribution)

(i) When A\, = A2 = 1/(2s + 1), V#, (7) and (10) imply that Fy(dfd¢) is the uniform distribution on the
sphere: Fy(dfd¢) = 1 52;0 dfde.

(ii) Similarly, for any choice of the parameters A, we get the uniform distribution on the maximally mixed state

(1): F{(dfdg) = 2% dod.

4

2.2.1. Post-processing
By a natural post-processing procedure, we are now able to construct the compatible observables M,, on 4,
approximating the spin components A,,. Let £ be the result obtained from a measurement on the system of
F € Z(S,). Beingt the observed value, for every direction 7 we want a value for the ideal spin component # - S,
obtained by a suitable discretization of n - £. This discretization could be based on different criteria, such as
angles of the same amplitude, or projections on n of the same length. In order to have a sufficiently large class of
approximate measurements, we do not ask for such a restrictions; we ask only to have symmetry with respect to
positive and negative values, so that we can identify n - S with —n - S up to a change of sign in the output
value m.

Let us consider a set of angles dividing the interval [0, 7] into 2s + 1 pieces, symmetrically placed with
respectto 7/2:

0 = {0y, 01,..., 0511}, 0=00 < h< - <lpyp1=m, Ori1-k =7 — b (12)

Let £ be the result of the measurement F and 7 be a generic direction forming an angle a with £. If we find
a € [0y, b)) form =s,..., —s + 1Lor a € [0y, w]for m = —s, weattribute the value m € Z to the
spin component in direction 7.

In other terms, let C,, (1), m € Z',bethe 2s + 1 parts of the sphere obtained by using this discretization
procedure around n; by construction we have

RCy(m) = Cra(m), VR € S0(3), 13)
C_n(m) = Cyp(—m). (14)

For any choice of a finite number of directions #;,..., ny, the approximate joint measurement of the spin
components in that directions is represented by

4
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k

=

ME (15, .., ] (11215 #1055 11E) = F( Cn,-(mi)]- (15)
1

This expression defines a POVM belonging to .# (Z°%).

Remark 3. By the construction we have followed, the POVMs (15) enjoy many properties; the most relevant
properties are the following ones.

(i) When k and n,,..., n; vary, the POVMs (15) are all compatible, because they are obtained by classical post-
processing from a unique measure F.

(i) By the fact that we have a measure on the space of the directions (the set S,) and that the post-processing is
described by the intersections in (15), the introduced POVMs are invariant under any permutation of the
couples (ny, my),..., (g, my).

(iii) Again by the structure (15), the introduced POVMs vanish any time the corresponding intersection among
the sets C,,, (1m;) is void.

(iv) Equation (14) implies also the symmetry property

ME [y o, md (01, M5 115) = ME [0, g ] (— 101, 110, 12E). (16)

The set of all these compatible POVMs implicitly defines a measure Mg on 2°: for all the spin components;
then, the measures (15) are k-dimensional marginals of Mg. We denote by .Z,,, the class of POVMs we get by this
procedure: F € 7 (S,) followed by the post-processing described above.

Remark 4. Note that, just because of properties (ii)—(iv), .#, is not the class of all the POVM’s on 2°5: (the class
of all the approximate joint measurements of all the spin components). Indeed, this larger class contains also
POVM:s that do not even enjoy the natural consistency property

My, —u (11, m3) = 0, Vmy = —m (17)

(recall that A, (m) = A_,(—m)). For measures in .#,, this property follows from point (iii) in remark 3; indeed,
by (14) we have C,,(m)N C_,(my) = C,(m)N C,(—mp) = D ifmy = —my.

Exactly for this reason, here we follow [8] in starting from measures on the sphere, and we study only POVMs
belonging to /...

Inside .#, we consider the subclass .# (A ) consisting of all the POVMs My = M, obtained by starting
from the covariant POVMs F, (10); we consider such POVMs My, € .# (A..) as the physically sensible

approximate joint measurements of all the spin components .4 ..; as a matter of fact, we will prove that they
allow to minimize the information lost in the approximation.

Remark 5. By the covariance of Fy, the POVMs in .# (A ) enjoy the symmetry property
U RMx .1 (11, 1) U (R)T = My (R, .. Ry (1115 1718 (18)

Remark 6. The measure My depends on 2s + |s|free parameters: 2s parameters from the \’sand | s | from the
angles 6; | s|is the integer part of s.

2.2.2. The structure of the covariant approximating spin components
We study now the structure of the covariant POVMs in .# (A ). The univariate marginal My, ,, represents the
admissible approximation of A, and its expression turns out to be

Mx (16,6 (1) = Fx(Cuo,0)(m)) = V (6, @)My i (m) V (6, &), (19)

Mgk (m) = [ [ FRsd). 20)
O€[60:— 05— m+1) Y P€10,27]

The compatible univariate POVMs M), ,,; will be central in our formulation of the MURSs and we shall call them
‘approximate spin components’.

Remark 7. From (10) we see that Fy (dfd¢) is a mixture of the POVMs F,(dfd¢); similarly, each My jisa
mixture, given by
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+s

My (m) = > AeMg g (m), 21
=—s
My g (m) = (25 + 1) fﬁ“’"“ dg S0 f” 4 Ano.)(£) 22)
¢, (k] o 4n 0 n(0,9) .
In the same way, we have
+s
My (m) = > AeMey (m), Mz (n (0,0 (M) = V (0, $)Mg, ) (m)V (6, ¢). (23)

=—s

In order to study the MUR:s for spin observables (section 3), we need a more explicit form for My [ (), for
which the following probabilities are needed.

Definition 1 (g-coefficients). We define
Go(mle, h) = Mgy (m) = Tr {p,Me g (m)},  pys= Z(h), (24)

which is the probability of getting the result 72 in a measurement of M [x; when the system is in the eigen-state
Py of S.. The vector 0 is the set of the discretization angles (12), defining M, by (22).

As stated by the following theorem, the g-coefficients involve the Wigner small-d-matrix [28, Section 3.6],
defined by

dPyo) = (e ™h),,  £,hex,  Oelo, ], (25)
where |m),, m € Z,is the normalized eigen-vector of S, of eigen-value .

Theorem 1. Each admissible approximate measurement of n - S (21) is diagonal in the basis of the eigen-vectors of
n - S;indeed, the approximate spin components (23) have the form

S S
Mz (m) = 3 qo(mle, WAL (h), My (m) = > go(mle, H)AeAn(h), (26)
h=—s £ h=—s
where the q-coefficients (24) appear. Moreover, these coefficients turn out to be given by

1 65—m+1 . s
Qo(mlt, h) = (s + 5) j{; d6 sin 0 [d%)0) 1, @7)

where d }f)h(ﬂ) is the Wigner small- d-matrix defined in (25).
Finally, the following properties hold: ¥ m, ¢, h € %,

qe(mlf) h) > 0’ qg(mlf’ h) - qa(_mll’ﬂ: _h)’ (28)

qe(mlf) h) - qa(m|h7 lfﬂ) = qg(ml_f> _h)) (29)

S gty by = 32 gp(mlé, by = (s + %)(cosesfm oSO, (30)
=—s h=—s

Proof. By using the expressions (22) and (7) inside the probabilities (24) we get
sin #
4T

M2 (m) = (25 + 1) f e g f " do Tr{Z(W)V (0, $)Z(£)V (0, ¢)'}
¢, k] 9 0 5 5 .

By inserting the decomposition (A.4) of V (0, ¢), we have that the dependence on ¢ disappears and (27) is
obtained.

The structure of the integral in ¢ in the right hand side of (22) implies that M ¢ (n) commutes with S, and
by the irreducibility of the spin representation it is a linear combination of the projections Z(h); by the previous
result the coefficients in this expansion are the g’s and we get M 1) (m) = Y75 __  q,(m|Z, h)Z(h). By(23)this
proves (26).

Asrecalled in appendix A.1, |d}f;l(9) |2 is a polynomial in cos 6. Aswe asked 6,_,, < 6,_,, 1, the integral of

this polynomial in (27) can vanish only if |d ;f)h(ﬂ) |> = 0 forall §, but this is impossible because we have
1= qy(ml¢, h) = (s + %) f" dé sin 6 [dS(0) %
- 0

which follows from (27) and the fact that g, (+|£, h)is a probability. Therefore the strict positivity in (28) holds.
The second property in (28) follows from (A.6) and the symmetry of the angles in the discretization (12).
Properties (29) follow immediately from the definition (24) and the symmetries (A.7).
The sum rules (30) follow from the property (A.8). O
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By (26), the distribution of an approximate spin component My, ,,) in a state p is given by the double mixture

M () = 32 qg(mlZ, WY A-AG(H). (31)
£ h=—s

2.2.3. Noise and compatibility
Definition 1 says that the g-coefficients are probabilities with respect to #; then, the quantities g, (¢|, ) and
Yv— .49 ClZ, *) As are transition matrices, independent of the system state p. Then, equations (26) and (31) can
be interpreted by saying that, given the direction 1, each covariant approximating spin component My, [, or
M, () could be obtained by measuring exactly the target observable A, and then by perturbing the result with
some classical noise through a one-step stochastic evolution given by one of the transition matrices just
introduced. As we have seen in remark 3, the univariate POVMs M, [, are all compatible because they are
obtained by a classical post-processing from the unique POVM Fy; the compatibility is not implied by the
structure (26) alone. The use of classical transition matrices (Markov kernels) to transform incompatible
observables into compatible ones has already been exploited in related problems [8, 10, 29].

A different approach [9, 10, 30, 29, 31, 32] to the construction of compatible observables is to consider noisy
versions of the target observables.

Definition 2. If D is an observable and N another POVM with the same value space, the mixture
D' =D + (1 — mN, n € [0, 1],

is said to be a noisy version of the observable D with noise N and visibility 7).

Given the target observables D;, j € I, and the class of permitted noises, the problem considered in the
quoted references is to see how much noise has to be added to the target observables in order to get compatible
POVMs of the form Dy’ = nD; + (1 — 1)N;. The various approaches in the literature differ for the classes of
admissible noises; often only classical noise is considered, i.e. N;(*) = ()l where p;is a classical probability,
independent of the system state [9, 30, 31]. A review of some choices for the noise classes introduced in the
literature is given in [32]; the typical choices are: (a) classical noises, (b) noises represented by compatible
POVMs, (c) general POVMs.

The marginals of an approximating joint measurement in .4 (A ,,) can be expressed as noisy versions of the
corresponding target observables in a way which will be useful for comparisons, as stated in the following
remark.

Remark 8. The marginals (26) of the joint measurement My can be written in the form

My, (m) = 7 gAn(m) + (1 — 1y o)N2? (m), (32)
Nag = Min > g, (m|, m) s, 0<me<l, (33)
meX peq
Nbg(m) = {I:Z qe(mlf) m)/\f - mln Z qg(m/lf’ m/)/\f:|An(m)+ Z (1 - éhm)qg(mlf) h))\/An(h)} (34)
L —xe |Leer m'ex peq ohed

It is easy to see that N9 (1) is positive and that N9 is indeed a POVM; then, the proof of the decomposition
(32) is trivial. This simple expression is due to the fact that each target POVM A, and its approximating POVM
M, (] are diagonal on the same basis. Due to covariance, the visibility 7, 4 does not depend on 7. Due to the strict
positivity (28) of the g-coefficients, the visibility is strictly positive; moreover it cannot be 1, which is possible
only when the target observables are already compatible.

In expressing My [, as a mixture of A, and some ‘noise’, the decomposition is not unique. In writing the
decompositions (32) we have decided to have the maximum possible value for the visibility 7, o, without
imposing conditions on the class of allowed noises. As we remarked above, the last class of noises discussed in
[32]isindeed the one of general POVMs. If the class of noises is restricted, the value of the visibility could
diminish, as we can see in the example of s = 1/2, section 2.3.1.

2.2.4. Unbiased measurements
Sometimes, not only symmetries are used to restrict the class of possible approximate joint measurements of
some incompatible target observables. In [4, 33, 34] spin measurements with unbiased marginals are considered;

7
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by this they mean that the outcomes of the measurement are uniformly distributed when the system is in
the maximally mixed state. Note that in the field of inferential statistics this term has a different meaning,
cf[19, Chapter 6].

By taking into account that our target observables A, are indeed unbiased in this sense, it could be
reasonable to ask this restriction also for the approximating observables. In the case of covariant approximate
joint measurements, by (31) and (30), to ask the uniform distribution Mﬁ") g (m) =1 / (2s + 1),inthe
maximally mixed state p, (1), implies immediately the strong restriction

2 . 2s+1— 2k

ie. costh = ———. (35)

cosby — cosby 1= ——,
s 25 + 1

This choice corresponds to discretize n - £ by dividing the interval [—1, 1] into subintervals of equal length. By
using the minimization of information loss as criterium of goodness, as done in section 3, the best approximate
joint measurement not always satisfies this restriction (see sections 3.6, 3.7) and we do not ask for unbiasedness.
Also in other contexts, biased measurements turned out to be optimal [31].

2.3. Covariant approximate joint measurements for spin 1/2, 1, 3/2
For small spins we can get explicit results by particularizing the discretization procedure of section 2.2.1 and
using the g-coefficients computed in appendix A.2.

2.3.1. Spin 1/2
In this case only three angles appear in the post-processing and they are completely determined by (12): 6, = 0,
0, = m/2, 0, = m.So0, no free parameter is introduced by the discretization of the directions and a single free
parameter remains, coming from the \’s, see remark 6. These angles automatically satisfy (35) and this means
thatfor s = 1/2 any observable in .# (A.,) is unbiased in the sense of section 2.2.4.

The most general expression of the approximate spin components (21), (22) has been already obtained in
[27], Section 5, but it can be computed also from the explicit form of the g-coefficients given in (A.9):

1 1
My k) (m1) = > + (>\1/2 — E)stz, A2 €10, 11 (36)

Byusing Z(m) = 1 — Z(—m), we can rewrite (36) as

M iy (1) = (% - Am)% + (Al/z - %)Z(m) _ (% + Al/z)g + (% _ Al/z)zvm), (37)

from which we see that My [ is a noisy version of Z with classical noise, only when ), ,, > %
By allowing general noises, we have the structure (32), which is a different decomposition of the
approximating measures as noisy versions of the target observables. For s = 1,/2, by particularizing (33) and

(34), we see that the 8 dependence disappears and the explicit expressions of visibility and noise become
I A
=g N = NaGm) = A=), (38)

Note that in the decomposition (32) for s = 1/2 the noises turn out to be projection valued measures and they
do not commute for different directions; so, the noises N,, n € S,, are incompatible. We have asked the
compatibility of the POVMs My [, not of the noises.

For s = 1/2 the probabilities (31) can be easily computed. Firstly, any state can be parameterized as

p:%(ﬂ—l—Zr-S), r=Ir| < 1; (39)

note that 28 is the vector of the Pauli matrices. Then, by (7) and (36), we have

1 1 1
Al(m) = 3 +mn-r, M oy (M) = 7 + ()\1/2 — E)m n-r. (40)

2.3.2.Spin 1
The choice of the angles (12) gives 0 = 6y < 6) < 6, = m — 6 < 05 = 7, and itintroduces a single free
parameter

a = cos b, ae (0, 1). 41
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Other two free parameters come from the \’s, see remark 6. The g-coefficients are computed in appendix A.2.2;
then, the approximate spin components (26) take the expressions

3 _ 3
Mg (£1) = M_y g (F1) = [1 - %]zm) n ?(1 —a2Z(0) + % Z(1),
My, (0) = M_1 1 (0) = %(3 — a)Z(0) + %(3 + a)[Z(1) + Z(—=D)], (42)
_ .3
Mogg(£1) = 221 — a)2[z(1) + Z(~1)] + ~—% Z(0),
Mo,k (0) = a3Z(0) + g(s — a)[2(1) + Z(-1). (43)

To get unbiased marginals, according to (35) we would have to take a = 1/3; as we already wrote in
section 2.2.4 we do not ask for this and we leave free the parameter a.

2.3.3.Spin 3/2
For s = 3/2, the choice of the angles (12) gives

0:90<91<92:§<03:7T*91<04:7T,

and itintroduces a single free parameter: a := cos 0}, a € (0, 1). Other three free parameters come from the s,
see remark 6. The g-coefficients are computed in appendix A.2.3; then, the approximate spin components are
given by (26), (21) and the probability distribution by (31) (we to not write explicitly them, because the formulae
are very long). To get unbiasedness, according to (35) we would have to take a = 1/2.

3. Entropic MURSs for the set of all the spin components

A spin vector can not be exactly measured, as its components are incompatible observables and a joint
measurement can only approximate them. In information theory [35—37] the relative entropy is the quantity
introduced to measure the error done when one uses an approximating probability distribution in place of the
true one. Let us stress that the relative entropy is an intrinsic quantity: it is independent of the measure units of
the involved observables and from renaming or reordering the possible values. Such a property does not hold for
non entropic measures of the error.

In [25] we used as error function the sum of the relative entropies, each one involving a single target
observable, because this sum represents the total loss of information; however, this approach can not be
extended to infinitely many observables. To overcome this difficulty, instead of the sum, we shall consider the
maximum of the relative entropies over all target observables: this maximum represents the loss of information
for the worst direction. Then, we consider the worst case also with respect to the system state. Finally, we shall
optimize with respect to all approximating joint measurements. This is indeed the procedure used in [4, 5, 8],
apart from the starting point (distances between distributions for them).

3.1. The device information loss
Let usrecall that A, (3) is the set of all the spin components (our target observables), that .4, is the class of the
approximate joint measurements for all the spin components, and that .# (A ) is the class of the covariant
ones, M (Ay) C My (seesection2.2.1).If A, € A andM € .4, we denote by M, the univariate marginal
of M approximating A, and we call it the approximate spin component. With A? we denote the distribution of
A, in the state p, and similar notation for the other observables.

To quantify the information loss due to the use of Mf,, in place of the target distribution Ay, we take the

relative entropy
Ap(m)
SALIME) = > An(m)log——— >0, M e My, (44)
e mex " M[pn] (m)

where the logarithm is with base 2: log = log,. Recall that the form 01log 0 is taken to be zero and that the relative
entropy can be +00 when the support of the second probability distribution is not contained in the support of
the first one. When a covariant measurement is considered, by using the expression of Mj |, in terms of the \s
and the g-coefficients in (31), we have

My € A (As). (45)

SAALIME () = 3 Ali(m)log An(m) ’
" mea >endg(ml?, h) A¢AL(h)

As all the g-coefficients are strictly positive (28), the relative entropy (45) is always finite.

9
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The relative entropy (44) depends on the state and on the choice of the observable (the direction 7). To
characterize an information loss due only to the measuring device, represented by the multi-observable M
approximating all the observables in A ., we consider the worst case of (44) with respect to the system state and
the measurement direction. So, we define the device information loss by

AS[AOO”M] = sup S(Aﬁ”M[pn]); M e %oo (46)

pES;, NES,

This quantity is the analogue of the entropic divergence introduced in [25, definition 2]); to use the worst
case on the directions instead of the sum of the relative entropies, as done there, allows to consider also infinitely
many target observables. Alternatively, in [27] we started from the mean of the relative entropies made over all
the directions, but this approach gives rise to computations intractable outside the case s = 1/2, and without
possible extensions in cases in which an invariant mean does not exist.

Theorem 2. The device information loss (46 ) is always strictly positive:
A AM] > 0, VM € M. (47)
Moreover, YM € M thereexists M € .4 (A.) such that

A A M] < AL A M. (48)

In the case of a covariant measurement, the double supremum in the definition (46) of the device information loss
is a maximum, and we have

AdAx[M] = maxSALML) < +00,  Vm, YM € (A (49)
peSs

Moreover, the maximum over the states is realized in an eigen-projection of the spin component:

Mf::”l]’)’ oh, = An(m), VM € 4 (A). (50)

A Ax|[M] = maxS(Ap»
mex
Finally, in terms of the q-coefficients (24), the device information loss (46) is given by
-1
A A[MA] = log(migz Aeqe(ml|?, m)) , VM € M (Ax). (51)
mex ,

Proof. The relative entropy is equal to zero if and only if the two probability distributions coincide; by the
incompatibility of the spin observables, the device information loss (46) is strictly positive and (47) is proved.

To prove (48), we need the notion of symmetrized version of a generic POVM on the sphere. The
symmetrization F of F € 7 (S,) is defined by

A 2 ™ sin @ B
F(B) = fo do fo 40 =22V (0, $)F (Rur 6) BV (6, 6’ (52)

where the rotation R, 4)(6) and the corresponding unitary operator V (6, ¢) are defined in equations (A.1),
(A.3). One can check that the covariance property, given in remark 1, holds for F, and that a covariant POVM is
left invariant by the transformation (52):

FEFS)=>FeFS), FeFS)=F=F

From F, by the post-processing (15), we construct M e #(Ay); by the property (13) and the definition (52), we
get

52;‘9 V(60, $)F (Cr,ym(m)V (6, ¢). (53)

A~ ~ 2 T
Ny () = E(Co(m)) = fo dé ﬁ do

By this construction, any M € ./, is generated by post-processing some F € 7 (S,); let F be the
symmetrization (52) of F and let M € .#(A.) be the corresponding measure obtained by post-processing F.
Now, we set

,0(9’ ¢) =V (0, ¢)1va(9’ ¢)> R(0, ¢) = Ru(¢)(9))

where R, (0) is the rotation involved in V' (6, ¢), see (A.3). By (53), (8), and the convexity of the relative
entropy, we get

10
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sin 9 sin 6

S(A”||M[n])<f d@f do

0 ST (0 OF Gy D= [ do [ a0 Z2ESALD | |Te (900, DF G ).

R(0:¢)"'n

By taking the supremum of the definition (46) we get

sin @ sin @

. o
AJAIMI<  sup f dof a9 sm;’{%?ﬁ, [['Tr (p (0, SF(Crep.iy-1n (m))><f d@f a0 sup  SCAZ||Tr {pF(Ca(m))),

peSs, neSy 4m peSs, nESy

and this gives (48).
Nowwe take M € #(A). Inthe double sup in (46) we can firstly execute the supremum over the states. By
covariance, the quantity sup,. ;, S(A}|[Mf,) is independent of # and we obtain

[As[[M] = sup S(AZ[IM,;) = sup S(Z°|[Mfi;)-
pEY: pEY

By convexity, the supremum over the states of the expression (45) is a maximum among the 25 + 1 eigen-states
of S, and we get (50), the equality in (49), and

-1
sup S(Z°||Mfy;) = max log(z A q(m|m’, m)) .
peEY, mex m'

Then, the device information loss (46) can be written in the form (51), which is finite because of the strict
positivity (28) of the g’s. O

3.2. The minimum information loss
By optimizing over the class .# (A..) of the physical approximating measurements we get alower bound for the
device information loss

Is[Aoc”ﬂ(-Aoo)] = MEI;Zl(f:A )AS[AOOHM]) (54)

00

we call it minimum information loss. An analogous quantity can be defined also for the larger class .Z:

Aol ] = inf AJA|M]. (55)
MéE M

The two minimum information losses turn out to be equal, as shown in theorem 3.

The quantity I [A.||-# (As)] has interesting properties; in particular, as shown in theorem 3, it is strictly
positive. Moreover, in the spin definition given in section 2.1 we have used /z = 1, but (54) is independent of this
choice, because of the invariance properties of the relative entropy. The minimum information loss will appear
in the formulations of the MUR:s (section 3.3) and it can be used as a measure of the incompatibility of the set of
the target observables. The expression (54) can be elaborated and a more explicit form can be obtained.

Theorem 3. The two information losses (54) and (55) are equal:

IS[AOOH'%(AOO)] = IS[AOCH%OC] (56)

The minimum information loss (54) can be expressed in terms of the q-coefficients (24) as

LIA|| A4 (Ax)] = log(Ky)™1, K; := sup mmz Aeqo(m|E, m), (57)
S

where 0 is the set of angles satisfying the discretization conditions (12) and involved in the expression (27) of the -
coefficients. Moreover, the following bounds hold:

0 < LIA|| A (Ax)] < log(2s + 1). (58)

Proof. Obviously, we have L[ A.o|| 4 (Ax)] = L[ Asol|-#so), because M (A) C Moo The opposite inequality
is implied by (48); so, equality (56) is proved.

11
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To get L[ Ax||-#(A)] from (51), one has to minimize over the \’s and the discretization angles:

-1 -1
LIA|| A (As)] = i}\ng log(minz Aeqo(mlt, m)] log(sup mlnz Aeqe(mlt, m)) ;
> m £

PV
this gives (57). Then, with the choice Ay = 1/(2s + 1) and (35) for the angles, we have

1
K; > supmax) ————= = E(COSQS,m — c0sO_ i) = 25 + 7Y

this proves the upper bound in (58).

To prove the first inequality in (58) we relay on the results of [25]. The entropic incompatibility degree for
two target observables, defined in equation (10) of [25], is strictly positive when the two observables are
incompatible [25], Theor. 2, point (v). Moreover, the class of the POVMs on Z2, M € .# (%?),islarger than the
class of the bivariate marginals of measures in .4 (A ). By starting from two orthogonal spin components,

X, Y, we get

(1) i
0% e 2 inf sup > SOCIME) nf | sup 2maxS(X/||Mfy)
ME#(T?) pe o, i21 M) pey, =1
4)
<2 inf sup maxS(X”HM[I] inf sup SALIIME)
Me.4(Ax) pe g, i=1,2 6//@4%);765/’5, nelR’, |n|=1

QLA A (A

Here (1) is the result of [25], (2) is the definition of c;,, (3) is because we substitute the sum with two times the

maximum, (4) is because we have restricted the class of approximating joint measurements in the infimum, (5) is
because we enlarge the set of directions in the maximum, (6) is by our definition (46), (54). This ends the proof of
the strict positivity. O

Let us remark that the last part of the proof, proving the strict positivity in (58), works for every class of
approximate joint measurements one could use in the infimum, not only for our choices .# (A ) and .#,.. The
pointis that every spin component A,, has to be approximated by a POVM M,,; on the same output space 2 and
that the My, n € S,, must be compatible.

3.3. Entropic MURs

By the strict positivity of the minimum information loss proved in theorem 3, the definitions (54), (55), and the
equality (56), we get a first formulation of the MURs, in a state independent form, which is analogous to that
givenin [8, (11)].

Remark 9 (MURs, first version). For every approximate joint measurement M of all the spin components, the
device information loss (46) is greater than a strictly positive lower bound:

AdA[M] = L[ A4 (Ax)] > 0, VM € M.

By the comments above we have that non trivial entropic MURs can be formulated also if we change the class of
approximate joint measurements .4, with some other class; what can change is the value of the (strictly
positive) minimum information loss.

Remark 10. By the expression (50) of the device information loss, we can write (57) as

LLA [ A(A0] = inf max S M), (59)

where p? is the eigen-projection of n - S with respect to the eigen-value m and the discretization angles are
implicitly contained in My. When the infimum is realized in a point A = X, @ = 0* we have that My:|g_g+ plays
the role of optimal approximate joint measurement.

The upper bound in (58) is surely non tight, as it has been obtained by starting from the uniform distribution
on the sphere; this can be checked in the explicit cases of small spins given below. However, the role of this
bound is at least to say that, when we have a device information loss greater than that, the approximating
measurement is not optimal.

12
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By the fact that the device information loss of a covariant approximation is a maximum and has the form
(50), we have immediately the following formulation of the MURs for covariant approximate spin
measurements.

Remark 11 (MURs for covariant measurements, second version). The state independent MURs are

UM E M(Ax) VA E A Tpe L SALIML) > LA 4 (A] > 05 (60)

such a state p is one of the eigen-projectionsof n - S.

So, in a physical approximate joint measurement M of all the spin components A,, n € S,, theloss of
information S(A}||Mf,,) per direction 7 can not be arbitrarily reduced. It depends on the state p and on the
direction n, but for every n it can be potentially as large as I, [ A ||-# (Ao)]-

We shall compute analytically the minimum information loss in the cases of s = 1/2, 1, 3/2. For higher
spins, a numerical approach is possible, as the computation has been reduced to the optimization problem (57)
over a finite number of real parameters, appearing in integrals (27) of known polynomials related to the Wigner
small d-matrix (appendix A.1).

3.4. Minimum information loss and noisy versions of the target observables

In section 2.2.3 we have seen that the approximating spin components My [, are noisy versions (32) of the target
spin components A, with visibility 7, ,(33) and noise Nf,"e(m) (34). The visibility (33) was already chosen to be
maximal with My [, fixed. Now, we can maximize the visibility also with respect to the class of joint
measurements .4 (A..) by defining

77:|< 1= SUp 1), o- (61)
A0

By comparing this quantity with the result (57) we get K; = 7] and

1
LA\ (A)] = log 77—* (62)

This equation gives a simple relation between the maximal visibility (61), (33) and the minimum
information loss (54), (57) in the case of the spin vector. By our construction, we have also obtained that, inside
the class of covariant measurements .# (A..), to maximize the visibility or to optimize the information loss gives
the same optimal measurement. Let us note that this result is due to the fact that the target observable and the
approximating POVM are jointly diagonal.

Our aim in introducing the device information loss (46) and the minimum information loss (54), (55) was to
have uncertainty measures, based on information theory, by which MURSs could be expressed in a simple way,
section 3.3; this construction produced also an incompatibility measure, the minimum information loss. The
result above gives a link with the robustness measures [9, 10, 29—32] which quantify the incompatibility by
maximizing the visibility; in other terms, these measures are based on the ability of the target observables to
maintain incompatibility against noise.

3.5.Spin 1/2
In this case no free parameter comes out from the angle discretization and the approximate spin components
(37) are very simple.

Theorem 4. The device information loss (46) and the minimum information loss (54) turn out to be given by

A j2[Asc|[MA] = log (63)

142N ,,
4
hya[ Aol 4 (As)] = S@Pn||M7, 1) = 1ogg ~ 0.415 037, (64)
where p,, = Z(m).
The first equality in (64) shows that My /, is the optimal measurement in the sense of remark 10; its marginal in
direction n is
1 3 1
MI/Z,[n](m) = —|=+A(m) | = = A,(m) + — Ay(—m), (65)
202 4 4
which is an unbiased noisy version of A, (cfsection 2.3.1).

Proof. In this case, by (A.9) we have q(m|¢, m) = %, independent of m; then, (63) follows from (51).

13
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Directly from the definition (54) and the expression (63) we have
LAl M (As)]l = inf Ay [ AsclMA] = A o[ As|[My 2],
A12€[0,1]

and the final expressions in (64) follow.
By the facts that there is no freedom in the choice of the §’s and that the infimum is reached for A, , = 1, we
get that M, /; is the optimal measurement. Then, by (37) we get the form of the marginal (65). O

In (65) we have written the marginal of the optimal measurement in two different ways. Firstly, we have
written the noisy version with classical noise, with visibility 1 /2. Then, we have used the expression (32) with
general noise and visibility 3 /4; it is this last visibility which is related to our minimum information loss,
see (62).

Let us remark that, actually, M, /, enjoys a useful additional property. By using the state representation (39)
and the explicit expressions (40) for the probabilities, we have

S(AL, ||M§‘M) =s(hp—1/2,n-r), (66)
1+ x 1+ x 1 —x 1 —x
s(c, x) = lo + lo , cl<1, |x| <1 (67)
2 g1 + cx 2 g1 — X el ]

The parameter r is the Bloch vector characterizing the state p. By taking the c-derivative, we see that it is strictly
negative, which implies that s(c, x) decreases when cincreases. This means that M, /, minimizes (66) for any
state p. This peculiarity of the case s = 1/2 makes possible to state that M, /, is optimal even when we know the
system state p and to easily formulate also a form of state dependent MURs.

Remark 12 (State dependent MURSs). The following state dependent bound holds:

. Z 1+6n-rlo l1+en-r
Pl 2 L+ Sn-r

Vpe %, VM e M (A, VneR, |nl=1 (68)

S(ALIME,) = S(ARIIMY 1)

3.6.Spin 1
In this case there is a single parameter (41) coming from the angle discretization; then, the minimum
information loss and the optimal measurement can be computed.

Theorem 5. Let us set p,, = Z(m); then,

Il[AocH‘ﬂ(Aoc)] = S(Zp’”

2
Mﬁ”ik])lﬂ:ao = lOg m ~ 0.682 505. (69)

The quantity ay is the real solution of the equation

a3—a2—5a+§:0, (70)
which is given by
1 1
ap = g(l + 8cosa), cos(B3a — ) = 3 a € (0, m/2). 71)
This gives also
1 , 1 1
ag =~ 0.444 703; cos 3 = By (cos)’ = 1 3cosa — 3/ (72)

The optimal measurement is My |,—,, and its marginal along k is given by

My, k) (M) la=a, = 7[Z(m) + (1 — g INE(m),

Ni(0) = (1 — K)[Z(1) + Z(—D)], Ni(£1) = %Z(O) + KZ(F1)
* ap 2 (1 - [10)3
=203 - a2 ~062308, O<k=— 0 . 73
=0 ad) < 41 — 3ag + al) < )

Proof. From (A.10) we have

ST Aeq, (£11£, 1) = )\+[1 _ %] T % EESW W,
’

14
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A, 00, 0) = (s + 402G — a?) + Ao
14

One can check that both these expressions have an absolute maximumin A, = 1foralla € (0, 1). Then, (57)
gives
Ki < sup minsup ) Asq,(m|¢, m) = sup ming,(m|l, m).
ac(0,1) m X ¢ ac(0,1) ™
On the other side, by eliminating the supremum over the \’s and choosing A\, = &, in (57), we get
Ki 2 sup,co,ymin,, q,(m|1, m);so, the equality holds and we have

3
Ki = supming,(m|1, m) = sup min{l — %, %(3 — az)}.
m

a a

The first term in the minimum decreases with a and the second one increases; this means that the supremum
over ais reached when these two terms are equal, which happens when (70) holds. This proves (69). It is possible
to check that (71) is the unique real solution of (70) and that this gives the properties (72).

Equation (69) implies also that the optimal measurement is M; |, ,,. By inserting a, into the expression (42)
ofits k-marginal we get the expressions (73). O

Remark 13. Differently from the case s = 1/2, for s = 1 the marginal M; ) |,—,, of the optimal measurement is
not unbiased because ay = 1/3.Indeed, on the maximally mixed state p,, the relative entropy is not zero and its
value is

SAR MY a=ay = Z log o + Llog 6 =~ 0.103 607.
’ 3 4 + 36[0(1 — ao) 3 3&0(10 — a()) -5

3.7.Spin 3/2

Theorem 6. Let us set p,, = Z(m); then, we have

13/2 [Aoc‘lﬂ(Aoo)] = S(me ||M?;2,[k] )a:ag

= log 32 ~ (0.886 155 63; (74)

45 — 24ay — 24a} — 8a;

M3 /2|a=q, is the optimal measurement. The quantity a is the unique real solution in (0, 1) of the equation

1
a4—6a2—8a—|—7520, (75)
which gives
ap >~ 0.646 153 783 1. (76)

Proof. From appendix A.2.3 we get
m;ixqa(:tS/Zlf, +3/2) = q,(£3/2|3/2, £3/2) = %(15 — 4a — 6a® — 4a® — a*),
a quantity which decreases with a from % to0,and
m?xqu(il/zw, +1/2) = q,(£1/2|3/2, £1/2) = %(ua + 64> — 4a® — 3a%),

aquantity which increases with a from 0 to %. Then, as in the proof of theorem 5, we get

K3/, = sup ming, (m|3/2, m)
ac(0,1) ™

1 .
= sup —min {15 — 4a — 6a* — 4a® — a*, 12a + 6a*> — 4a® — 3a*}.
ac(,1) 16

By equating these two expressions we get equation (75), whose solution (76) is computed numerically. As we
have

) q,(£1/2|3/2, £1/2) for a < ay,
ming, (m|3/2, m) =
m q,(£3/2|3/2, £3/2) for a = a,,
(57) gives
Lo [ Aol 4 (Ax)] = log(q,, (m|3/2, m)~"

by using also (75), the final expression in (74) follows. By theorem (3), the optimal measurement is identified and
the intermediate expression in (74) follows. O
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By comparing (62) and (74), we have that the optimal visibility is

1(45
>k 2 3
= —|— — 3a9 — 3ay — ay| ~ 0.541 054
5 /2 4 ( 3 0 0 O)
with a, given in theorem 6. Also the expression of the optimal noise could be obtained, but it would be involved
and we do not give explicitly here.

By direct computations one can check that the optimal measurement is biased and that on the maximally
mixed state p,, it gives

S@Z70|IM}, 4y da—ay = %log [4a0(1 — ag)]"! ~ 0.064 428 1. (77)

Remark 14. The results we have found for small spin values give

This chain of inequalities suggests the conjecture that I, [ A ||.# (A )] could grow with s: in some sense the
minimum information loss grows with the complexity of the spin system.

4. MURs for two and three orthogonal components

In this section we study the MURs for the cases of two and three orthogonal spin components. As remarked in
[8], itis not possible to get the case of infinite components from the case of three orthogonal components; only
the case of infinite components respects the rotation symmetry, while in the other case the three directions are
fixed. The cases of orthogonal components involve less symmetries and there is more freedom in the
construction of the approximate joint measurements; so it is meaningful to enlighten the differences between
the case of the spin components in all directions and the case of orthogonal components. In principle also a few
non-orthogonal components could be considered; in [25] we already considered two non-orthogonal spin
components with s = 1/2, but with the sum of relative entropies as starting point.

The cases of orthogonal components allow to show how the minimum information loss and the related
MURs can be introduced also for other sets of observables by adapting the construction of section 3. Moreover,
the minimum information loss can be used as quantification of the incompatibility of the target observables and
allows to compare different sets of observables. In the cases of spin components we shall obtain orderings for
different numbers of target observables and different values of s, which are not at all trivial or intuitive.

4.1. Target observables and approximate joint measurements

The first set of target observables we consider is A; = {X, Y, Z}, which is covariant with respect to the octahedron
group O, see appendix B.1. Then, .# (As3) is the set of observables with value space 2" and O-covariant in the sense
of (B.2). By using the notation (15) and the covariance properties (16), (18), (B.2) we have that

M e ﬂ(AOC) = M[i,j,k] c %(AQ (79)

The other set of target observables is .4, = {X, Y}, which is covariant with respect to the dihedral group D,,
see appendix B.2. Then, .# (A,) is the set of observables with value space 22 and D,-covariant in the sense of
(B.4). By using the notation (15) and the covariance properties (B.4), (B.2) we have that

M e ﬂ(.A3) = M[,‘,]'] S ﬂ(.Az) (80)

Note that the implications above are one-sided: there are elements in .# (A;) which are not marginals of
elements in .# (A3) and the same for .# (A3) with respect to .4 (A).

We obtained the explicit form of a covariant approximate joint measurement, for two and three orthogonal
components, only in the case of a spin 1/2. For a generic spin s we can give only particular covariant approximate
joint measurements, such as the ones based on optimal cloning.

4.1.1. Optimal cloning and approximate joint measurements

As approximate joint measurement of the spin components Ay, h = 1,..., r,asignificant multi-observable

My € 4 (Z7) can be constructed by using the so called optimal cloning [30, 38, 39]; its univariate marginals are
given by (B.5). Let us stress that the marginal of the multi-observable constructed by optimal cloning can be seen
as a noisy version of the target observable, with classical noise; however, this decomposition is not unique, as in
the case of infinite components.
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When the target observables are A; = {X, Y, Z}, we get the multi-observable le, whose univariate
marginals (B.5) take the form

M2y, (m) = 0t G+ 2xm), i=1,2,3, mec. (81)
3s+ 1)
Obviously M, € .#(2?),but one hasalso M, € .7 (As), as shown in appendix B.3.
When the target observables are A, = {X, Y}, the optimal cloning gives the bi-observable M3 € . (Z?)
and (B.5) becomes

1 .
MGy (m) = m[ﬂ + (2s + 3)Xi(m)], i=1,2 med. (82)

Again one hasalso M3 € .#(A,), as shown in appendix B.3.

4.1.2.Spin 1/2

For a spin 1/2 the explicit expressions of the general element in .# (A;) and .# (A,) have been obtained in [25,
proposition 5, theorem 10] and used also in [27]. Then, the most general covariant joint measurement in .4 (A;)
[27, equation (11)] can be written as

1 c 1
M. (1, my, m3) = 3 + 5(m15x + myS, + m3S;), || < Neh (83)
Similarly, the most general element in .4 (A,) has the expression [27, equation (7)]
1 1
M. (my, my) = n + c(mSx + myS,), le| < f (84)
Remark 15. In both the cases of two and three orthogonal components, the univariate marginals have the
expression
1 cXi(m) + (1 = )3, c>0,
Mc[i](ﬂ’l) = — 4+ 2cmSi = 1 (85)
2 lel Xi(=m) + (1 = |cD 7, ¢ <0

the only difference is the maximally possible value for |c|: |¢| < 1/+/3 in the case of three components and
|c| < 1/~/2 inthe case of two components. Also the marginal of the optimal measurement (65) for infinite
components has the form (85) with ¢ = 1/2.

Remark 16. By particularizing (81) and (82) to s = 1/2, we obtain that the marginals of the joint measurements
from optimal cloning have again the form (85) with ¢ = 5/9 in the case of three components and ¢ = 2/3 in the
case of two components. Aswe have1/2 < 5/9 < 1/4/3 < 2/3 < 1/+/2,thereis an increase of minimum
classical noise in going from the case of two orthogonal components, to cloning of two components, three
components, cloning of three components, infinite components.

4.2. The information loss
Analogously to what is done in section 3, also in the case of orthogonal spin components it is possible to define
the device information loss and the minimum information loss. The device information loss of M is defined as in
(46); then, exactly as for (49), after the supremum on the states, the covariance implies the independence from
the direction. So, we have: for r = 2, 3,

AJAMI = sup  SXZIME) = sup SXZIMG), M € (A, (86)

peY,, i1i<r peY,
By optimizing over the approximate joint measurement M we get the minimum information loss

LIA| A4 (A)] = inf AJA|M] = inf sup S(X?[Mf;)), r=2,3. (87)
Me.4(A,) Me.4(A) pe g,
As donein section 3.2 and in [7, 25], we can extend the previous definitions to non-symmetric approximate
joint measurements, without changing the final conclusions. Firstly, we introduce the device information loss
for general measurements:

AJA M = sup  SXIME), Me.#@T),  r=23 (88)

pEY, iti<r

Obviously, now we cannot eliminate the maximum over the directions as in (86), because this follows from the
covariance. Then, we optimize over all these measurements by defining
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LIA A (ZF)] == inf AJAJ|M] = inf sup  S(X![IM7)), r=2,3. (89)
Me.4(2™) MEAAD) pe g, i<y
Next proposition shows that this extension does not change the value of the minimum information loss and
that this value grows with the increasing complexity of the set of observables, i.e. going from A,, to A3, and then

to Ao

Proposition 7. The two definitions (87) and (89) are equivalent, as we have
LIA| A ()] = LLA|4 (A, r=2,3. (90)
Moreover, the minimum information loss is strictly positive and finite and we have
0 < LA (AD] < LLAs| 4 (A9)] < L Ax|[ A (Asr)] < +00. €}Y)

Proof. The proof of (90) is a very slight modification of what is done in [25]. Let us use the notation G3 = O and
G, = D, for the two groups introduced in appendices B.1 and B.2; the actions of these two groups on the
POVMs, as given in the two appendices, can be seen to satisfy the hypotheses of theorem 9 of [25], as done in

[25, sections B.2, B.4]. We denote by gM the action of an element g € G, onthe POVM M € .#(Z*) and by
Mg, € 4 (A,) the covariant version of M as done in [25, sections 3.1, 4.1]. Thanks to the hypotheses on the group
action of [25], theorem 9, by substituting the sum of the relative entropies by their maximum, we get that the
results on the entropic divergence of theorems 4 and 9 of [25] go into analogous results on the device information
loss. In this way one proves that, for r = 2, 3,

A[AL|gM] = AL AL|[M], Vg€ G, VM € (XY,
AS[AI‘”MGI] < As[-ArHM]; VM e %(%r)

AsMg, € 4 (A,), by taking the infimum we get (90).

To prove (91), note that, by (79) and (80), the definition (87) gives the ordering among the three information
losses L[A,||-#(A)], r = 2, 3, co. Wealready proved the last inequality in theorem 3, cf the upper bound in (58).
The proof of the strict positivity is analogous to the proof of the strict positivity in (58). Exactly as in the final part of
the proof of theorem 3 we obtain 0 < ¢;,c (X, Y) < 2L [Ay||-# (A,)], where ¢ (X, Y)isdefinedin [25,(10)]. O

4.2.1. Entropic MURs
By the definition and the strict positivity of the minimum information loss we get the state independent MURs
in a formulation involving the device information loss:

AJAM] > L[A.[.4 (A)] > 0, VM € M(Z7) D M(A). (92)

We have used (90) to extend the set of possible measurements M. This form of MURs is the analogue of what is
done in remark 9 for the case of infinitely many components.

By proving that the supremum over the states in (86) reduces to a maximum, we could geta MUR
formulation analogous to the one in remark 11, but we skip this.

4.2.2.Spin 1/2
By using the state representation (39) and the univariate measure (85), we can compute the relative entropies, as
done in equations (66) and (67). Then, by taking the supremum over the states, we get

2
1+c¢

Ayl A [Me] = SXF[(Mo)g) = log lel < , r=23 (93)

L
Jr
Here, the measurement M, is given by (83) for r = 3 orby(84) for r = 2, while the state p, is anyone of the two
eigen-projections of S;.

By the definition (87) and the explicit expression (93), we obtain

2
Lol A (A)] = inf SXAIM)) = log ——=————| r=2,3. 94
12 LA A (AD)] e XENM)) g1+ e (94)

Let us note that there is an optimal POVM, the one with ¢ = 1/./T, the same of the one appearing in
[5,9,25], where different optimality criteria where used. By using this measurement it would be possible to give a
state dependent version of the MURs as done in remark 12.

4.2.3. The bounds from optimal cloning
For s > 1/2 we can geta bound on the minimal information loss by using the POVM obtained from optimal
cloning, because by construction we have
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Is[ArH%(Ar)] < AS[AIHMSI]) r=2,3. (95)

4.2.3.1. Three orthogonal components
Letusset p, := XP(m); then, by (81) and (44), we get

1+ (G+2) s 3s+ 1)
Mil[pu( m) = 7%’ S(x? ||Mcl[l]) = Z P logipm-
3(s+ 1) s 1+ (s + 2)p,
This gives the device information loss
3s+1
AJAs|M3] = sup SOXM%f,) = log % (96)
4.2.3.2. Two orthogonal spin components
By the same definition of p,,, and using (82) instead of (81), in a similar way we get
14+ @2s+3)p g 4(s+ Dp
=7 S(XP||M = log ———M8M8 ",
MGif, (m) = T M3 m;SPm T s oYy
2(s + 1
A AMA] = sup SOXIMZE) = lo % 97)

Note that the device information losses (96) and (97) grow with s and that they enjoy some unexpected
relations, such as

A[AMET > A ol AslIM2T, A [A[ME] = ALA; M2,

lim AJA|MA] = As[As||M]
s—+00
For instance, the first relation says that, for the devices constructed by optimal cloning, the information loss for
the case of two orthogonal components and s = 1 is greater than the information loss for the case of three
orthogonal componentsand s = 1/2.

4.3. Some orderings and bounds
As we already said, the minimum information loss can be interpreted as a quantification of the incompatibility of
the set of target observables. So, we can take the results obtained on L[ A, |.Z(A)], r = 2, 3, oo,
s=1/2,1, 3/2,...,to compare different sets of spin observables (even in different Hilbert spaces) from the
point of view of incompatibility; as we shall see, some non intuitive relations appear.

First of all we have the inequalities (78) in the case of all the components and small s; for the same s and
different r we have the inequalities (91).

By the optimal cloning bound (95) and the growing with s of the expressions (96) and (97), we get the bounds

LA A (AD] < 1, L[As| 4 (A3)] < log3, 5=

>

N |~

LLAs |4 (A9)] < 1 <s <3 (98)

N | =

By the bound (95) again, and the fact the we have the numerical value of I[[ A || # (A)]for s = 1, 3/2,see
equations (69) and (74), we obtain

[Aa|[ 4 (AD] < DA A (A)] < 1,1/2 < s < 3,
L[ As|[ A (A39)] < B[ Aco||-4 (A, s=1/2,1,
LA A (AD] < Bl Aso|l M (A)],  1/2 <5 < 11,
[As|| A (A3)] < Bl Asol| #(Ax)], 1/2<s<2 (99)

For instance, the second-last inequality says that two orthogonal components for s = 11 are less incompatible
than the set of all components for s = 3/2; similar interpretations hold for the other inequalities.

4.4. Noise and visibility
The marginals of the optimal measurements for spin 1/2, (85)with ¢ = 1//r, r = 2, 3,canbewrittenina
way similar to (32): for r = 2, 3,
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r r r 1 1
Mepiy(m)le = 1/.5 =y, Xi(m) + (1 — 17 ) Xi(—m), M= 5(1 + E))

the same holds for the marginals (81), (82) of the joint measurements generated by optimal cloning:

1 — X;(m) s+ r
M (m) = 75 Xi(m) + (1 — 7, ) r o STL
1[]( ) 77cl,s ( ) ( ncl,s) 25 ncl,s r(5+ 1)
Then, from (94), (96), (97), we get
AS[AIHMSI] = 10g (7751’5)71: II/Z[AI”%(AI)] = log(ﬁfﬂ)fl, r = 2y 3. (100)

The visibilities above have been obtained by allowing for general noises, not only classical ones. Inside the
noise robustness approach to incompatibility, the two visibilities 7 72 for spin 1/2 have already been obtained in
[32]; they are in the class called incompatibility generalized robustness, which means that general POVMs are
allowed for noises. By comparing with section 3.4, we can say that we have shown how to generalize this
approach to the case of infinitely many observables, such as the spin vector. Moreover, by using information loss
measures, we have shown how to link this problem with the one of uncertainty measures and MURSs. Let us also
stress that formulae like (100) and (62) hold in this particular cases; they have not a general validity. The case of
non-orthogonal spin components [25, 32] could be a promising test to see the differences. In principle, our
minimum information loss does not relay on the noisy versions of the target observables.

5. Conclusions

The entropic formulation of MURs has the advantage of being well based on information theory (in particular
on the notion of information loss) and independent of the measurement units of the observed physical
quantities and from a reordering of their possible values [25-27]. By using the case of the spin components, in
this article we have shown that the approach based on the relative entropy can be extended so to treat on the
same footing finitely or infinitely many observables and that a quantitative uncertainty bound can be
constructed.

By introducing the worst information loss with respect to the target observables and the system states, we
have defined the device information loss in the various cases (46), (86), (88). Then, by optimizing with respect to
the approximating joint measurements we have defined the minimum information loss (54), (87), (89). These two
quantities allow for a clear formulation of state independent MURs, see sections 3.3 and 4.2.1.

To realize the minimum information loss one needs also to optimize the approximating measurement; an
interesting point is that the ‘best’ approximating measurement of a target spin observable is not necessarily a
noisy version of the target, with classical noise, but most general noise structures can be involved, as discussed in
sections 2.2.3, 3.4,4.4.

Moreover, the lower bound appearing in the state independent MURs, the minimum information loss, plays
also the role of measure of incompatibility and allows to order different sets of target observables according to
increasing incompatibility, as done in the inequalities (78), (91), (99).

However, the computations of the two ‘information losses’ need to solve difficult optimization problems
and we have done these computations only for small values of s, sections 3.5, 3.6, 3.7, 4.2.2. To compute the
minimum information loss for other values of the spin also numerical computations should be surely involved.

Another open problem is the conjecture given after inequality (78): is it true that the minimum information
loss grows with s? For the cases of two and three orthogonal components we proved that the minimum
information loss is upper bounded by a value independent from s, see (98). However, for the case of infinitely
many components we proved only the existence of the upper bound (58), which grows with s; the problem of the
asymptotic behaviour of L [A||-# (A..)] for large s is open.

As we remarked at the end of section 3.3, the proof of MURs is independent of the choice of the class of
approximating joint measurements. Anyway, the value of the minimum information loss can depend on this
choice. Another open problem is to study if the lower bound remains [ A ||-# (A~)] even with classes of
measurements larger than .#,,. Indeed, one could consider post-processing procedures different from our, or
even general POVMs on 2°: that are not even constructed by post-processing of a POVM on S,. Our conjecture
is that even these more general POVMs cannot give a lower information loss.

Appendix A. Spin s: rotations and g-coefficients

Let us consider the rotation group in R?: a counterclockwise rotation of the angle o around the unit vector # is
denoted by
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R,(a) € SO(3), lu| =1, « € [0, 2m). (A1)
Then, we introduce the unitary representation of SO(3) on # = C**, given by
URy()) =exp{—ia u - S}. (A.2)

Such a representation is an essential tool in our whole construction; this representation and its main properties
can be found, e.g.,in [28, Section 3.5], [19, Section 3.11].
By comparing equations (A.2) and (5), we have the identification

V0, ¢) = U(Rue(0)), u(¢) = (—sing, cos ¢, 0) = n(w/2, ¢ + m/2); (A.3)

the unit vector n(6, ¢)is defined in (4). Moreover, the following decompositions hold:
URup.)(@)) = V (0, &)U Re(a)) V (0, ¢, V (0, ) = e 1957 105el05:, (A.4)

A.1. Properties of the Wigner small-d-matrix

An explicit, but complicated, form of the Wigner small-d-matrix (25) has been obtained [28, (3.65)]; in
particular, the explicit expressions for s = 1/2, 1, 3/2, 2 can be found in [40, figure 44.1]°. From [28, (3.65)]
one sees that the form of the matrix elements is sufficiently simple when one of the indices takes the maximal
value and one gets

1dS) O = e (1 5 x)s+m(l p x)s-m, X costh -
s+ m!is—m!\ 2 2

we reported only the square modulus, because we need only this, see (27).
In general, the quantity |d}2n(0) |* is a polynomial in cos 6, as one sees from [28, (3.72)]. Directly from the
definition (25) we have also

1d$) (O = |d¥)

m

AT =0 (A.6)

The Wigner matrix turns out to be real and the following properties hold [28, (3.80)-(3.82), (3.125)-(3.126)]:

dS) (0) = (—=1)""d (0) =d®), _ (0), (A7)
S dW (0)dS (0 = > de, (0)d, ©) = by m, (A.8)

A.2. The g-coefficients
By using the expressions given in [40, figure 44.1] we can compute the g-coefficients in the
casess = 1/2, 1, 3/2.

A.2.1.Spin 1/2. Inthis case we have |d }l;{ DO = % + 2h? cos 8. Then, from the definition (24) we obtain

q(m|¢, h) = % + 26hm; (A.9)

we suppressed the index 6, because there is no arbitrariness in these indices, as recalled in section 2.3.1. By (21),
(26), we get (36).

A.2.2.Spin 1. Inthiscase we have

1 — x2
RO P =x%  1d{ O = [dY) (O = >
2
1dD (OF = 148 _ (O] = %, x = cosf.

From (24), by direct computations, we get the explicit expressions of the g-coefficients, with a given in (41); by
using this parameter as index, instead of 8, we have

> The table can be downloaded from http://pdg.Ibl.gov/2019/reviews/rpp2018-rev-clebsch-gordan-coefs.pdf.
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3
q,(£1]1, £1) =g (1] — 1, F) =1 — %’
1 —a)
qu(:’:”l’ :I:l) = qa(:Fll - 1) :Fl) = (T)r
24a 5
q,(1]0, £1) = q,(1] £ 1, 0) = q,(—1]0, £1) = q,(~1| £ 1, 0) = y (1 — a)?,
1 —a? a ,
q,(£110, 0) = S q,(00, £1) = q,(0] %1, 0) = 5(3 —ad),
4,00, 0) = a’, q,0]1, £1) = q,(0] — 1, F1) = %(3 + ). (A.10)

A.2.3.Spin 3/2. Inthis case we have, with x = cos 6,

1 + x)?
dE725 OF = 147 5 (O = %,

3
14807, OF = 1427 | (O = 1d552, (O = 1dY7 5 O = 0 E x)(1 — x?),

1+x

1dS( 7, O = 1dED _ (O = (Bx F 1%

From (24), by direct computations, we get the explicit expressions of the g-coefficients, with a given in
section 2.3.3; by using this parameter as index, instead of 8, we have

q,(£3/2|+£3/2,3/2) = %(15 — 4a — 6a® — 4a® — a*),

1
q,(£3/2| £3/2, -3/2) = E(l — 4a + 6a> — 4a® + a*),
q,(£3/2|£3/2,1/2) = %(11 — 12a — 6a% + 4a® + 3a%),

q,(£3/2| £3/2, -1/2) = %(5 — 12a + 6a® + 4a® — 3a%), (A.11)

1
q,(£3/2|1£1/2,1/2) = E(7 — 4a + 10a® — 4a’® — 9a%),

q,(£3/2| £1/2, -1/2) = %(9 — 4a — 10a®> — 4a’® + 9a%), (A.12)

q,(£1/2|£3/2,3/2) = %(4 1 6a + 4a® + a),
q,(£1/2| +£3/2, -3/2) = %(4 — 6a + 4a’ — ad),
q,(£1/2|£3/2,1/2) = %(12 1 6a — 4a’ — 3a%),

q,(£1/2] £ 3/2, —1/2) = %(12 — 6a — 4a® + 3a%), (A.13)

q,(£1/21£1/2,1/2) = %(4 — 10a + 4a® + 9a%),

q,(£1/2] £1/2, -1/2) = %(4 + 10a + 4a® — 9a%); (A.14)
the other coefficients are obtained by the symmetry properties (29).

Appendix B. Orthogonal components

B.1. Three orthogonal components

The set of the three orthogonal spin components A; = {X, Y, Z} is invariant under the action of the order 24
octahedron group O C SO(3) [25, appendix B.4], generated by the 90° rotations around the three coordinate
axes: So = {R;(7/2), Rj(m/2), Ri(m/2)}. Let us denote the three generators of Oby g = R;(7/2),

& = Rj(m/2), g = Ry (m/2); then we have the covariance relations
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U X@ UG = X(x), UgYDUg = Z(),  UgZ(U§ = Y(~2),
U X)) Uy = Z(=x), U, YOO UL = Y(y), U, Z(Uf = X(2),

Uy X(x) U; =Y(x), UgY() Ugt = X(—y), Uy Z(2) ng = Z(2). (B.1)
Then, M € .#(As3)isaPOVM on 2 with the same covariance properties:

UgM(x, y, 2) Uy = M(x, —2, y), U M(x, 3, 2)Uf = M(z, y, —x),

Ug M(x, 3, 2) U; = M(—y, x, 2). (B.2)

B.2. Two orthogonal components

Here the set of target observablesis .4, = {X, Y}. Their symmetry group is the dihedral group D, C SO(3), the order
8 group of the 90° rotations around the k-axis, together with the 180° rotations around i, j, n; := n(w/2, 7/4),and
n, = n(w/2, 3w /4). Notethat D; C O. The two rotations Sp, = {R;(), Ry, ()} generate D,, as we have

Rj(m) = Ry, (m) Ri () Ry, (70), Ry, (1) = Ri(m) Ry, (M) Ri (),
Ri(m/2) = Ry, (m)Rj(m).
As discussed in [25, appendix B.2], the covariance relations are: V(x, y) € 22,
U Ri(m)X) U (Ri(m)" = X(x), URi(mM)Y( U Ri(m))' = Y(~y),
U Ry, (M)XE) U Ry, (1)) = Y (), U Ry, (MDY (1) U Ry (M) = X(»). (B.3)

Then, M € .#(A,)isaPOVM on Z? with the same covariance properties:

URi(m)M(x, y) U (Ri(m))f = M(x, —y),
U Ra (MIM(x, y) U Ry, (1)) = M(y, x). (B.4)

B.3. Joint measurements from optimal cloning

A technique to construct good multi-observables approximating a set of incompatible observables is based on
optimal cloning [30, 38, 39]; we already applied it to the context of MURs in [25]. Let us consider a system with
Hilbert space #, of dimension dim(#°) = d, and let S(/) denote its state space; then, the optimal
approximate r-cloning channel is the map

dlr!
O: S(H) — S(HT), O(p) = ———— I, (p ® 1°C-N)TT,
) = SA, ) = s T )
where I1, is the orthogonal projection of #®* onto its symmetric subspace Sym(# %) [39]. Let {A,,..., A, } be
aset of observables, possibly incompatible; then, by using the adjoint channel we get the reasonably approximate
multi-observable My = ®*(A;® --- ®A,), whose marginals are given by [38]

1 d+
M (%) = A, Anx) + (1 — )\d,r)g) Adr = - (B.5)

Crd+ 1)’

The multi-observable M turns out to have the same symmetry properties of the set of observables {Ay,..., A.}.
Indeed, let U be a unitary operator on #'; by using the commutation property U®*IL, = II, U®*, itis possible
to prove the transformation rule

UMy (..., x) UT = OX(UA ) UT® - QUA(x,) UT).

We shall use this construction for 2 or 3 orthogonal spin components; so, wehave d = 2s 4+ land r = 2, 3.
The property above implies immediately that ®*(X, Y, Z) satisfies the covariance properties (B.2) and ®*(X, Y)
the covariance properties (B.4).
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