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Human factors’ complexity measurement of 

human-based station on assembly line 

 

 

Abstract 

Human’s cognitive heterogeneity to the operations’ complexity causes large fluctuation 

in operation time and high human error rate in the human-based station on the assembly 

line. To quantitatively characterize the degree of cognition, considering the influence of 

cognition on the operation of operator, this study is concerned with measuring the human 

factors’ complexity of human-based station based on the information entropy. Firstly, 

the influence of the operators' cognition on the operation time is analyzed. The operation 

time is modified by the correction method in the human cognitive reliability model 

afterwards. Finally, the human factors’ complexity measurement model is built. In a case 

study, the human factors’ complexity in terms of the qualified rate of operation is used to 

verify the validation of the proposed method. The Pearson correlation coefficient shows 

that the human factors’ complexity in terms of qualified rate is highly related to the 

complexity in the aspect of operation time. 
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1 INTRODUCTION 

With the intensification of market competition and the changing needs of the market, 

the current manufacturing industry faces serious challenge in low cost, high quality 

and personalization requirements (Wang, and Hu, 2010). The assembly line, while 

meeting these challenges with greater flexibility and adaptability, requires extremely 

complex production process (Papakostas, Efthymiou, Mourtzis, et al., 2009) and 

simultaneously puts a higher demand on the operational complexity of the operators 

in the production process. Operators strive to learn and be familiar with new 

operations in order to achieve the desired agility. As a result of such demand, high 

human error rate and time-consuming proficiency leads to unstable production 

process, low production efficiency and poor product quality. So, one possible way to 

cope with these problems is to quantify the performance and try to understand the 

behavior of operators when they face the high product variety and short lead times. 

Human is one of the key factors in the research, development and application of 

modern manufacturing systems and technologies. The quantification of human factors 

is the research focus of the manufacturing system. With modern manufacturing 

systems and other high-risk industries to gradually improve the safety and stability 

requirements, higher requirements for related research are put forward. Related 

research methods are Human reliability, Human factors’ complexity, Questionnaire or 

rating scale, Simulation method and so on. 

Pasquale, Franciosi, Lambiase, et al. (2017) propose a beginning taxonomy of 

human error consequences which may support data collection in manufacturing 
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systems and to identify the probability of human error. The data collection and 

availability is a meaningful dataset to quantify human reliability. Petruni, Giagloglou, 

Douglas, et al. (2017) introduce a method to support the evaluation and the choice of a 

suitable Human Reliability Analysis technique for the automotive sector. It can be 

provided beneficial to the industry allowing the provision of the right balance between 

complexity and accuracy for the level of analysis and output required. Aalipour, Ayele 

and Barabadi (2016) employ Human Error Assessment and Reduction Technique, 

Standardized Plant Analysis Risk-Human Reliability, and Bayesian Network to 

estimate the probabilities of human error. The study results demonstrated that time 

pressure, lack of experience, and poor procedure are the main causes of human error 

during maintenance activities. Givi, Jaber, and Neumann (2015) study the human 

error rate and reliability with time and propose a model to estimate the human error 

rate while performing an assembly job under the influence of learning–forgetting and 

fatigue–recovery. 

ElMaraghy and Urbanic (2004) focused on operational complexity, considering 

human characteristics to gain insight into system performance and agility, and 

established a framework to use human performance models to measure operational 

complexity. Wang and Hu (2010) study manufacturing complexity based on the 

choices of assembly activities that operators make in serial in manual mixed-model 

assembly lines. They also consider the assembly system configuration including the 

parallel and hybrid configurations and operator choices to measure the complexity of 

manufacturing system. Zhu, Hu and Koren (2008) propose a complexity measure 
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called “operator choice complexity” to quantify human performance in making 

choices for a series of assembly activities. And then they study the sequence planning 

of assembly line based on the “operator choice complexity”. The complexity can 

quantify the human performance in making choices, such as selecting parts, tools and 

so on (Zhu, Hu, Koren, et al. 2012). Fan, Li, Moroni, et al. (2017) propose an 

operation-based approach to measure the configuration complexity of manufacturing 

system. The purpose of the operation-based configuration complexity model is to 

measure the configuration complexity of a manufacturing system and to quantitatively 

describe the relationship of the complexity between operations and stations. 

In order to maximize the comfort of operators in mixed-model assembly lines, 

Bautista, Alfaropozo and Batallagarcía (2016) evaluate the maximum ergonomic risk 

and the average absolute deviations of ergonomic risk to research assembly line 

balancing models. Barathwaj, Raja and Gokulraj (2015) focus on mixed model 

assembly line balancing and take ergonomics as an additional objective function. 

They use accumulated risk posture to evaluate the ergonomic risk level of a 

workstation. Then the assembly line balancing is optimized with the objectives of 

reducing the number of workstations, work load index between stations and within 

each station. Akyol and Baykasoğlu (2016) consider ergonomic risks to propose a 

new type of assembly line worker assignment and balancing problem (ALWABP). In 

this type, ALWABP occurs when task times vary along with the assigned worker. The 

operation time of a task is assumed to be fixed in classical assembly lines, it depends 

on the operator who executes the task. Battini, Faccio, Persona, et al. (2011) analyze 
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the relationship of ergonomics and assembly system design techniques. They also 

propose a new theoretical framework to analysis the technological variables related to 

work times and methods, environmental variables and ergonomics evaluations in 

purpose of assessing a concurrent engineering approach to assembly systems design 

problems with ergonomics optimization. 

Wang, Wang, Wu, et al. (2013) use Jack (Siemens PLM Software) to build the 

required human body model, and use the OVAKO Working posture Analyzing System 

(OWAS) and Rapid Limb Assessment (RULP) analysis tools to simulate the manual 

work in the production line. And they study the staff’s human factors’ defects in the 

production line operation based on the simulation analysis, combining with the 

principles of human factors to improve the design of the corresponding improvement 

program to improve the operation of staff operations. Chen, Wu, Zhao, et al. (2009) 

use CATIA software to build a virtual simulation environment based on the analysis 

of human physiological characteristics, anthropometric measurement and working 

space design. In order to improve operating efficiency, reduce labor intensity, and 

reduce movement fatigue, access to the best standards of personnel operations, the 

approach is used to carry out accurate simulation of on-site personnel, human factors’ 

analysis of personnel operation, and optimize the operation of personnel. Papakostas, 

Efthymiou, Mourtzis and Chryssolouris (2009) study the complexity of manufacturing 

system based on discrete event simulation and nonlinear dynamics theory. A set of 

manufacturing models is simulated and evaluated through a series of experiments, 

employing diverse workload patterns. The approach is used for determining the 
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sensitivity of a manufacturing system to workload changes, measuring and controlling 

the complexity of manufacturing system. 

Michalos, Makris and Chryssolouris (2013) analyze the effect of high fatigue 

accumulation and high task repetitiveness for the final product's quality. They use 

human error probability quantification techniques to predict the performance of the 

assembly line based on the analysis. Myszewski (2010) consider the probability 

distribution of human error and demonstrate a probabilistic model of human error. 

The model can represent substantial phenomena of various types (continuous and 

discrete). Baykasoglu, Tasan, Tasan, et al. (2017) propose a systematic approach in 

order to handle assembly system design, while considering ergonomic risk factors. It 

considers interrelations between technological variables, such as workers’ physical 

attributes and ergonomics evaluations. ElMaraghy, Nada and ElMaraghy (2008) 

develop a model to assess the probability of human errors in reconfigurable 

manufacturing systems, based on tasks characteristics, work environment, as well as 

workers capabilities using the multi-attribute utility analysis. It can predict the 

probability of errors caused by human involvement. 

In summary, there are still some limitations in the exist study. The traditional 

methods such as Human reliability analysis (HRA) method cannot get the complexity 

index to evaluate the complexity of human factors, but only reflects the operational 

error rate, volatility. However, Human Reliability Analysis (HRA) is the basis of 

human problem, and its rationality is of great significance to the follow-up study. 

At present, the researches on the complexity of manufacturing systems mainly 
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focus on describing the complexity caused by the diversity characteristics of the 

system, and the few researches focus on the complexity caused by human factors. The 

human factor’s complexity is an important index to measure the degree of influence 

of operating uncertainty on manufacturing process. Mostly, researchers consider 

operator choices to quantify human performance. However, operator choices and 

other factors will affect the operation time. Moreover, the measurement of human 

factors’ complexity based on operation time has the type of manufacturing big data 

generated in the entire assembly process. The accurate measurement can be achieved 

by utilizing the useful information from such huge and dynamic databases. So, it 

provides a significant research route in aspect of operation time to describe the human 

factors’ complexity.  

This study demonstrates an approach of measuring the human factors’ complexity 

of human-based stations from the point of view of operation time, and describes the 

trend of human factors' complexity along with the changing cognition of operators. 

The rest of this article is organized as follows. The methods of human factors’ 

complexity measurement model are given in Section 2 while analyzing the influence 

of the operators' cognition on the operation time of the human-based station. 

Simultaneously, the operation time model of human-based station is modified by the 

correction method. Then the volatility of operation time is used to describe the human 

factors’ complexity and the heterogeneity of cognition. After that, a case study of 

engine assembly line from China SAIC Motor Corporation is used to verify the 

validation of the human factors’ complexity measurement model in Section 3. Finally, 
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the result analysis and conclusions are proposed, respectively, in Section 4 and 5. 

2 HUMAN FACTORS’ COMPLEXITY MEASUREMENT 

METHOD WITH HUMAN COGNITION 

2.1 Human cognition on human factors’ complexity problem 

There are dynamic changes in the modern manufacturing industry in both technical 

and organizational aspects. The development of industry puts forward higher 

requirements for the production system of human and machine. The performance of 

the man-machine system largely depends on the performance of the human. There is 

an urgent need to take full account of human factors in the production and 

manufacturing systems during the design phase (Liu, Sheng, and Yang, 2002). 

The performance and response of operator in manufacturing system are complex 

and difficult to quantify. It is unstable and shows the fluctuation of the operation time. 

It results in operating error rate increase and product passing rate decrease. The 

instability and randomness of the operator are the key points of the study, which are 

not only related to the economic loss of production, but also to the safety of the 

operators. Figure 1 shows the propagation of operators’ performance in production 

process. 

 

FIGURE 1 Propagation of operators’ performance in production process 

It’s meaningful to understand how the operator works as a manufacturing process 
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participatory element and affects the complexity of manufacturing process, and then 

quantify the extent of its impact. In order to improve the production process by 

balancing the performance of operators and machines, information and knowledge 

from the process are valuable to analyze the operators’ behavior in the process on 

assembly line. Information and knowledge are characterized by quantity of 

information, diversity of information and information content (ElMaraghy, ElMaraghy, 

Tomiyama, et al., 2012). Moreover, complexity theory, especially information entropy, 

provides effective methods to describe the performance tendency within the normal 

operating range (Fan, Li, Liu, and Xu, 2017). 

The aim of this present approach is to solve the complexity uncertainty caused by 

the cognitive factors of human in the assembly line based on information entropy. 

Workers in the human-based station will select the components and fixtures for 

assembly operations in the given order. This selection process is susceptible to the 

workers' misunderstanding of the content of the assembly operation, which directly 

results in the fluctuation of the operation time and the decline of the passing rate, then 

seriously effects on the quality and efficiency of the whole assembly line. Considering 

the human cognition, quantifying the human factors’ complexity of the human-based 

stations can provide the basis for the performance evaluation of the assemble line. In 

complex assembly environment, the optimization of human factors’ complexity can 

effectively reduce the human error rate and raise the assembly qualified rate and 

product quality. 

2.2 Operation time model considering cognitive 
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Cognitive model can improve the performance model of the human-machine system 

in the manufacturing process, which applies many theories like human-computer 

interaction theory, ergonomics, human theory, cognitive psychology, sociology and so 

on. Cognitive psychology studies how humans perceive the surrounding environment, 

and how they react, think and plan, and can predict and measure human performance 

through cognitive psychology. Data collection methods, human training and mental 

state lead to the lack of human reliability data which hinders the human cognition 

evaluation. Operation time has a greater data source than the reliability data of error 

rate. Moreover, knowledge management and information technologies give innovative 

methods to solve this problem based on big data from the process of the assembly 

line. The modified operation time represents the real operating time under the 

influence of the training and psychological factors. These data have great significance 

for the quantitative prediction of human behavior in complex systems. 

According to cognitive psychology, human’s understanding of the human factors’ 

complexity will gradually deepen over time, which mainly shows in the decrease of 

operation time and promotion of operation pass rate. 

Learning Curves can be used to estimate the time to complete a selected number of 

units on an assembly line (Thomopoulos, 2014). The theory states that the assembly 

time per unit declines by some constant percentage with the number of assemblies’ 

doubles. This is represented mathematically by a two-parameter function. Meanwhile, 

the operation time in a human-based station can be estimated based on Learning 

Curves. 
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   (1) 

where, t is the operation time in seconds; a represents the first operation time for a 

period of time; b is a negative constant the absolute value of which represents the 

learning index; x is the operating time in the order. 

2.3 Modification of operation time model considering behavior correction 

factor 

Manual operation time t is monitored by the Manufacturing Execution System. 

Considering that the operation time may vary with different operators and situation, it 

needs to be corrected. The human cognitive process is a complex psychological 

activity that reflects the characteristics and connections of objective things and reveals 

the meaning and function of things to human beings. HCR model (Human Cognitive 

Reliability Model) (Hirschberg, 2005) is based on the cognitive psychology in the 

analysis of human reliability, focusing on human emergency dynamic cognitive 

process, including exploration, diagnosis, decision-making and other intentional 

behavior, to explore human error mechanism and the establishment of models. 

Human cognitive reliability (HCR) model is based on the allowable time and 

execution time of an operation to derive the error rate of operation. It is mainly based 

on two basic assumptions, in which the basic assumption 2 (Wang, Gao, 2006): the 

probability of failure for each category of behavior is only related to the ratio of the 

allowable time and the execution time, and it complies with 3 parameters Weibull 

distribution. 

Since the execution time of each running team may vary depending on the situation, 

( ) = b
t x ax
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it is necessary to correct the equation before using Learning Curve. The key behavior 

modification factors considered in the HCR model are training (K1), psychological 

stress (K2) and man-machine interface (K3). HCR model is the first-generation 

method of human reliability research. It is comparatively mature and has been proved 

to be practical in related research. Therefore, the modified method of HCR in 

execution time is used to correct manual work time. The correction formula is as 

follows (Wang and Ma, 2010). 

   (2) 

where, T represents the corrected operation time, it is for the execution time of general 

situations (such as simulator training); t is the operation time; K1, K2, K3 are selected 

as shown in Table 1. 

TABLE 1 Behavior formation factor and correlation coefficient of the HCR model 

 

2.4 Modeling of human factors’ complexity based on operation time 

Entropy has its own meaning in physics and information theory. It can be used to 

represent the degree of disorder of the system in physics, and it can reflect the 

uncertainty and amount of information contained in the system in information theory. 

Information entropy is regarded as a measure of the degree of disorder in the system. 

With the randomness increases, it’s more difficult to understand the system state. With 

the uncertainty of message elimination goes up, the amount of information involved 

(1 1)(1 2)(1 3)T t K K K= + + +



13 

increases. A small probability event contains a large amount of information, so the 

information entropy can be used to describe the complexity of the system states. 

When there are m events with individually occurring possibilities p1, p2,…, pi,…, pm, 

then entropy is I (Efthymiou, Mourtzis, Pagoropoulos, Papakostas, and Chryssolouris, 

2015). 

   (3) 

In the performance of human choice-making activities, Hyman (1953) holds that it 

is approximately a linear function of information entropy conveyed by the stimulus. 

The information entropy in assembly station k conveyed by stimulus is equal to the 

complexity of the station, Hk. Therefore, the average reaction time related to station 𝑘 

is equal to 𝑇𝑆$ = 𝛼 + 𝛽 ∙ 𝐻$ , where 𝛼  and 𝛽  are constants if all operators are 

assumed to be homogeneous (Wang, and Hu, 2010). 

Obviously, the operation time increases linearly with the complexity, so its changes 

can describe the changes of the complexity. The concrete complexity measure of 

human-based station is given as follows: 

   (4) 

Where, H is complexity of human factors’ complexity considering the cognition 

and operation time; T is the modified operation time; CT is the cycle time of the 

assembly line of which the units are seconds; P0 is the initial qualification. P0 

calculation method: In the first day of a statistical time, an operation time and the 

production cycle are used to determine whether the operation is eligible.  The 

2
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m
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operation is considered qualified if the operation time is less than the production cycle. 

The number of times of reliable operation and the total number of operations are 

counted in the first day, and P0 is the ratio. 

In this study, the human factors’ complexity measurement method from the point of 

operation time can modify the operation time data of the operator in the assembly line, 

then use the modified time data to fit a polynomial and finally built the complexity 

measure model, at last derive the specific numerical complexity, which quantitatively 

characterized the human factors’ complexity considering the cognition. 

3 CASE STUDY 

There are a number of human-based stations for tightening operations on an engine 

assembly line of China SAIC Motor Corporation. All the tightening guns are 

equipped with the sensors monitoring the real-time to measure all the process data 

(Torque, angle, etc.) and upload to the data center. A tightening station is selected to 

continuously collect the start time point and the end time point of each within the long 

total sample time. Figure 2 shows the schema of a human-based station. 

 

FIGURE 2 The schema of the human-based station 

3.1 Curve fitting for operation time 

In the actual assembly environment, with the deepening of cognition, workers for 

the manual operation are more skilled, and operating time shows a significant 

reduction trend. The shortest operation time in the day is counted as a measure of the 
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complexity of the data for the current time of operation. The fastest operation time 

can characterize the worker's proficiency in the operation. Table 2 shows the fastest 

operation time of the operator in the human-based station for a long period of time. 

Figure 3 shows the data fitting diagram of the fastest operation time from the operator 

in human-based station. 

TABLE 2 Fastest operation time at human-based stations 

 

 

FIGURE 3 Fitting graph of fastest operation time at human-based station 

The red curve in Figure 3 is the fitting results as equation (1) and the specific 

parameters of the fitting curve model are as follows. 

  

   

The parameter of t is the fastest operation time of the human-based station, the unit 

is second, a represents the first assembly time for a period of time, so a equals 89s. 

And the absolute value of b represents the learning index. 

3.2 Operating time correction 

According to the formula (2), on the basis of the comprehensive quality level of the 

assembly line operator, K1 is set to -0.22, K2 is set to 0.28, K3 is set to 0.00.  

From the results of the fitting curve, the operation time shows an overall trend of 

89sa =

0.1633= -b
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tending to stable. 

3.3 Calculation of the human factors’ complexity 

The modified polynomials which have been corrected are substituted into the 

complexity measure model. If the operation time is less than the production cycle 

time, the operation will be considered qualified. The qualified rate of a day is 

expressed as the ratio of the number of reliable operations to the total number of 

operations in that day. CT equals 75s, so P0 is calculated by the method and equals 

0.5497. The complexity is calculated with equation (4) which is shown in Table 3. 

The curve is plotted to quantitatively characterize the complexity of human factors in 

the human-based station with considering the cognition. The curve is shown in Figure 

4. 

TABLE 3 The human factors’ complexity based on the operation time  

 

 

FIGURE 4 The human factors’ complexity based on the operation time 

From the plotted curve, it can be seen that the complexity of human factor in terms 

of the operation time presents a decay trend and gradually stabilizes. 

4 ANALYSIS OF METHOD VALIDITY 

4.1 Qualified rate fitting and the human factors’ complexity measurement 

With the increase in the number of operations and the increase in operating time, the 
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operation proficiency and accuracy of workers increases in human-based stations, and 

operating qualified rate shows a significant upward trend. The operation time and 

production cycle time is used to determine the eligibility of the operation or not. If the 

operation time is less than the production cycle time, the operation will be considered 

qualified. The qualified rate of a day is expressed as the ratio of the number of reliable 

operations to the total number of operations of that day. Production cycle time is 75s, 

Table 4 shows operating qualified rate statistics of the operator at human-based 

station in a long period of time. Figure 5 shows operating qualified rate curve of the 

operator at human-based station. 

TABLE 4 Operating qualified rate at human-based station 

 

 

FIGURE 5 Curve of operating qualified rate at human-based station 

As for the complexity of operation in the assembly process, the information entropy 

theory is used to measure the complexity based on operating qualified rate, and the 

measurement method of operation complexity of the station is given (Fan, Li, Moroni, 

et al., 2017): 

   (5) 

Where Pj is the operating qualified rate，h is the corresponding complexity. The 

corresponding operation complexity h is calculated for each Pj, the result list is as 
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Table 5. The curve is plotted in Figure 6. 

TABLE 5 Complexity based on operating qualified rate 

 

 

FIGURE 6 Curve of human factors’ complexity based on qualified rate 

4.2 Result analysis and discussion 

The human factors’ complexity of operator at human-based station is modeled 

separately from both the operation time and the operating qualified rate, both of which 

reflected a decrease in human factors’ complexity over time and a great increase in 

operator proficiency at human-based stations. There is also a similarity between the 

two models and both models are similar to the attenuation type. The model based on 

operation time was validated by the human factors’ complexity model based on 

operating qualified rate. Figure 7 shows curves of two models in the same coordinate 

system. 

 

FIGURE 7 Curves of the two models 

As Figure 7 shows，the black curve is the curve of complexity model based on 

operating qualified rate, the red one is the fitting curve of complexity model based on 

operation time(the production cycle time is 75s). The two curves were analyzed by 

correlation analysis. 

The correlation coefficient of two random variables is an indicator of its linear 
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dependence. If each variable has N scalar observations, the Pearson correlation 

coefficient is defined as (Benesty, Chen, Huang, et al. 2009): 

   (6) 

where μ and σ denote the mean and standard deviation, respectively. The Pearson 

correlation coefficient describes the degree of linear correlation between the two 

variables. The greater the absolute value, the greater the correlation is. 

Using the formula, the correlation coefficient of the two models is 0.8341 and the 

correlation coefficient is over 0.8, which shows the strong linear correlation between 

the two models, which verifies the reliability of the complexity measure model based 

on operation time, then the square root of the sum of residual squares is divided by the 

number of sample points, and the result is 0.0733. It shows that the model can 

effectively predict the trend of the complexity of human factor affected by cognition, 

which is of great significance. 

With the cognition enhancing of operator to assembly tasks, the operation time 

gradually decreases and operating qualified rate gradually improves. The information 

and knowledge in the manufacturing process is positively correlated with information 

entropy and its complexity. Therefore, the human factors’ complexity measure model 

based on operation time can be validated by the method based on qualified rate. 

However, in comparison, the operation time has a greater data drive. It is more 

beneficial to depict the relationship of the human factors and system performance. 

5 CONCLUSION 
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A human factors’ complexity measurement model is built considering human 

cognition based on the information entropy. The model is proposed to measure the 

human factors’ complexity and quantitatively describe the influence of the operators' 

cognition on the operation time of the human-based station on the assembly line. A 

practical case of an engine assembly line from China SAIC Motor Corporation is 

studied for the validity verification. The operation complexity measure model based 

on operating qualified rate is used to verify the validity of human factors’ complexity 

measure model based on operation time. The results show that the proposed human 

factors’ complexity measure model can describe the human factors’ complexity of the 

human-based stations and effectively predict the trend how human factors’ complexity 

changes. 

Comparing to the human reliability method using the human error rate to feed the 

data collection, the proposed complexity method is based on operation time which 

makes full use of the data in the production process. Furthermore, the behavior 

correction factors are fully considered, because the operation time may vary with 

different operators’ situation. Therefore, the measurement of human factors’ 

complexity is more accurate and is more in line with the actual conditions. 

In continuative research activities, the proposed approach can be combined with the 

evaluation to machine’s performance degradation to optimize the configuration of 

manufacturing system. In addition, the performance evaluation of manufacturing 

system should be taken into account. 
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