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Abstract 

Fitting algorithm plays an important role in the whole measuring cycle in order to derive a 

measurement result. It involves associating substitute geometry to a point cloud obtained by an 

instrument. This situation is more difficult in the case of non-linear geometry fitting since 

iterative method should be used. This article addresses this problem. Three geometries are 

selected as relevant case studies: circle, sphere and cylinder. This selection is based on their 

frequent use in real applications; for example, cylinder is a relevant geometry of an assembly 

feature such as pin-hole relationship, and spherical geometry is often found as reference 

geometry in high precision artifacts and mechanisms. 

In this article, the use of Chaos optimization (CO) to improve the initial solution to feed the 

iterative Levenberg-Marquardt (LM) algorithm to fit non-linear geometries is considered. The 

results of the use of CO to improve the initial solution show that higher quality fitting results can 

be obtained in term of smaller norm of the residuals, while preserving the computational cost. 

Moreover, fitting an “incomplete-point-cloud”, i.e. the situation where the point cloud does not

cover the whole feature (e.g. covers an hemisphere only), is presented as well. As core of this 

article, comparison study of the efficiency of different one-dimensional maps of CO is presented. 

This study shows that, in general, logistic-map function provides the best solution compared to 

other types of one-dimensional functions. Finally, case studies on hemispheres and industrial 

cylinders fitting are presented. 

Keywords: Least-square fitting, non-linear optimization, chaos optimization, one dimensional 

map. 

1. Introduction

Geometrical metrology has an important role in manufacturing. It is the procedure to verify 

geometric attributes of products and is most often realized by coordinate metrology [1]. In 

coordinate metrology, least-square (LS) fitting to associate substitute geometry to point cloud is a

fundamental step to derive the measurement result [2-5]. By applying this procedure, 

dimensional measurements, e.g. the diameter of a circle or sphere, the angle between two lines, 

the distance between two spheres, etc, and geometrical measurements, e.g. flatness, roundness, 

parallelism, coaxiality deviations, etc are performed accurately and flexibly. Therefore, the 

fitting algorithm is a fundamental element in the whole chain of dimensional metrology. Figure 1 
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presents the role of fitting in the measurement cycle. Based on Hoppe et. al. [6], fitting the 

substitute geometry is called a “function reconstruction”, since it is an association of points to a 

defined function. From the point of view of the fitting algorithm, basic geometries can be divided 

in two groups: linear and non-linear. Linear geometries include 2D line and plane. Most other 

types of basic geometries, such as circle, sphere, cylinder, and cone are considered non-linear 

geometries. 

 

The fitting of linear geometries can be analytically solved and a single global optimal result 

obtained. In the case of non-linear geometries fitting, an iterative procedure, minimizing some 

objective function, is used instead. The lack of prior knowledge about the parameters of the 

geometry to fit significantly increases the difficulties in the fitting itself. Consequently, for non-

linear geometric fitting an initial solution must be selected to initialize the iterative procedure. 

This initial solution should be good enough to ease the search algorithm in the estimation of the 

best fitting geometry. The situation in which the prior knowledge about the geometry to be fitted 

is not known can be found in reverse modeling. One example is that it is very difficult to identify 

the axis of direction of a cylinder when prior knowledge about the cylinder is unknown. Not only 

accuracy problem in the fitting process but also cost of computation is relevant for this situation. 

The reason is that current measurement instruments, especially the non-contact one, are able to 

capture thousands or even millions of points within short period of time. As such, time required 

for the fitting becomes relevant issues as it increases the overall measuring time. Hence, fast and 

accurate fitting is needed to realize a high-speed inspection to reduce inspection cost, and hence 

reducing the production cost [7]. Hence, not only an accurate, but also a high-speed fitting 

procedure is required. 

 
Figure 1: Role of geometric fitting in a metrology cycle. 

 

In a previous paper [8] the authors presented the efficiency of non-linear fitting by utilizing CO 

method to select the initial point for the LM iterative algorithm (Chaos-LM algorithm). Results 

of the study shows that CO improves the fitting accuracy without scarifying the computation 

time [8]. In this paper, comparison among CO functions for the LS fitting of non-linear 

geometries by Chaos-LM algorithm are presented. The purpose is to study the performance of 

CO method with respect to its different types of continuous one-dimensional map functions in 

different fitting situation and to identify the most effective for most cases. The paper is structured 
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as follows. Introduction of non-linear geometries and their distance function is presented in 

section 2. In section 3, non-linear fitting method and its characteristic is described. In this 

section, the problem of initial solution for the iterative procedure is presented. CO optimization 

and its various one-dimensional functions are explained in section 4. The performance 

improvement by using CO method to determine the initial solution, comparison among one-

dimensional map functions and case studies are presented in section 5. Finally, concluding 

remark and future developments are proposed in section 6. 

 

2. Non-linear Geometry 
 

The defining parameters of geometries define them as either linear or non-linear . Line and Plane 

are classified as linear geometry since their defining parameters are linear. Other basic 

geometries have non-linear parameters which define their shapes. They are circle, sphere, 

cylinder, cone and torus. Therefore, they are named “non-linear geometries”. This paper 

addresses the problem of non-linear Least Squares (LS) fitting circle, sphere, and cylinder. 

Circular and spherical geometries have many applications, for example the sphere, as it 

univocally defines a single point (its center) is often adopted as reference geometry  [9-10] and 

also commonly adopted as artifact the verification of the performance of metrology instruments 

[11-12]. Many rotational part found in mechanical product are constituted by circular features 

such as shafts and holes. Moreover, a pin-hole is the most common assembly feature, and it is 

represented by a couple of mating cylinders [13]. 

 

To fit the LS feature to a cloud of point means to associate a feature the cloud of points; the 

associated feature minimizes the sum of the squared orthogonal distances from the points of the 

cloud to the feature itself (fig 2). The sum of squared orthogonal distance is then the objective 

function to minimize usually by means of an iterative algorithm: 

 

2
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Where:  i
p  is the ith point of the cloud, n  is the number of points, a  is a vector of parameters 

defining a geometrical feature (e.g. the coordinates of the center and the radius of a sphere), and 

 ,
i

d p a  represents the orthogonal distance of i
p  from the geometrical feature defined by the 

paramenters a . For the circle in a plane, the distance function is (Fig. 2a left): 

     2 2

0 0 0 0, , , ,
i i i i

d x xy x y r x yy r         (2) 

Where 0 0,x y  are the coordinates of the circle center,  is the circle radius, and ,
i i

x y  are the 

coordinates of the ith point. 

 

For the sphere, the objective distance function can be similarly formulated as: 
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The distance function of a point to a cylinder is more complex compared to circle and sphere 

ones (see fig. 2a right). It is defined as: 

 

   0 0, , ,
i i

d rr   p p p nnp        (4) 

 

where is the radius of the cylinder, 0p  is a point on the axis of the cylinder, and n  is the versor 

of the cylinder axis (fig. 2b). 

 
Figure 2: (a) Definition of point distance for circle (sphere) and cylinder, (b) Definition of point 

distance for 3D-line. 

 

One can observe that the objective function to minimize is a non-linear multi-modal function. 

This multi modal function has many local minima and/or maxima. 

 

3. Non-linear fitting 
As the proposed geometries are non-linear, a non-linear fitting algorithm will be required to 

solve their associated non-linear LS problems. Many non-linear LS algorithm are known in 

literature, among which probably one of the most often implemented and adopted is the 

Levenberg-Marquardt algorithm. 

 

3.1 Levenberg-Marquardt Algorithm. 
The well-known Levenberg-Marquardt (LM) algorithm can be used to solve non-linear least 

square problems [14-15]. There are two methods applied by LM algorithm, the first one is 

steepest-decent (gradient search) and the second one is Gauss-Newton step. Firstly, steepest-

decent approach is carried out to quickly reach the optimum area. When the search is already 

around the optimum region, the approach is changed to Gauss-Newton one to search the 

optimum solution within a smaller optimum region. Steepest-decent search is to minimize a 

function. It searches through the direction of the gradient of the function. Let  be the function 

to optimize, and  the candidate solution at step . For minimization case, the next iteration 

step of a steepest-descent algorithm is: 

 

 1k k s k
F   x x x         (5) 
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Where  F x  is the gradient of the objective function calculated at x , and is the step size, 

which determines the distance of the next candidate solution from the current one. Hence, if  is 

set very small, it will take long to reach convergence. Otherwise, the optimum value will be 

over-looked if it is set too large. 

 

In the Gauss-Newton method instead, a linearization of the non-linear function is applied. A 

Taylor expansion series is deployed for this linearization procedure. The series is: 

 

           0 0 0 0

T T2

0F F F F
n

n

Higher order terms

...            x x x x x x x x    (6) 

 

With reference to eq. 6, only the linear term is considered. It has two reasons. Firstly, the 

algorithm is more efficient to reach the convergence. Secondly, the form is tractable to solve p . 

By setting 0)(f  p , the next iteration of the Gauss-Newton is described as: 

 

         (7) 

 

Where  is the vector of the residual (distances) at step , and  is the Jacobian matrix of 

this vector of distance functions. Since, only the linear term is considered in the Taylor series, 

the accuracy of this linearization is only valid within a very small region (or interval). This 

region is called trust region. Due to this reason, Gauss-Newton method is valid for the use within 

small search region; else it tends to get stuck in local minima. Hence, based on this 

characteristic, the method is effective when starting near the optimum solution. 

 

Combination between steepest-decent and Gauss-Newton methods is the advantage of LM 

method. A vector of input parameters , which are parameters which define the shape of 

geometry to be fitted, is supplied to the LM algorithm, along with a matrix M which is A  

matrix. The matrix contains data points, defined as:  1, ,
n

 M x x where  i

T

i ix , y , zx .The 

goal is to get  which is the optimized vector. The LM method used here is based on the LM 

used by NIST [5] for their reference algorithm. The LM algorithm is: 

 

Algorithm 1:Levenberg-Marquardt Algorithm 

Input: Vector of the initial guess for the parameter and 

matrix M containing the points to fit. 

Output: Vector of the optimized parameter 

1:  Set 0001.0  

2: DO { decrease  

3:      set  

4:      set  

5:      set  

6:      DO { increase  

s


s


   T T

1j j j   d d dJ Jp Jp d p

 j
d p j

dJ
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3n

p

0p

p


T

0 0U J J

 0 0

Tv J d p

   0

T

0 0F  d p d p


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7:           set  

8:           solve  

9: 
          set

 

10:           IF converged THEN return  

11:      UNTIL 0FFnew   or stop criterion is true 

12:      IF THEN  

13:  UNTIL stop criterion is true 

 

The parameter λ is the LM variable. This variable is set based on NIST method [5]. is a 

Jacobian matrix, so that its i-th row is . For the circle, the parameters are (/the 

coordinate of the center) and the radius r . For the sphere, similarly to circle, only one additional 

element  coordinate of the center needs to be added. Finally, the parameters for the cylinder 

are , i.e. the coordinates of a point on the axis, its versor  1 2 3, ,n n nn , and finally its 

radius r . 0J is a nxm matrix in which the number of column m corresponds to the number of 

parameters to estimate, and the number of rows n corresponds to number of points to fit. 

 

The main LM method can be observed in step 7 ( ). If this equation is enlarged into

, it can be observed that if   is zero or small, the LM 

algorithm becomes a Gauss-Newton method. On the other hand, if   is large enough, then the 

off-diagonal elements of will have less effect, and it becomes the steepest-decent method. 

The term is which is a weighted distance based on a Nash [15] suggestion, so that 

 becomes positive definite. In this situation, the 

calculation of the matrices is numerically more stable. 

 

3.2. Problem of seeding initial point 
 

The description of the LM algorithm shows clearly that a un initial solution  must be provided 

[16]. The choice of the initial solution is critical, because the function to optimize is multi-

modal: many local optima and high curvature characterize it. Therefore, the search can get 

trapped locally in a non-global optimum. Fig. 3(left) shows examples of this type of function by 

using Schweifel equation and the square of the summation of a circle distance function, which is

, where  is formulated in eq. (2).  

 

As mentioned before, the fitness function of least squares fitting is multi-modal, so the 

optimization algorithm can get trapped in a local optimum. The probability of getting trapped 

highly depends on the staring solution. [16]. Figure 3 (right) is a good illustration to explain the 

phenomena. It is an objective function to fit a circle.  Different candidate radius r can be observed 

as different level of surface (color) and the surface is obtained by varying the (x,y) which is the 

center location of a circle. From the figure, it is clear that the searching process during the 
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optimization step can be trapped in one of the surface region. Therefore, this cause an sub-

optimal solutions are likely to found. Figure 4 illustrates how the starting solution directly affects 

the final results. An unexpected sub-optimal solution is found when the initial guess is far from 

optimum (figure 4a). On the other hand, the final solution is significantly improved by using a 

good initial guess (yielding a lower fitness function value, fig. 4b). 

 

 
Figure 3: Plots of Schweifel function and squared circle distance. 

 

 
Figure 4: Effect of initial solution to the final fitting result. (a) Initial guess is far from optimal, 

(b) initial guess is near optimal. 

 

 

4. Chaos Optimization 
 

4.1 Chaos algorithm 
Chaos is a semi-random behavior generated by a non-linear function. It creates a chaotic 

dynamic step which can be useful to escape from local optima region in a search process. It is 
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deterministic because each step can be uniquely determined from the previous step; however, 

though deterministic, the step will realize a hardly predictable path. Hence, it is similar to the 

observation of a stochastic process. The concept differs from the improved heuristic searches 

(random-based algorithm)  which work based on rejection-accepting probability test [17]. Since 

chaos dynamic is not stochastic, it differs from heuristic search. Searching through regularity of 

chaotic motion is its fundamental recipe [18]. This motion represents a dynamical trajectory 

system motion that can be represented as mapping of one variable to other variable. Chaos 

function significantly depends on its initial condition in the sense that two initial values, which 

can be spatially very close to each other, when subject to chaotic step trajectories will diverge at 

exponential rate. Considering a mapping of )(1 kMk tFt  , which is n-dimensional variables, 

the significant difference of the chaos trajectory
1k

t with respect to two initial conditions 0t and

0t , can be modeled by a Lyapunov exponent as [21]: 

 

    n ( )
0

0 0
n n

M M
e


  
t

F t F t        (8) 

 

where n is number of iteration and the Lyapunov exponent is represented by the )0(t  function. 

A function, to have a chaotic behavior, should have dimension ≥ 3 [26]. Otherwise, this behavior 

can be observed in one-dimensional functions if the map is not invertible. A map MF is not 

invertible, if and only if, given
1k

t , we cannot solve )(1 kMk tFt  for
k

t . In this case, the 

solution of )( 1
1


 kMk tFt does not exist. This is due to one single value of 

1k
t can be mapped 

to more than one values of 
k

t . Chaotic orbit properties, which are ergodicity, stochastic 

property, and regularity are used by Chaos optimization (CO) [19] to guide the searching process 

inside the optimization region. For example, one common dimensional map function is the 

logistic map, which is formulated as: 

 

          (9) 

 

Where is iteration number and  is a control argument. Value of  where

is selected based on Yang’s recommendation [20]. Equation (9) 

becomes chaotic. Chaotic here means that its value is drastically changed within the limit of c
and . This is the representation of the regularity of chaotic motion. Plot of time series of this 

function and paired-plot between two consecutive chaos variables are shown in figure 5. From 

this figure, one can observe that with a small change in two consecutive t, a chaotic behavior 

(spread value) will be observed in the time series manner (figure 5 left). 

1 (1 )
k c k k

  t t t

k  3.56,4
c
 

00 1 t

0 {0,0.25,0.5,0.75,1.0}t

k
t
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Figure 5: Plot of Logistic map one-dimensional function. (left) time-series plot of the logistic 

map, (right) paired-plot between two consecutive chaos variables t. 

 

Based on the chaotic characteristic, to improve the initial guess of LM non-linear fitting, the CO 

method is used. Moreover, the computation time will be preserved. This is important for 

situation in which the sample size is large (millions of points). The Chaos-LM algorithm is 

presented as follow: 

 
Algorithm 2: Chaos search to improve the initial guess in LM method 

(Chaos-LM Algorithm) 

Input: Vector of the initial guess for the parameter (1:n-param) 

Goal: New vector  is the improved initial guess for 

)( iFMin p , },{ iii bap  , ):( 1 kk
Let ppp  , ):( 1 kk

ttt   

),...,(),...,(: 11 nn ttandppwhere  tp  

1:  Set 0,0  rk , Set  

2:  Produce randomly. }0.1,75.0,5.0,25.0,0{}1,0{0  andt . 

3: 

 Set MPEMPE
k  pbpatttt

00 ,,*, 00

 
),...,(),,...,(: nini bbaawhere  ba  

Note: MPE is maximum permissible error of the intrument
 

4:  Set initial guess parameter 

5: 
 DO WHILE {  maxrr  ;  

DO WHILE { maxkk  ; 

6: 
 Set );( r

i
r
i

r
i

r
ii abtap   

calculate k
F  

N
i ii pd0

2 )(  

7: 
IF *FF

k  THEN 
kkk

ttpppFF  *,*),(*  

8: 
;1 kk  

Generate Chaotic motion for the next iteration, for example, 

0p

0p

max max10, 30k r 

0* p p
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using logistic one-dimensional map function: 

}4,56.3{),1( 11   k
i

k
i

k
i ttt  

9:        }END k-th iteration; 1 rr  

10: 

)(*1 r

i

r

ii

r

i abpa    

     and  

)(*1 r

i

r

ii

r

i abpb    

11:        IF 
r
i

r
i aa 1

THEN }5.0,0{,1  r

i

r

i aa  

12:        IF 
r

i

r

i bb 1
THEN }5.0,0{,1  r

i

r

i bb  

13: 
       IF maxrr  THEN produce }1,0{0 t by random, 

0,0 tt  k
k GOTO(7) 

14: 

        ELSE CO is terminated,  

return *0 pp  ;} 

END r-th iteration; 

15: Insert the new 0p into Algorithm 1: LM algorithm. 

 

There are parameters to be defined for the CO algorithm. In this case for logistic map chaotic 

motion generator, the parameters are set as 45.0 [19], 4 [20], 50max r , and 50max K . The 

reason of this parameter selection is that to adjust small ergodic range around *ip . For a long 

term chaotic behavior from a small change of t , the value 4 is set to be equal to 4. The 

purpose is that this additional step does not contribute significantly to the computation time. The 

statements IF 
r
i

r
i aa 1

THEN }5.0,0{,1  r
i

r
i aa  and       IF 

r

i

r

i bb 1
THEN }5.0,0{,1  r

i
r
i bb  

spread the search movement farther from the initial bounding area which have been set in the 

beginning of the search, so that it will increase the probability of finding the global optimum 

region. With reference to Figure 4 (right), the final result will be much improved if the initial 

guess is expected to lie near the correct optimization zone. 

 

4.2 One-dimensional map functions 
The chaotic motion generator is calculated from one-dimensional deterministic functions. There 

are several types of continuous one-dimensional map functions to generate chaotic motions to 

explore the search space of feasible solutions [21-25], even though the most general type is the 

logistic map [21], which has been introduced in §4.1. These different types of one-dimensional 

maps can work efficiently on different kind problems. Therefore, the comparison between one-

dimensional functions can find the one characterized by the best performance. In the following, 

several types of one-dimensional maps will be compared to identify the optimal one for 

initialized the LM algorithm to solve the LS fitting problem. Both clouds covering the whole 

surface of the feature and partial clouds will be considered in the comparison. The next few 

paragraphs introduce the considered maps. 

 

4.2.1 Tent map 

This type of map is characterized by a triangle shape for
1k

t with respect to
k

t  [21] and can be 

formulated as:  









5.0)1(

5.0
1

kk

kk

k
tt

tt
t




        (10) 
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In this type of map,  0,1
k

t   , the value we have will be  1 0,1
k

t    too. The value of   is 

suggested to be set to 2 [21]. Figure 6 shows characteristic of Tent map. 

 
Figure 6: Plot of Tent one-dimensional map function. (left) time-series plot of the Tent map, 

(right) paired-plot between two consecutive chaos variables t. 

 

4.2.2 Bernoulli shift map 

The model comes from the effort to model the packages traffic in a network system [22]. The 

characteristic of this one-dimensional map is that in any successive iteration, considering two 

different initial values 0t and 0t , the trajectories always diverge. The plot of this one-

dimensional map characteristic is presented in figure 7. The map can be formulated as: 
















11
)1(

10
1

1

k

k

k

k

k

t
t

t
t

t









     (11) 

The value of   is usually set to 0.5 [22]. 
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Figure 7: Plot of Bernoulli Shift map one-dimensional function. (left) time-series plot of the 

Bernoulli map, (right) paired-plot between two consecutive chaos variables t. 

 

4.2.3 Liebovitch map 

Liebovitch and Tooth [26] proposed a one-dimensional map to model the kinetic activities of an 

ion channel. This map consists of three piece-wise linear segments which represent active, 

passive and switching region. The three segments have interval in  0,1  and they do not overlap. 

The Liebovitch one-dimensional map is formulated as: 
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where  1 2 1 2, 0,1 ,d d d d  ,   2
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    
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Variables 21
,αα determine the behavior of

k
t to produce the“dwell time” of the three states. A 

minimum “dwell time” inside the switching region is preferable to determine the next step of the 

trajectory by increasing the value of
2

d to be close to 1. Figure 8 shows the linear segment as 

property of Liebovitch map. 
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Figure 8: Plot of Liebovitch map one-dimensional function. (left) time-series plot of the 

Liebovitch map, (right) paired-plot between two consecutive chaos variables t. 

 

4.2.4 Intermittency map 

The one-dimensional intermittency map models the intermittency phenomenon, which is an 

irregular alternation of phases, in turbulence studies [27]. Figure 9 plots this type of one-

dimensional map. A “sifting” phenomenon can be observed in its time series plot. This is the 

extension of Bernoulli map by introducing non-linear piece-wise functions. The two piece-wise 

functions represent passive and active period, for the first and second piece-wise function, 

respectively.  
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

1
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
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where
m

d

d
c




1
 and is set to a very small fraction of real number. In fact, a small value 

increases the time scale, and then the search region [22]. 
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Figure 9: Plot of Intermittency map one-dimensional function. (left) time-series plot of the 

Intermittency map, (right) paired-plot between two consecutive chaos variables t. 

 

4.2.5 Chebyshev map 

Characteristic of this one-dimensional map is that it has infinite collapse (high dynamic) within 

two symmetrical region of    1,0 0,1   [23]. It means that the function is stable on the center 

point 0 and starts to collapse in the regions far from zero but in  1,1 . The Chebyshev map 

function is defined as: 

)coscos( 1

1 kk tkt


            (14) 

The value of k explains the rank of the Chebyshev function to extend the Lyapunov exponent. It 

is selected equal to 4 [23]. Time series plot and two consecutive variable plot of this map can be 

observed in figure 10. 

 



 15 

 
Figure 10: Plot of Chebyshev map one-dimensional function. (left) time-series plot of the 

Chebyshev map, (right) paired-plot between two consecutive chaos variables t. 

 

4.2.6 ICMIC map 

Iterative chaotic map with infinite collapse (ICMIC) is a one-dimensional map similar to the 

Chebyshev one. The difference between ICMIC and Chebyshev map is that in ICMIC, the 

function response collapses (is unstable) at the center of two symmetrical region of 

   1,0 0,1  . The regions far from the center area are stable area [23]. ICMIC map is defined 

as: 

)sin(1

k

k
t

a
t             (15) 

The value of a is selected equal to 2 so that the Lyapunov exponent number is less than 2 [28] 

Figure 11 presents the behavior of the ICMIC one-dimensional map. It can be considered as the 

inverse of the Chebyshev map function. 
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Figure 11: Plot of ICMIC map one-dimensional function. (left) time-series plot of the ICMIC 

map, (right) paired-plot between two consecutive chaos variables t. 

 

4.2.7 Gaussian map 

This one dimensional map has the classical “bell shape” of the Gaussian distribution [24]. The 

map can be formulated as: 

 )exp( 2

1 nk
xt         (16) 

where  and  are real numbers. Usually 9.4 and 58.0  [24]. Figure 12 shows the time-

series plot and two consecutive variables plot for the Gaussian one-dimensional map. 
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Figure 12: Plot of Gaussian map one-dimensional function. (left) time-series plot of the Gaussian 

map, (right) paired-plot between two consecutive chaos variables t. 

 

4.2.8 Sine map 

The shape of the sine one-dimensional map is qualitatively similar to the logistic map [25]. The 

formulation of this map is: 

)sin(
4

1 kk t
a

t          (17) 

where a is an integer number and is selected equal to 2 [25]. This map is shown in figure 13. 

 
Figure 13: Plot of sine map one-dimensional function. (left) time-series plot of the sine map, 

(right) paired-plot between two consecutive chaos variables t. 

 

4.2.9 Circle map 

Physical motivation of this one-dimensional map the simulation of the behavior of driven 

mechanical rotors. Andrey Kolmogorov [25] first proposed this. Another physical relevance of 

this model is that it describes a model of phase looked loop in electronics. The circle map is 

formulated as: 

)2sin(
2

1 kkk t
K

tt 


         (18) 

where K and   are a predetermined constants. K is an integer number and   is a real number. 

  represents the external frequency applied to the system, and K is the degree of non-linearity. 

The main characteristic of this map is that it has more chaotic dynamics with respect to change 

on its parameters value (figure 14). 
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Figure 14: Plot of circle map one-dimensional function. (left) time-series plot of the circle map, 

(right) paired-plot between two consecutive chaos variables t. 

 

4.2.10 Algorithm complexity 

 

For the combined Chaos-LM algorithm, a complexity analysis of the algorithm is applied to 

understand the relation between the growths of computational cost with respect to the number of 

input variables. In this case, the input variable is the number of points n to which the substitute 

geometry shall be fitted. One can observe that for each algorithm, CO and LM, there are two 

nested loops. In fact, these loops are not related to the number of points n, but only depends on a 

defined constant number. Only the procedure to calculate the objective function length relates to 

n is. As such, the computational growth can be stated as follow. Let the total order of the 

algorithms be
21)( nnnf  nnn 2 , where subscript 1 and 2 correspond to algorithm 1 

(CO) and 2 (LM), respectively. Hence, the algorithm efficiency is )(n  since 

)(.)(,00 00 ngknfnnkandn   so that )()( 21 nnnnf  . Hence, the 

complexity of the algorithm is linear with n. 

 

5. Implementation and Performance comparison 
 

In this section, implementation of the combination of CO and LM algorithm is presented. 

Following the implementation, the performance comparisons among various function of one-

dimensional map are performed. Comparison will consider two kind of case studies: case studies 

based on the simulation of the sampling of geometric features (simulation approach), and a cased 

based on the use of real data from the sampling of a physical specimen (real measurement 

approach). The performance indicators for the fitting algorithm are the magnitude of residual 

error r  (where r is a vector containing the residuals of the fitting), for fitting accuracy,  and the 

computational time, for fitting efficiency. Smaller values of these indicators denote a better 

performance. 
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The first approach generates points from some ideal geometry, which can be a circle, a sphere 

and or a cylinder. Noise is added which can be generated uniformly or normally distributed. 

Table 1 presents detail on the simulation. There are two levels of standard deviation considered 

for the data. Type 1 represents only the noise contribution from the instrument. Its sigma value is 

obtained from the instruments Maximum Permissible Error (MPE) [9-10] Type 2 instead 

simulates the contribution due to the part to part variability, including the instrument. Points 

generated by the second type represent a more realistic situation since an inspected part always 

contains some feature deviation from the nominal geometry [28]. Geometries will be generated 

both as full geometries and half geometries (e.g. a sphere and an hemisphere), giving rise to a 

total of six considered geometries. Reason to consider a half-geometry is that in many cases, 

points obtained by an instrument cannot cover the whole geometry due to, for example, surface 

accessibility problems, incomplete feature geometry, etc. 

 

Table 1: Details of data generation. 

Type of Data 
Number of points and Nominal Parameters 

Circle Sphere Cylinder 

Uniform 
Range 

[µm] 
(x,y,r)=(15,15,20) mm (x,y,z,r)=(15,15,15,20) mm 

(x,y,z,r)=(15,1

5,15,5) and n 

(1,1,1) mm 

Type 1 [-2.2,2,2] 1000 pts 900 pts 625 pts 

Type 2 [-5,5] 1000 pts 900 pts 625 pts 

Normal 

standard 

deviation 

[µm] 

     

Type 1 1.1 1000 pts 900 pts 625 pts 

Type 2 2.5 1000 pts 900 pts 625 pts 

 

The second implementation and comparison is applied to points obtained from a series of real 

measurements by means of tactile coordinate measuring machine (CMM). Kawalec and 

Magdziag [22] reported comparison of methods to solve circle fitting problem by measuring a 

ring gauge as case study. There are two selected case studies for this real measurement approach: 

a reference ceramic sphere and an industrial cylinder. Figure 15 shows the measurement of the 

sphere and cylinder by tactile CMM. 

 

For the ceramic sphere case in figure 15a, a calibrated ceramic sphere of a traceable tactile 

“ZEISS PRISMO” CMM with MPEE=2 µm+L/300 µm for stylus qualification was used with 

calibrated radius of 14.991 mm. The sphere case study is a good example of a common artifact 

for CMMs. The point cloud was obtained by tactile scanning. The point clouds to be fit are half-

geometries, constituted from low density and high density points. The low density point cloud 

contains 312 points and the high density one contains total of 3435 points. The initial parameter 

of the fitting, for both LM and Chaos-LM method, has been chosen near the calibrated value. 

Initial x and y location are from the average of respectively x- and y-position of the points, and z 

location is selected from maximum z-position of the points minus the known nominal radius of 

15 mm. For the cylinder case study (figure 15b), it is made of hardened steel having a nominal 

diameter of 6 mm. Total points obtained for the measurement of industrial cylinder were 190 

points by circular path scanning strategy of three segments, including the equator line. 
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Figure 15: (a) sphere measurement and (b) industrial cylinder measurement. 

 

The algorithm is implemented in MATLAB and run on an Intel Centrino Core 2 Duo 2.2 GHz. 

Center of circle and sphere is initialized by selecting the centroid of the cloud of points as initial 

guess. Moreover, the centroid is also the initial guess of a point on the axis of the cylinder. Initial 

estimation for radius is: 

 

  for the circle;       (8) 

 

 for the sphere and cylinder (9) 

 

Where 𝑟𝑜is initial radius estimation, 𝑥𝑜,𝑦𝑜,𝑧𝑜 are spatial coordinates of all the points. Only in the 

case of the cylinder, the initial guess for cosine direction of the axis is derived by fitting a 3D 

line to the point clouds as proposed by the NIST [5].  

 

5.1 Performance improvement 
 

Details of the performance improvement can be found in the previous paper [8]. A brief review 

of the results will be presented. In the simulation approach 100 cloud of points where generated 

for each geometry and kind of noise generation and fitted. From the result, Chaos-LM algorithm 

gives better fitting performance. The reason is that Chaos initialization encourages the initial 

guess of the solution to move to a better starting point. Thanks to the property of the chaotic 

motion which non-repeatedly searches through a set of states in a certain bounded domain [29], 

the search can escape from local optima. Sensitiveness of the final solution of LM method to 

where the initial guess starts is related to the Taylor approximation in the Gauss-Newton method. 

This approximation method highly depends on the non-linearity degree of the neighborhood. 

Since this approximation is usually applied up to the first term, the validity of this Taylor 
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approximation decreases for higher non-linear function. Because of this, a “trapped” condition 
during the search process can occur. 

 

To visually illustrate the improved performance of the fitting by Chaos-LM algorithm, figure 16 

shows the fitting results applied to the circle. From this figure, one can observe that the Chaos-

LM fitting (figure 16b) finally lies in the middle of the point cloud. This is coherent with the 

fundamental behavior of least-square fitting which is an average over the considered data (in this 

case the point cloud). For the computation time, in general there are no significant differences 

between LM and Chaos-LM algorithm, except for the case of cylinder fitting results, where the 

computation time slightly increases compared to the LM method. Indeed, the sum of squared 

residuals is significantly reduced.  

 

 
Figure 16: Substitute full circle fitting results of (a) LM method and (b) Chaos-LM [8]. 

 

For the half-geometry cases, a more difficult situation is observed. This is, in part, due to the not-

so-good initial guess of the solution: in the case of full geometries, the initial estimation takes 

advantage of symmetry properties of the geometry. From the results [8], one can observe that the 

accuracy of fitting half-geometry point clouds is significantly improved by Chaos-LM method 

compared to LM method. Figure 17 graphically shows this improvement in the case of circle 

fitting. From the computation time point of view, Chaos-LM method has significantly higher 

CPU time compared to the LM case, hence the comparison goes further with the a convergence 

analysis. 

 

Convergence curve analyses were carried out both for full- and half- geometries fitting. It is 

worth noting that the curves cannot reach the zero since there are errors on the points due to the 

simulated noise. Noise for the simulation of this analysis is uniformly distributed in the range 

between -5µm and 5 µm. Some convergence graphs are re-presented in figure 18 and 19 for full 

and half-circle cases, respectively. Please note that, in the convergence graphs, the abscissa sums 

the iterations required by both Chaos initialization and the LM algorithm in the case of Chaos-

LM method. For LM method, it corresponds to LM number of iterations, which ranges from 100 

to 1000 iterations. For Chaos-LM, this axis corresponds to the number of chaos iteration in the 

range from 10 to 100 iterations. A clear “trapped” phenomenon in a local optima region can be 
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observed in both the case of full- and half-geometry fitting. On the other hand, Chaos-LM 

algorithm can escape from local optima as the number of iteration increases. The chaotic 

movement during the searching process can explore a wider region to find a better solution. 

Chaos-LM can show a significant improvement and convergence result without a large number 

of iteration increments. From the investigation of the convergence, the optimal number of chaos 

iterations is around 30. 

 

 
Figure 17: Substitute Half circle point cloud fitting results of (a) LM method and (b) Chaos-LM 

[8]. 

 

 
Figure 18: Convergence rate for fitting full circle point clouds [8]. 
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Figure 19: Convergence rate for fitting half circle point clouds [8]. 

 

From the real case study. Fitting improvements are also obtained by Chaos-LM method 

compared to the LM one [8]. Visualization of the fitting results of the case studies for the sphere 

and cylinder measurement is plotted in figure 20. In this figure, blue points are points from 

tactile scanning, red points are the fitted points, which is the fitting geometry, green line is 

estimated cylinder axis line. 

 
Figure 20: Fitting of (a) low-density sphere, (b) high-density sphere and (c) cylinder case. 

 

Concluding, the CO is effective in improving the initial guess in non-linear LS fitting problem. 

Thanks to the chaotic dynamic that non-repeatedly moves through a set of trajectory states in a 

certain bounded domain [29], the CO has a higher chance to make the initial guess of the 

solution closer to the global optimum region. This is a unique property which is different 

compared to the common improvement heuristic search such as genetic algorithm, tabu search, 
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etc. [30]. They need larger number of iterations to increase the “visited feasible solution” inside 
the search space by which the computational time increases. 

 

5.2 Performance evaluation of one-dimensional map functions 
 

In this section, comparison of Chaos-LM algorithm performance with respect to different one-

dimensional functions as chaotic motion generator of CO algorithm will be presented. The 

simulation data used for the comparison study is perturbed by noise applied to the nominal 

points. This noise is sampled from a uniform distribution in the range between -5 µm and 5 µm. 

This assumption includes the MPE (maximum permissible error) of a hypothetical CMM and the 

hypothetical part feature deviation. The complete results of the comparison, including both the 

norm of the residuals r  and the CPU time, are presented in table 4. To compare the influence of 

different one-dimensional maps, an analysis of the variance (ANOVA) was carried out. Three 

replications (each of replica is mean value from 100 simulation runs) were carried out for each 

test. The treatments of the test are the continuous one-dimensional map. Identical to the previous 

section, response variables of the test is that the norm of the residual r and the CPU time. The 

test demonstrates that the map chosen significantly affect both r and CPU time, with the only 

exception of the CPU time for sphere fitting (figure 22b). 

 

The comparisons for full-geometries fitting are presented as bar chart in figure 21, 22, and 23, 

and for half-geometries in figure 24, 25, and 26. From these figures, one can observe that, in 

general, the logistic-map is the most effective to solve the optimization problem in terms of r , 

with some compromises of having higher computational time in certain cases. For example, in 

the case of half-circle fitting, the logistic map provides the best solution, but the computation 

time is significantly larger. In full-circle fitting (figure 21), Liebovitch and Intermittency chaos 

generation give the worst solution while for full-cylinder fitting (figure 23), Bernoulli Shift and 

Sine chaos generator give the worst solution. A solution in general similar is observed in the case 

of full-sphere fitting (figure 22). Higher variation in results is observed in the case of half-

geometries compared to the full geometries. Liebovitch and Intermittency generator give the 

worst results for half-sphere and half-cylinder. Bernoulli Shift, Sine, and Circle generator gives 

the worst results of half-circle fitting. Table 4 gives the detail results of the comparison runs. 

 

Table 4: Complete result of several types of one-dimensional map. 

Rando
m Error 

Type 
(um) 

Type of 
One-

Dimension
al Map 

Full-Geometries Chaos and Levenberg-Marquardt Algorithm 

Circle Sphere Cylinder 

||r|| (µ±3σ) CPU time 
(µ±3σ) ||r|| (µ±3σ) CPU time 

(µ±3σ) ||r|| (µ±3σ) CPU time 
(µ±3σ) 

U[-5,5] 

Logistic 3.3562±4.4067 
0.5551±0.03

08 
6.2199±0.4602 

0.5628±0.10
88 

5.7994±2.9641 
0.6706±0.05

15 

Tent 3.8789±1.3553 
0.5400±0.02

82 
6.2625±0.5551 

0.4987±0.08
56 

5.0455±1.9903 
0.7874±0.11

55 

Bernoulli 
Shift 

28.4587±10.169
0 

0.4947±0.09
41 

7.5839±1.5888 
0.6106±0.32

84 
88.752±3.2902 

0.7665±0.09
97 

Liebovitch 92.7066±6.2385 
0.4787±0.03

87 
7.1002±0.5687 

0.5377±0.02
65 

41.2997±10.55
11 

0.8015± 
0.1005 
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Intermitten
cy 

92.9567±5.6253 
0.4994± 
0.1139 

7.1161±0.8001 
0.4675±0.02

66 
3.3571±0.4035 

0.7795±0.04
43 

Chebysche
v 

37.4017±10.694
1 

0.5637±0.07
94 

6.975±0.7605 
0.5527±0.02

47 
3.2422±0.4954 

0.7885±0.07
03 

Gaussian 3.8776±1.5751 
0.5948±0.10

65 
6.3682±0.8676 

0.5628±0.10
68 

2.9529±0.0444 
0.7823±0.05

27 

Sine 2.8379±1.0583 
0.4947±0.08

96 
6.6963±1.2561 

0.5531±0.02
95 

81.9015±11.09
38 

0.8223±0.09
91 

ICMIC 
 

27.3192±10.631
1 

0.4862±0.07
32 

6.9606±0.8579 
0.5782±0.11

59 
2.9676±1.1675 

0.8172±0.03
83 

Circle 
22.3999±10.039

8 
0.5216±0.09

47 
7.4993±1.7130 

 
0.5840±0.12

75 

 
88.5412±4.186

4 

0.785±0.091
5 

Rando
m Error 

Type 
(um) 

Type of 
One-

Dimension
al Map 

Half-geometries Chaos and Levenberg-Marquardt Algorithm 

Circle Sphere Cylinder 

||r|| (µ±3σ) CPU time 
(µ±3σ) ||r|| (µ±3σ) CPU time 

(µ±3σ) ||r|| (µ±3σ) CPU time 
(µ±3σ) 

U[-5,5] 

Logistic 
15.9923±12.055

8 
1.2212±0.14

56 
9.2163±6.3610 

0.413±0.024
7 

18.7634±3.058
4 

1.2185±0.10
01 

Tent 
99.9067±10.503

4 
0.4945±0.06

42 
10.8683±2.392

8 
0.458±0.060

1 
18.8646±1.658

5 
1.6603±0.24

50 

Bernoulli 
Shift 

116.6437±6.084
2 

0.5704±0.10
80 

20.1410±10.41
10 

0.4742±0.07
04 

39.7236±3.736
8 

1.7059±0.26
28 

Liebovitch 
100.4388±12.95

91 
0.4843±0.03

73 
43.1376±3.716

2 
0.4667±0.07

95 
18.8829±1.539

3 
1.6815±0.11

23 

Intermitten
cy 

48.8010±6.9925 
0.5731±0.06

01 
43.1131±4.761

9 
0.5632±0.03

49 
18.9943±1.768

7 
1.6443±0.17

96 

Chebysche
v 

22.7672±10.839
9 

0.5440±0.02
67 

27.5289±15.99
82 

0.5622±0.03
82 

18.8082±2.055
6 

1.6513±0.10
84 

Gaussian 
60.9419±10.924

6 
0.5017±0.14

93 
11.5014±10.25

87 
0.5802±0.07

49 
18.9913±1.290

6 
1.5953±0.29

21 

Sine 
115.0962±9.929

8 
0.4721±0.04

62 
20.0862±10.09

86 
0.5693±0.08

80 
28.5602±12.64

51 
1.5441±0.13

90 

ICMIC 15.2252±5.8807 
 

0.5587±0.03
16 

28.6431±14.06
05 

0.4731±0.03
62 

19.142±2.5265 
1.5227±0.34

41 

Circle 
116.5382±6.765

9 
0.4803±0.05

00 
13.7452±12.56

02 
0.4661±0.05

10 
18.4772±4.124

9 
1.6762± 
0.2146 
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Figure 21: Comparison of type of one-dimensional map for Chaos-LM method for full circle 

point cloud fitting. (a) Norm of residual, (b) CPU time. 

 

 

 
Figure 22: Comparison of type of one-dimensional map for Chaos-LM method for full sphere 

point cloud fitting. (a) Norm of residual, (b) CPU time. 
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Figure 23: Comparison of type of one-dimensional map for Chaos-LM method for full cylinder 

point cloud fitting. (a) Norm of residual, (b) CPU time. 

 

 
Figure 24: Comparison of type of one-dimensional map for Chaos-LM method for half circle 

point cloud fitting. (a) Norm of residual, (b) CPU time. 

 

 
Figure 25: Comparison of type of one-dimensional map for Chaos-LM method for half sphere 

point cloud fitting. (a) Norm of residual, (b) CPU time. 
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Figure 26: Comparison of type of one-dimensional map for Chaos-LM method for half cylinder 

point cloud fitting. (a) Norm of residual, (b) CPU time. 

 

In addition, the performance comparison among one-dimensional map of CO method is also 

carried out on real measurement data. The results are shown in figure 27, 28, and 29 for real case 

studies of sphere measurement with low-density points, with high-density points and industrial 

cylinder measurement, respectively. Table 3 presents the detailed results of the comparison 

study. From these graphs, one can observe that the comparisons of the one-dimensional map 

performance are similar to those proposed earlier. Logistic map, Liebovitch map and Gaussian 

map obtained the best result for the norm of residual in the case of both the sphere fitting from 

low and high-density points. Instead, in the case of industrial cylinder fitting, Tent, Intermittency 

and Chebyshev map give the least norm of residual. Logistic map does not perform well in this 

case. This could be caused by small number of points to fit compared to other case studies. 

About the CPU time needed to fit the data, there is no significant difference among the different 

one-dimensional map functions. 

 

Table 3: Detail results of comparison of one-dimensional map for real measurement case study. 

Random Error 
Type 

Type of One-
Dimensional Map 

Chaos and Levenberg-Marquardt Algorithm 

Sphere Low Density Sphere High Density Industrial Cylinder 

||r|| (µ±3σ) CPU time 
(µ±3σ) 

||r|| 
(µ±3σ) 

CPU 
time 

(µ±3σ) 
||r|| (µ±3σ) CPU time 

(µ±3σ) 

U [-
0.005,0.005] 

Logistic 
0.5139 ± 
0.5044 

0.4991 ± 
1.961 

2.2776 ± 
1.882 

3.8707 ± 
0.33 

2.1981 ± 
0.4822 

8.4489 ± 
2.3731 

Tent 
1.2014 ± 
0.8465 

0.4683 ± 
0.0221 

4.2608 ± 
2.5093 

4.0577 ± 
0.025 

0.4197 ± 
0.7331 

8.2408 ± 
1.5865 

Bernouli Shift 
17.8537 ± 

0.02 
0.46823 ± 

0.024 
57.3112 
± 1.8702 

4.0531 ± 
0.037 

3.6392 ± 
0.0079 

6.9392 ± 
1.99 

Liebovitch 
0.7122 ± 
0.5861 

0.4629 ± 
0.0167 

1.9955 ± 
0.6037 

4.0732 ± 
0.052 

3.3185 ± 
1.6297 

8.3943 ± 
0.2994 

Intermittency 
3.1645 ± 
0.9661 

0.4736 ± 
0.0385 

7.8977 ± 
3.2939 

4.358 ± 
0.9656 

0.3209 ± 
0.6761 

8.5420 ± 
0.1524 

Chebyschev 
1.7974 ± 
1.8641 

0.4916 ± 
0.0634 

4.542 ± 
3.989 

4.7134 ± 
3.034 

0.4340 ± 
0.9100 

8.2558 ± 
1.504 
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Gausian 
0.5855 ± 
0.4368 

0.4687 ± 
0.0222 

1.7241 ± 
2.0967 

5.2739 ± 
2.9522 

3.6351 ± 
0.02 

8.514 ± 
0.4319 

Sine 
17.5325 ± 

0.6418 
0.4642 ± 

0.082 
55.2934 
± 6.6626 

4.6047 ± 
2.7276 

3.6392 ± 
0.02 

8.9919 ± 
1.9286 

ICMIC 
17.73143 ± 

0.1382 
0.4676 ± 
0.0282 

2.0303 ± 
0.5039 

5.0282 ± 
4.7533 

0.455 ± 0.05 
8.5241 ± 
0.0868 

Circle 
17.8149 ± 

0.1784 
0.4629 ± 

0.072 
57.3171 
± 0.7026 

4.1288 ± 
0.127 

3.6391 ± 
0.02 

9.0029 ± 
1.313 

 

 

 
Figure 27: Comparison of type of Chaos one-dimensional map for sphere measurement with low 

density points (312 points). (a) Norm of residual, (b) CPU time. 

 

 

 
Figure 28: Comparison of type of Chaos one-dimensional map for sphere measurement with 

highlow density points (3435 points). (a) Norm of residual, (b) CPU time. 
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Figure 29: Comparison of type of Chaos one-dimensional map for industrial cylinder 

measurement (190 points). (a) Norm of residual, (b) CPU time. 

 

6. Concluding Remarks 
 

In this article, the problem of fitting non-liner geometries has been discussed. This fitting 

procedure is critical in the whole chain of dimensional metrology. The reason is that many 

product quality inspections are realized by means of dimensional quality inspection. Modern 

metrology instruments can capture high density clouds of points in short time. Hence, this fitting 

problem becomes more and more relevant. Three non-linear geometries are considered in this 

work, the circle, the sphere and the cylinder, due to their diffused use in applications such as 

metrological calibration and mechanical assembly. Both cases of fitting full- and half-geometries 

are addressed. It has been shown that a performance improvement of the fitting results from 

simulated and real measurement data can be obtained by combining chaos optimization and LM 

algorithm compared to a single LM algorithm. The LM method is in many cases trapped and 

early converged during the optimization process, in particular in the case of half-geometries 

fitting. In this situation, no improvement of the result can be obtained by increasing the number 

of iterations. Comparison among various type of one-dimensional map which determine the 

chaos motion is presented as well. A total of 10 one-dimensional map functions are considered. 

This comparison study points out that, in general, the logistic map function performs the best in 

almost all situations compare to others type of one-dimensional maps. The future direction of 

this work is the identification of the link between the non-linear problem and chaos properties 

such that an adaptive region bounding and chaotic motion generation can be better determined. 
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