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Abstract. Floquet exceptional points correspond to the coalescence of two (or more)

quasi-energies and corresponding Floquet eigenstates of a time-periodic non-Hermitian

Hamiltonian. They generally arise when the oscillation frequency satisfies a multi-

photon resonance condition. Here we discuss the interplay between Floquet exceptional

points and the chiral dynamics observed, over several oscillation cycles, in a wide

class of non-Hermitian systems when they are slowly cycled in opposite directions of

parameter space.
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1. Introduction

Non-Hermitian Hamiltonians are used in both classical and quantum physics to provide

an effective description of the behavior of open systems [1, 2, 3, 4, 5]. Examples of

effective non-Hermitian Hamiltonians are found in nuclear physics, atomic and molecular

physics, atom optics, laser physics, microwave and optical systems, acoustics, mechanical

and electronic circuits, etc. Interesting physical effects arise at so-called non-Hermitian

degeneracies or exceptional points (EPs) [6, 7, 8, 9, 10], at which two (or more)

eigenvalues and corresponding eigenvectors of the underlying non-Hermitian operator

coalesce. EPs arise, for example, in PT -symmetric systems [11, 12], i.e. systems

described by a non-Hermitian Hamiltonian which is invariant under the combined action

of parity inversion and time reversal, where simultaneous coalescence of energies and

eigenstates is generally found at the symmetry breaking point, i.e. the transition point

in parameter space that separates the energy spectrum of the Hamiltonian from being

entirely real to become complex. EPs are at the heart of many intriguing physical

phenomena appearing in several systems that experience gain or loss. They have been

predicted and observed in a wide variety of physical systems, including atomic and

molecular systems [13, 14, 15], microwave cavities and waveguides [16, 17, 18], electronic

circuits [19], optical structures [20, 21], Bose-Einstein condensates [22, 23], acoustic

cavities [24], non-Hermitian Bose-Hubbard models [25], exciton-polariton billiards [26],

opto-mechanical systems [27] and many others. Besides of their theoretical interest,

EPs can find important applications, for example in the design and realization of

unidirectionally invisible media [28, 29, 30, 31, 32], for asymmetric mode switching

[18, 33] and topological energy transport [27], for the design of novel laser devices

[34, 35, 36, 37, 38], for optical sensing [39] and polarization mode conversion [40].

The dynamical properties associated to the encircling of an EP and the chirality of

EPs arising from breakdown of the adiabatic theorem have received a great attention in

recent years [16, 17, 18, 27, 40, 41, 42, 43, 44, 45]. A remarkable property observed when

encircling an EP is a topological-robust state-flip for quasi-static cycling [15, 17, 46],

and the chiral behavior associated to breakdown of adiabaticity for dynamical circling

[18, 27, 40, 41, 42, 44]. In the former case state flip arises from to the branch point

character of the degeneracy that causes a gradual transition between the intersecting

complex Riemann sheets. In the latter case, the system dynamically evolves around

an EP and non-adiabatic transitions prevent state flip when the EP is encircled in

one circulation direction [41, 42, 44], while in the opposite direction the adiabatic

evolution is kept. As a result, a chiral behavior is obtained, i.e. a different final state is

selected when dynamically encircling an EP in clockwise or counter-clockwise directions.

Recent experiments [18, 27] demonstrated chirality of EP cycling, originally predicted

in Refs.[41, 42], and raised a great interest owing to potential applications of EPs to

topological energy transport [27], asymmetric mode switching [18, 33] and polarization

control of light [40]. Asymmetric non-adiabatic transitions observed when the EP is

dynamically encircled are deeply rooted in the non-Hermitian nature of the underlying
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dynamics and have been explained in terms of the Stokes phenomenon of asymptotics

[42], the stability loss delay phenomenon [44], and the asymmetric nature of transitions

induced by non-Hermitian perturbations [47].

In this work we disclose a different and rather general mechanism of chirality in a non-

Hermitian Hamiltonian which undergoes repeated cycles in parameter space. Rather

than arising from encircling a static EP, chirality is here rooted into the appearance

of Floquet EPs. A Floquet EP corresponds to the coalescence of two (or more)

quasi-energies and corresponding Floquet eigenstates of a time-periodic non-Hermitian

Hamiltonian. When the quasi-energy spectrum of the non-Hermitian Hamiltonian is

real, Floquet EPs generally arise when the frequency ω of cycling is tuned to a multi-

photon resonance of quasi-energies. In this case, a chiral dynamics is observed when the

system is periodically and slowly cycled in opposite directions of parameter space, i.e.

a different final state is selected in the two directions of rotation starting from the same

initial state.

2. Floquet exceptional points

Let us consider a finite-dimensional and time-periodic Hamiltonian, which is defined by a

N×N non-Hermitian matrix H = H(t) with time-periodic coefficients, H(t+T ) = H(t)

with T = 2π/ω. The dynamical equations of motion of the vector amplitudes

a(t) = (a1(t), a2(t), ..., aN(t))T read

i
da

dt
= H(t)a. (1)

According to Floquet‘ s theory, the solution to Eq.(1) with assigned initial condition

a(0) is given by (see, for instance, [48])

a(t) = Φ(t) exp(−iRt)a(0) (2)

where Φ(t + T ) = Φ(t) is a N × N periodic matrix with Φ(0) = 1 (identity matrix)

and R is a time-independent N × N matrix whose eigenvalues µl (l = 1, 2, ..., N) are

the quasi-energies (Floquet exponents). Quasi-energies are defined apart from integer

multiples of ω, and therefore two quasi-energies are degenerate if they are equal or differ

each other by multiples of ω. For the sake of definiteness, we will take the real parts of

quasi-energies in the range −ω/2 ≤ Re(µl) ≤ ω/2. Indicating by qn the eigenvectors of

R with corresponding eigenvalues µn, i.e. Rqn = µnqn (n = 1, 2, ..., N), the N Floquet

eigenstates of Eq.(1) are obtained from Eq.(2) by letting a(0) = qn and read explicitly

f (n)(t) = Φ(t)qn exp(−iµnt). (3)

Note that a Floquet eigenstate satisfies the condition f (n)(t + T ) = f (n)(t) exp(−iµnT ).

It is worth observing that the dynamics of Eq.(1), mapped at discretized times t =

0, T, 2T, 3T, ..., is equivalent to the one of a time-independent system with Hamiltonian

R. In fact, for t = nT (n = 0, 1, 2, ...), from Eq.(2) one has a(t) = exp(−iRt)a(0).
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Since exp(−iRt) can be viewed as the propagator of the time-independent Hamiltonian

R, at t = nT one has a(t) = v(t) with

i
dv

dt
= Rv (4)

and v(0) = a(0). For a Hermitian system, the quasi-energies are real and the

Floquet eigenstates are linearly independent functions, even in presence of quasi-energy

degeneracy (i.e. coalescence of two or more quasi-energies). Therefore for a Hermitian

Hamiltonian H(t) the most general solution to Eq.(1) can be written as a superposition

of Floquet eigenstates

a(t) =
N∑
n=1

αnf
(n)(t) (5)

with coefficients αn determined by the initial condition. However, for a non-Hermitian

system (H† 6= H) two (or more) quasi-energies and corresponding Floquet eigenstates

can simultaneously coalesce, corresponding to the appearance of a Floquet EP. For a

Floquet EP of order M , with 2 ≤ M ≤ N , one can assume µy1 = µy2 = ... = µyM and

f (y1)(t) = f (y2)(t) = ... = f (yM )(t) for a set of M distinct indices y1, y2, ..., yM , while the

remaining (N −M) Floquet states f (n)(t) (n 6= y1, y2, ..., yM) are linearly independent

functions and distinct from f (y1)(t). Clearly, at a Floquet EP of order M the eigenvalue

µy1 = µy2 = ... = µyM of the matrix R is a defective eigenvalue with a geometric

multiplicity smaller than its algebraic multiplicity and with qy1 = qy2 = ... = qyM . In

this case, one can introduce M generalized eigenvectors Qn of R, with n = y1, y2, .., yM ,

defined as Qy1 = qy1 and (R − µy1)Qyn = Qyn−1 for n = 2, 3, ..,M , or by similar

relations obtained by some permutation of indices y1, y2, .., yM . The set of generalized

eigenvectors Qyn are linearly independent and, together with the remaining eigenvectors

qn (n 6= y1, y2, ..., yM), form a complete basis. Likewise, for the defective Floquet

quasi-energy µy1 one can introduce a set of M linearly-independent generalized Floquet

eigenstates F(yn)(t), defined by

F(yn)(t) = Φ(t)

(
n−1∑
k=0

βn−1,kt
n−k−1Qyk+1

)
exp(−iµy1t) (6)

(n = 1, 2, ...,M), where the coefficients βn,k are given by

βn,k = ik
n!

(n− k)!
(7)

(k = 0, 1, ..., n). Note that F(y1)(t) = f (y1)(t). For a non-Hermitian system with a

Floquet EP, the most general solution to Eq.(1) is given by [compare with Eq.(5)]

a(t) =
M∑

n=y1,y2,...,yM

αnF
(n)(t) +

∑
n6=y1,y2,...,yM

αnf
(n)(t) (8)

with coefficients αn determined by the initial condition.

In the following analysis, we will focus our attention to a time-periodic Hamiltonian with

an entirely real quasi-energy spectrum. In this limiting case, it is worth considering the

long-time behavior of the solution to Eq.(1). If all the N Floquet eigenstates f (n)(t) are
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linearly independent, i.e. in the absence of Floquet EPs, according to Eqs.(3) and (5) it

follows that the solution to Eq.(1) remains bounded as t→∞. Conversely, if the time-

periodic Hamiltonian H has a Floquet EP of order M , according to Eqs.(6) and (8) the

solution a(t) generally shows an algebraic secular growth in time with the asymptotic

behavior a(t) ∼ tsΦ(t)qy1 exp(−iµy1t) = tsf (y1)(t) with exponent s ≤M − 1, indicating

that the degenerate Floquet eigenstate f (y1)(t) is the dominant state of the dynamics.

Note that the secular growth is prevented only when αn = 0 for n = y2, .., yM in Eq.(8),

i.e. when the initial state a(0) has no projection into the generalized eigenstates Qy2 ,

Qy3 , .., QyM . An important and immediate consequence of the dominance of the Floquet

eigenstate f (1)(t) is the breakdown of the adiabatic theorem induced by a Floquet EP

for a slowly-cycled Hamiltonian. In fact, let us assume an arbitrarily small oscillation

period T → 0 and let us prepare the initial state a(0) in an instantaneous eigenvector of

H(0). Even though the instantaneous eigenvalues λn(t) of H(t) are distinct each other

and separated by some finite gap in the entire oscillation cycle, owing to the existence

of the EP at long times the state a(t) becomes f (1)(t) dominated, indicating that the

dynamics ceases to be adiabatic after many oscillation cycles. This point will be clarified

in subsequent Secs.3.2 and 3.3 and exemplified in Sec.4.

3. Nonadiabatic transitions and chirality induced by Floquet exceptional

points

3.1. Model

Let us consider a class of non-Hermitian time-periodic Hamiltonians H(t) of the form

H(t) = H0 +
∑
k

Rk(t)Hk (9)

where H0 and Hk are time-independent N × N matrices and Rk(t) are the elements

of a complex parameter vector R = R(t) of arbitrary dimension that is slowly cycled

at frequency ω = 2π/T . The parameter vector R is assumed to have zero mean and

composed by positive-frequency components solely, i.e. R(t) =
∑∞
n=1R

(n) exp(inωt).

After the time T = 2π/ω from the initial time t = 0, the vector R(t) has described a

closed loop C in multivariable parameter space. For ω > 0 we say that the loop C is

circulated ’clockwise’ in parameter space. By reversing the sign of ω, i.e. by considering

the dynamical behavior of the system backward in time, we say that the loop C is

circulated ’counter-clockwise’. The main result of the present work is to show that a

chirality in the system arises in the presence of a Floquet EP.

3.2. Quasi-energy spectrum, Floquet eigenstates and Floquet EPs

We can prove the following two theorems.

Theorem 1. Let H(t) be a periodic Hamiltonian of the form (9) with period T = 2π/ω

and let us assume that:
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(i) The eigenvalues λn of H0 are real and distinct, with λ1 < λ2 < ... < λN .

(ii) For any arbitrary two eigenvalues λn and λm of H0, the difference |λn − λn| is not

a multiple of ω.

Then the quasi-energy spectrum of H(t) is entirely real, the quasi-energies are dis-

tinct and given by µn = λ̃n, where λ̃n = λn − sω and s is an integer such that

−ω/2 ≤ λ̃n < ω/2. ‡
Proof. After setting S(t) =

∑
k Rk(t)Hk, let us note that, since Rk(t) are composed by

positive-frequency components solely (for a clockwise circulation of the loop C, ω > 0)

or by negative-frequency components solely (for a counter-clockwise circulation of the

loop C, ω < 0), we can expand S(t) in Fourier series as

S(t) =
∞∑
k=1

S(k) exp(ikωt). (10)

We then look for a solution to Eq.(1) of the Floquet form, i.e. of the form

a(t) = f(t) = exp(−iµt)
∞∑

l=−∞
a(l) exp(iωlt) (11)

where µ is the quasi-energy. Substitution of Anstaz (11) into Eq.(1) and using Eq.(10),

after equating the terms oscillating like ∼ exp(iωlt) one readily obtains

(µ− lω −H0) a
(l) =

∞∑
k=1

S(k)a(l−k). (12)

Note that, since the sum on the right hand side of Eq.(12) runs for positive integers k

solely (this is because of the one-sided Fourier spectrum of R(t)), the vector a(l) depends

solely on the vectors a(h) with index h < l. Therefore, we can find N distinct solutions

to Eq.(12) by assuming µ = λn (n = 1, 2, ...., N) and, correspondingly:

a(l) =


0 l < 0

w(n) l = 0

(λn − lω −H0)
−1∑l

k=1 S(k)a(l−k) l ≥ 1

(13)

where w(n) is the eigenvector of H0 with eigenvalue λn, i.e. H0w
(n) = λnw

(n). Note

that, since for any couple of indices n and m the difference λn− λm is not a multiple of

ω, i.e. λ̃n 6= λ̃m, the matrix (λn − lω −H0) entering on the right hand side of Eq.(13)

is not singular and its inverse matrix is well defined. Therefore, the N quasi-energies of

H(t) are the N eigenvalues λn of H0. Since the quasi-energies are defined apart from

multiples of ω, we can fold the eigenvalues λn of H0 inside the range (−ω/2, ω/2), thus

yielding µn = λ̃n for the quasi-energies. This shows that the quasi-energy spectrum

is entirely real. Note also that, since for any couple of indices n and m the difference

λn − λm is not a multiple of ω, the quasi-energies are distinct, which excludes the exis-

tence of Floquet EPs.

Theorem 2. Let H(t) be a periodic Hamiltonian of the form (9) with period T = 2π/ω

‡ We say that λ̃n is the value λn folded inside the Floquet interval (−ω/2, ω/2) of quasi-energies.
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 and let us assume that:

(i) The eigenvalues λn of H0 are real and distinct, with λ1 < λ2 < ... < λN .

(ii) There is a subset of M eigenvalues ofH0, say λy1 < λy2 < ... < λyM with 2 ≤M ≤ N

and yα ∈ (1, 2, ..., N) (α = 1, 2, ...,M), such that the difference λyα − λyβ is an integer

multiple of ω § (α, β = 1, 2, ...,M , α 6= β), whereas the difference λn − λm is not an

integer multiple of ω whenever either one (or both) indices n and m do not belong to

the subset y1, y2, ..., yM .

Then the quasi-energy spectrum of H(t) is entirely real and given by µn = λ̃n, where

λ̃n is the eigenvalue λn folded inside the range (−ω/2, ω/2). The coalescence of the M

quasi-energies µy1 = µy2 = ...µyM corresponds to the simultaneous coalescence of their

Floquet eigenstates, i.e. H(t) shows a Floquet EP of order M .

Proof. We can proceed like in previous proof of Theorem 1 looking for a solution

to Eq.(1) of the Floquet type. Such a solution is of the form (11) with λ = λn and

with vectors a(l) formally given by Eq.(13). If λn is not any of the eigenvalue λyα of

the subset, the matrix (λn − lω −H0) entering on the right hand side of Eq.(13) is not

singular for any l and its inverse matrix is well defined. Therefore, like in Theorem

1, Eqs.(11) and (13) define a Floquet eigenstate of H(t) with quasi-energy µn = λ̃n.

However, care should be paid when λn belongs to the subset λyα , since in this case the

matrix (λn − lω −H0) can become singular.

Let us consider, as a first case, a counter-clockwise loop, corresponding to a negative

frequency ω < 0. Clearly, for λn = λyM (the largest eigenvalue of the subset), the

matrix (λn − lω − H0) is never singular for any l = 1, 2, 3, .... Hence λ̃yM is a quasi-

energy and the corresponding Floquet eigenstate is again defined by Eqs.(11) and (13).

Conversely, for any other eigenvalue λn = λyα of the subset (α = 1, 2, ...,M − 1), the

matrix (λyα − lω − H0) becomes singular for some positive integer l. In particular,

let G be the positive integer such that λyM − λyα = −Gω, so that (λyα − lω − H0)

is not singular for any l ≥ G + 1 while it is singular at l = G (and possibly also at

some smaller indices l). To avoid the occurrence of the singularity, we should replace

in Eq.(13) w(n) by εw(n) and taking the limit ε→ 0 as the quasi-energy crossing point

λyM − λyα ' −Gω is approached. In this way, the dominant (non-vanishing) terms of

a(l) are those with indices l ≥ G. Moreover, since for any matrixM close to singularity

the vectorM−1a is almost parallel to the eigenvector ofM with vanishingly eigenvalue,

independently of the choice of a, it readily follows that a(G) in Eq.(13) becomes parallel

to wλyM
. This means that the Floquet eigenstate at the quasi-energy µ = λ̃yα collapses

to the one of the degenerate quasi-energy µ = λ̃yM . Therefore, H(t) has a Floquet EP of

order M , since simultaneous coalescence of M quasi-energies and corresponding Floquet

eigenstates is found. Since the quasi-energy µ = λ̃yM is defective, one can introduce a set

of generalized Floquet eigenstates that restore the completeness of Floquet eigenstates

§ In atomic physics context, such as in laser-driven multilevel atoms, the condition that λyα − λyβ

is an integer multiple of the driving frequency ω is generally referred to as a multi-photon resonance

condition. Here λn are the energy levels of the atom, whereas ω is the frequency of the laser field.
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of H(t). The analytical form of generalized Floquet eigenstates is given in Appendix A.

As a second case, let us consider a clockwise loop, corresponding to a positive frequency

ω > 0. Clearly, for λn = λy1 (the smallest eigenvalue of the subset), the matrix

(λn − lω − H0) is never singular for any l = 1, 2, 3, .... Hence λ̃y1 is a quasi-energy

and the corresponding Floquet eigenstate is again defined by Eqs.(11) and (13). On the

other hand, for any other eigenvalue λn = λyα of the subset (α = 2, 3, ...,M), the matrix

(λyα−lω−H0) becomes singular for some positive integer l. Following the same reasoning

as in the previous case of a counter-clockwise loop, the Floquet eigenstates corresponding

to such quasi-energies collapse to the Floquet eigenstate defined by Eqs.(11) and (13)

with λn = λy1. Hence, the degeneracy of the quasi-energies λ̃yα corresponds again to

the simultaneous coalescence of the corresponding Floquet eigenstates, i.e. there is

a Floquet EP of order M . However, by reversing the sign of ω, i.e. the circulation

direction of the loop C, the Floquet eigenstates collapse to a different state: the state

emanating from the highest eigenvalue λyM for a counter-clockwise loop (ω < 0), the

state emanating from the lowest eigenvalue λy1 for a clockwise loop (ω > 0). As we

will discuss in following Sec.3.4, the different collapse of Floquet eigenstates in the two

circulation directions of the loop is responsible for the chirality of the system, i.e. the

selection of different final states, starting from some common initial state, when the

loop C is slowly and repeatedly circulated in the two opposite directions. A schematic

diagram that illustrates the results of Theorem 2 is shown in Fig.1.

3.3. Adiabatic analysis

We are especially interested to consider the slow limit ω → 0 of cycling, where the

dynamics over one oscillation cycle is well approximated by an adiabatic analysis. In

particular, we wish to establish a correspondence between the exact Floquet eigenstates

of H(t), as defined in Theorems 1 and 2 above, and the quasi-periodic adiabatic states

of H(t). To this aim, let us indicate by σn(t) and e(n)(t) the instantaneous eigenvalues

and corresponding eigenvectors of H(t), i.e.

H(t)e(n)(t) = σn(t)e(n)(t). (14)

We assume that the instantaneous eigenvalues σn(t) are distinct and separated each

other by a finite gap over the entire oscillation cycle. Therefore, at each time e(n)(t)

form a complete basis. The eigenvalues σn(t) are uniquely determined at each time by

the determinatal equation, which is an algebraic equation of order N with complex

coefficients that vary periodically in time with period T . Rather generally σn(t)

and corresponding eigenvector e(n)(t) are not single-valued functions of time over one

oscillation cycle, i.e. if we continuously follow the change of the eigenvalue σn(t), as

the vector R(t) continuously change from t = 0 to t = T describing the loop C
either clockwise or counter-clockwise, we have rather generally a flip of eigenvalues

and corresponding eigenvectors at the end of the cycle, i.e. σn(T−) = σm(0+) for

some m 6= n. Only after N successive cycles the condition σn(NT−) = σn(0+)
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Figure 1. Schematic diagram showing the appearance of a Floquet EP under

the conditions stated in Theorem 2. The Hamiltonian H0 has N distinct and real

eigenvalues λ1, λ2, ..., λN , with N = 7 in the case illustrated in the figure. Given the

spacing of eigenvalues shown in the left panel of the figure and the value of frequency

ω at which the complex parameter R(t) oscillates, describing either a clockwise or

counter-clockwise closed loop C (right panel), for the subset of M = 3 eigenvalues λyα
,

with y1 = 2, y2 = 3 and y3 = 7, the difference λyα
−λyβ

is a multiple of ω (λ3−λ2 = ω,

λ7 − λ2 = 3ω, λ7 − λ3 = 2ω). According to Theorem 2, a Floquet EP of order M = 3

is found. Three among the seven Floquet eigenstates of H(t) collapse to the same

state, namely the state emanating from the largest eigenvalue λ7 of the subset for a

counter-clockwise loop (ω < 0), the state emanating from the lowest eigenvalue λ2 of

the subset for a clockwise loop (ω > 0).

is met. This is because the Fourier series of σn(t) and e(n)(t) generally show sub-

harmonic terms ∼ exp(iωt/N). For example, for a two-state system (N = 2) the

flip of eigenvalues and corresponding eigenvectors is known to occur whenever the

path in parameter space, described by a complex parameter R = R(t), encircles an

EP, i.e. a point R = R0 at which the stationary Hamiltonian H shows a static EP

[16, 17, 18, 27, 40, 41, 42, 44]. Here we avoid such a case and assume that each eigenvalue

σn(t) and corresponding eigenvector e(n)(t) are single-valued functions of time over each

cycle, i.e. σn(T−) = σn(0+) and e(n)(T−) = e(n)(0+). Since the elements of H(t)

are assumed to be periodic in time and composed by positive (or negative) frequency

components solely, from the determinantal equation of the eigenvalues it readily follows

that σn(t) is composed by a mean value plus positive (or negative) frequency components

solely, i.e. in the Fourier series of σn(t) all negative (or positive) frequency terms vanish.

This implies that the time average of the instantaneous eigenvalue over one oscillation

cycle should coincide with one eigenvalue of the stationary matrix H0, i.e.

1

T

∫ T

0
dtσn(t) = λn. (15)

To perform an adiabatic analysis of Eq.(1) in the slow-cycling limit, let us expand the
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state vector a(t) in series of the instantaneous eigenvectors e(n)(t) of H(t), i.e.

a(t) =
N∑
n=1

fn(t)e(n)(t) exp
[
−i
∫ t

0
dξσn(ξ)

]
(16)

with time-dependent amplitudes fn(t). Indicating by e(n)†(t) the instantaneous

eigenvector of the adjoint matrix H†(t) with eigenvalue σ∗n(t), i.e. H†(t)e(n)†(t) =

σ∗n(t)e(n)†(t), taking into account that the scalar product 〈e(n)†(t)|e(m)(t)〉 vanishes

for n 6= m, the evolution equations for the amplitudes fn(t) are readily found after

substitution of the Ansatz (16) into Eq.(1) and taking the scalar product by 〈e(n)†(t)|.
One obtains

dfn
dt

= − 1

〈e(n)†(t)|e(n)(t)〉

N∑
m=1

〈e(n)†(t)|de
(m)

dt
〉fm(t)

× exp
[
i
∫ t

0
dξ(σn(ξ)− σm(ξ))

]
(17)

which are exact equations. In the slow cycling limit ω → 0, the adiabatic approximation

is obtained by neglecting the coupling terms of amplitudes in Eq.(17), i.e. by assuming

dfn
dt
' −

〈e(n)†(t)|de(n)
dt
〉

〈e(n)†(t)|e(n)(t)〉
fn (18)

which yields

fn(t) ' fn(0) exp

− ∫ t

0
dξ
〈e(n)†(ξ)|de(n)

dξ
〉

〈e(n)†(ξ)|e(n)(ξ)〉

 ≡ fn(0) exp[−iϕn(t)]. (19)

Note that the change of phase and amplitude of fn in the adiabatic approximation arises

from the usual complex Berry phase term ϕn(t) [17, 49, 51, 50, 52]. After one period,

i.e. after the parameter vector R(t) has described a closed loop C in complex parameter

space, the contribution of the complex Berry phase takes the form

ϕn(T ) = −i
∫ T

0
dξ
〈e(n)†(ξ)|de(n)

dξ
〉

〈e(n)†(ξ)|e(n)(ξ)〉
= −i

∮
C

〈e(n)†(R)|de(n)(R)〉
〈e(n)†(R)|e(n)(R)〉

. (20)

Under the conditions discussed above that λ(R) and en(R) are not multi-valued

functions of R and that the loop C does not encircle an EP, the integral over the

closed path C vanishes, i.e. ϕn(T ) = 0. For example, if we assume a single complex

parameter R(t) [k = 1 in Eq.(9)], the integral on the right hand side of Eq.(20) can be

computed as a contour integral in complex R plane. Since the path C does not encircle

an EP, the function under the sign of integral in Eq.(20) in holomorphic in the domain

internal to the loop C because the denominator 〈e(n)†(R)|e(n)(R)〉 does not vanish (it

vanishes only at an EP). Therefore, owing to the Cauchy integral theorem, the integral

(20) along the closed path C vanishes, i.e. ϕn(T ) = 0.

We mention that, for slow cycling (ω much smaller than the gap separating the

instantaneous eigenvalues σn(t)), the adiabatic approximation obtained by neglecting

the rapidly-oscillating terms in Eq.(17) (rotating-wave approximation) is accurate to

describe the dynamical evolution of there system up to a time of order ∼ 1/ω, i.e.
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over one (or a few) oscillation cycles. This can be formally proven by a multiple

time scale asymptotic analysis of Eq.(17), where the rotating-wave approximation is

shown to describe the evolution of amplitudes fn in the lowest-order time scale ∼ 1/ω.

However, the rotating-wave approximation can not be applied to describe the evolution

of amplitudes over time scales longer than ∼ 1/ω, i.e. breakdown of the adiabatic

theorem can arise when repeated circulation of the loop C is considered owing to the

appearance of resonances in the asymptotic analysis. Let us first consider the system

dynamics over one oscillation cycle, i.e for one circulation of the loop C, so as the

adiabatic approximation can be applied. In this case, note that the set of N adiabatic

functions

p(n)(t) = e(n)(t) exp
[
−iϕn(t)− i

∫ t

0
dξσn(ξ)

]
(21)

satisfy the conditions

p(n)(t+ T ) = p(n)(t) exp(−iµnT ) (22)

with

µnT =

[
ϕn(T ) +

∫ T

0
dtσn(t)

]
= λnT (23)

where we used Eq.(15) and ϕn(T ) = 0. Equations (22) and (23) clearly show that, in the

adiabatic limit, the functions p(n)(t) defined by the instantaneous eigenvectors of H(t)

[Eq.(21)] are the Floquet eigenvectors ofH(t) with quasi-energies µn = λ̃n. We therefore

retrieve the (exact) result, shown in Theorems 1 and 2, that the quasi-energy spectrum

of H(t) is entirely real and given by the eigenvalues of the stationary Hamiltonian H0,

folded into the interval (−ω/2, ω/2). If the conditions stated in Theorem 1 are satisfied,

i.e. if the quasi-energies are distinct and there is not a Floquet EP, clearly p(n)(t) should

provide an approximate form of the distinct and linearly-independent exact Floquet

eigenvectors f (n)(t) of H(t), defined by the Fourier series Eqs.(11) and (13), i.e one has

f (n)(t) ' p(n)(t) for any n = 1, 2, ..., N . However, some care should be paid when the

conditions stated in Theorem 2 are met, i.e. in the presence of quasi-energy degeneracy

leading to the appearance of a Floquet EP of order M . In this case, the set of adiabatic

states {p(n)(t)} are always linearly-independent and of Floquet form, i.e. each of them

reproduces itself, apart from the phase term ∼ exp(−iµnT ), after one oscillation cycle.

On the other hand, at a Floquet EP the exact Floquet states f (y1)(t), f (y2)(t), ..., f (yM )(t)

coalesce and to restore the completeness of eigenstates we must introduce the generalized

Floquet eigenstates F(yn)(t), which are not of the Floquet form for n = 2, 3, ..,M since

they contain secular growing terms in time [see Eq.(6)]. The prediction of the adiabatic

analysis is thus seemingly at odd with the exact Floquet theory in case of a Floquet EP.

Nevertheless, the contradiction is removed after observing that, in the slow-cycling limit

ω → 0, the ratio between the elements of vectors Q(yn) and q(y1) entering in Eq.(6) is

large and of order ∼ 1/ω(2n−2), with n = 2, 3, ..,M ‖ Therefore, over a single oscillation

‖ Such a property can be readily proven as follows. For the sake of definiteness, let us consider the

worst case where all quasi energies collapse, i.e. M = N corresponding to a Floquet EP of order
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cycle, i.e. after the time t = T , one has F(yn)(t+T ) ' F(yn)(t) exp(−iµynT ) also for the

generalized Floquet eigenstates, the secularly growing terms entering in Eq.(6) becoming

dominant only after several oscillation cycles and being negligible in the time interval

(0, T ). Hence the adiabatic states (21) provide an approximate form of the entire set of

Floquet eigenstates (including the generalized ones) even at an EP.

3.4. Multi-cycling chirality induced by Floquet EPs

Since the set of adiabatic states (21) provide an accurate approximation of the entire

set of Floquet eigenvectors of H(t) over one oscillation cycle, when the system dynamics

is observed over one (or a few) oscillation cycles nonadiabatic transitions are not

observed. However, in presence of a Floquet EP the adiabatic states cannot describe the

secular growing terms arising in the generalized Floquet eigenstates F(yn)(t) [Eq.(6) with

n = 2, 3, ...,M ]. While such terms remain small and can be therefore neglected when

the system is cycled once or a few times, they cannot be neglected when the system is

cycled many times around the loop C. In other words, nonadiabatic (coupling) terms

in Eq.(17) can not be neglected when the dynamics is observed at time scales longer

than ∼ T , and mixing of instantaneous adiabatic states should occur in the presence

of a Floquet EP. Such a breakdown of the adiabatic theorem basically stems from

the appearance of resonances in a multiple time scale asymptotic analysis of Eq.(17).

Interestingly, for a counter-clockwise loop, i.e. for ω < 0, the Floquet eigenstate f (yM )(t)

of H(t), which is the dominant state of the dynamics, corresponds to the adiabatic

state p(yM )(t), whereas for a clockwise loop, i.e. for ω > 0, one has f (y1)(t) ' p(y1)(t).

This property readily follows from the arguments used in the proofs of Theorems 1

and 2. The different selection of dominant Floquet state when the Hamiltonian is

cycled clockwise or counterclockwise introduces a chiral behavior in the system, i.e. the

selection of a distinct final state, starting from the same initial state, depending on the

circulation direction of the loop. For example, let us prepare the system at t = 0 in the

instantaneous eigenvector e(y1)(0) of H(0). If the system is cycled one (or few) times

N . Let us indicate by G the N × N matrix whose column vectors are the instantaneous eigenvectors

e(1)(0), e(2)(0),..., e(N)(0) of H at initial time t = 0. According to the adiabatic analysis, in the slow

cycle limit the solution to Eq.(1) with the initial condition a(0) = e(n)(0) evolves approximately

into the state e(n)(0) exp(−iλnT ) = e(n)(0) exp(−iλ̃nT ) after one oscillation cycle, with an error

of order ∼ ω as compared to the exact solution. Hence, from Eq.(2) with t = T one obtains

exp(−iRT )G = G exp(−iΛ̃T ) + O(ω), where Λ̃ is the diagonal matrix of the folded eigenvalues λ̃n,

i.e. of quasi-energies µn = λ̃n, and the error is of order ∼ ω. The matrix R can be thus written as

R = GΛ̃G−1+O(ω2), where O(ω2) indicates a matrix whose elements, as compared to the fist term, are

small and of order ∼ ω2. Since the quasi-energies collapse to the same value µn = µ, one has Λ̃ = µI (I
is the identity matrix). Therefore, one can write R = GJ G−1, where J = µI +ω2M and the elements

of the matrix ω2M are small of order ∼ ω2. The set of N generalized eigenvectors Qn of R are obtained

from those zn of J by application of the transformation G, i.e. Qn = Gzn. The eigenvectors zn are

the solutions of the cascaded equations (J − µ)z1 = 0, (J − µ)z2 = z1,..., (J − µ)zN = zN−1, i.e.

Mz1 = 0,Mz2 = z1/ω
2,...,MzN = zN−1/ω

2. Therefore, when solving the equationMzn = zn−1/ω
2,

it readily follows that the ratio between the elements of zn and zn−1 is large and of order ∼ 1/ω2. The

same scaling holds for the generalized eigenvectors Qn = Gzn of R.
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either clockwise or counter-clockwise, the system basically returns to its initial state, i.e.

nonadiabatic transitions are prevented and there is not any chirality in the dynamics.

However, after many oscillation cycles, a chiral behavior emerges: while for a clockwise

cycling the system remains in the same state and no adiabatic transitions occur (this is

because e(y1)(0) is the dominant Floquet eigenstate), for counter-clockwise cycling the

system is dominated by the other state e(yM )(0) after several oscillation cycles, indicating

breakdown of adiabatic following (this is because e(yM )(0) is now the dominant state of

the dynamics). An example of the chiral behavior induced by a Floquet EP is discussed

in the next section.

4. Floquet exceptional points and chirality: an example

As an illustrative example of chirality induced by a Floquet EP, let us consider the 3×3

Hamiltonian

H(t) = H0 +R(t)H1 (24)

with

H0 =


0 1 0

Ω2/2 0 1

0 Ω2/2 0

 , H1 =


0 0 0

1 0 0

0 −1 0

 (25)

where Ω is a real constant parameter. The Hamiltonian periodically varies in time via

the complex parameter

R(t) = R0 exp(iωt) (26)

which describes a closed loop C in complex R plane after a time interval T . The

eigenvalues λn of H0 are given by

λ1 = −Ω, λ2 = 0, λ3 = Ω (27)

Interestingly, the instantaneous eigenvalues σn(t) of H(t) are independent of parameter

R, i.e. of time, and are the same as those of H0, i.e.

σ1(t) = −Ω σ2(t) = 0, σ3(t) = Ω (28)

whereas the corresponding eigenvectors are given by

e(1) =


1

−Ω

Ω2/2−R

 , e(2) =


1

0

−Ω2/2−R

 , e(3) =


1

Ω

Ω2/2−R

 . (29)

Note that, since the eigenvalues of H are independent of the parameter R and are

distinct, no static EPs are encircled by R as it describes an arbitrary closed loop in

complex plane. Nevertheless, according to the Theorem 2 Floquet EPs can be found for

special driving frequencies. In particular:

(i) For a driving frequency ω satisfying the odd resonance condition 2Ω = nω with n

odd, the two quasi energies λ1 and λ3 coalesce, corresponding to a second-order Floquet
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Figure 2. Evolution of the adiabatic amplitudes |fn(t)|2 (n = 1, 2, 3) as obtained

by numerical simulations of Eqs.(31-33) using an accurate variable-step fourth-order

Runge-Kutta method for parameter values Ω = 1, R0 = 0.2 and |ω| = 0.25

(corresponding to the even multiphoton resonance condition 2Ω/ω = 8). The initial

condition is f1(0) = 1, f2,3(0) = 0 in (a), f2(0) = 1, f1,3(0) = 0 in (b) and

f3(0) = 1, f1,2(0) = 0 in (c). The upper panels refer to a clockwise cycle (ω > 0),

whereas the lower panels to a counter-clockwise loop (ω < 0).
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Figure 3. Same as Fig.2, but when the system undergoes repeated cycles.

EP.

(ii) For a driving frequency ω satisfying the even resonance condition 2Ω = nω with

n even, the three quasi energies λ1, λ2 and λ3 coalesce, corresponding to a third-order

Floquet EP.

To illustrate the impact of a Floquet EP on the system dynamics, let us consider the

evolution of amplitudes fn in the basis of instantaneous eigenstates of H(t) [Eq.(17)].
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Taking into account that the adjoint eigenvectors are given by

e(1)† =


Ω2/2 +R∗

−Ω

1

 , e(2)† =


−Ω2/2 +R∗

0

1

 , e(3)† =


Ω2/2 +R∗

Ω

1

 (30)

Eq.(17) takes the form

df1
dt

=
Ṙ

2Ω2
[f1 + f2 exp(−iΩt) + f3 exp(−2iΩt)] (31)

df2
dt

= − Ṙ

Ω2
[f1 exp(iΩt) + f2 + f3 exp(−iΩt)] (32)

df3
dt

=
Ṙ

2Ω2
[f1 exp(2iΩt) + f2 exp(iΩt) + f3] (33)

where Ṙ ≡ dR/dt = iωR0 exp(iωt). In the slow cycling limit ω → 0, the

adiabatic approximation basically corresponds to disregard the rapidly-oscillating terms

exp(±iΩt) and exp(±i2Ωt) in Eqs.(31-33) that couple the amplitudes of different

adiabatic states (rotating-wave approximation). This yields

fn(t) ' fn(0) exp[−iϕn(t)] (34)

(n = 1, 2, 3) with complex Berry phases

ϕ1(t) = ϕ3(t) = −ϕ2(t)

2
= i

R(t)−R(0)

2Ω2
. (35)

Note that, according to the theoretical analysis, the Berry phases vanish after each oscil-

lation cycle. The rotating-wave approximation, being the leading-order approximation

in a multiple time scale asymptotic expansion, correctly and safely describes the system

dynamics for a time scale up to ∼ 1/ω, i.e. a few oscillation cycles. Far from a multi-

photon resonance, i.e. in the absence of a Floquet EP, the rotating-wave approximation

generally turns out to correctly describe the system dynamics even at time scales longer

than ∼ 1/ω, indicating that the adiabatic regime is maintained even after several cycles.

This is because of the absence of secular terms in the asymptotic analysis arising from

resonances. However, if a multiphoton resonance condition is met, i.e. at a Floquet EP,

the rotating-wave approximation breaks down at a time scale longer than ∼ 1/ω, so that

nonadiabatic effects, i.e. mixing of amplitudes fn, is observed after several oscillation

cycles. Nonadiabatic effects are precisely responsible for the appearance of a chirality

in the system dynamics. Figures 2-5 show a few different dynamical behaviors that

are observed by varying the circulation direction of the cycle, the initial state and the

oscillation frequency. Figures 2 and 3 show the typical behavior of the adiabatic ampli-

tudes |fn(t)|2 observed when the oscillation frequency ω satisfies an even multiphoton

resonance condition, corresponding to the appearance of a third-order EP. In Fig.2 the

system undergoes a single cycle, either clockwise (upper panels) or counter-clockwise

(lower panels), with the initial condition corresponding to the excitation of one of the

three instantaneous eigenstates. Note that, regardless of the circulation direction of the

loop and the initial state preparation, after completing the cycle the system returns to
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its initial state and excitation of other adiabatic amplitudes is negligible. This shows

that, over one oscillation cycle, nonadiabatic transitions are negligible and there is not

any chiral behavior. Note that the modulus square of the amplitude of the initially

excited state is not constant in time, rather it varies over the oscillation cycle because of

the complex nature of the Berry phases ϕn(t) as a signature of non-Hermitian dynamics.

However, since the Berry phase over one oscillation cycle vanishes, at the end of the

cycle the system returns to its initial state, i.e. the dynamics is (almost) periodic. The

same behavior holds whenever the system undergoes a few oscillation cycles. However

the dynamics dramatically changes when the system undergoes several (e.g. a few hun-

dreds) oscillation cycles (Fig.3). Here nonadiabatic transitions are clearly observed and

the final dominant state depends on the circulation direction of the loop, i.e. a chiral

behavior is found. In particular, according to the theoretical analysis for a clockwise

loop (ω > 0) the dominant state is e(1), whereas for a counter-clockwise loop (ω < 0) the

dominant state is e(3). A similar behavior is found when the oscillation frequency is set

to satisfy an odd multiphoton resonance, corresponding to a second-order EP, as shown

in Fig.4. As compared to the case of Fig.3, note that in the latter case chirality is not

observed when the system is initially prepared in the state e(2)(0) [compare Fig.3(b) and

4(b)]. We remark that the chiral behavior is strictly related to breakdown of adiabatic

following in one (or both) of the circulation directions induced by the Floquet EP. If

the multiphoton resonance condition leading to the appearance of the Floquet EP is not

satisfied, the chiral behavior of the dynamics disappears. This is shown, as an example,

in Fig.5, where the frequency ω is slightly changed from ω = 0.25, corresponding to the

even multiphoton resonance condition 2Ω/|ω| = 8, to ω = 0.26.
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Figure 4. Same as Fig.3, but for parameter values Ω = 1, R0 = 0.3 and |ω| = 2/7,

corresponding to the odd multiphoton resonance condition 2Ω/ω = 7.
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Figure 5. Same as Fig.3, but for |ω| = 0.26. The oscillation frequency does not

satisfy a multiphoton resonance condition and nonadiabatic effects are prevented.

5. Conclusions

In this work we have shown that Floquet exceptional points, corresponding to the

coalescence of two (or more) quasi-energies and corresponding Floquet eigenstates of

a time-periodic non-Hermitian Hamiltonian, can arise in a wide class of time-periodic

systems and can give rise to a chiral dynamics, i.e. selection of a different final state when

the system is repeatedly and slowly cycled in opposite directions of parameter space. To

conclude, it is worth commenting similarities and differences between the chiral behavior

induced by a Floquet EP, studied in this work, and the chirality observed when a static

EP is encircled, a well-known phenomenon which has been investigated in several recent

works [18, 27, 40, 41, 42, 44, 47]. In both cases chirality arises because asymmetry

in nonadiabatic effects observed when the circulation direction of the loop is reversed,

a typical signature of non-Hermitian dynamics. In case of a Floquet EP nonadiabatic

effects are typically observed after many oscillation cycles, they do not require to encircle

any static EP, however they arise when a resonance condition is satisfied, which is

fully missed when a static EP is slowly cycled. Our results thus provide a different

route toward the observation of EP-induced chirality in non-Hermitian systems and are

expected to stimulate further theoretical and experimental investigations.

Appendix A. Generalized Floquet eigenstates

In this Appendix we derive the analytical form of the generalized Floquet eigenstates

for the Hamiltonian H(t) in the presence of a Floquet EP of order M . For the sake of

definiteness, let us consider the case of a counter-clockwise cycle (ω < 0) and let us limit

our analysis to a Floquet EP of order M = 2, corresponding to two eigenvalues λy1 and

λy2 = λy1 +G|ω| which become degenerate when folded inside the interval (−ω/2, ω/2),
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i.e. λ̃y2 = λ̃y1 . However, the analysis can be readily extended to the case of a Floquet

EP of higher order or for a clockwise cycle (ω > 0).

As discussed in the proof of Theorem 2, the two Floquet eigenstates f (y1)(t) and f (y2)(t)

coalesce into the same state, which is the one emanating from the highest eigenvalue λy2 .

Such a state, F(y2)(t) ≡ f (y2)(t), is given by Eqs.(11) and (13) by letting λn = λy2 . The

other generalized Floquet eigenstate, F(y1)(t), can be obtained looking for a solution to

Eq.(1) of the form

a(t) = exp(−iµt)
∞∑

l=−∞

(
a(l) + γtb(l)

)
exp(ilωt) (A.1)

which includes a secular term that grows linearly in time. In the above equation,

the parameter γ defines the strength of the secular term and will be determined by

a solvability condition. After substitution of the Ansatz (A.1) into Eq.(1) and using

Eqs.(9) and (10), the following coupled hierarchical equations for the Fourier amplitudes

a(l) and b(l) are obtained

(µ− lω −H0)a
(l) =

∞∑
k=1

S(k)a(l−k) − iγb(l) (A.2)

(µ− lω −H0)b
(l) =

∞∑
k=1

S(k)b(l−k) (A.3)

Equation (A.3) can be solved by setting µ = λy2 and

b(l) =


0 l < 0

w(y2) l = 0

(λy2 − lω −H0)
−1∑l

k=1 S(k)b(l−k) l ≥ 1

(A.4)

where w(y2) is the eigenvector of H0 with eigenvalue λy2 , i.e. H0w
(y2) = λy2w

(y2). Note

that the Fourier terms b(l) given by Eq.(A.4), which define the secularly growing term in

Eq.(A.1), are precisely the ones of the Floquet state f (yM )(t), as it should be according

to the general Floquet theory of defective quasi-energies (Sec.2). For l 6= 0, Eq.(A.2) is

then formally solved by letting

a(l) =


0 l < −G

w(y1) l = −G
(λy2 − lω −H0)

−1∑l+G
k=1 S(k)b(l−k) −G < l < 0

(λy2 − lω −H0)
−1∑l+G

k=1

(
S(k)b(l−k) − iγb(l)

)
l ≥ 1

(A.5)

where w(y1) is the eigenvector of H0 with eigenvalue λy1 , i.e. H0w
(y1) = λy1w

(y1). The

value a(0) is obtained as a solution of the inhomogeneous linear system [Eq.(A.2) with

l = 0]

(λy2 −H0) a0 = d (A.6)

where we have set

d ≡
G∑
k=1

S(k)a(−k) − iγw(y2). (A.7)
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Note that, since (λy2 −H0) is singular, the inverse of the matrix (λy2 −H0) is not defined

and Eq.(A.6) can be solved provided that the solvability condition

(w(y2)†,d) = 0 (A.8)

is met, where w(y2)† is the eigenvector of the adjoint matrixH†0 with eigenvalue λ∗y2 = λy2 .

The solvability condition then determines the value of the parameter γ entering in the

Ansatz (A.1)

γ = −i
∑G
k=1

(
w(y2)†,S(k)a(−k)

)
(w(y2)†,w(y2))

. (A.9)

Once the solvability condition is satisfied, the solution to Eq.(A.6) can be determined,

apart from an arbitrary vector parallel to w(y2) which can be chosen to be zero without

loss of generality [it would correspond to an additional term proportional to the other

Floquet eigenstate f (y2)(t)].
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