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Abstract
The information-theoretic formulation of quantummeasurement uncertainty relations (MURs),
based on the notion of relative entropy betweenmeasurement probabilities, is extended to the set of all
the spin components for a generic spin s. For an approximatemeasurement of a spin vector, which
gives approximate jointmeasurements of the spin components, we define the device information loss
as themaximum loss of information per observable occurring in approximating the ideal
incompatible components with the jointmeasurement at hand. By optimizing on themeasuring
device, we define the notion ofminimum information loss. By using these notions, we showhow to
give a significant formulation of state independentMURs in the case of infinitelymany target
observables. The same constructionworks as well forfinitelymany observables, andwe study the
relatedMURs for two and three orthogonal spin components. Theminimum information loss plays
also the role ofmeasure of incompatibility and in this respect it allows us to compare quantitatively the
incompatibility of various sets of spin observables, with different number of involved components and
different values of s.

1. Introduction

In the last twenty years the idea of quantumuncertainty relations has been deeply developed and formalized by
introducing different related notions.Measurement uncertainty relations (MURs) for jointmeasurements
quantify towhich extent one can approximate a set ofmeasurements of incompatible observables bymeans of a
single jointmeasurement [1–13]. On the other side,MURs of noise/disturbance type quantify the total
uncertainty generated by an approximatemeasurement of afirst observable disturbing themeasurement of a
second one [10–17]. Finally, one speaks of preparation uncertainty relations (PURs)when some lower bound is
given on the ‘spreads’ of the distributions of some observablesmeasured in the same state [8–12, 18–24]. An
important point inMURs for jointmeasurements and PURs is to arrive to formulate them formore than two
observables [5, 8, 11, 20–24]. Various approaches have been proposed to quantify the ‘errors’ involved in
uncertainty relations, such as variances [19, 23], distances for probabilitymeasures [3, 4, 7, 8, 10, 13], entropies
[11, 18, 20], conditional entropies [14–16].

In this work, our aim is to develop entropicMURs for all the infinite components of a spin s in the case of an
approximatemeasurement of the full spin vector. The idea of formulatingMURs for all the components of a
generic spin swas introduced in [8]: themeasurement of a spin vector is seen as an approximate joint
measurement of its infinite components and the aim is to have a quantitative bound on the accuracywithwhich
all these observables can be jointly approximated by such a device. In [8] the approximation error is quantified
byWasserstein distances between target and approximating distributions. Our approach instead is to see a
measurement approximation as a loss of information and to quantify it by the use of the relative entropy
[25–27]. In information theory, the relative entropy is the notionwhich allows to quantify the loss of
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information due to the use of an approximate probability distribution instead of the true distribution. This
quantification is independent of a dilation of themeasurement units and of a reordering of the possible values. In
this context it is possible to arrive toMURs for any set of observables and to quantify their amount of
incompatibility.

In [25]we succeeded in formulating state independentMURs for any set of n general observables taking a
finite number of possible values. The lower bound appearing in theseMURswas named entropic incompatibility
degree, and it was shown to play the role of an entropy-basedmeasure of incompatibility. The generalization to
position andmomentumwas given in [26]. However, the formulation given in these two articles does not extend
to infinitelymany observables. In [27]we treated the case of all the infinite components of a spin 1/2 system, by
an approach based on amean on the directions. However, this approach cannot be extended to sets of
observables for which a naturalmean does not exist, and, in any case, it is very difficult to apply it to higher spins.

In this article we showhow to quantify the ‘inaccuracy’ in an approximatemeasurement of the full spin
vector, for any value of s, by introducing the notion of device information loss (section 3.1). Then, by optimizing
on themeasuring apparatus, we define theminimum information loss (section 3.2), by which the entropicMURs
for a spin vector can be expressed, in a state independent form (section 3.3). A key point in the formulation of the
MURs is the characterization of the class of approximate jointmeasurements of all the components of the spin
vector (section 2.2). Themain difference between the present approach and the one introduced in [25] is that
nowour focus is on theworst loss of information per observable, while previously it was on the total loss of
information.

An important point is that the constructionwe propose for the spin case allows to formulateMURs also for
finite and infinite sets of target observables on the same footing, always in away that ensures independence from
themeasurement units, as invariant information theoretical quantities are involved. As a byproduct, this
approachwill produce also a ‘normalized quantity of incompatibility’ (theminimum information loss) for
different choices of the target observables; this index can be used to compare sets of different numbers of
observables from the point of view of incompatibility. So, after the construction ofMURs for all the spin
components in ameasurement of the full spin vector, we study also the case of an approximate joint
measurement of only 2 or 3 orthogonal spin components and showhow theminimum information loss allows
the quantitative comparison of the various cases (different numbers of components, different values of s). As
already stressed in [8], a jointmeasurement of three orthogonal components is not equivalent to a joint
measurement of all the components, in arbitrary directions, and only the case of infinite components respect the
rotation symmetry of an angularmomentum. So, it ismeaningful to enlighten the differences between the case
of the spin components in all directions and the case of orthogonal components.

1.1. Scheme of the article
In section2wepresent the approximate jointmeasurements of all the spin components thatweare going to analyze.
These are based on approximatemeasurements of a spin vector, that is generalized observables on the sphere
(section 2.2): given apositive operator valuedmeasure (POVM)on the sphere,we process it into an approximate joint
measurement of all the spin components by aprojection anddiscretizationprocedure of its output (section 2.2.1).
After a general analysis of the rotational covariant approximatemeasurements of a spin s,more explicit results are
given for small spins in section 2.3. In section 3we introduce theminimum information loss associated to any
approximatemeasurement of a spin vector. Such a quantity is the lower bound in the state independentMURs for
all the spin components, formulated in remarks 9 and11.Wealso show that the information loss isminimized in the
family of rotational covariant POVMson the sphere. In section 3.4we show the connections betweenour entropic
quantity and the incompatibilitymeasures basedon generalizednoisy versions of the target observables. The
numerical values of theminimum information loss are computed in section3.5 for =s 1 2, in section3.6 for s=1
and in section 3.7 for =s 3 2. In section3.5wepresent also a state dependent formofMURs in the special case
=s 1 2. TheMURs for two and three orthogonal components and the corresponding bounds for these cases are

introduced in section 4.We showalso that theminimum information loss has the roleoffigure ofmerit to quantify
the incompatibility. The ordering from the least incompatible set to themore incompatibleone is given in
section 4.3, for different number of spin components (including the case of infinite components) anddifferent spin
values s. Section 5presents conclusions andoutlooks.

2. Approximate jointmeasurements of all spin components

In this sectionwe introduce the general notationswe shall use, our target observables (the set of all spin
components) and the class of their approximating jointmeasurements.

Wefix aCartesian system x y z, , determined by the orthogonal unit vectors i j k, , . Let ºS Sx 1, ºS Sy 2,
ºS Sz 3 be an irreducible representation of the commutation relations =S S S, ix y z[ ] (and cyclic relations) in the
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Hilbert space = + s2 1H , so that + + = +S S S s s 1x y z
2 2 2 ( ) , = ¼s 1 2, 1, 3 2, . The corresponding state

space (the space of all the statistical operators onH)will be denoted by sS . In particular, in some discussions, we
shall need themaximallymixed state, given by

r =
+s2 1

. 10
 ( )

2.1. Target observables
Wedenote by º 1X X , º 2Y X , º 3Z X the projection valuedmeasures associatedwith the self-adjoint
operators Sx, Sy, Sz (respectively) and byX the set of possible eigenvaluesm:

Î - - + ¼ -m s s s s, 1, , 1, . 2X ≔ { } ( )

More in general, for a direction n ( Î n 3, =n 1∣ ∣ ), we denote by mnA ( ) the eigen-projections of the spin
component in the direction n:  = å În S m mnm X A· ( ). As usual we shall identify n S· and nA by calling both
them ‘spin component’.

The set of observables whichwe are going to approximate by jointmeasurements (the reference or target
observables) consists of all the spin components (the full spin vector):

Î =¥ n n: , 1 . 3n
3A≔ { ∣ ∣ } ( )

Let us introduce now the usual polar angles q f, in thefixed reference system and denote by q fn ,( ) the unit
vector in the direction determined by the polar angles θ andf:

q p f p q f
q f
q f

q
Î Î =n0, , 0, 2 , ,

sin cos

sin sin

cos

. 4

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟[ ] [ ) ( ) ( )

In the followingwe shall need the rotation operator

q f q f f- - =f f
f f-V S S S S S, exp i , cos sin e e , 5y x

S
y

Si iz z( ) ≔ { } ≔ ( )

corresponding to a counterclockwise rotation of an angle θ around the unit vector p f p+n 2, 2( ), see
appendix A. Such a rotation brings the k axis to the q fn ,( ) one, so that

q f q f q f= n SV S V, , , , 6z( ) ( ) ( ) · ( )†

q f q f = Îq fV m V m m, , , . 7n , XZ A( ) ( ) ( ) ( ) ( )†
( )

Finally, the spin components enjoy the covariance property

=U R m U R m , 8n nRA A( ) ( ) ( ) ( ) ( )†

whereU(R) is the (projective) representation of SO3 introduced in appendix A.

2.2. Approximate jointmeasurements
Weare interested in ameasurement of a spin vector, which can be only an approximatemeasurement otherwise
it would be a jointmeasurement of its components which are all incompatible. Then, an approximate
measurement of a spin vector will be seen as an approximate jointmeasurement of its infinite components. In
some sense, this is even an equivalence if one follows the idea of [8, Section 4.1] that a jointmeasurement of all
components of a vector is a positive operator valuemeasure (POVM)whose output is a vector.We shall come
back on this point in remark 4 and in section 5. For a presentation of POVMs, called also resolutions of the
identity, see [10, Sections 4.6, 9.3] and [19, Section 2.2].We shall denote byM Y( ) the set of all the POVMswith
value space ;Y for instance, we have În M XA ( ). The distribution of an observable A in a state ρwill be
denoted by rA .

Thefirst step is to introduce the set of the approximatemeasurements of the spin vector. As formally the
length of a spin is constant, we normalize it to 1 andwe consider POVMs on the unit sphere 2 in 3,

x x= Î =  , 1 . 92
3{ ∣ ∣ } ( )

Wedenote by 2F̃( ) the set of all the POVMon 2.
The second stepwill be to approximate the target observables nA with compatible observables nM that share

the same output spaceX as ;nA this will be done in section 2.2.1 by processing the output of a POVMon the
sphere.
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On the physical ground ([19, Chapter 4], [8, Section 4.4]), an essential physical property of ameasurement of
an angularmomentumvector is its covariance under the rotation group.Moreover, alsowhen any POVMon
the sphere is considered tomodel a possiblemeasurement of an angularmomentum, even if it is not rotational
covariant, one could expect that covariance emerges naturally from any reasonable optimality requirement; it
happens in [8] and the present paper does notmake an exception.Of course, the special properties of rotational
covariant POVMs on 2 will be the basis of some of our results. So, herewe introduce the covariant POVMs on
the sphere and give their properties.

Remark 1.Wedenote by 2F( ) the set of all the rotation covariant POVMs on 2. The covariance of a POVM
Î 2FF ( )means that, for any Borel subset of the sphere Ì B 2 and any rotation ÎR SO 3( ), we have

=U R B U R RBF F( ) ( ) ( ) ( )† , where the representationU R( ) is introduced in appendix A.

The structure of the POVMs in 2F( ) has been completely characterized in [19, Section 4.10], [8, p 24]; any
covariant POVMon 2 can be expressed as

å å lq f l q f l l l

q f
q q f
p

= = =

= +

l

q f

=-

+

=-

+

Î

s

d d d d , 0, 1, ,

d d 2 1
sin d d

4
. 10n

s

s

s

s

,

XF F

F A ℓ

( ) ( ) { }

( ) ( ) ( ) ( )

ℓ
ℓ ℓ ℓ

ℓ
ℓ ℓ ℓ

ℓ ( )

In particular, the normalization of themeasure lF for any choice of theλʼs implies the normalization of the
measures Fℓ, whichmeans

ò ò q f = " Î
q p f pÎ Î

d d , . 11
0, 0,2

XF  ℓ( ) ( )ℓ
[ ] [ )

Let us note that the choice of the z-axis is arbitrary.

Remark 2 (Uniformdistribution)

(i) When l l= º +s1 2 10 ( )ℓ ℓ , "ℓ, (7) and (10) imply that q fl d d0F ( ) is the uniform distribution on the

sphere: q f q f=l
q
p

d d d dsin

4
0F ( ) .

(ii) Similarly, for any choice of the parameters lm we get the uniform distribution on themaximallymixed state

(1): q f q f=l
r q

p
d d d dsin

4
0F ( ) .

2.2.1. Post-processing
By a natural post-processing procedure, we are now able to construct the compatible observables nM onX,
approximating the spin components nA . Let x be the result obtained fromameasurement on the systemof
Î 2FF ˜ ( ). Beingξthe observed value, for every direction n wewant a value for the ideal spin component n S· ,

obtained by a suitable discretization of xn · . This discretization could be based on different criteria, such as
angles of the same amplitude, or projections on n of the same length. In order to have a sufficiently large class of
approximatemeasurements, we do not ask for such a restrictions; we ask only to have symmetrywith respect to
positive and negative values, so thatwe can identify n S· with-n S· up to a change of sign in the output
valuem.

Let us consider a set of angles dividing the interval p0,[ ] into +s2 1pieces, symmetrically placedwith
respect to p 2:

q q q q q q q p q p q= ¼ = < < < = = -+ + + -, , , , 0 , . 12s s s k k0 1 2 1 0 1 2 1 2 1{ } ( )

Let x be the result of themeasurement F and n be a generic direction forming an angleαwith x. If we find
a q qÎ - - +,s m s m 1[ ) for = ¼ - +m s s, , 1, or a q pÎ ,s2[ ] for = -m s, we attribute the value Îm X to the
spin component in direction n.

In other terms, let C mn ( ), Îm X, be the +s2 1parts of the sphere obtained by using this discretization
procedure around n; by constructionwe have

= " ÎRC m C m R SO, 3 , 13n nR( ) ( ) ( ) ( )

= --C m C m . 14n n( ) ( ) ( )

For any choice of afinite number of directions ¼n n, , k1 , the approximate jointmeasurement of the spin
components in that directions is represented by
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¼ =¼
=

m m m C m, , , . 15n n n nk
i

k

i, , , , 1 2
1

k i1 2M FF

⎛
⎝⎜

⎞
⎠⎟( ) ⋂ ( ) ( )[ ]

This expression defines a POVMbelonging to kM X( ).

Remark 3.By the constructionwe have followed, the POVMs (15) enjoymany properties; themost relevant
properties are the following ones.

(i) When k and ¼n n, , k1 vary, the POVMs (15) are all compatible, because they are obtained by classical post-
processing from a uniquemeasure F.

(ii) By the fact that we have a measure on the space of the directions (the set 2) and that the post-processing is
described by the intersections in (15), the introduced POVMs are invariant under any permutation of the
couples ¼n nm m, , , ,k k1 1( ) ( ).

(iii) Again by the structure (15), the introduced POVMs vanish any time the corresponding intersection among
the sets C mn ii

( ) is void.

(iv) Equation (14) implies also the symmetry property

¼ = - ¼- ¼ ¼m m m m m m, , , , , , . 16n n n n n nk k, , , , 1 2 , , , , 1 2k k1 2 1 2M MF F( ) ( ) ( )[ ] [ ]

The set of all these compatible POVMs implicitly defines ameasureMF on 2X for all the spin components;
then, themeasures (15) are k-dimensionalmarginals ofMF.We denote by ¥M the class of POVMswe get by this
procedure: Î 2FF ˜ ( ) followed by the post-processing described above.

Remark 4.Note that, just because of properties (ii)–(iv), ¥M is not the class of all the POVM’s on 2X (the class
of all the approximate jointmeasurements of all the spin components). Indeed, this larger class contains also
POVMs that do not even enjoy the natural consistency property

= " ¹ -- m m m m, 0, 17n n, 1 2 2 1M ( ) ( )[ ]

(recall that = --m mn nA A( ) ( )). Formeasures in ¥M this property follows frompoint (iii) in remark 3; indeed,
by (14)we have Ç = Ç - = Æ-C m C m C m C mn n n n1 2 1 2( ) ( ) ( ) ( ) if ¹ -m m2 1.

Exactly for this reason, herewe follow [8] in starting frommeasures on the sphere, andwe study only POVMs
belonging to ¥M .

Inside ¥M we consider the subclass ¥M( ) consisting of all the POVMs ºl lM MF obtained by starting
from the covariant POVMs lF (10); we consider such POVMs Îl ¥MM ( ) as the physically sensible
approximate jointmeasurements of all the spin components ¥ ; as amatter of fact, wewill prove that they
allow tominimize the information lost in the approximation.

Remark 5.By the covariance of lF , the POVMs in ¥M( ) enjoy the symmetry property

¼ = ¼l l¼ ¼U R m m U R m m, , , , . 18n n n nk R R k, , , 1 , , , 1k k1 1M M( ) ( ) ( ) ( ) ( )[ ]
†

[ ]

Remark 6.Themeasure lM depends on +s s2 ⌊ ⌋free parameters: s2 parameters from the lʼs and s⌊ ⌋from the
angles q; s⌊ ⌋is the integer part of s.

2.2.2. The structure of the covariant approximating spin components
We study now the structure of the covariant POVMs in ¥M( ). The univariatemarginal l n,M [ ] represents the
admissible approximation of nA and its expression turns out to be

q f q f= =l l lq f q fm C m V m V, , , 19n n k, , , ,M F M( ) ( ( )) ( ) ( ) ( ) ( )[ ( )] ( ) [ ]
†

ò ò q f=l l
q q q f pÎ Î- - +

m d d . 20k,
, 0,2s m s m 1

M F( ) ( ) ( )[ ]
[ ) [ ]

The compatible univariate POVMs l n,M [ ]will be central in our formulation of theMURs andwe shall call them
‘approximate spin components’.

Remark 7. From (10)we see that q fl d dF ( ) is amixture of the POVMs q fd d ;F ( )ℓ similarly, each l k,M [ ] is a
mixture, given by
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å l=l
=-

+

m m , 21k k
s

s

, ,M M( ) ( ) ( )
ℓ

ℓ ℓ[ ] [ ]

ò òq
q
p

f= +
q

q p
q f

-

- +
m s2 1 d

sin

4
d . 22k n,

0

2

,
s m

s m 1

M A ℓ( ) ( ) ( ) ( )ℓ [ ] ( )

In the sameway, we have

å l q f q f= =l q f
=-

+

m m m V m V, , , . 23n n n k
s

s

, , , , ,M M M M( ) ( ) ( ) ( ) ( ) ( ) ( )
ℓ

ℓ ℓ ℓ ℓ[ ] [ ] [ ( )] [ ]
†

In order to study theMURs for spin observables (section 3), we need amore explicit form for l mn,M ( )[ ] , for
which the following probabilities are needed.

Definition 1 (q-coefficients).Wedefine

r r=q
rq m h m m h, Tr , , 24k kh h, ,

hM M Zℓ( ∣ ) ≔ ( ) { ( )} ≔ ( ) ( )ℓ ℓ[ ] [ ]

which is the probability of getting the result m in ameasurement of k,Mℓ [ ]when the system is in the eigen-state
rh of Sz. The vectorqis the set of the discretization angles (12), defining k,Mℓ [ ]by (22).

As stated by the following theorem, the q-coefficients involve theWigner small-d-matrix [28, Section 3.6],
defined by

q q pá ñ Î Îq-d h he , , , 0, , 25h
s

z
S

z,
i y Xℓ ℓ( ) ≔ ∣ ∣ [ ] ( )ℓ

( )

where ñm z∣ , Îm X, is the normalized eigen-vector of Sz of eigen-valuem.

Theorem1.Each admissible approximatemeasurement of n S· (21) is diagonal in the basis of the eigen-vectors of
n S;· indeed, the approximate spin components (23) have the form

å å l= =q l q
=- =-

m q m h h m q m h h, , , , 26n n n n
h s

s

h s

s

, ,
,

M A M Aℓ ℓ( ) ( ∣ ) ( ) ( ) ( ∣ ) ( ) ( )ℓ
ℓ

ℓ[ ] [ ]

where the q-coefficients (24) appear.Moreover, these coefficients turn out to be given by

ò q q q= +q
q

q

-

- +
q m h s d,

1

2
d sin , 27h

s
,

2

s m

s m 1
⎜ ⎟⎛
⎝

⎞
⎠ℓ( ∣ ) ∣ ( )∣ ( )ℓ

( )

where qd h
s
, ( )ℓ

( ) is theWigner small-d-matrix defined in (25).
Finally, the following properties hold: " Îm h, , Xℓ ,

> = - -q q qq m h q m h q m h, 0, , , , 28ℓ ℓ ℓ( ∣ ) ( ∣ ) ( ∣ ) ( )

= = - -q q qq m h q m h q m h, , , , 29ℓ ℓ ℓ( ∣ ) ( ∣ ) ( ∣ ) ( )

å å q q= = + -q q
=- =-

- - +q m h q m h s, ,
1

2
cos cos . 30

s

s

h s

s

s m s m 1⎜ ⎟⎛
⎝

⎞
⎠ℓ ℓ( ∣ ) ( ∣ ) ( ) ( )

ℓ

Proof.By using the expressions (22) and (7) inside the probabilities (24)we get

ò òq
q
p

f q f q f= +r

q

q p

-

- +
m s h V V2 1 d

sin

4
d Tr , , .k,

0

2
h

s m

s m 1

M Z Z ℓ( ) ( ) { ( ) ( ) ( ) ( ) }ℓ [ ]
†

By inserting the decomposition (A.4) of q fV ,( ), we have that the dependence onf disappears and (27) is
obtained.

The structure of the integral inf in the right hand side of (22) implies that mk,M ( )ℓ [ ] commutes with Sz and
by the irreducibility of the spin representation it is a linear combination of the projections h ;Z( ) by the previous
result the coefficients in this expansion are the qʼs andwe get  = å q=-m q m h h,k h s

s
,M Zℓ( ) ( ∣ ) ( )ℓ [ ] . By (23) this

proves (26).
As recalled in appendix A.1, qd h

s
,

2∣ ( )∣ℓ
( ) is a polynomial in qcos . Aswe asked q q<- - +s m s m 1, the integral of

this polynomial in (27) can vanish only if q =d 0h
s
,

2∣ ( )∣ℓ
( ) for all θ, but this is impossible becausewe have

òå q q q= = +q

p
q m h s d1 ,

1

2
d sin ,

m
h

s

0
,

2⎜ ⎟⎛
⎝

⎞
⎠ℓ( ∣ ) ∣ ( )∣ℓ

( )

which follows from (27) and the fact that qq h• ,ℓ( ∣ ) is a probability. Therefore the strict positivity in (28) holds.
The second property in (28) follows from (A.6) and the symmetry of the angles in the discretization (12).

Properties (29) follow immediately from the definition (24) and the symmetries (A.7).
The sum rules (30) follow from the property (A.8). ,
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By (26), the distribution of an approximate spin component l n,M [ ] in a state ρ is given by the doublemixture

å l=l q
r r

=-

m q m h h, . 31n n
h s

s

,
,

M Aℓ( ) ( ∣ ) ( ) ( )
ℓ

ℓ[ ]

2.2.3. Noise and compatibility
Definition 1 says that the q-coefficients are probabilities with respect tom; then, the quantities qq • , •ℓ( ∣ ) and

lå q=- q • , •s
s ℓ( ∣ )ℓ ℓ are transitionmatrices, independent of the system state ρ. Then, equations (26) and (31) can

be interpreted by saying that, given the direction n, each covariant approximating spin component n,Mℓ [ ]or

l n,M [ ] could be obtained bymeasuring exactly the target observable nA and then by perturbing the result with
some classical noise through a one-step stochastic evolution given by one of the transitionmatrices just
introduced. Aswe have seen in remark 3, the univariate POVMs l n,M [ ] are all compatible because they are
obtained by a classical post-processing from the unique POVM l ;F the compatibility is not implied by the
structure (26) alone. The use of classical transitionmatrices (Markov kernels) to transform incompatible
observables into compatible ones has already been exploited in related problems [8, 10, 29].

A different approach [9, 10, 30, 29, 31, 32] to the construction of compatible observables is to consider noisy
versions of the target observables.

Definition 2. IfD is an observable andN another POVMwith the same value space, themixture

h h h¢ = + - Î1 , 0, 1 ,D D N( ) [ ]

is said to be a noisy version of the observableDwith noiseN and visibility h.

Given the target observables jD , Îj I , and the class of permitted noises, the problem considered in the
quoted references is to see howmuch noise has to be added to the target observables in order to get compatible
POVMs of the form h h¢ = + -1j j jD D N( ) . The various approaches in the literature differ for the classes of
admissible noises; often only classical noise is considered, i.e. = p• •j jN ( ) ( ) where pj is a classical probability,

independent of the system state [9, 30, 31]. A review of some choices for the noise classes introduced in the
literature is given in [32]; the typical choices are: (a) classical noises, (b)noises represented by compatible
POVMs, (c) general POVMs.

Themarginals of an approximating jointmeasurement in ¥M( ) can be expressed as noisy versions of the
corresponding target observables in awaywhichwill be useful for comparisons, as stated in the following
remark.

Remark 8.Themarginals (26) of the jointmeasurement lM can bewritten in the form

h h= + -l l q l q
l qm m m1 , 32n n n, , ,

,M A N( ) ( ) ( ) ( ) ( )[ ]

åh l h= < <l q q l q
Î Î

q m mmin , , 0 1, 33
m

, ,
X X

ℓ( ∣ ) ( )
ℓ

ℓ

å å åh
l l d l=

-
- ¢ ¢ + -l q

l q
q q q

Î ¢Î Î Î
34m q m m q m m m q m h h

1

1
, min , 1 , .n n n

m h
hm

,

, ,X X X X

N A A⎪

⎪

⎪

⎪⎧
⎨
⎩

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬
⎭ ( )ℓ ℓ ℓ( ) ( ∣ ) ( ∣ ) ( ) ( ) ( ∣ ) ( )

ℓ
ℓ

ℓ
ℓ

ℓ
ℓ

It is easy to see that l q mn
,N ( ) is positive and that l q

n
,N is indeed a POVM; then, the proof of the decomposition

(32) is trivial. This simple expression is due to the fact that each target POVM nA and its approximating POVM

l n,M [ ] are diagonal on the same basis. Due to covariance, the visibility hl q, does not depend on n. Due to the strict
positivity (28) of the q-coefficients, the visibility is strictly positive;moreover it cannot be 1, which is possible
only when the target observables are already compatible.

In expressing l n,M [ ] as amixture of nA and some ‘noise’, the decomposition is not unique. Inwriting the
decompositions (32)we have decided to have themaximumpossible value for the visibility hl q, , without
imposing conditions on the class of allowed noises. Aswe remarked above, the last class of noises discussed in
[32] is indeed the one of general POVMs. If the class of noises is restricted, the value of the visibility could
diminish, as we can see in the example of =s 1 2, section 2.3.1.

2.2.4. Unbiasedmeasurements
Sometimes, not only symmetries are used to restrict the class of possible approximate jointmeasurements of
some incompatible target observables. In [4, 33, 34] spinmeasurements with unbiasedmarginals are considered;
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by this theymean that the outcomes of themeasurement are uniformly distributedwhen the system is in
themaximallymixed state. Note that in the field of inferential statistics this termhas a differentmeaning,
cf [19, Chapter 6].

By taking into account that our target observables nA are indeed unbiased in this sense, it could be
reasonable to ask this restriction also for the approximating observables. In the case of covariant approximate
jointmeasurements, by (31) and (30), to ask the uniformdistribution = +l

r m s1 2 1k,
0M ( ) ( )[ ] , in the

maximallymixed state r0 (1), implies immediately the strong restriction

q q q- =
+

=
+ -

+
+

s

s k

s
cos cos

2

2 1
, i.e. cos

2 1 2

2 1
. 35k k k1 ( )

This choice corresponds to discretize xn · by dividing the interval -1, 1[ ] into subintervals of equal length. By
using theminimization of information loss as criteriumof goodness, as done in section 3, the best approximate
jointmeasurement not always satisfies this restriction (see sections 3.6, 3.7) andwe do not ask for unbiasedness.
Also in other contexts, biasedmeasurements turned out to be optimal [31].

2.3. Covariant approximate jointmeasurements for spin 1/2, 1, 3/2
For small spins we can get explicit results by particularizing the discretization procedure of section 2.2.1 and
using the q-coefficients computed in appendix A.2.

2.3.1. Spin 1/2
In this case only three angles appear in the post-processing and they are completely determined by (12): q = 00 ,
q p= 21 , q p=2 . So, no free parameter is introduced by the discretization of the directions and a single free
parameter remains, coming from theλʼs, see remark 6. These angles automatically satisfy (35) and thismeans
that for =s 1 2 any observable in ¥M( ) is unbiased in the sense of section 2.2.4.

Themost general expression of the approximate spin components (21), (22) has been already obtained in
[27], Section 5, but it can be computed also from the explicit formof the q-coefficients given in (A.9):

l l= + - Îl m mS
2

1

2
2 , 0, 1 . 36k z, 1 2 1 2M

 ⎜ ⎟⎛
⎝

⎞
⎠( ) [ ] ( )[ ]

By using = - -m mZ Z( ) ( ), we can rewrite (36) as

l l l l= - + - = + + - -l m m m
3

2 2

1

2

1

2 2

1

2
, 37k, 1 2 1 2 1 2 1 2M Z Z

 ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( ) ( ) ( )[ ]

fromwhichwe see that l k,M [ ] is a noisy version of Zwith classical noise, onlywhen l 1 2
1

2
.

By allowing general noises, we have the structure (32), which is a different decomposition of the
approximatingmeasures as noisy versions of the target observables. For =s 1 2, by particularizing (33) and
(34), we see that theqdependence disappears and the explicit expressions of visibility and noise become

h
l

= + = = -l
l m m m

1

4 2
, . 38n n n

1 2
N N A( ) ( ) ( ) ( )

Note that in the decomposition (32) for =s 1 2 the noises turn out to be projection valuedmeasures and they
do not commute for different directions; so, the noises nN , Î n 2, are incompatible.We have asked the
compatibility of the POVMs l n,M [ ], not of the noises.

For =s 1 2 the probabilities (31) can be easily computed. Firstly, any state can be parameterized as

r = + = r S rr
1

2
2 , 1; 39( · ) ∣ ∣ ( )

note that S2 is the vector of the Paulimatrices. Then, by (7) and (36), we have

l= + = + -l
r rn r n rm m m m

1

2
,

1

2

1

2
. 40n n, 1 2A M ⎜ ⎟⎛

⎝
⎞
⎠( ) · ( ) · ( )[ ]

2.3.2. Spin 1
The choice of the angles (12) gives q q q p q q p= < < = - < =0 0 1 2 1 3 , and it introduces a single free
parameter

q Îa acos , 0, 1 . 411≔ ( ) ( )
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Other two free parameters come from theλʼs, see remark 6. The q-coefficients are computed in appendix A.2.2;
then, the approximate spin components (26) take the expressions

 = = -
+

 +
+

- +
-

= = - + + + -

-

-

a a
a

a

a
a

a
a

1 1 1
1

8
1

2

4
1 0

1

8
1 ,

0 0
2

3 0
4

3 1 1 , 42

k k

k k

1, 1,

3
2

3

1, 1,
2 2

M M Z Z Z

M M Z Z Z

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )[ ( ) ( )] ( )

[ ] [ ]

[ ] [ ]

 

 =
+

- + - +
-

= + - + -

a
a

a

a
a

a

1
2

4
1 1 1

1

2
0 ,

0 0
2

3 1 1 . 43

k

k

0,
2

3

0,
3 2

M Z Z Z

M Z Z Z

( ) ( ) [ ( ) ( )] ( )

( ) ( ) ( )[ ( ) ( )] ( )

[ ]

[ ]

To get unbiasedmarginals, according to (35)wewould have to take =a 1 3; as we alreadywrote in
section 2.2.4we do not ask for this andwe leave free the parameter a.

2.3.3. Spin 3/2
For =s 3 2, the choice of the angles (12) gives

q q q
p

q p q q p= < < = < = - < =0
2

,0 1 2 3 1 4

and it introduces a single free parameter: qa cos 1≔ , Îa 0, 1( ). Other three free parameters come from theλʼs,
see remark 6. The q-coefficients are computed in appendix A.2.3; then, the approximate spin components are
given by (26), (21) and the probability distribution by (31) (we to notwrite explicitly them, because the formulae
are very long). To get unbiasedness, according to (35)wewould have to take =a 1 2.

3. EntropicMURs for the set of all the spin components

A spin vector can not be exactlymeasured, as its components are incompatible observables and a joint
measurement can only approximate them. In information theory [35–37] the relative entropy is the quantity
introduced tomeasure the error donewhen one uses an approximating probability distribution in place of the
true one. Let us stress that the relative entropy is an intrinsic quantity: it is independent of themeasure units of
the involved observables and from renaming or reordering the possible values. Such a property does not hold for
non entropicmeasures of the error.

In [25]we used as error function the sumof the relative entropies, each one involving a single target
observable, because this sum represents the total loss of information; however, this approach can not be
extended to infinitelymany observables. To overcome this difficulty, instead of the sum,we shall consider the
maximumof the relative entropies over all target observables: thismaximum represents the loss of information
for theworst direction. Then, we consider theworst case alsowith respect to the system state. Finally, we shall
optimizewith respect to all approximating jointmeasurements. This is indeed the procedure used in [4, 5, 8],
apart from the starting point (distances between distributions for them).

3.1. The device information loss
Let us recall that ¥ (3) is the set of all the spin components (our target observables), that ¥M is the class of the
approximate jointmeasurements for all the spin components, and that ¥M( ) is the class of the covariant
ones, Ì¥ ¥M M( ) (see section 2.2.1). If Î ¥nA and Î ¥MM , we denote by nM[ ] the univariatemarginal
ofM approximating nA andwe call it the approximate spin component.With r

nA we denote the distribution of

nA in the state ρ, and similar notation for the other observables.
To quantify the information loss due to the use of r

nM[ ] in place of the target distribution
r
nA , we take the

relative entropy

å= Îr r r
r

r
Î

¥S m
m

m
log 0, , 44n n n

n

nm

M
X

A M A
A

M
M( ) ( ) ( )

( )
( )[ ]

[ ]


where the logarithm iswith base 2: ºlog log2. Recall that the form 0 log 0 is taken to be zero and that the relative
entropy can be+¥when the support of the second probability distribution is not contained in the support of
thefirst one.When a covariantmeasurement is considered, by using the expression of l

r
n,M [ ] in terms of theλʼs

and the q-coefficients in (31), we have

å l
=

å
Îl

q
l

r r r
r

r
Î

¥S m
m

q m h h
log

,
, . 45n n n

n

nm h
,

,

M
X

A M A
A

A
M

ℓ
( ) ( ) ( )

( ∣ ) ( )
( ) ( )

ℓ ℓ
[ ]

As all the q-coefficients are strictly positive (28), the relative entropy (45) is always finite.
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The relative entropy (44) depends on the state and on the choice of the observable (the direction n). To
characterize an information loss due only to themeasuring device, represented by themulti-observableM
approximating all the observables in ¥ , we consider theworst case of (44)with respect to the system state and
themeasurement direction. So, we define the device information loss by

D Î
r

r r
¥

Î Î
¥


Ssup , . 46

n
n ns

,s 2

M
S

M A M M[ ] ≔ ( ) ( )[ ] 

This quantity is the analogue of the entropic divergence introduced in [25, definition 2]); to use theworst
case on the directions instead of the sumof the relative entropies, as done there, allows to consider also infinitely
many target observables. Alternatively, in [27]we started from themean of the relative entropiesmade over all
the directions, but this approach gives rise to computations intractable outside the case =s 1 2, andwithout
possible extensions in cases inwhich an invariantmean does not exist.

Theorem2.The device information loss (46) is always strictly positive:

D > " Î¥ ¥ 0, . 47s MM M[ ] ( )

Moreover, " Î ¥MM there exists Î ¥MM̂ ( ) such that

D D¥ ¥  . 48s sM M[ ˆ ] [ ] ( ) 

In the case of a covariantmeasurement, the double supremum in the definition (46) of the device information loss
is amaximum, andwe have

D = < +¥ " " Î
r

r r
¥

Î
¥ nSmax , , . 49n ns

s

M
S

M A M M[ ] ( ) ( ) ( )[ ] 

Moreover, themaximum over the states is realized in an eigen-projection of the spin component:

rD = " Îr r
¥

Î
¥ S mmax , , . 50n n

n
ns

m
m

n n
m m M

X
M A M A M[ ] ( ) ≔ ( ) ( ) ( )[ ] 

Finally, in terms of the q-coefficients (24), the device information loss (46) is given by

å lD = " Îl q l¥
Î

-

¥ q m mlog min , , . 51s
m

1

M
X

M M
⎛
⎝⎜

⎞
⎠⎟ℓ[ ] ( ∣ ) ( ) ( )

ℓ
ℓ

Proof.The relative entropy is equal to zero if and only if the two probability distributions coincide; by the
incompatibility of the spin observables, the device information loss (46) is strictly positive and (47) is proved.

To prove (48), we need the notion of symmetrized version of a generic POVMon the sphere. The
symmetrization F̂ of Î 2FF ˜ ( ) is defined by

ò òf q
q
p

q f q q f=
p p

f
-B V R B Vd d

sin

4
, , , 52u

0

2

0

1F Fˆ ( ) ( ) ( ( ) ) ( ) ( )( )
†

where the rotation qfRu ( )( ) and the corresponding unitary operator q fV ,( ) are defined in equations (A.1),
(A.3). One can check that the covariance property, given in remark 1, holds for F̂, and that a covariant POVM is
left invariant by the transformation (52):

Î  Î Î  =  , .2 2 2F F FF F F F F˜ ( ) ˆ ( ) ( ) ˆ

From F̂, by the post-processing (15), we construct Î ¥ ;MM̂ ( ) by the property (13) and the definition (52), we
get

ò òf q
q
p

q f q f= =
p p

q f -m C m V C m Vd d
sin

4
, , . 53n n nR

0

2

0
, 1M F Fˆ ( ) ˆ ( ( )) ( ) ( ( )) ( ) ( )[ ] ( )

†

By this construction, any Î ¥MM is generated by post-processing some Î  ;2FF ˜ ( ) let F̂ be the
symmetrization (52) of F and let Î ¥MM̂ ( ) be the correspondingmeasure obtained by post-processing F̂.
Now,we set

r q f q f r q f q f qfV V R R, , , , , ,u( ) ≔ ( ) ( ) ( ) ≔ ( )†
( )

where qfRu ( )( ) is the rotation involved in q fV ,( ), see (A.3). By (53), (8), and the convexity of the relative
entropy, we get
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ò ò ò òf q
q
p

r q f f q
q
p

r q f=r r p p
r

q f

p p

q f
r q f

q f- - -S S C m S C md d
sin

4
Tr , d d

sin

4
Tr , .n n n n n nR R R

0

2

0
,

0

2

0 ,
,

,1 1 1A M A F A F( ˆ ) ( { ( ) ( ( ))}) ( { ( ) ( ( ))})[ ] ( ) ( )
( )

( )  

By taking the supremumof the definition (46)we get

ò ò ò òf q
q
p

r q f f q
q
p

rD
r

p p

q f
r q f

q f

p p

r

r
¥

Î Î
- -

Î Î
  

 
S C m S C msup d d

sin

4
Tr , d d

sin

4
sup Tr ,

n
n n

n
n ns

s
R R

s, 2 0

2

0 , 1
,

, 1
0

2

0 , 2S S

M A F A F[ ˆ ] ( { ( ) ( ( ))}) ( { ( ( ))})
( )
( )

( )  

and this gives (48).
Nowwe take Î ¥MM ( ). In the double sup in (46)we can firstly execute the supremumover the states. By

covariance, the quantity r
r r

Î Ssup n nsS A M( )[ ] is independent of n andwe obtain

D = =
r

r r

r

r r
¥

Î Î
 S Ssup sup .n n ks

s sS S

M A M Z M[ ] ( ) ( )[ ] [ ]  

By convexity, the supremumover the states of the expression (45) is amaximumamong the +s2 1eigen-states
of Sz andwe get (50), the equality in (49), and

å l= ¢
r

r r

Î Î ¢
¢

-

S q m m msup max log , .k
m m

m

1

sS X
Z M

⎛
⎝⎜

⎞
⎠⎟( ) ( ∣ )[ ]

Then, the device information loss (46) can bewritten in the form (51), which isfinite because of the strict
positivity (28) of the qʼs. ,

3.2. Theminimum information loss
By optimizing over the class ¥M( ) of the physical approximatingmeasurements we get a lower bound for the
device information loss

D¥ ¥
Î

¥
¥

  


I inf ; 54s sM
M

M
M

[ ( )] ≔ [ ] ( )
( )

 

we call itminimum information loss. An analogous quantity can be defined also for the larger class ¥M :

D¥ ¥
Î

¥
¥

 I inf . 55s sM
M

M
M

[ ] ≔ [ ] ( ) 

The twominimum information losses turn out to be equal, as shown in theorem 3.
The quantity ¥ ¥ Is M[ ( )] has interesting properties; in particular, as shown in theorem3, it is strictly

positive.Moreover, in the spin definition given in section 2.1we have used = 1, but (54) is independent of this
choice, because of the invariance properties of the relative entropy. Theminimum information loss will appear
in the formulations of theMURs (section 3.3) and it can be used as ameasure of the incompatibility of the set of
the target observables. The expression (54) can be elaborated and amore explicit form can be obtained.

Theorem3.The two information losses (54) and (55) are equal:

=¥ ¥ ¥ ¥  I I . 56s sM M[ ( )] [ ] ( ) 

Theminimum information loss (54) can be expressed in terms of the q-coefficients (24) as

å l=
l q

q¥ ¥
- I K K q m mlog , sup min , , 57s s s

m

1

,

M ℓ[ ( )] ( ) ≔ ( ∣ ) ( )
ℓ

ℓ

where q is the set of angles satisfying the discretization conditions (12) and involved in the expression (27) of the q-
coefficients.Moreover, the following bounds hold:

< +¥ ¥  I s0 log 2 1 . 58s M[ ( )] ( ) ( )

Proof.Obviously, we have ¥ ¥ ¥ ¥  I Is sM M[ ( )] [ ]  , because Ì¥ ¥M M( ) . The opposite inequality
is implied by (48); so, equality (56) is proved.
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To get ¥ ¥ Is M[ ( )] from (51), one has tominimize over theλʼs and the discretization angles:

å ål l= =
l q q

l q
q¥ ¥

- -

 I q m m q m minf log min , log sup min , ;s
m m,

1

,

1

M
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ℓ ℓ[ ( )] ( ∣ ) ( ∣ )

ℓ
ℓ

ℓ
ℓ

this gives (57). Then, with the choice l = +s1 2 1( )ℓ and (35) for the angles, we have

å q q
+

= - = +
q

q
- - +

-K
q m m

s
ssup max

,

2 1

1

2
cos cos 2 1 ;s

m
s m s m 1

1
ℓ( ∣ )

( ) ( )
ℓ

this proves the upper bound in (58).
To prove thefirst inequality in (58)we relay on the results of [25]. The entropic incompatibility degree for

two target observables, defined in equation (10) of [25], is strictly positive when the two observables are
incompatible [25], Theor. 2, point (v).Moreover, the class of the POVMs on 2X , Î 2M XM ( ), is larger than the
class of the bivariatemarginals ofmeasures in ¥M( ). By starting from two orthogonal spin components,

,X Y, we get

å< =

=

r

r r

r

r r

r

r r

r

r r

Î Î = Î Î =

Î Î = Î Î Î =

¥ ¥

¥ ¥

 

 



 


c S S

S S

I

0 , inf sup inf sup 2max

2 inf sup max 2 inf sup

2 .

n n
n n

i
i i

i
i i

i
i i

s

1

inc
2

1

2 3

1,2

4

1,2

5

, , 1

6

s s

s s

2 2

3

M

M X S M X S

M S M S

X Y X M X M

X M A M

M M

M M

( ) ( ) ( )

( ) ( )

[ ( )]

( ) ( )

( ) [ ]

( )

( ) [ ]

( )

( ) [ ]

( )

( ) ∣ ∣
[ ]

( )

 

 



Here (1) is the result of [25], (2) is the definition of cinc, (3) is becausewe substitute the sumwith two times the
maximum, (4) is becausewe have restricted the class of approximating jointmeasurements in the infimum, (5) is
becausewe enlarge the set of directions in themaximum, (6) is by our definition (46), (54). This ends the proof of
the strict positivity. ,

Let us remark that the last part of the proof, proving the strict positivity in (58), works for every class of
approximate jointmeasurements one could use in the infimum, not only for our choices ¥M( ) and ¥M . The
point is that every spin component nA has to be approximated by a POVM nM[ ]on the same output spaceX and
that the nM[ ], Î n 2, must be compatible.

3.3. EntropicMURs
By the strict positivity of theminimum information loss proved in theorem3, the definitions (54), (55), and the
equality (56), we get a first formulation of theMURs, in a state independent form,which is analogous to that
given in [8, (11)].

Remark 9 (MURs,first version). For every approximate jointmeasurementMof all the spin components, the
device information loss (46) is greater than a strictly positive lower bound:

D > " Î¥ ¥ ¥ ¥   I 0, .s s M MM M[ ] [ ( )] 

By the comments abovewe have that non trivial entropicMURs can be formulated also if we change the class of
approximate jointmeasurements ¥M with some other class; what can change is the value of the (strictly
positive)minimum information loss.

Remark 10.By the expression (50) of the device information loss, we canwrite (57) as

=
l q

l
r r

¥ ¥ I Sinf max , 59n ns
m,

,

n n
m mM A M[ ( )] ( ) ( )[ ] 

where rn
m is the eigen-projection of n S· with respect to the eigen-value m and the discretization angles are

implicitly contained in lM .When the infimum is realized in a pointl l= *, q q= *wehave that l q q=* *M ∣ plays
the role of optimal approximate jointmeasurement.

The upper bound in (58) is surely non tight, as it has been obtained by starting from the uniformdistribution
on the sphere; this can be checked in the explicit cases of small spins given below.However, the role of this
bound is at least to say that, whenwe have a device information loss greater than that, the approximating
measurement is not optimal.
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By the fact that the device information loss of a covariant approximation is amaximumand has the form
(50), we have immediately the following formulation of theMURs for covariant approximate spin
measurements.

Remark 11 (MURs for covariantmeasurements, second version).The state independentMURs are

r" Î " Î $ Î >r r
¥ ¥ ¥ ¥   S I: 0; 60n n ns sM S MM A A M( ) ( ) [ ( )] ( )[ ] 

such a state ρ is one of the eigen-projections of n S· .

So, in a physical approximate jointmeasurementMof all the spin components nA , Î n 2, the loss of
information r rS n nA M( )[ ] per direction n can not be arbitrarily reduced. It depends on the state ρ and on the
direction n, but for every n it can be potentially as large as ¥ ¥ Is M[ ( )] .

We shall compute analytically theminimum information loss in the cases of =s 1 2, 1, 3 2. For higher
spins, a numerical approach is possible, as the computation has been reduced to the optimization problem (57)
over afinite number of real parameters, appearing in integrals (27) of knownpolynomials related to theWigner
small d-matrix (appendix A.1).

3.4.Minimum information loss and noisy versions of the target observables
In section 2.2.3we have seen that the approximating spin components l n,M [ ] are noisy versions (32) of the target
spin components nA with visibility hl q, (33) and noise l q mn

,N ( ) (34). The visibility (33)was already chosen to be
maximal with l n,M [ ]fixed. Now,we canmaximize the visibility alsowith respect to the class of joint
measurements ¥M( ) by defining

h h
l q

l qsup . 61s
,

,* ≔ ( )

By comparing this quantity with the result (57)we get h=Ks s
* and

h
=¥ ¥ I log

1
. 62s

s
*

M[ ( )] ( )

This equation gives a simple relation between themaximal visibility (61), (33) and theminimum
information loss (54), (57) in the case of the spin vector. By our construction, we have also obtained that, inside
the class of covariantmeasurements ¥M( ), tomaximize the visibility or to optimize the information loss gives
the same optimalmeasurement. Let us note that this result is due to the fact that the target observable and the
approximating POVMare jointly diagonal.

Our aim in introducing the device information loss (46) and theminimum information loss (54), (55)was to
have uncertaintymeasures, based on information theory, bywhichMURs could be expressed in a simpleway,
section 3.3; this construction produced also an incompatibilitymeasure, theminimum information loss. The
result above gives a linkwith the robustness measures [9, 10, 29–32]which quantify the incompatibility by
maximizing the visibility; in other terms, thesemeasures are based on the ability of the target observables to
maintain incompatibility against noise.

3.5. Spin 1/2
In this case no free parameter comes out from the angle discretization and the approximate spin components
(37) are very simple.

Theorem4.The device information loss (46) and theminimum information loss (54) turn out to be given by

l
D =

+
l¥ log

4

1 2
, 631 2

1 2

M[ ] ( )

= =r r
¥ ¥ I S log

4

3
0.415 037, 64k1 2 1 2,

m mM Z M[ ( )] ( ) ( )[ ]  

where r = mm Z( ).
The first equality in (64) shows that 1 2M is the optimalmeasurement in the sense of remark 10; its marginal in

direction n is

= + = + -m m m m
1

2 2

3

4

1

4
, 65n n n n1 2,M A A A

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( ) ( )[ ]

which is an unbiased noisy version of nA (cf section 2.3.1).

Proof. In this case, by (A.9)wehave = +q m m, 1

2
ℓ( ∣ ) ℓ , independent ofm; then, (63) follows from (51).
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Directly from the definition (54) and the expression (63)we have

= D = Dl
l

¥ ¥
Î

¥ ¥   I inf ,1 2
0,1

1 2 1 2 1 2
1 2

M M M[ ( )] [ ] [ ]
[ ]

  

and thefinal expressions in (64) follow.
By the facts that there is no freedom in the choice of the θʼs and that the infimum is reached for l = 11 2 , we

get that 1 2M is the optimalmeasurement. Then, by (37)we get the formof themarginal (65). ,

In (65)we havewritten themarginal of the optimalmeasurement in two different ways. Firstly, we have
written the noisy versionwith classical noise, with visibility 1/2. Then, we have used the expression (32)with
general noise and visibility 3 4; it is this last visibility which is related to ourminimum information loss,
see (62).

Let us remark that, actually, 1 2M enjoys a useful additional property. By using the state representation (39)
and the explicit expressions (40) for the probabilities, we have

l= -l
r r n rS s 1 2, , 66n n, 1 2A M( ) ( · ) ( )[ ] [ ]

+ +
+

+
- -

-
< s c x

x x

cx

x x

cx
c x,

1

2
log

1

1

1

2
log

1

1
, 1, 1. 67( ) ≔ ∣ ∣ ∣ ∣ ( )

The parameter r is the Bloch vector characterizing the state ρ. By taking the c-derivative, we see that it is strictly
negative, which implies that s c x,( ) decreases when c increases. Thismeans that 1 2M minimizes (66) for any
state ρ. This peculiarity of the case =s 1 2makes possible to state that 1 2M is optimal evenwhenwe know the
system state ρ and to easily formulate also a formof state dependentMURs.

Remark 12 (State dependentMURs).The following state dependent bound holds:

å

r

=
+ +

+

" Î " Î " Î =

r r r r

=

¥

 








n r n r

n r

n n

S S
1

2
log

1

1
,

, , , 1. 68

n n n n

s

1 2,
1 2

3S M

A M A M

M

( ) ( ) · ·
·

( ) ∣ ∣ ( )

[ ] [ ] 

3.6. Spin 1
In this case there is a single parameter (41) coming from the angle discretization; then, theminimum
information loss and the optimalmeasurement can be computed.

Theorem5. Let us set r = m ;m Z( ) then,

= =
-

r r
¥ ¥ = I S

a a
log

2

3
0.682 505. 69k a a1 1,

0 0
2

m m
0M Z M[ ( )] ( )∣

( )
( )[ ]  

The quantity a0 is the real solution of the equation

- - + =a a a5
7

3
0, 703 2 ( )

which is given by

a a p a p= + - = Îa
1

3
1 8 cos , cos 3

1

8
, 0, 2 . 710 ( ) ( ) ( ) ( )

This gives also

a a a= - = -a 0.444 703; cos 3
1

8
, cos

1

4
3 cos

1

8
. 720

3 ⎜ ⎟⎛
⎝

⎞
⎠( ) ( )

The optimalmeasurement is =a a1 0
M ∣ and itsmarginal along k is given by

h h

k k

h k

= + -

= - + -  = +

= - < =
-

- +
<

=m m m

a
a

a

a a

1 ,

0 1 1 1 , 1
1

2
0 1

2
3 0.623 083, 0

1

4 1 3
1. 73

k k

k k

a a1, 1 1

1
0

0
2 0

3

0 0
3

0
* * *

* *

*

M Z N

N Z Z N Z Z

( )∣ ( ) ( ) ( )

( ) ( )[ ( ) ( )] ( ) ( ) ( )

( ) ( )
( )

( )

[ ]





Proof. From (A.10)wehave

å l l l l  = -
+

+
-

+
+ -

+ -q
a a a a

1 , 1 1
1

8

1

8

2 1

4
,a

3 3

0

2⎡
⎣⎢

⎤
⎦⎥ℓ( ∣ ) ( ) ( ) ( )( )

ℓ
ℓ
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å l l l l= + - ++ -q
a

a a0 , 0
2

3 .a
2

0
3ℓ( ∣ ) ( ) ( )

ℓ
ℓ

One can check that both these expressions have an absolutemaximum in l =+ 1 for all Îa 0, 1( ). Then, (57)
gives

å l =
lÎ Î

K q m m q m msup min sup , sup min 1, .
a m

a
a m

a1
0,1 0,1

ℓ( ∣ ) ( ∣ )
ℓ

ℓ
( ) ( )

On the other side, by eliminating the supremumover theλʼs and choosing l d= ,1ℓ ℓ in (57), we get

ÎK q m msup min 1, ;a m a1 0,1 ( ∣ )( ) so, the equality holds andwe have

= = -
+

-K q m m
a a

asup min 1, sup min 1
1

8
,

2
3 .

a m
a

a
1

3
2

⎧⎨⎩
⎫⎬⎭( ∣ ) ( ) ( )

Thefirst term in theminimumdecreases with a and the second one increases; thismeans that the supremum
over a is reachedwhen these two terms are equal, which happenswhen (70) holds. This proves (69). It is possible
to check that (71) is the unique real solution of (70) and that this gives the properties (72).

Equation (69) implies also that the optimalmeasurement is =a a1 0
M ∣ . By inserting a0 into the expression (42)

of its k-marginal we get the expressions (73). ,

Remark 13.Differently from the case =s 1 2, for s=1 themarginal =k a a1, 0
M ∣[ ] of the optimalmeasurement is

not unbiased because ¹a 1 30 . Indeed, on themaximallymixed state r0, the relative entropy is not zero and its
value is

=
+ -

+
- -

r r
=S

a a a a

2

3
log

6

4 3 1

1

3
log

6

3 10 5
0.103 607.n n a a1,

0 0 0 0

0 0
0A M( )

( ) ( )[ ] [ ] 

3.7. Spin 3/2

Theorem6. Let us set r = m ;m Z( ) then, we have

=

=
- - -

r r
¥ ¥ = I S

a a a
log

32

45 24 24 8
0.886 155 63; 74

k a a3 2 3 2,

0 0
2

0
3

m m
0M Z M[ ( )] ( )

( )

[ ] 



=a a3 2 0
M ∣ is the optimalmeasurement. The quantity a0 is the unique real solution in 0, 1( ) of the equation

- - + =a a a6 8
15

2
0, 754 2 ( )

which gives

a 0.646 153 783 1. 760 ( )

Proof. Fromappendix A.2.3 we get

  =   = - - - -q q a a a amax 3 2 , 3 2 3 2 3 2, 3 2
1

16
15 4 6 4 ,a a

2 3 4ℓ( ∣ ) ( ∣ ) ( )
ℓ

a quantity which decreases with a from 15

16
to 0, and

  =   = + - -q q a a a amax 1 2 , 1 2 1 2 3 2, 1 2
1

16
12 6 4 3 ,a a

2 3 4ℓ( ∣ ) ( ∣ ) ( )
ℓ

a quantity which increases with a from0 to 11

16
. Then, as in the proof of theorem5,we get

=

= - - - - + - -

Î

Î

K q m m

a a a a a a a a

sup min 3 2,

sup
1

16
min 15 4 6 4 , 12 6 4 3 .

a m
a

a

3 2
0,1

0,1

2 3 4 2 3 4

( ∣ )

{ }

( )

( )

By equating these two expressionswe get equation (75), whose solution (76) is computed numerically. Aswe
have

=
 
 


q m m

q a a

q a a
min 3 2,

1 2 3 2, 1 2 for ,

3 2 3 2, 3 2 for ,m
a

a

a

0

0

⎧⎨⎩( ∣ )
( ∣ )
( ∣ )

(57) gives

=¥ ¥
- I q m mlog 3 2, ;a3 2

1
0

M[ ( )] ( ( ∣ ))

by using also (75), the final expression in (74) follows. By theorem (3), the optimalmeasurement is identified and
the intermediate expression in (74) follows. ,
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By comparing (62) and (74), we have that the optimal visibility is

h = - - -a a a
1

4

45

8
3 3 0.541 0543 2 0 0

2
0
3* ⎜ ⎟⎛

⎝
⎞
⎠ 

with a0 given in theorem 6. Also the expression of the optimal noise could be obtained, but it would be involved
andwe do not give explicitly here.

By direct computations one can check that the optimalmeasurement is biased and that on themaximally
mixed state r0 it gives

= -r r
=

-S a a
1

2
log 4 1 0.064 428 1. 77k a a3 2, 0 0

10 0
0Z M( ) [ ( )] ( )[ ] 

Remark 14.The results we have found for small spin values give

< < <¥ ¥ ¥ ¥ ¥ ¥     I I I0 . 781 2 1 3 2M M M[ ( )] [ ( )] [ ( )] ( )  

This chain of inequalities suggests the conjecture that ¥ ¥ Is M[ ( )] could growwith s: in some sense the
minimum information loss growswith the complexity of the spin system.

4.MURs for two and three orthogonal components

In this sectionwe study theMURs for the cases of two and three orthogonal spin components. As remarked in
[8], it is not possible to get the case of infinite components from the case of three orthogonal components; only
the case of infinite components respects the rotation symmetry, while in the other case the three directions are
fixed. The cases of orthogonal components involve less symmetries and there ismore freedom in the
construction of the approximate jointmeasurements; so it ismeaningful to enlighten the differences between
the case of the spin components in all directions and the case of orthogonal components. In principle also a few
non-orthogonal components could be considered; in [25]we already considered two non-orthogonal spin
components with =s 1 2, but with the sumof relative entropies as starting point.

The cases of orthogonal components allow to showhow theminimum information loss and the related
MURs can be introduced also for other sets of observables by adapting the construction of section 3.Moreover,
theminimum information loss can be used as quantification of the incompatibility of the target observables and
allows to compare different sets of observables. In the cases of spin components we shall obtain orderings for
different numbers of target observables and different values of s, which are not at all trivial or intuitive.

4.1. Target observables and approximate jointmeasurements
Thefirst set of target observableswe consider is = , ,3 X Y Z{ }, which is covariantwith respect to the octahedron
groupO, see appendixB.1. Then, 3M( ) is the set of observableswith value space 3X andO-covariant in the sense
of (B.2). By using thenotation (15) and the covarianceproperties (16), (18), (B.2)wehave that

Î  Î¥  . 79i j k, , 3M MM M( ) ( ) ( )[ ]

The other set of target observables is = ,2 X Y{ }, which is covariant with respect to the dihedral groupD4,
see appendix B.2. Then, 2M( ) is the set of observables with value space 2X andD4-covariant in the sense of
(B.4). By using the notation (15) and the covariance properties (B.4), (B.2)we have that

Î  Î  . 80i j3 , 2M MM M( ) ( ) ( )[ ]

Note that the implications above are one-sided: there are elements in 2M( )which are notmarginals of
elements in 3M( ) and the same for 3M( )with respect to ¥M( ).

We obtained the explicit formof a covariant approximate jointmeasurement, for two and three orthogonal
components, only in the case of a spin 1/2. For a generic spin swe can give only particular covariant approximate
jointmeasurements, such as the ones based on optimal cloning.

4.1.1. Optimal cloning and approximate jointmeasurements
As approximate jointmeasurement of the spin components hA , = ¼h 1, , r, a significantmulti-observable

Îcl M XrM ( ) can be constructed by using the so called optimal cloning [30, 38, 39]; its univariatemarginals are
given by (B.5). Let us stress that themarginal of themulti-observable constructed by optimal cloning can be seen
as a noisy version of the target observable, with classical noise; however, this decomposition is not unique, as in
the case of infinite components.

16

J. Phys. Commun. 4 (2020) 055003 ABarchielli andMGregoratti



When the target observables are = , ,3 X Y Z{ }, we get themulti-observable cl
3M , whose univariate

marginals (B.5) take the form

=
+

+ + = Îm
s

s m i m
1

3 1
2 , 1, 2, 3, . 81i icl

3 XM X( )
( )

[ ( ) ( )] ( )[ ]

Obviously Îcl
3 3M XM ( ), but one has also Î cl

3
3MM ( ), as shown in appendix B.3.

When the target observables are = ,2 X Y{ }, the optimal cloning gives the bi-observable Îcl
2 2M XM ( )

and (B.5) becomes

=
+

+ + = Îm
s

s m i m
1

4 1
2 3 , 1, 2, . 82i icl

2 XM X( )
( )

[ ( ) ( )] ( )[ ]

Again one has also Î cl
2

2MM ( ), as shown in appendix B.3.

4.1.2. Spin 1/2
For a spin 1/2 the explicit expressions of the general element in 3M( ) and 2M( ) have been obtained in [25,
proposition 5, theorem10] and used also in [27]. Then, themost general covariant jointmeasurement in 3M( )
[27, equation (11)] can bewritten as

= + + + m m m
c

m S m S m S c, ,
8 2

,
1

3
. 83c x y z1 2 3 1 2 3M

( ) ( ) ∣ ∣ ( )

Similarly, themost general element in 2M( ) has the expression [27, equation (7)]

= + + m m c m S m S c,
4

,
1

2
. 84c x y1 2 1 2M

( ) ( ) ∣ ∣ ( )

Remark 15. In both the cases of two and three orthogonal components, the univariatemarginals have the
expression

= + =
+ -

- + - <


m cmS

c m c c

c m c c2
2

1 , 0,

1 , 0;
85c i i

i

i

2

2

M
X

X






⎧
⎨⎪
⎩⎪

( )
( ) ( )

∣ ∣ ( ) ( ∣ ∣)
( )[ ]

the only difference is themaximally possible value for c∣ ∣: c 1 3∣ ∣ in the case of three components and
c 1 2∣ ∣ in the case of two components. Also themarginal of the optimalmeasurement (65) for infinite

components has the form (85)with =c 1 2.

Remark 16.By particularizing (81) and (82) to =s 1 2, we obtain that themarginals of the jointmeasurements
fromoptimal cloning have again the form (85)with =c 5 9 in the case of three components and =c 2 3 in the
case of two components. Aswe have < < < <1 2 5 9 1 3 2 3 1 2 , there is an increase ofminimum
classical noise in going from the case of two orthogonal components, to cloning of two components, three
components, cloning of three components, infinite components.

4.2. The information loss
Analogously towhat is done in section 3, also in the case of orthogonal spin components it is possible to define
the device information loss and theminimum information loss. The device information loss ofM is defined as in
(46); then, exactly as for (49), after the supremumon the states, the covariance implies the independence from
the direction. So, we have: for = 2, 3r ,

D = Î
r

r r

r

r r

Î Î
 


S Ssup sup , . 86s

i i
i i i i

, :s s

M
S S

r
r

rM X M X M M[ ] ≔ ( ) ( ) ( ) ( )[ ] [ ]  

By optimizing over the approximate jointmeasurementMwe get theminimum information loss

D = =
r

r r

Î Î Î
  

 
I Sinf inf sup , 2, 3. 87s s i i

s

M
M M S

rr r r
r r

M X M
M M

[ ( )] ≔ [ ] ( ) ( )
( ) ( ) [ ]  

As done in section 3.2 and in [7, 25], we can extend the previous definitions to non-symmetric approximate
jointmeasurements, without changing thefinal conclusions. Firstly, we introduce the device information loss
for generalmeasurements:

D = Î =
r

r r

Î



Ssup , , 2, 3. 88s

i i
i i

, :s

M X
S

rr
r

rM X M M[ ] ( ) ( ) ( )[ ] 

Obviously, nowwe cannot eliminate themaximumover the directions as in (86), because this follows from the
covariance. Then, we optimize over all thesemeasurements by defining
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D = =
r

r r

Î Î Î
 


I Sinf inf sup , 2, 3. 89s s

i i
i i

, :s

M X
M X M X S

rr
r

r
r

r r
M X M

M M
[ ( )] ≔ [ ] ( ) ( )

( ) ( ) [ ]  

Next proposition shows that this extension does not change the value of theminimum information loss and
that this value growswith the increasing complexity of the set of observables, i.e. going from 2, to3, and then
to ¥

Proposition 7.The two definitions (87) and (89) are equivalent, as we have

= =  I I , 2, 3. 90s sM X M rr
r

r r[ ( )] [ ( )] ( ) 

Moreover, theminimum information loss is strictly positive and finite andwe have

< < +¥¥ ¥      I I I0 . 91s s s2 2 3 3M M M[ ( )] [ ( )] [ ( )] ( )  

Proof.The proof of (90) is a very slightmodification of what is done in [25]. Let us use the notation =G O3 and
=G D2 4 for the two groups introduced in appendices B.1 andB.2; the actions of these two groups on the

POVMs, as given in the two appendices, can be seen to satisfy the hypotheses of theorem 9of [25], as done in
[25, sections B.2, B.4].We denote by gM the action of an element Îg Gr on the POVM Î M XrM ( ) and by

Î G M rrM ( ) the covariant version ofM as done in [25, sections 3.1, 4.1]. Thanks to the hypotheses on the group
action of [25], theorem9, by substituting the sumof the relative entropies by theirmaximum,we get that the
results on the entropic divergence of theorems 4 and 9 of [25] go into analogous results on the device information
loss. In this way one proves that, for = 2, 3r ,

D = D " Î " Î g g G, , ,s s M Xr r r
rM M M[ ] [ ] ( ) 

D D " Î  , .s G s M Xr r
r

rM M M[ ] [ ] ( ) 

As Î G M rrM ( ), by taking the infimumwe get (90).
Toprove (91), note that, by (79) and (80), the definition (87) gives the ordering among the three information

losses  Is Mr r[ ( )] , = ¥2, 3,r .We alreadyproved the last inequality in theorem3, cf theupper bound in (58).
Theproof of the strict positivity is analogous to theproof of the strict positivity in (58). Exactly as in thefinal part of
the proof of theorem3weobtain <  c I0 , 2 sinc 2 2MX Y( ) [ ( )] ,where c ,inc X Y( ) is defined in [25, (10)]. ,

4.2.1. EntropicMURs
By the definition and the strict positivity of theminimum information loss we get the state independentMURs
in a formulation involving the device information loss:

D > " Î É    I 0, . 92s s M M X Mr r r
r

rM M[ ] [ ( )] ( ) ( ) ( ) 

Wehave used (90) to extend the set of possiblemeasurementsM. This formofMURs is the analogue of what is
done in remark 9 for the case of infinitelymany components.

By proving that the supremumover the states in (86) reduces to amaximum,we could get aMUR
formulation analogous to the one in remark 11, but we skip this.

4.2.2. Spin 1/2
By using the state representation (39) and the univariatemeasure (85), we can compute the relative entropies, as
done in equations (66) and (67). Then, by taking the supremumover the states, we get

D = =
+

=r r S
c

clog
2

1
,

1
, 2, 3. 93c i c i1 2

i i

r
rr M X M[ ] ( ( ) ) ∣ ∣ ( )[ ] 

Here, themeasurement cM is given by (83) for = 3r or by (84) for = 2r , while the state ri is anyone of the two
eigen-projections of Si.

By the definition (87) and the explicit expression (93), we obtain

= =
+

=r r

Î -
 I Sinf log

2

1 1
, 2, 3. 94

c
i c i1 2

1 ,1

i iM
r

rr r
r r

X M[ ( )] ( ( ) ) ( )
[ ]

[ ] 

Let us note that there is an optimal POVM, the onewith =c 1 r , the same of the one appearing in
[5, 9, 25], where different optimality criteria where used. By using thismeasurement it would be possible to give a
state dependent version of theMURs as done in remark 12.

4.2.3. The bounds from optimal cloning
For >s 1 2we can get a bound on theminimal information loss by using the POVMobtained fromoptimal
cloning, because by constructionwe have
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D =  I , 2, 3. 95s s clM rr r r
rM[ ( )] [ ] ( ) 

4.2.3.1. Three orthogonal components
Let us set rp m ;m X≔ ( ) then, by (81) and (44), we get

å=
+ +

+
=

+

+ +
r r r

=-

m
s p

s
S p

s p

s p

1 2

3 1
, log

3 1

1 2
.m

m s

s

m
m

m
cl 1
3,

cl 1
3,M X M( )

( )
( )

( )
( )

( )[ ] [ ]

This gives the device information loss

D = =
+
+r

r r S
s

s
sup log

3 1

3
. 96s 3 cl

3
cl 1
3,M X M[ ] ( ) ( ) ( )[ ] 

4.2.3.2. Two orthogonal spin components
By the same definition of pm and using (82) instead of (81), in a similar waywe get

å=
+ +

+
=

+

+ +
r r r

=-

m
s p

s
S p

s p

s p

1 2 3

4 1
, log

4 1

1 2 3
,m

m s

s

m
m

m
cl 1
2,

cl 1
2,M X M( )

( )
( )

( )
( )
( )[ ] [ ]

D = =
+
+r

r r S
s

s
sup log

2 1

2
. 97s 2 cl

2
cl 1
2,M X M[ ] ( ) ( ) ( )[ ] 

Note that the device information losses (96) and (97) growwith s and that they enjoy some unexpected
relations, such as

D > D D = D   , ,1 2 cl
2

1 2 3 cl
3

2 2 cl
2

1 3 cl
3M M M M[ ] [ ] [ ] [ ]   

D = D
+¥

 lim .
s

s 2 cl
2

3 3 cl
3M M[ ] [ ] 

For instance, the first relation says that, for the devices constructed by optimal cloning, the information loss for
the case of two orthogonal components and s=1 is greater than the information loss for the case of three
orthogonal components and =s 1 2.

4.3. Some orderings andbounds
Aswe already said, theminimum information loss can be interpreted as a quantification of the incompatibility of
the set of target observables. So, we can take the results obtained on  Is Mr r[ ( )] , = ¥2, 3,r ,
= ¼s 1 2, 1, 3 2, , to compare different sets of spin observables (even in differentHilbert spaces) from the

point of view of incompatibility; as we shall see, somenon intuitive relations appear.
First of all we have the inequalities (78) in the case of all the components and small s; for the same s and

differentrwehave the inequalities (91).
By the optimal cloning bound (95) and the growingwith s of the expressions (96) and (97), we get the bounds

   

 

  

  

I I s

I s

1, log 3,
1

2
,

1,
1

2
3. 98

s s

s

2 2 3 3

3 3

M M

M

[ ( )] [ ( )]

[ ( )] ( )

 



By the bound (95) again, and the fact thewe have the numerical value of ¥ ¥ Is M[ ( )] for =s 1, 3 2, see
equations (69) and (74), we obtain

<
< =
<
<

¥ ¥

¥ ¥

¥ ¥

¥ ¥

   
   
   
   

  

 
 

I I s

I I s

I I s

I I s

1, 1 2 3,

, 1 2, 1,

, 1 2 11,

, 1 2 2. 99

s

s

s

s

2 2 1

3 3 1

2 2 3 2

3 3 3 2

M M

M M

M M

M M

[ ( )] [ ( )]
[ ( )] [ ( )]
[ ( )] [ ( )]
[ ( )] [ ( )] ( )

 
 
 
 

For instance, the second-last inequality says that two orthogonal components for s=11 are less incompatible
than the set of all components for =s 3 2; similar interpretations hold for the other inequalities.

4.4. Noise and visibility
Themarginals of the optimalmeasurements for spin 1/2, (85)with =c 1 r , = 2, 3r , can bewritten in a
way similar to (32): for = 2, 3r ,
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h h h= + - - = +=m m m1 ,
1

2
1

1
;c i c i i1 1 2 1 2 1 2 r

r
r r rM X X

⎛
⎝⎜

⎞
⎠⎟( )∣ ( ) ( ) ( )[ ]

the same holds for themarginals (81), (82) of the jointmeasurements generated by optimal cloning:

h h h= + -
-

=
+
+

m m
m

s

s

s
1

2
,

1
.i s i s

i
scl cl, cl, cl,

r

r
r r r rM X

X( ) ( ) ( ) ( )
( )[ ]

Then, from (94), (96), (97), we get

h hD = = =- -  Ilog , log , 2, 3. 100s scl cl,
1

1 2 1 2
1M rr

r r
r r

rM[ ] ( ) [ ( )] ( ) ( ) 

The visibilities above have been obtained by allowing for general noises, not only classical ones. Inside the
noise robustness approach to incompatibility, the two visibilities h1 2

r for spin 1/2 have already been obtained in

[32]; they are in the class called incompatibility generalized robustness, whichmeans that general POVMs are
allowed for noises. By comparingwith section 3.4, we can say that we have shownhow to generalize this
approach to the case of infinitelymany observables, such as the spin vector.Moreover, by using information loss
measures, we have shownhow to link this problemwith the one of uncertaintymeasures andMURs. Let us also
stress that formulae like (100) and (62) hold in this particular cases; they have not a general validity. The case of
non-orthogonal spin components [25, 32] could be a promising test to see the differences. In principle, our
minimum information loss does not relay on the noisy versions of the target observables.

5. Conclusions

The entropic formulation ofMURs has the advantage of beingwell based on information theory (in particular
on the notion of information loss) and independent of themeasurement units of the observed physical
quantities and from a reordering of their possible values [25–27]. By using the case of the spin components, in
this article we have shown that the approach based on the relative entropy can be extended so to treat on the
same footingfinitely or infinitelymany observables and that a quantitative uncertainty bound can be
constructed.

By introducing theworst information loss with respect to the target observables and the system states, we
have defined the device information loss in the various cases (46), (86), (88). Then, by optimizingwith respect to
the approximating jointmeasurements we have defined theminimum information loss (54), (87), (89). These two
quantities allow for a clear formulation of state independentMURs, see sections 3.3 and 4.2.1.

To realize theminimum information loss one needs also to optimize the approximatingmeasurement; an
interesting point is that the ‘best’ approximatingmeasurement of a target spin observable is not necessarily a
noisy version of the target, with classical noise, butmost general noise structures can be involved, as discussed in
sections 2.2.3, 3.4, 4.4.

Moreover, the lower bound appearing in the state independentMURs, theminimum information loss, plays
also the role ofmeasure of incompatibility and allows to order different sets of target observables according to
increasing incompatibility, as done in the inequalities (78), (91), (99).

However, the computations of the two ‘information losses’ need to solve difficult optimization problems
andwe have done these computations only for small values of s, sections 3.5, 3.6, 3.7, 4.2.2. To compute the
minimum information loss for other values of the spin also numerical computations should be surely involved.

Another open problem is the conjecture given after inequality (78): is it true that theminimum information
loss growswith s? For the cases of two and three orthogonal components we proved that theminimum
information loss is upper bounded by a value independent from s, see (98). However, for the case of infinitely
many components we proved only the existence of the upper bound (58), which growswith s; the problemof the
asymptotic behaviour of ¥ ¥ Is M[ ( )] for large s is open.

Aswe remarked at the end of section 3.3, the proof ofMURs is independent of the choice of the class of
approximating jointmeasurements. Anyway, the value of theminimum information loss can depend on this
choice. Another open problem is to study if the lower bound remains ¥ ¥ Is M[ ( )] evenwith classes of
measurements larger than ¥M . Indeed, one could consider post-processing procedures different fromour, or
even general POVMs on 2X that are not even constructed by post-processing of a POVMon 2. Our conjecture
is that even thesemore general POVMs cannot give a lower information loss.

AppendixA. Spin s: rotations and q-coefficients

Let us consider the rotation group in 3: a counterclockwise rotation of the angleα around the unit vector u is
denoted by
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a a pÎ = ÎuR SO 3 , 1, 0, 2 . A.1u ( ) ( ) ∣ ∣ [ ) ( )

Then, we introduce the unitary representation of SO(3) on = + s2 1H , given by

a a- u SU R exp i . A.2u( ( )) ≔ { · } ( )

Such a representation is an essential tool in ourwhole construction; this representation and itsmain properties
can be found, e.g., in [28, Section 3.5], [19, Section 3.11].

By comparing equations (A.2) and (5), we have the identification

q f q f f f p f p= = - = +f u nV U R, , sin , cos , 0 2, 2 ; A.3u( ) ( ( )) ( ) ( ) ( ) ( )( )

the unit vector q fn ,( ) is defined in (4).Moreover, the following decompositions hold:

a q f a q f q f= =q f
f q f- -U R V U R V V, , , , e e e . A.4n k

S S S
,

i i iz y z( ( )) ( ) ( ( )) ( ) ( ) ( )( )
†

A.1. Properties of theWigner small-d-matrix
An explicit, but complicated, formof theWigner small-d-matrix (25) has been obtained [28, (3.65)]; in
particular, the explicit expressions for =s 1 2, 1, 3 2, 2 can be found in [40,figure 44.1]5. From [28, (3.65)]
one sees that the formof thematrix elements is sufficiently simple when one of the indices takes themaximal
value and one gets

q q=
+ -

+ -
=

+ -
d

s

s m s m

x x
x

2 1

2

1

2
, cos ; A.5s m

s
s m s m

,
2 ⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠∣ ( )∣ ( )!

( )!( )!
( )( )

we reported only the squaremodulus, becausewe need only this, see (27).
In general, the quantity qd m

s
,

2∣ ( )∣ℓ
( ) is a polynomial in qcos , as one sees from [28, (3.72)]. Directly from the

definition (25)we have also

q p q= --d d . A.6m
s

m
s

,
2

,
2∣ ( )∣ ∣ ( )∣ ( )ℓ ℓ

( ) ( )

TheWignermatrix turns out to be real and the following properties hold [28, (3.80)-(3.82), (3.125)-(3.126)]:

q q q= - =¢
- ¢

¢ - - ¢d d d1 , A.7m m
s m m

m m
s

m m
s

, , ,( ) ( ) ( ) ( ) ( )( ) ( ) ( )

å åq q q q d= =
=- =-

d d d d . A.8
m s

s

m m
s

m m
s

m s

s

m m
s

m m
s

m m, , , , ,1 2 1 2 1 2( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

A.2. The q-coefficients
By using the expressions given in [40,figure 44.1]we can compute the q-coefficients in the
cases =s 1 2, 1, 3 2.

A.2.1. Spin 1/2. In this case we have q q= +d h2 cosh,
1 2 2 1

2
ℓ∣ ( )∣ℓ

( ) . Then, from the definition (24)we obtain

= +q m h hm,
1

2
2 ; A.9ℓ ℓ( ∣ ) ( )

we suppressed the indexq, because there is no arbitrariness in these indices, as recalled in section 2.3.1. By (21),
(26), we get (36).

A.2.2. Spin 1. In this case we have

q q q= = =
-

 d x d d
x

,
1

2
,0,0

1 2 2
0, 1
1 2

1,0
1 2

2

∣ ( )∣ ∣ ( )∣ ∣ ( )∣( ) ( ) ( )

q q q= =


 -d d
x

x
1

4
, cos .1,1

1 2
1, 1

1 2
2

∣ ( )∣ ∣ ( )∣ ( ) ≔( ) ( )


From (24), by direct computations, we get the explicit expressions of the q-coefficients, with a given in (41); by
using this parameter as index, instead of q, we have

5
The table can be downloaded fromhttp://pdg.lbl.gov/2019/reviews/rpp2018-rev-clebsch-gordan-coefs.pdf.
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A.2.3. Spin 3/2. In this case we have, with q=x cos ,
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
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8
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From (24), by direct computations, we get the explicit expressions of the q-coefficients, with a given in
section 2.3.3; by using this parameter as index, instead ofq, we have
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the other coefficients are obtained by the symmetry properties (29).

Appendix B.Orthogonal components

B.1. Three orthogonal components
The set of the three orthogonal spin components = , ,3 X Y Z{ } is invariant under the action of the order 24
octahedron group ÌO SO 3( ) [25, appendix B.4], generated by the 90° rotations around the three coordinate
axes: p p p=S R R R2 , 2 , 2i j kO { ( ) ( ) ( )}. Let us denote the three generators ofO by p=g R 2i1 ( ),

p=g R 2j2 ( ), p=g R 2 ;k3 ( ) thenwe have the covariance relations

22

J. Phys. Commun. 4 (2020) 055003 ABarchielli andMGregoratti



= = = -

= - = =

= = - =

U x U x U y U y U z U z

U x U x U y U y U z U z

U x U x U y U y U z U z

, , ,

, , ,

, , . B.1

g g g g g g

g g g g g g

g g g g g g

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

X X Y Z Z Y

X Z Y Y Z X

X Y Y X Z Z

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

† † †

† † †

† † †

Then, Î 3MM ( ) is a POVMon 3X with the same covariance properties:
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B.2. Two orthogonal components
Here the set of target observables is = ,2 X Y{ }. Their symmetry group is thedihedral group ÌD SO 34 ( ), theorder
8groupof the90° rotations around the k-axis, togetherwith the180° rotations around i, j, p pn n 2, 41 ≔ ( ), and

p pn n 2, 3 42 ≔ ( ).Note that ÌD O4 . The two rotations p p=S R R,i nD4 1
{ ( ) ( )}generateD4, aswehave

p p p p p p p p= =R R R R R R R R, ,j n i n n i n i1 1 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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As discussed in [25, appendix B.2], the covariance relations are: " Îx y, 2X( ) ,
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p p
p p

= -

=

U R x y U R x y

U R x y U R y x

, , ,

, , . B.4

i i

n n1 1

M M

M M

( ( )) ( ) ( ( )) ( )
( ( )) ( ) ( ( )) ( ) ( )

†

†

B.3. Jointmeasurements fromoptimal cloning
A technique to construct goodmulti-observables approximating a set of incompatible observables is based on
optimal cloning [30, 38, 39]; we already applied it to the context ofMURs in [25]. Let us consider a systemwith
Hilbert spaceH, of dimension = ddim H( ) , and let  H( ) denote its state space; then, the optimal
approximater-cloning channel is themap

r rF  F =
+ -

P Ä PÄ Ä - 
d

d
: ,

1
,1H H

r

r
r

r
r

r( ) ( ) ( ) ! !
( )!

( )( )

wherePr is the orthogonal projection of ÄH r onto its symmetric subspace ÄSym H r( ) [39]. Let ¼, ,1 rA A{ }be
a set of observables, possibly incompatible; then, by using the adjoint channel we get the reasonably approximate
multi-observable = F Ä Äcl 1* rM A A( ) , whosemarginals are given by [38]

l l l= + - =
+
+

x x
d

d

d
1 ,

1
. B.5h d h d dcl , , ,

r

r
r r rM A

( ) ( ) ( )
( )

( )[ ]

Themulti-observable clM turns out to have the same symmetry properties of the set of observables ¼, ,1 rA A{ }.
Indeed, letU be a unitary operator on ;H by using the commutation property P = PÄ ÄU Ur

r r
r, it is possible

to prove the transformation rule

¼ = F Ä ÄU x x U U x U U x U, , .cl 1 1 1*r r rM A A( ) ( ( ) ( ) )† † †

We shall use this construction for 2 or 3 orthogonal spin components; so, we have = +d s2 1and = 2, 3r .
The property above implies immediately that F , ,* X Y Z( ) satisfies the covariance properties (B.2) and F ,* X Y( )
the covariance properties (B.4).
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