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Abstract:  Security and reliability are major concerns for future power systems with distributed 

generation. A comprehensive evaluation of the risk associated with these systems must consider 

contingencies under normal environmental conditions and also extreme ones. Environmental 

conditions can strongly influence the operation and performance of distributed generation systems, 

not only due to the growing shares of renewable-energy generators installed but also for the 

environment-related contingencies that can damage or deeply degrade the components of the power 

grid. In this context, the main novelty of this paper is the development of probabilistic risk 

assessment and risk-cost optimization framework for distributed power generation systems, that 

take the effects of extreme weather conditions into account. A Monte Carlo non-sequential 

algorithm is used for generating both normal and severe weather. The probabilistic risk assessment 

is embedded within a risk-based, bi-objective optimization to find the optimal size of generators 

distributed on the power grid that minimize both risks and cost associated with severe weather. An 

application is shown on a case study adapted from the IEEE 13 nodes test system. By comparing the 

results considering normal environmental conditions and the results considering the effects of 

extreme weather, the relevance of the latter clearly emerges. 

Keywords: Distributed generation, AC power flow, extreme weather conditions, probabilistic risk 

assessment, Monte Carlo simulation, weather modelling 

1. Introduction

mailto:yanfu.li@ecp.fr
mailto:yanfu.li@supelec.fr


2 

Existing power grids have been developed to meet the requirements of conventional single direction 

power delivery from centralized high-capacity generation units (e.g. thermal plants, nuclear power 

plants, etc) to various end-user loads (e.g. industry, commerce, residence, etc). The energy 

challenges faced by Europe and the rest of the world are changing the landscape of power systems. 

Renewable energy resources, often geographically separated from the traditional power sources, are 

increasingly integrated into the distribution network in the form of distributed generators (DGs), 

such as photovoltaic panels and wind turbines. Owing to the random nature of these resources, DGs 

behave quite differently from conventional generators and they inject considerable amounts of 

uncertainty into power system operation; this uncertainty puts pressure on decision makers to 

properly assess the risk of the modern distribution networks integrated with DGs. 

Unlike power system reliability assessments that focus on the evaluation of quantities such as 

system average interruption duration index (SAIDI), system average interruption frequency index 

(SAIFI) and expected energy not supplied (EENS) [1] to reflect the ability to supply adequate 

electric service over the long term [2], probabilistic risk assessment (PRA) aims to estimate the 

probability (or frequency) of disturbances to system operation and their consequences [3]: these two 

elements are the constituents of the risk. Extreme weather conditions (e.g. high wind, thunderstorm, 

heavy snow, etc) can significantly affect system risk by increasing the frequency of failures of the 

power components and/or inducing severe damage [4]. 

In the past decades, many research works have been devoted to the risk assessment of power 

systems [3-12,39]. A number of studies have focused on transmission systems [7-9, 13, 31, 32, 39]; 

distribution network risk analysis [6, 11] has also been performed to analyze the response of 

protection devices/systems. Volkanovski, Cepin and Mavko [39] have studied power grid reliability 

by fault tree analysis, considering voltage drop and power flow. Differently, Guikema et al. [10] and 

Nateghi et al. [12] have focused on the estimation of hurricane damage on distribution networks, 

using statistical tools to account for historical data. More recently, Gabbar et al. [5] have proposed 

an integrated framework for risk-based performance analysis of microgrids with DGs installed.  

To the authors’ knowledge, none of the existing works have considered the impact of extreme 

weather conditions within the framework of the risk assessment of distribution networks or the 

optimization of the DGs nominal power considering these conditions. Recently, Alvehag and Söder 

[14] have conducted a reliability assessment for a distribution system considering the influence of

extreme weather events (e.g. high wind and lightning). More specifically, in their model the 

extreme weather events affect the system by causing the overhead lines to fail. Kirschen and 
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Jayaweera also remarked that line performance can be significantly affected by weather conditions 

[15].  

In this paper, we originally develop a simulation-based probabilistic risk assessment framework of 

DG systems that also considers severe weather. Based on the indications found in literature, we 

consider high wind and lightning as two major threats that can significantly increase the failure 

rates of distribution lines.  

Furthermore, it we consider the optimal integration of DG within the power grid, which can provide 

several benefits (e.g. reduced power losses and improved voltage profile) [36]. Optimal integration 

of DGs needs to consider multiple conflicting objectives on which the decision makers must find 

satisfactory trade-off solutions. Mena et al. [20] optimize the allocation of DGs in a reliability-cost 

bi-objective framework of simulation and optimization. Niknam et al. [37] optimize the size and 

allocation of DGs considering objective like minimizing costs, emissions and losses. In this paper, 

we propose an innovative risk-cost optimization for DG sizing, with the bi-objective of minimizing 

risk considering normal and extreme weather events, and the system investment and operative costs. 

The rest of the paper is organized as follows. Section 2 presents the risk definition, the severity 

functions and the distribution line failure probability models, taking into consideration the two 

environmental threats of high wind and lightning. Section 3 describes the weather modeling and the 

power component modeling. Section 4 presents the Monte Carlo (MC) simulation procedure for risk 

estimation and the risk-cost bi-objective framework for optimal DG sizing. Section 5 describes the 

case study o a relatively complete DG system exposed to extreme weather conditions. Section 6 

presents the DG system risk assessment and optimization results, and their analysis. Conclusions 

are presented in Section 7.   

2. Risk Concepts

2.1. Definition of risk 

We adopt a quantitative definition of risk as the product of the probability of occurrence of the 

undesired event (i.e. contingency) and the related consequence (i.e. severity) [16, 33]. To take into 

account more than one undesired event [30], the definition is extended by summing all 

contributions as: 

(1), 
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where p(  ) is the probability of occurrence of the undesired event    and         is the severity of 

the related consequences. In probabilistic risk assessment (PRA), contingencies frequencies are 

used as probabilities and severities functions as consequences [3]. In the context of power systems, 

contingency is defined as the unexpected loss of one or more elements (e.g. distribution line, 

transformer or generator) comprising the power system [4]. Over-load, related with the feeders 

thermal limits, and bus voltage magnitude, related with frequency and system balance, are both 

indicators of power system stress and are used to represent the consequences for the risk calculation 

[8]. Thus, the risk index associated with one contingency can be expressed as follows for the whole 

power network: 

(2), 

where χ is the set of all operational and environmental conditions (e.g. wind speed, ground strike 

density, solar irradiation, temperature), Ci is the i-th contingency,  is the overload 

severity for line k in the conditions of Ci and χ,  is the low voltage severity for the 

node (or bus) b,  is the risk associated with overload,           is the risk associated 

with low voltage, L is the total number of lines in the system and B is the total number of nodes in 

the system. The composite risk due to all contingencies is, then, obtained as: 

(3), 

where N is the total number of contingencies. The severity functions and the probability models 

adopted are illustrated in the subsequent Sections 2.2 and 2.3, respectively.  

2.2. Severity functions 

The low voltage severity function measures the extent of a violation in terms of voltage magnitude 

drop at one node. There are three types of severity functions: continuous, percentage and discrete 

[17]. The one selected for our study is the continuous function, because it measures the extent of the 
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violation by reflecting the realistic sense that a performance close to, but within a performance 

limit, is, in fact, risky [17]. 

The continous low voltage severity function adopted is as follows [3] : 

(4), 

(5),

where       is the deterministic limit (DL) of the voltage,  is the reference voltage and  is the 

voltage magnitude in per-unit (p.u.) in the node or bus b. In this study, we set p.u. and

p.u., following [27]. Fig 1 illustrates eq. (4), where the deterministic violation region (DV)

contains the    values satisfying  and the near violation region (NV) contains the 

values satisfying . 

Fig.1 

The severity function for overload is specifically defined for each circuit (distribution lines and 

transformers) and it measures the extent of violation in terms of excessive power flow as the 

percentage of rating (PR). The mathematical expression for this severity in the line k is presented as 

follows : 

(6). 

In line with [17], the deterministic limit for violation is  , the near violation region is 

 , the value  under 0.9 is regarded as safe,  , d = 10 and     . 

2.3. Probability of contingency considering extreme weather conditions 

The probability of each contingency takes into account the failure of a distribution line by  a 

Poisson distribution function [17]: 

(7), 
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where       is the probability of line contingency k in the next 1 hour,     is the failure rate of the 

distribution line [failure/(h*km)], assumed constant, and    is the length of the k-th line. Different 

from the existing PRA studies and in line with [14], in our study   account also for extreme wind 

speed and lightning events: 

(8), 

where  is the composite distribution line failure rate at time t,                   is the 

line failure rate contribution due to lightning at time t,      represents the extreme wind 

speed contribution to the line failure rate at time t and  is the line failure rate in normal 

weather conditions. An additive form of the composite failure rate (8) is assumed upon considering 

overhead lines modelled like subparts in series, whose failure process depends on different physical 

phenomena. For example, subpart is the insulation of the line, which can be damaged by lightning 

and another is the line structure that can be damaged by high wind speed.     

For  , the following expression is adopted [14] : 

         (9), 

where ɤ1, ɤ2 [s/m] and ɤ3 are fitting parameters and  [m/s] is the critical wind speed value. If 

the wind speed is higher than , the failure rate of the line grows in an exponential way, 

whereas if the wind speed is below this value the contribution due to the wind is null. 

Lightning activities generate a ‘lightning failure rate’ due to the increment of ground strike density 

per square km and hour. The relation is statistically linear and, like for the wind speed, if the value 

is lower than a defined ground strike density threshold, in our case set to 0, the lightning activity 

does not contribute to the failure rate, i.e. [14]: 

          (10), 

where    is the lightning flash density, i.e. the number of ground strikes per square km per hour 

and  is the fitting parameter. 

For , we take [14]: 

     (11), 
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where  is a constant value. 

3. Weather and Power Components Modelling

3.1. Weather modelling 

To consider distributed generation by renewable sources and the effects of extreme weather 

conditions on the failure behaviour of the system components, the factors to be modelled in our 

work include wind, solar irradiance and lightning. As often done in the literature, the Weibull 

distribution is used to model the random wind speed at time t; the probability density function 

(PDF) of wind speed is [18, 19]: 

(12), 

where   and   are the shape parameter and the scale parameter, respectively, which can be obtained 

by fitting eq. (12) to historical wind speed data at time t. 

The beta PDF used to model the solar irradiance  is [18, 19] : 

(13), 

(14), 

where is the solar irradiance [kW/m
2
] at time t, and   and   are fitting parameters.

The model for random lightning occurrence is obtained from historical data of mean occurrence 

hours per year (Tlight) and mean ground flash densities (Ng). In the Monte Carlo procedure here 

adopted, the lightning occurrence is sampled from the occurrence probability obtained by dividing 

Tlight by the total hours in the year. When the lightning is sampled to occur, Ng is randomized 

uniformly as in [14]. Thunderstorm events are obtained when both the wind speed is higher than 

 and a lightning event is sampled. 

3.2. Power components modelling  
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This Section presents the models of the generation and consumption components in the DG system, 

as described in previous work by some of the co-authors [20]. 

3.2.1. Photovoltaic panel (PV) 

The power output from a single solar cell is obtained using the following equations and the 

randomized irradiance      [18, 19]: 

(15), 

   (16), 

(17), 

(18), 

         (19), 

where  ambient temperature [ºC],  is the nominal cell operating temperature [ºC],  cell 

temperature [ºC],  short circuit current [A],    current temperature coefficient [mA/ºC],  open 

circuit voltage [V],  voltage temperature coefficient [mV/ºC],  voltage at maximum power 

[V],  current at maximum power [A]. FF fill factor,  number of photovoltaic cells, 

PV power output [W]. 

3.2.2. Wind turbine (WT) 

The WT uses the kinetic wind energy to generate electricity. The power output of one WT 

can be modelled as a function of wind speed      as [20]: 

(20), 

where  is the cut-in wind speed [m/s],  is the rated wind speed [m/s],  is the cut-out wind 

speed [m/s] and  is the rated power [kW]. 

3.2.3. Electric vehicle (EV) 
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In this work, EVs are considered as battery EVs with three possible operating states: charging, 

discharging and disconnected [21]. The power output of one EV block, made by a number of 

individual EVs considered as a whole,            [18, 19] is calculated using: 

(21), 

(22), 

where t is the hour of the day [h],  the residence time interval for operating state op [h], 

 is the rated power [kW],   is the discharging probability at time t, 

is the charging probability at t and  is the probability of disconnection at time t. 

3.2.4. Storage devices (ST) 

The behaviour of the STs is similar to that of the EVs with only charge and discharge states. The 

level of charge is assumed to follow a uniform distribution and for the sake of simplicity we 

suppose that only discharge is allowed as the operative state [20] : 

         (23), 

         (24), 

         (25), 

where  is the level of charge in the battery [kJ], SE is the specific energy of the active chemical 

[kJ/kg], MT is the total mass of the active chemical in the battery [kg],  is the rated power 

[kW] and  is the discharging time interval [h]. 

3.2.5. Load demand (L) 
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Demand of power, overall and nodal, is described by the daily power demand curve (Fig. 2). At 

each hour, there is a specific mean power demand and variance (obtained from historical data). The 

uncertainty for the load profile is modelled by a normal distribution [22]. 

Fig.2 

The nodal demand of power is deducted from the overall demand in the network and is modelled as: 

(26), 

where       is the mean load at node b at time t,  is the standard deviation at node b at time t, 

 is the power demand (Load) at node b [kW],  is the normal PDF of power demand  in node b 

at time t,   (-) is the cumulative distribution function (CDF). 

3.2.6. Main supply (MS) 

The MS spots in the distribution network are the power stations connected to the transmission 

system. The distribution transformers are located on these spots and provide the voltage level of the 

customers. In this study, the MS is modelled like a slack bus, as the generator used for balancing the 

production and the demand by injecting power into the DG system.   

4. Simulation Procedures for the Risk Assessment and Multiobjective

optimization of DG systems exposed to extreme weather conditions

4.1. Non-sequential Monte Carlo 

Non-sequential MC [18, 34] is used to evaluate the DG system model and compute the composite 

risk (3), accounting for the variability of the environmental and operational states,  . At each 

simulation run, first an hour of the day t is randomly sampled from a uniform distribution U(1,24); 

then, the environment vector χ, including wind speed, lightning and irradiance, is generated in 

correspondence of that t. These actions consist of the first step in the flow chart shown in Fig. 3, 

which refers to a single MC iteration. At the second step, the DGs power outputs, the distribution 

lines failure rates and contingencies probabilities (eqs. (7)-(8)) are obtained for the sampled χ. At 

the third step, one contingency is selected, the AC power flow is performed under the scenario 

induced by this contingency and χ, and the system performance is evaluated. At the fourth step, the 

probability of  and the severity values relevant to  are computed, and eq. (2) is used to compute 
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   . At the fifth step,         is stored for   . At the last (sixth) step,      is obtained 

according to eq. (3). The procedure is repeated for a large number of times and the results are the 

contingencies probabilities, severities and risk values for different sampled scenarios.  

Fig.3 

4.2. AC power flow 

Compared to DC power flow, which can be fast but less accurate, AC power flow provides a closer 

approximation to the real state of the system for the evaluation of the severity functions presented in 

Section 2.2. The single-phase AC power model is widely accepted as a high-quality approximation 

of the steady-state behaviour of real-world power flow [23]; more accurate but complex models, 

like AC three phase complete power flow [24], can also be considered. Taking into account the 

balance between computation efficiency and approximation accuracy, this study adopts the single-

phase AC power model.  

4.3     Multiobjective optimization (MOO) of optimal power sizing 

MOO problems are commonly defined for optimal DG allocation and sizing [20]. In particular, risk-

based multiobjective optimization (RBMOO) offers the capability of controlling system risk via 

trade-offs with the other values (e.g. economical) of the solutions, as explained in [8]. We embed 

the proposed simulation-based PRA including extreme weather events within the risk-based 

multiobjective optimization of the sizing of DG installation in a distribution grid. The decision 

variables are the nominal power of the sources to be installed on each node of the grid, grouped in 

the decision vector: 

(27), 

where  is the nominal power size of generator type k (e.g. wind turbine, EV, etc) on  node b. 

Given , the simulation model is run under various scenarios to evaluate the objective 

functions, which are the expected risk  , obtained as the mean of the risk values over all MC 

runs, and the expected global cost  obtained by averaging the values of eq. (28) over all MC 

runs. The global cost  sums up the operation and maintenance costs and the investment cost 

related to the specific DG size, similarly to what proposed by Mena and co-authors [20]: 

(28), 
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   (29),

(30),

where    is the duration of the scenario [h],    is the horizon of analysis [h],  are the 

operation and maintenance costs of the total power supply and generation [$],  is the 

investment cost of the k-th generator technology [$/kWh], are the operation and maintenance 

costs of the power source   (with   =   ,  ,   ,   )  [$/kWh], is the global investment cost of 

all the technology installed on node b [$] and  is the global cost [$]; 

4.4 Solving procedure for the MOO 

For the MOO solution, we adopt the Non-Dominated Sorted Genetic Algorithm version two 

(NSGA-II), because it has been shown to be very effective through the incorporation of elitism in 

the search and with no need for the sharing parameter to be chosen a priori [35]. Briefly the NSGA-

II applied to a MOO problem proceeds as follows: at step 1, we set the generation number gen, 

starting population size N and MC runs number; at step 2, the starting population p0 is randomly 

created, each one of the N chromosomes inside p0 is associated a decision vector       
          and each 

element          is constrained between preselected lower and upper power limits  

 (in fact, the constraints are incorporated into the global cost objective function. The 

unfeasible solutions are subject to the death penalty, i.e. their fitness values are set to positive 

infinite.); the 3rd step consists of the MC simulation for evaluating the objectives 

   for each chromosome in p0; at step 4, the population is sorted and ranked based 

on non-domination and crowding distance; the 5
th

 step starts the evolutionary loop for the search of

optimal (dominant) solutions: the generation number g in the first loop is set to zero, the parent 

chromosomes are selected and an intermediate population pg’ is obtained; at step 6, the polynomial 

mutation and binary crossover (having probabilities pm and pc, respectively) are applied to the 

intermediate population pg’ and the result is the offspring population og; the 7
th

 step consists of the

MC simulations used to evaluate the objectives for each one of the vectors inside og; at step 8, og is 

combined with pg to form the union population ug= pg   og, whose chromosomes are, then, sorted 

based on non-domination and crowding distance; at step 9, the first N elements of the sorted ug are 

selected to create the new population pg+1; finally, the generation number is updated g=g+1 and the 

evolutionary process is repeated until g is equal to gen runs. Fig 4 sums up the procedure to solve 

the MOO by NSGA- II. 
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Fig 4 

5. Application

5.1. DG system description 

An 11-nodes, DG and radial system [20], modified from the IEEE 13 nodes radial distribution 

network [25], is considered (Fig. 5 and Tab. 1) as example case study for the PRA modelling 

framework proposed. The spatial structure of the IEEE 13 network has not been changed, but we 

neglect the regulator, capacitor and switch, remove the feeders of zero length and we consider all 

the lines has overhead lines. The modifications are made so that it becomes of interest to consider 

the integration of renewable DG units and perform a PRA including severe weather conditions. In 

spite of its small scale, the systems are relatively complete. We assume that weather condition is 

homogeneous across all its components. MS is installed on the 1
st
 node and the configuration of DG

(electric vehicles EVs, photovoltaic cells PVs, storages STs, and wind turbines WTs) follows an 

optimal solution found in [20] by maximizing the reliability of power supply and minimizing the 

global cost of the system. The details are presented in Table. 1. For example, the entry at 2
nd

 row

and 3
rd

 column indicates that there are 62 PVs being installed on node 1.

Fig.5 

Table 1 

Table 2 presents the parameters of the DG models, of the weather models and of the failure rates. 

Table 2 

Fig. 6 shows the hourly probability data for the EV operation states. 

Fig .6 

The parameters of the distribution lines relevant to the AC power flow computation are presented in 

Table 3.  

Tab. 3 

An RBMOO has, then, been defined to aim at finding the optimal size and location of the renewable 

technologies considered, comparisons and result analysis are presented in Section 6.  
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5.2. Simulation setting 

The main supply (MS) situated in node 1 is the slack bus (i.e., swing or reference bus [26]) used for 

the AC power flow. It is typical to assign given reference voltage magnitude  and voltage angle 

 to this bus: in our case,  [kV] which equals to the voltage magnitude of the original 

case and  , which is commonly set for the slack bus. The base apparent power and base 

voltage used for the per-unit system are 100 [MVA] and 4.16 [kV], respectively. Based on the base 

voltage,             p.u. is used, following [27]. Note that the system does not have a protection 

device that allows an islanding mode, which means that a distribution line failure can result to part 

of the system being in black out. For example, the failure of line 24 can produce the black outs in 

nodes 4 and 5. The portion of the system in black out state has zero power flow and node voltage. 

The Monte Carlo simulation framework proposed for the PRA has been applied to the network, one 

time with DG installed as explained in [20] (Fig. 5) and another time without DG (i.e. the original 

radial distribution network). Comparisons of the results obtained has been made considering or not 

the effects of severe weather conditions in the failure model. The PRA for the case without taking 

into account the extreme weather conditions influence (equations (9) and (10) in Section 2 

neglected) has been performed setting the failure rate at a constant value equal to       .  

The contingency list considered includes the ‘N-1’ overhead lines contingencies, similar to other 

assessments of literature [29] and also considering the criticality of overhead feeders in stormy or 

windy environments [23]. The proposed model is flexible and allows the introduction of various 

contingencies for various components, generators included, but an exhaustive list would be out of 

the scope of this paper. 

The NSGA-II was, then, applied to solve the DG sizing and allocation MOO problem introduced 

Section 5.1. Optimization parameters were set as follows: starting population size N=100, number 

of generations gen=50, MC runs equal to 200, crossover probability pc = 0.9 and mutation 

probability pm = 1/44, where 44 is the number of decision variables (power sizes in each node). The 

scenario time    has been set equal to 1 hour and    equals to 10 years. Upper power size limits and 

cost data are presented in Table 4. The lower limits for power size are fixed to zero. 

Table 4 

6. Results and Analysis
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In this Section, we first compare the PRA results obtained considering extreme environments with 

those obtained under normal weather conditions (subsection 6.1). This is done for both case of DG 

or not DG systems, to explore the effects of extreme weather conditions on the system risk for the 

two system configurations. Secondly, we show the contingency ranking for the DG system 

considering extreme weather conditions (subsection 6.2), in order to identify the worst 

contingencies. After this, we compare with and without DG systems under both extreme and normal 

weather states (subsection 6.3), and this will show the lower risk and severity associated to the DG 

system. We indicate with the notation          the unexpected failure in the connection between 

nodes b and nodes b’. Finally, we present the Pareto front and three optimal solutions for the 

generator sizing obtained by solving the RBMOO problem with NSGA-II (section 6.4). 

6.1. PRA: Effects of extreme weather conditions 

The expected risk values for the no-DG and the DG systems are shown in Figs. 7 and 8, 

respectively. The risk is computed as the sum of all the recorded     s at each iteration, divided by 

the number of scenarios sampled at the iteration. An increment in the expected risk could be 

attributed to some heavy environmental conditions.  It is seen that the average risk has a sensibly 

higher value if lightning and high wind are included in the model, for both systems without or with 

DG: at convergence, the ratios are           and            respectively. 

Fig.7 

Fig.8 

Dotted lines in the plots refer to the expected risk if only the lightning is considered; influence of 

the high wind can be derived by looking at the difference between this line and the dashed line 

(high wind and lightning).     

Fig. 9(a) show the classical probability-low voltage severity plot for the contingencies of the DG 

system. Each dot in this plot is a risk value computed in a single MC run (step 5).  It is observed 

that, as expected, contingencies C12 and C26 result in higher risks, due to their higher severities and 

larger probabilities. This is intuitive by taking into account the topology of the system: the lines 1-2 

and 2-6 are two central lines and the failure of either will cause a black out of a considerable 

amount of nodes, resulting in a large value of severity; additionally, these two lines are the longest 

ones in the system, so that their failure rates  [failure/h] have values higher than the others. 
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Fig. 9(b) displays the probability-overflow severity plot. We can observe that the severity values are 

mainly lower than those in Fig. 9(a), while the probability values are the same in the two Figures. 

The differences in severity values can be understood by analyzing the failure of one branch in the 

system, e.g. line 2-6: if it fails, there is a high low-voltage consequence due to the large number of 

nodes with zero voltage (in black out), but in that part of the system the active and reactive power 

flows are zero, and hence the overflow severity is lower.  

Fig. 9(a) 

Fig. 9(b) 

Figs. 10 and 11 specifically show the results of     , selected as one representative example of 

contingency. The probability has been plotted in logarithmic scale for better graphical output.  The 

dots represent the risks            and            computed in the MC runs. Three zones are 

pointed out: DV, NV and secure zones. In these Figures, the extreme weather effects can be 

observed: if a normal environmental condition is sampled, the result will be within the set of points 

with constant probability (obtained using the constant       ), for example surrounded by the 

dashed line in Figure 11. If an heavy environmental condition (     and/or          ) is 

sampled, the result will not be inside this set, due to the different failure probability values. 

Fig.10 

Fig.11 

It can be observed in Fig. 10 that a large number of violation scenarios occur. These are obviously 

the ones with high load demands and, hence, high power flows in the lines. Note that like some 

other contingencies,     has scenarios with a zero overload severity due to the low power demand 

by the customers (e.g. in night hours). These scenarios are located inside the secure zone. Fig. 11 

shows that each violation scenario leads to a DV: this is due to the fact that our model does not 

include protection schemes and no islanding mode is available. Hence, if we consider a contingency 

in line 2-4, it will cause a DV violation in nodes 4 and 5. 

6.2 PRA: Contingency ranking 

Contingency ranking is usually performed to identify the contingencies that cause the worst 

problems in the system [28]. The proposed MC simulation allows retrieving a contingency ranking. 

We use the percentage risk contribution                as the ranking criterion and show its values 

under various load demand levels for each contingency. 
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Fig. 12(a) 

Fig. 12(b) 

Fig. 12(c) 

The x-axis, in Figs. 12(a-c) and 13(a-c), represents the power demand in [kW] and the y-axis shows 

   . Figs. 13(a-c) displays the quadratic fit for the percentage risk contributions. It is 

observed that the rank changes with different load levels. For example, under stressed condition 

(high load demand), the risk associated to C810 is larger than that associated to C611 and C68. If lower 

power demand is considered, higher risks are due to C611 and C68 than to C810. For the majority of 

sampled scenarios,  is the third higher contributor to the risk, with value around 3% 

as shown in Fig. 13(a). The first and second worst contingencies are  ≈52%, as shown 

in Fig. 13(c) and  ≈ 31.5%, as shown in Fig. 13(b). As to C68, who has the third 

highest low voltage severity (in Fig. 9), lower relevance is partially due to the low probability of 

occurrence.  

Fig. 13(a) 

Fig. 13(b) 

Fig. 13(c) 

6.3 PRA: Comparisons between the without and with DG systems 

As complement to Section 6.1, we compare the risks of the two systems under different weather 

conditions. Under normal weather conditions, risk is very low for both systems (Fig. 14): the results 

show that the risk of the network without DG (          ) is slightly higher (~1%) than that of 

the system with DG (           ). We also analyze the difference between the two systems 

under extreme weather conditions. Fig. 15 shows that the risk value of the system without DG 

(           ) is approximately 1.3% higher than that of the with-DG system (           ), 

if extreme weather conditions are taken into account. The risk reduction in the with-DG system is 

mainly attributed to the improved mean voltage profile, as displayed in Fig. 16.  In general the risks 

for both systems are much higher under the extreme weather conditions than under the normal 

conditions. The comparisons between the without- and with-DG systems reveal that the DG 
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installation has reduced of about 1.3% the risk under extreme weather conditions and of about 1% 

the risk under normal conditions.  

Fig.14 

Fig.15 

Fig.16 

6.4  RBMOO: results  

Fig 17 shows the optimal Pareto front produced by NSGA-II. The results are obtained including 

extreme weather conditions. Fig. 18 shows three solutions within the optimal front, with three levels 

of risk and cost values:              
  is the solution of highest expected risk and lowest expected cost, 

   is the best compromise solution obtained using the min-max approach [38] to compromise 

between expected risk and expected cost, and              
  is the solution of lowest expected risk and 

highest expected cost.  

Figs.19-22 show the results for the sizing of different DG types on each node. The y axis contains 

the node number and the x axis represents the related power size           . We also show in Fig. 

23 and Table 5 that, coherently with the model, the lowest cost solution corresponds to one with 

lowest power installed and the highest solution corresponds to the one with higher amount of power 

installed, whereas higher risk correspond to lower amount of power installed. The x axis in Fig. 23 

represents the global nominal power installed in the network           
  
     and the y axis reports 

the DG technology type k. The amount of PV power installed is lower than other technologies: this 

is explainable if one considers the investment cost       , which is one order of magnitude higher 

than for the other technologies.  

Fig.5 

Table 5 shows the global power installed in each node, if we compare the less risky solution with 

the more risky one, the tendency is a global increment of the power installed in each node. We can 

also observe that a less risky solution allocates more power in a central node for the system (node 6) 

improving the voltage profile and reducing the flow of power in the central lines. 

Fig.19-22 

Fig. 23 

The RBMOO solutions appear to be more expensive but less risky than the original ones assessed in 

the preceding sections. Comparison values are reported in Tables 6 and 7. Table 6 contains the 
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expected risk and expected cost values. In Table 7, we show the risk reduction for the four systems 

with-DG compared to the without-DG system. We can observe that the optimal solutions, 

accounting for the extreme events, further reduce the risk than the one for which extreme events are 

not considered. Compared to the without-DG case, the cheapest solution             
  reduces risk of 

almost 1.8 % if extreme weather conditions are considered (around 1.5 %, without accounting for 

the extreme weather events) whereas the more expensive solution             
  reduces it more than 

~2.56 % (~2.05 % without considering the extreme weather events). The comparisons between the 

RBMOO optimal solutions and the system in Table 1 reveal that they are actually non-dominated to 

each other with respect to the expected risk and the expected cost. 

To investigate the effects of DG installations significance tests have been performed to compare 

the risk values of the three Pareto optimal DG systems and the radial system. The Wilcoxon rank 

sum tests are used in place of the standard t-tests because the distributions of risk values are non-

normal [40].The results in Table 8 show rejections of null hypothesis of equal medians at 0.1% 

significance level, so that we can accept the alternative hypothesis that the DG installations in 

the three Pareto solutions do help to reduce the system risk. Note that we do not investigate the 

effects of severe weather conditions onto the system risk because one goal of this work is to 

include the severe weather into the system simulation model for closer adherence to reality. 

Tab. 6 

Tab. 7 

Tab.8 

6.5 Discussions 

The results presented in the previous sections show percentage reductions for the DG systems risks, 

even if severe weather conditions are accounted for. These reductions bear intuitive economic-

human relevance: the (lines) contingencies can lead to blackouts of one or several nodes, so that the 

customer power demands are not satisfied, thereby creating problems in both economic and human 

terms. We do not quantitatively express this , because it would require  considering also greenhouse 

gas reduction, line power loss reduction, economic return due to the usage of renewable energy, and 

several others aspects, which would lead us out of the scope of the work. 
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Note that reduction of 1% or 1.3% is numerically small, but not irrelevant for the networks 

considered. For a significant number of scenarios, the system stress due to severe weather 

conditions is much lower in the DG system than in the radial system. This implies that the 

incorporation of DGs, with stochastic power production dependent on weather conditions, does not 

deteriorate the system even if severe weather conditions are accounted for. On the contrary, it 

slightly reduces risk. 

Additionally, we should take into account also the specific setting of the system, with weakly 

connected nodes that cannot lead to numerically big reductions of the risk without also 

accounting for security schemes such as the islanding mode and different grid topologies. Such 

considerations are part of our intended future developments. 

7. CONCLUSIONS

In the work presented in this paper, a simulation-based framework for the probabilistic risk 

assessment of DG systems, considering also extreme weather conditions. MC non-sequential 

algorithm has been implemented, for accounting of extreme wind speed and lightning events, whose 

effects have been originally included onto the probabilistic failure models of the system 

components. Application to a case study shows that under extreme weather conditions, there is an 

increment in the expected system risk, as expected. Severity-probability visualizations are presented 

and contingency ranking is performed, under various operational conditions. Comparison with a 

without-DG system confirms the benefits of DG installation in terms of bus voltage, line flows and 

post-contingency severities, particularly under extreme weather conditions.  

The probabilistic risk assessment framework has been embedded within a multi-objective optimal 

power generation sizing framework to obtain the best nominal power size of different technologies 

to be allocated in each node of the DG system. The optimal solutions turn out to be best in terms of 

expected cost and risk, as computed according to the probabilistic risk assessment model proposed 

to incorporate severe weather.  

The computational effort added is, compensated by the insights that can be gained from the 

simulation and optimization results. In this sense, a decision maker can be provided with risk-

informed knowledge on optimal DGs allocation and the benefits not only of emission reduction etc., 

but also of system performance under severe weather conditions. 
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In synthesis, the original contributions of the work are: 

PRA simulation framework: 

- Inclusion of extreme weather conditions and their effects on the system components

failure;

- Severity-probability visualization

- Contingency ranking within for the assessment;

RBMOO framework: 

- Inclusion of the extreme weather conditions by embedding the PRA within the MOO

framework;
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Fig.2 illustrative example of overall mean power demand [20] 

Fig.3 Flow chart of a single MC run 
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Fig.4 Flow chart of RBMOO-NSGA-II 

 Step 2: Randomize initial population p0 

p0=  ; 
the i-th element of the population is the power size of the generators in each node: 

with  . 

Step 1: Set Generation number gen, starting population size 

N and Monte Carlo loops. 

Set Generation number gen, starting population size N and
Monte Carlo runs.

Step 3: Perform MC steps from 1 to 6, as presented in Fig 3, to obtain the expected objectives 

for each chromosome of the initial population  

 p0. 

Step 4: The initialized population p0 is sorted based on non-domination with respect to the objective 
functions; crowding distance is assigned to each element. Ranked non-dominated fronts are obtained 

 , where   is the best front and   the less good front. 

Get g=0 and start evolutionary loop. 

Step 5: The parents individuals are selected by using a binary tournament selection based 

on the crowed-comparison-operator: an intermediate population pg’ is obtained. 

 

Step 6: Polynomial mutation and binary crossover are applied to reproduce the population pg’ 

and create an offspring population og .  

g=g+1 Step 7: Objective functions are evaluated   og.

Step 8: og is combined with the current generation population pg to form a union population 
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Fig.5 Modification from IEEE 13 nodes radial distribution network to the 11 nodes DG system. 

Table 1. Allocation of the different power sources on the generation nodes of the distribution network of Fig. 

5. 

Node # MS  PV  WT  EV  ST  
1 1 62 0 0 0 

2 0 47 0 0 41 

3 0 15 0 0 0 

4 0 15 2 0 29 

5 0 14 0 0 18 

6 0 28 1 0 28 

7 0 0 0 2 8 

8 0 23 2 0 19 

9 0 0 0 0 17 

10 0 0 0 0 0 

11 0 0 0 0 0 

Table 2. Parameters of DG models, weather models and failure rates 

DG model parameters 

WT PV ST EV 
Voc=55.5 [V] 

  [m/s] Ta=30 [°C] 

 [m/s] 

Weather model parameters 

Wind speed Solar irradiance Lightning High wind 
 2.3 Vcritic  = 9.86[m/s]  
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 8.5 Tlight = 50 [h]

Failure rate parameters (due to extreme weather conditions) 

High wind 

related failure 

rate 

Lightning failure 

rate 

Normal failure rate 

Vcritic  = 9.86[m/s]  

Fig.6 Hourly per day probability data of EV operating states [20] 

Table 3. Distribution line parameters 

node 
b 

node 
b' 

R[ /km] X[ /km] Ampacity[A] length[km] 

1 2 0.116 0.371 365 0.610 
2 3 0.368 0.472 170 0.152 
2 4 0.696 0.555 115 0.152 
2 6 0.116 0.371 365 0.610 
4 5 0.696 0.555 115 0.091 
6 7 0.303 0.252 165 0.152 
6 8 0.696 0.555 115 0.091 
6 11 0.116 0.371 365 0.305 
8 9 0.696 0.555 115 0.091 
8 10 0.377 0.318 115 0.244 

0,19 0,2 0,19 0,18 0,19 
0,19 

0,17 

0,09 0,03 

0,12 
0,09 0,08 0,09 0,08 

0,07 
0,06 

0,01 
0 

0,12 
0,15 0,17 0,19 0,19 0,19 

0,45 0,47 

0,45 0,43 0,44 0,44 

0,4 

0,21 

0,07 

0,29 

0,21 
0,19 

0,22 

0,18 0,16 
0,13 

0,03 

0 

0,29 
0,34 

0,41 

0,43 0,44 0,45 

0,36 
0,33 

0,36 
0,39 0,37 0,37 

0,43 

0,7 

0,9 

0,59 

0,7 
0,73 

0,69 

0,74 
0,77 

0,81 

0,96 

1 

0,59 

0,51 

0,42 

0,38 0,37 0,36 

0 

0,2 

0,4 

0,6 

0,8 

1 

1,2 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Discharging 

Charging 

Disconnected 



28 

Table.4 Nodal power size limit for the technology, equal in each node. 

k  [kW]  [$/kWh]  [$/kWh] 

PV 10 0.41 0.0000376 

W 100 0.026 0.0390000 

EV 33.65 0.028 0.0220000 

ST 100 0.0771 0.0000462 

Fig.7 Expected risk index  as a function of MC iterations, in the DG system 
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Fig.8 Expected risk index  as a function of MC iterations, in the RADIAL system 

Fig. 9(a)   and   plot of the contingencies of the DG system
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Fig. 9(b)   and   plot of the contingencies of the DG system 

Fig.10              and     visualization.          Fig.11              and  visualization. 

Dots= severity values;           Dots= severity values; 

Solid line=set of results in DV,NV or secure zones   Solid line=sets of results in DV zone; 

 Dashed line= set of results under normal weather 
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Fig.12(a) Contingency ranking for various load levels in the DG system considering extreme weather 

Fig.12(b)   for various load levels 
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.     Fig.12(c)   for various load levels 

Fig.13(a) Contingency ranking 
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Fig.13(b)   Fig.13(c) 

Fig.14 Expected risk as a function of MC runs, in the DG and radial systems, considering normal weather 

conditions 

Fig 15. Expected risk as a function of MC runs, in the DG and radial systems, considering extreme weather 

conditions 
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Fig.16 Mean voltage profile 

Fig. 17 Optimal Pareto front.         Fig. 18 Three optimal solutions. 

Table 5 Nominal power in each node for the three solutions. 

 [kW]  [kW]  [kW] 

Node1 
49.24 84.93 177.61 

Node2 
69.68 93.24 161.72 

Node3 
143.44 55.63 122.49 

Node4 
99.56 86.24 158.81 

Node5 
109.35 66.70 129.99 

Node6 
28.64 175.99 197.77 

Node7 
48.85 114.73 134.07 
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Node8 
90.35 84.64 160.78 

Node9 
146.12 98.79 175.45 

Node10 
17.12 136.23 163.47 

Node11 
116.41 120.88 95.57 

Total 
918.78 1118.01 1677.70 
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Figs.19-22 Optimal power size in each node and for each technology 

Fig.23 Overall power installation in the three cases and for the different technologies 
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Table 6 Risk index results for the different systems analyzed 

Network 

configuration  Considering extreme events No extreme events 

E(Cg) [$] 

Radial 0.02284 0.002237 0 

Allocation Table 1 0.02256 0.002215 ~31 

0.02244 0.002204 ~50 

0.02238 0.0022 ~64 

0.02227 0.002193 ~94 

Table 7 Risk reduction with respect to the radial case (in percentage) 

Network 

configuration 

Percentage of risk reduction 

with respect to the radial case 

(considering extreme events )   

Percentage of  risk reduction 

with respect to the radial 

case (neglecting extreme 

events)   

Allocation Table 1 - 1.24 -1.01

-1.78 -1.49

-2.06 -1.73

-2.56 -2.00

Table 8 Results of the Wilcoxon rank sum tests in comparing risk distributions 

Paired comparisons p-value

 vs. radial <0.001 

 vs. radial <0.001 

 vs. radial <0.001 
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