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Abstract. A classical theorem of Herglotz states that a function n 7→ r(n) from Z into Cs×s

is positive definite if and only there exists a C
s×s-valued positive measure µ on [0, 2π] such

that r(n) =
∫

2π

0
eintdµ(t)for n ∈ Z. We prove a quaternionic analogue of this result when

the function is allowed to have a number of negative squares. A key tool in the argument
is the theory of slice hyperholomorphic functions, and the representation of such functions
which have a positive real part in the unit ball of the quaternions. We study in great detail
the case of positive definite functions.

1. Introduction

The main purpose of this paper is to prove a version of a theorem of Herglotz on positive
functions in the quaternionic and indefinite setting. To set the framework we first recall some
definitions and results pertaining to the complex numbers setting. A function n 7→ r(n) from
Z into C

s×s is called positive definite if the associated function (also called kernel) K(n−m)
is positive definite on Z. This means that for every choice of N ∈ N and n1, . . . , nN ∈ Z, the
N × N block matrix with (j, ℓ) block entry equal to the matrix r(nj − nℓ) is non-negative,
that is, all the block Toeplitz matrices

TN
def.
=




r(0) r(1) · · · r(N)
r(−1) r(0) · · · r(N − 1)

r(−N) r(1−N) · · · r(0)




(1.1)
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are non-negative. We will use the notation TN � 0. The positivity implies in particular that
r(−n) = r(n)∗, where r(n)∗ denotes the adjoint of r(n).

A result of Herglotz, also known as Bochner’s theorem, asserts that:

Theorem 1.1. The function n 7→ r(n) from Z into C
s×s is positive definite if and only if

there exists a unique positive C
s×s-valued measure µ on [0, 2π] such that

r(n) =

∫ 2π

0
eintdµ(t), n ∈ Z. (1.2)

See for instance [17, p. 38], [13] and the discussion in [18, p. 19]. We note that (1.2) can be
rewritten as

r(n) = C∗UnC, n ∈ Z, (1.3)

where U denotes the unitary operator of multiplication by eit in L2([0, 2π], dµ), and C de-
notes the operator defined by Cξ = ξ from C

s into L2([0, 2π], dµ).

A result of Carathéodory [9], which is related to Theorem 1.1 asserts that:

Theorem 1.2. If the function n 7→ r(n) from −N, . . . ,N into C
s×s is positive definite, i.e.,

TN � 0, then exists a function n 7→ r̃(n) from Z to C
s×s which is positive definite and

satisfies

r(n) = r̃(n), n ∈ {−N, . . . ,N}. (1.4)

In commutative harmonic analysis, Theorem 1.1 is a special case of a general result of Weil
[23] on the representation of positive definite functions on a group in terms of the characters
of the group. See for instance [12, (22.7.10), p 65] or [22, Theorem 5.4.3, p. 65].

A key result in one of the proofs (see for instance [17, pp. 148-149]) of Theorem 1.1 is
Herglotz’s representation theorem, which states that a C

s×s-valued function ϕ is analytic
and with a real positive part in the open unit disk D if and only if it can be written as

ϕ(z) =

∫ 2π

0

eit + z

eit − z
dµ(t) + ia, (1.5)

where dµ is as in Theorem 1.1 and a ∈ C
s×s satisfies a+a∗ = 0. There are a number of ways

to prove (1.5). It can be obtained from Cauchy’s formula and from the weak-∗ compactness
of the family of finite variation measures on [0, 2π]; see for instance the discussion in [1, p.
207].

Krein extended the notion of positive definite functions to the notion of functions having a
number of negative squares; see [15]. We first recall the definition of this notion in the present
setting:

Definition 1.3. The function n 7→ r(n) from Z into C
s×s satisfying r(n) = r(−n)∗ has a

finite number of negative squares, say κ, if by definition the function K(n,m) = r(n − m)
has κ negative squares, that is, if all the block Toeplitz matrices TN defined in (1.1) (which
are Hermitian since r(n) = r(−n)∗) have at most κ strictly negative eigenvalues and exactly
κ strictly negative eigenvalues for some choice of N and n1, . . . nN .

Theorem 1.1 was extended, in the scalar case, by Iohvidov [16] to case where the function
K(n,m) has a finite number of negative squares. Formula (1.2) is then replaced by a more
involved expression. More precisely, he obtained the following extension of (1.2) (there is a



minus sign with respect to [16] and [14] because they work there with positive squares rather
than negative squares):

r(n) =

∫ 2π

0

eint − Sn(t)
∏u

k=1

(
sin
( t−ϕk

2

)2ρk)dµ(t)

−




r∑

j=1

Qj(in)λ
n
j +Qj(in)λj

−n
+

u∑

k=1

Rk(in)e
inϕk


 . (1.6)

In this expression, the λj are of modulus strictly bigger than 1, the Qj and Rj are polynomials
and Sn is a regularizing correction. These terms follow from the structure of a contraction
in a Pontryagin space, and in particular from the fact that such an operator has always a
strictly negative invariant subspace, on which it is one-to-one. See [14, (20.2), p. 319], where
Iohvidov and Krein prove that such a representation is unique.

In this paper we shall prove in particular a quaternionic analogue of Theorem 1.1, where H

denote the quaternions:

Theorem 1.4. Let (r(n))n∈Z be a sequence of s×s matrices with quaternionic entries. Then:
(1) The function K(n,m) = r(n −m) has a finite number of negative squares κ if and only
if there exists a right quaternionic Pontryagin space P, a unitary operator U ∈ L(P) and a
linear operator C ∈ L(Hs,P) such that

r(n) = C∗UnC, n ∈ Z. (1.7)

(2) Assume that ⋃

n∈Z

ranUnC (1.8)

is dense in P where ran UnC denotes the range of UnC. Then, the realization (1.7) is unique
up to a unitary map.

Some remarks:
(1) The sufficiency of condition (1.7) follows from the inner product representation

c∗r(n−m)d = c∗C∗Un−mCd = 〈U−mCd , U−nCc〉P , n,m ∈ Z, c, d ∈ H
s.

The proof of the necessity is done using the theory of slice hyperholomorphic functions. We
use in particular a representation theorem from [2] for functions ϕ slice-hyperholomorphic
in some open subset of the unit ball and with a certain associated kernel Kϕ(p, q) (defined
by (4.4) below) having a finite number of negative squares there. We also note that the
arguments in [2] rely on the theory of linear relations in Pontryagin spaces.

(2) The more precise integral representation of Iohvidov and Krein relies on the theory of
unitary operators in Pontryagin spaces. Such results are still lacking in the setting of quater-
nionic Pontryagin spaces.

(3) We also consider the positive definite case. There, the lack of a properly established
spectral theorem for unitary operators in quaternionic Hilbert spaces prevents to get a direct
counterpart of the integral representation (1.2).

The outline of the paper is as follows. The paper consists of seven sections, besides the
introduction. In Section 2 we review some results from the theory of slice hyperholomorphic
functions. Some definitions and results on quaternionic Pontryagin spaces are recalled in
Section 3 as well as Herglotz-type theorem for matrix valued functions. The proof of the
necessity and uniqueness in Theorem 1.4 is done in Section 4. Section 5 deals with the ana-
logue of Herglotz’s theorem in the quaternionic setting. In Section 6 we prove a quaternionic



analogue of Theorem 1.2. Section 7 contains the characterization of quaternionic, bounded,
Hermitian sequences of matrices with κ negative squares. It uses results proved in Section
5. In Section 8 we prove an Herglotz representation theorem for scalar valued functions slice
hyperholomophic in the unit ball of the quaternions, and with a positive real part there.

2. Slice hyperholomorphic functions

The kernels we will use in this paper are slice hyperholomorphic, so we recall their definition.
For more details and the proofs of the results in this section see [10].
The imaginary units in H are denoted by i, j and k, and an element in H is of the form
p = x0+ ix1+ jx2+kx3, for xℓ ∈ R. The real part, the imaginary part and conjugate of p are
defined as Re(p) = x0, Im(p) = ix1+ jx2+ kx3 and by p̄ = x0− ix1− jx2− kx3, respectively.
The unit sphere of purely imaginary quaternions S is defined by

S = {q = ix1 + jx2 + kx3 such that x21 + x22 + x23 = 1}.

Note that if I ∈ S, then I2 = −1; for this reason the elements of S are also called imaginary
units. Note that S is a 2-dimensional sphere in R

4. Given a nonreal quaternion p = x0 +
Im(p) = x0+I|Im(p)|, I = Im(p)/|Im(p)| ∈ S, we can associate to it the 2-dimensional sphere
defined by

[p] = {x0 + I|Im(p)| : I ∈ S}.

We will denote an element in the complex plane CI := R+ IR by x+ Iy.

Definition 2.1 (Slice hyperholomorphic functions). Let Ω be an open set in H and let f :
Ω → H be a real differentiable function. Denote by fI the restriction of f to the complex
plane CI .
We say that f is (left) slice hyperholomorphic (or (left) slice regular) if, on Ω∩CI , fI satisfies

1

2

(
∂

∂x
+ I

∂

∂y

)
fI(x+ Iy) = 0,

for all I ∈ S.
We say that f is right slice hyperholomorphic (or right slice regular) if, on Ω∩CI, fI satisfies

1

2

(
∂

∂x
fI(x+ Iy) +

∂

∂y
fI(x+ Iy)I

)
= 0,

for all I ∈ S.

An immediate consequence of the definition of slice regularity is that the monomial pna, with
a ∈ H, is left slice regular, so power series with quaternionic coefficients written on the right
are left slice regular where they converge. As one can easily verify only power series with
center at real points are slice regular.
We introduce a class of domains, which includes the balls with center at a real point, on
which slice regular functions have good properties.

Definition 2.2 (Axially symmetric domain). Let U ⊆ H. We say that U is axially symmetric
if, for all x+ Iy ∈ U , the whole 2-sphere [x+ Iy] is contained in U .

Definition 2.3 (Slice domain). Let U ⊆ H be a domain in H. We say that U is a slice
domain (s-domain for short) if U ∩ R is non empty and if U ∩ CI is a domain in CI for all
I ∈ S.

Lemma 2.4 (Splitting Lemma). Let Ω be an s-domain in H. If f : Ω → H is left slice
hyperholomorphic, then for every I ∈ S, and every J ∈ S, perpendicular to I, there are two
holomorphic functions F,G : Ω ∩ CI → CI such that for any z = x+ Iy, it is

fI(z) = F (z) +G(z)J.



Note that the decomposition given in the Splitting Lemma is highly non-canonical. In fact,
for any I ∈ S there is an infinite number of choices of J ∈ S orthogonal to it.

Theorem 2.5 (Representation Formula). Let Ω be an axially symmetric s-domain Ω ⊆ H

and let f : Ω → H be a slice hyperholomorphic function on Ω. Then the following equality
holds for all x+ yI, x± Jy ∈ Ω:

f(x+ Iy) =
1

2

[
f(x+ Jy) + f(x− Jy)

]
+ I

1

2

[
J [f(x− Jy)− f(x+ Jy)]

]
. (2.1)

3. Quaternionic Pontryagin spaces

A Hermitian form on a right quaternionic vector space P is an H-valued map [·, ·] defined on
P × P and such that

[a, b] = [b, a]

[ap, bq] = q[a, b]p, ∀a, b ∈ P and p, q ∈ H.

P is called a (right quaternionic) Pontryagin space if it can written as

P = P+

·

[+] P−, (3.1)

where:
(a) The space P+ endowed with the form [·, ·] is a Hilbert space.
(b) The space P− endowed with the form −[·, ·] is a finite dimensional Hilbert space.
(c) The sum is direct and orthogonal, meaning that P+ ∩ P− = {0} and

[a, b] = 0, ∀(a, b) ∈ P+ × P−.

The decomposition (3.1) is called a fundamental decomposition. It not unique unless one
of the components reduces to {0}. The dimension of P− is the same for all fundamental
decompositions, and is called the index of the Pontryagin space. The space P endowed with
the form

〈a, b〉 = [a+, b+]− [a−, b−] (3.2)

with a± and b± ∈ P± is a Hilbert space. The inner product (3.2) depends on the given
fundamental decomposition, but all the associated norms are equivalent,and hence define the
same topology. We refer to [5] for a proof of these facts. We refer to [5, 3] for more details
on quaternionic Pontryagin spaces and to[6, 8, 15] for the theory of Pontryagin spaces in the
complex case. A reproducing kernel Pontryagin space will be a Pontryagin space of functions
for which the point evaluations are bounded. The definition of negative squares makes sense
in the quaternionic setting since an Hermitian quaternionic matrix H is diagonalizable: It
can be written as T = UDU∗, where U is unitary and D is unique and with real entries. The
number of strictly negative eigenvalues of T is exactly the number of strictly negative elements
of D. See [24]. The one-to-one correspondence between reproducing kernel Pontryagin spaces
and functions with a finite number of negative squares, proved in the classical case by [20, 21],
extends to the Pontryagin space setting, see [5].

Definition 3.1. An H
s×s-valued function ϕ slice hyperholomorphic in a neighborhood V of

the origin is called a generalized Carathéodory function if the kernel

kϕ(p, q) = Σ∞
ℓ=0p

ℓ(ϕ(p) + ϕ(q))qℓ

has a finite number of negative squares in V.

The following result is Theorem 10.2 in [2].



Theorem 3.2. A H
s×s-valued function ϕ is a generalized Carathéodory function if and only

if it can be written as

ϕ(p) =
1

2
C ⋆ (IP + pV ) ⋆ (IP − pV )−⋆C∗J +

ϕ(0) − ϕ(0)∗

2
(3.3)

where P is a right quaternionic Pontryagin space of index κ, V is a coisometry in P, and C
is a bounded operator from P to H

N , and the pair (C,A) is observable.

Remark 3.3. When κ = 0 the representation (3.3) is the counterpart of Herglotz represen-
tation theorem for functions slice hyperholomorphic in the open unit ball and with a positive
real part. In the last section we shall discuss a scalar version of this result.

4. Proof of the necessity and uniqueness of the realization

In this section we assume that the function K(n,m) = r(n − m) has a finite number of
negative squares for n,m ∈ Z, and prove that the function r(n) has a representation of the
form (1.7). We also prove the uniqueness of this representation under hypothesis (1.8). We
begin with a preliminary proposition.

Proposition 4.1. There exists C > 0 and K > 0 such that

‖r(n)‖ ≤ K · C |n|, n ∈ Z. (4.1)

Proof. The claim is true in the scalar complex-valued case and follows from (1.6); see [14].
The idea is to reduce the problem to this case. We write r(n) = a(n)+ jb(n) where a(n) and
b(n) are C

s×s-valued. We obtain a bound of the required form for every entry of a(n) and
b(n). The coefficients K and C in (4.1) will depend on the given entry. Since there are 2s2

entries, we obtain a bound independent of the entry.

STEP 1: For every choice of (e, f) ∈ H
s ×H

s, the function

Ke,f (n,m) = e∗a(n−m)e+ f∗a(n −m)f + e∗b(n−m)f − f∗b(n−m)e

has at most 2κ negative squares.

Indeed, the C
2s×2s function

K1(n,m) =

(
a(n−m) b(n−m)

−b(n−m) a(n−m)

)

has 2κ negative squares (See [5, Proposition 11.4, p. 466]), and so, for every fixed choice of
(e, f) ∈ H

s ×H
s, the function

Ke,f (n−m) =
(
e∗ f∗

)( a(n−m) b(n−m)

−b(n−m) a(n−m)

)(
e
f

)

has at most 2κ negative squares.

STEP 2: The claim holds for every diagonal entry of a(n).

Take e = ej ∈ H
s to be the vector with all entries equal to 0, except the j-th one equal to 1

and f = 0. We have

Ke,f (n,m) = ajj(n−m),

and the result follows from [14].

STEP 3: The claim holds for all the entries of a(n).



Let ℓ 6= j ∈ {1, . . . , s}. We now take e = eℓj(ε) ∈ H
s to be the vector with all entries equal to

0, except the ℓ-th one equal to 1, and the j-th entry equal to ǫ (where ε will be determined)
and f = 0. We have

Ke,f (n,m) = aℓℓ(n −m) + ajj(n−m) + εajℓ(n−m) + εaℓj(n−m).

This function has at most κ negative squares and so the sequence

aℓℓ(n) + ajj(n) + εajℓ(n) + εaℓj(n).

has a bound of the form (4.1) (where K and C depend on ℓ, j and ǫ). The choices ǫ = 1 and
ε = i gives that the functions

aℓℓ(n−m) + ajj(n−m) + ajℓ(n−m) + aℓj(n−m)

and

aℓℓ(n−m) + ajj(n−m) + i(−ajℓ(n−m) + aℓj(n −m))

have at most κ negative squares and so the functions

|aℓℓ(n) + ajj(n) + ajℓ(n) + aℓj(n)| ≤ K1C
|n|
1

and

|aℓℓ(n) + ajj(n) + i(−ajℓ(n) + aℓj(n))| ≤ K2C
|n|
2

where the constants depend on (ℓ, j). Since aℓℓ(n) and ajj(n) admit similar bounds we get
that both aℓj(n) and ajℓ(n) admit bounds of the form (4.1).

STEP 4: The claim holds for the diagonal entries of b(n).

We now take e = eℓ and f = εej , where ε is of modulus 1. We have

Ke,f (n−m) = A(n −m) +B(n−m)

where

A(n −m) = aℓℓ(n−m) + ajj(n−m),

B(n−m) = εbℓℓ(n−m) + εbjj(n−m).

The choice ε = 1 and ε = i lead to the conclusion that bℓℓ(n) admits a bound of the form
(4.1) since, as follows from the previous step, A(n −m) admits such a bound.

STEP 5: The claim holds for all the entries of b(n).

We now take e = eℓj(ε1) and f = εeℓj(e2), where ε1 and ε2 are of modulus 1. We have now
Ke,f (n−m) = A(n −m) +B(n−m) with

A(n −m) = e∗a(n−m)e+ f∗a(n−m)f∗

B(n−m) = e∗b(n−m)f − f∗b(n−m)e

= bℓℓ(n−m) + ε1ε2bjj(n−m) + ε1bℓj(n−m) + ε2bjℓ(n−m)−

− bℓℓ(n−m)− ε2ε1bjj(n−m)− ε2bℓj(n−m)− ε1bℓj(n−m).

In view of the previous steps the sequence

ε1bjℓ(n) + ε2bℓj(n)− ε2bjℓ(n)− ε1bℓj(n)

admits a bound of the form (4.1). The choices

(ε1, ε2) ∈ {(1, 1), (1,−1), (i, i), (i,−i)}



lead to the functions

(bjℓ(n)− bjℓ(n)) + (bℓj(n)− bℓj(n))

(bjℓ(n) + bjℓ(n)) + (bℓj(n) + bℓj(n))

(bjℓ(n)− bjℓ(n)) + (bℓj(n)− bℓj(n))

− (bjℓ(n) + bjℓ(n)) + i(bℓj(n)− bℓj(n))

− i(bjℓ(n) + bjℓ(n))− i(bℓj(n) + bℓj(n))

all admit a bound of the form (4.1).

Proof of Theorem 1.4. We proceed in a number of steps to prove the necessity part of the
theorem. The first step is a direct computation which is omitted.

STEP 1: Let V be a coisometry (that is, V V ∗ = I) in the quaternionic Pontryagin space P.
Then,

U =

(
V ∗ I − V ∗V
0 V

)

is unitary from P2 into itself, and is such that

V n =
(
0 I

)
Un

(
0
I

)
, n = 0, 1, 2, . . . (4.2)

STEP 2: The series

ϕ(p) = r(0) + 2
∞∑

n=1

pnr(n),

Kϕ(p, q) =
∑

n,m∈Z

pnr(n−m)qm,

converge for p and q in a neighborhood Ω of the origin, and it holds that

Kϕ(p, q)− pKϕ(p, q)q =
ϕ(p) + ϕ(q)∗

2
, p, q ∈ Ω. (4.3)

The asserted convergences follow from (4.1), while (4.3) is a direct computation.

STEP 4: It holds that

Kϕ(p, q) =
∞∑

n=0

pn
(
ϕ(p) + ϕ(q)∗

2

)
qn (4.4)

This is because equation (4.3) has a unique solution, and that the right side of (4.4) solves
(4.3).

STEP 5: Kϕ(p, q) is has a finite number of negative squares in Ω.

Note that for every N ∈ N the function

Kϕ,N (p, q) =
(
Is Isp · · · Isp

N
)
TN




Is
Isq
...

Isq
N






has a finite number of negative squares, uniformly bounded by κ in Ω. The claim then follows
from

Kϕ(p, q) = lim
N→∞

Kϕ,N (p.q)

STEP 6: There exist a right quaternionic Pontryagin space P, a unitary operator U ∈ L(P)
and a linear operator C ∈ L(Hs,P) such that

ϕ(p) =
CC∗

2
+

∞∑

n=1

pnC∗UnC, p ∈ Ω (4.5)

Indeed, since the expression in the right side of (4.4) defines a kernel with a finite number of
negative squares, we can apply [2, Theorem 10.2] to see that there exists a right quaternionic
Pontryagin space P1, a coisometric operator V ∈ L(P1) and a bounded operator C1 ∈
L(P,P1) such that

r(n) = C∗
1V

nC1, n = 0, 1, . . .

We now apply STEP 1 to write

r(n) = C∗
1

(
0 I

)
Un

(
0
I

)
C1, n = 0, 1, . . . ,

which concludes the proof with C =

(
0
C1

)
and n ≥ 0. That the formula still holds for

negative n follows from r(−n) = r(n)∗ and from the unitarity of U .

To conclude the proof, we turn to the uniqueness of the representation (1.7). Consider two
representations (1.7),

r(n) = C∗
1U

n
1 C1 = C∗

2U
n
2 C2, n ∈ Z,

where U1 and U2 are unitary operators in quaternionic Pontryagin spaces H1 and H2 respec-
tively. Consider the space of pairs

R = {(Un
1 C1c , U

n
2 C2c) , n ∈ Z, c ∈ H

s} .

When condition (1.8) is in force for both representations R, defines a linear isometric rela-
tion with dense domain and range, and hence, by the quaternionic version of a theorem of
Shmulyan (see [2, Theorem 7.2] and see [4, p. 29-30] for the complex version of this theorem
and for the definition of a linear relation in Pontryagin spaces), R extends to the graph of a
unitary operator, say S, from H1 into H2:

SUn
1 C1c = Un

2 C2c, n ∈ Z, c ∈ H
s

Setting n = 0 we get SC1 = C2. Then, taking n = 1 leads to (SU1)C1 = (U2S)C1, and more
generally

(SU1)U
n
1 C1 = (U2S)U

n
1 C1, n ∈ Z,

and so SU1 = U2S.

5. Herglotz’s theorem in the quaternionic setting

Herglotz’s theorem has been already recalled in Section 1, see Theorem 1.1. Here we state a
related result which will be useful in the sequel (see [18, Theorem 1.3.6]).

Theorem 5.1. Let µ and ν be C
s×s-valued measures on [0, 2π]. If

∫ 2π

0
eintdµ(t) =

∫ 2π

0
eintdν(t), n ∈ Z,

then µ = ν.



Given P ∈ H
s×s, there exist unique P1, P2 ∈ C

s×s such that P = P1 + P2j. Thus there is a
bijective homomorphism χ : Hs×s → C

2s×2s given by

χP =

(
P1 P2

−P 2 P 1

)
where P = P1 + P2j, (5.1)

Definition 5.2. Given an H
s×s-valued measure ν, write ν = ν1 + ν2j, where ν1 and ν2 are

uniquely determined C
s×s-valued measures. We call a measure ν on [0, 2π] q-positive if the

C
2s×2s-valued measure

µ =

(
ν1 ν2
ν∗2 ν3

)
, where dν3(t) = dν̄1(2π − t), t ∈ [0, 2π) (5.2)

is positive and, in addition,

dν2(t) = −dν2(2π − t)T , t ∈ [0, 2π),

Remark 5.3. If ν is q-positive, then ν = ν1+ν2j, where ν1 is a uniquely determined positive
C
s×s-valued measure and ν2 is a uniquely determined C

s×s-valued measure.

Remark 5.4. If r = (r(n))n∈Z is a H
s×s-valued sequence on Z such that

r(n) =

∫ 2π

0
eintdν(t),

where ν is a q-positive measure, then r is Hermitian, i.e., r(−n)∗ = r(n). Indeed, write
ν = ν1 + ν2j, where ν1 and ν2 are as in Definition 5.2. Then

r(−n)∗ =

∫ 2π

0
(dν1(t)− jdν2(t)

∗)eint

=

∫ 2π

0
eintdν1(t)−

∫ 2π

0
e−int(−dν2(t)

T )j

=

∫ 2π

0
eintdν1(t) +

∫ 2π

0
eint(−dν2(2π − t)T )j

=

∫ 2π

0
eintdν1(t) +

∫ 2π

0
eintdν2(t)

= r(n), n ∈ Z

Theorem 5.5. The function n 7→ r(n) from Z into H
s×s is positive definite if and only if

there exists a unique q-positive measure ν on [0, 2π] such that

r(n) =

∫ 2π

0
eintdν(t), n ∈ Z. (5.3)

Proof. Let (r(n))n∈Z be a positive definite sequence and write r(n) = r1(n) + r2(n)j, where
r1(n), r2(n) ∈ C

s×s, n ∈ Z. Put R(n) = χr(n), n ∈ Z. It is easily seen that (R(n))n∈Z
is a positive definite C

2s×2s-valued sequence if and only if (r(n))n∈Z is a positive definite
H

s×s-valued sequence. Thus, by Theorem 1.1 there exists a unique positive C
2s×2s-valued

measure µ on [0, 2π] such that

R(n) =

∫ 2π

0
eintdµ(t), n ∈ Z. (5.4)

Write

µ =

(
µ11 µ12

µ∗
12 µ22

)
:

C
s

C
s

⊕ → ⊕
C
s

C
s
.



It follows from

R(n) =

(
r1(n) r2(n)

−r2(n) r1(n)

)
, n ∈ Z

and (5.4) that

r1(n) =

∫ 2π

0
eintdµ11(t) =

∫ 2π

0
e−intdµ̄22(t), n ∈ Z

and hence ∫ 2π

0
eintdµ11(t) =

∫ 2π

0
eintdµ̄22(2π − t), n ∈ Z.

Thus, Theorem 5.1 yields that dµ11(t) = dµ̄22(2π − t) for t ∈ [0, 2π). Similarly,

r2(n) =

∫ 2π

0
eintdµ12(t) = −

∫ 2π

0
e−intdµ12(t)

T , n ∈ Z

and hence ∫ 2π

0
eintdµ12(t) =

∫ 2π

0
eint(−dµ12(2π − t)T ), n ∈ Z.

Thus, Theorem 5.1 yields that dµ12(t) = −dµ12(2π − t)T for t ∈ [0, 2π).
It is easy to show that

(
Is −jIs

)
R(n)

(
Is
jIs

)
= 2r(n)

and hence (5.4) yields

2r(n) =

∫ 2π

0

(
eint −jeint

)( dµ11(t) + dµ12(t)j
dµ12(t)

∗ + dµ22(t)j

)

=

∫ 2π

0
eintdµ11(t) +

∫ 2π

0
eintdµ12(t)j −

∫ 2π

0
e−intdµ12(t)

T j

+

∫ 2π

0
e−intdµ̄22(t)

=

∫ 2π

0
eintdµ11(t) +

∫ 2π

0
eintdµ12(t)j −

∫ 2π

0
eintdµ12(2π − t)T j

+

∫ 2π

0
eintdµ̄22(2π − t)

= 2

∫ 2π

0
eintdµ11(t) + 2

∫ 2π

0
eintdµ12(t)j, n ∈ Z,

where the last line follows from dµ11(t) = dµ̄22(2π − t) and dµ12(t) = −dµ12(2π − t)T . If we
put ν = µ11 + µ12j, then ν is a q-positive measure which satisfies (5.3).
Conversely, suppose ν = ν1 + ν2j is a q-positive measure on [0, 2π] and put

r(n) =

∫ 2π

0
eintdν(t), n ∈ Z.

Since ν is q-positive,

µ =

(
ν1 ν2
ν∗2 ν3

)
, where dν3(t) = dν̄1(2π − t), t ∈ [0, 2π),

is a positive C
2s×2s-valued measure on [0, 2π] and

dν2(t) = −dν2(2π − t)T , t ∈ [0, 2π).



Since µ is a positive C
2s×2s-valued measure, (R(n))n∈Z is a positive definite C

2s×2s-valued
sequence, where

R(n) :=

∫ 2π

0
eintdµ(t), n ∈ Z,

Moreover, R(n) can be written in form

R(n) =

(
r1(n) r2(n)

−r2(n) r1(n)

)
, n ∈ Z,

where

r1(n) =

∫ 2π

0
eintdν1(t), n ∈ Z;

r2(n) =

∫ 2π

0
eintdν2(t), n ∈ Z.

Thus, R(n) = χr(n), where

r(n) = r1(n) + r2(n)j =

∫ 2π

0
eintdν(t).

Since (R(n))n∈Z is a positive definite C
2s×2s-valued sequence we get that (r(n))n∈Z is a

positive definite H
s×s-valued sequence.

Finally, suppose that the q-positive measure ν were not unique, i.e., there exists ν̃ so that
ν̃ 6= ν and

r(n) =

∫ 2π

0
eintdν(t) =

∫ 2π

0
eintdν̃(t), n ∈ Z.

Write ν = ν1 + ν2j and ν̃ = ν̃1 + ν̃2j as in Remark 5.3. If we consider R(n) = χr(n), n ∈ Z,
then it follows from Theorem 1.1 that ν1 = ν̃1 and ν2 = ν̃2 and hence that ν = ν̃, a
contradiction. �

Remark 5.6. The statement and proof of Herglotz’s theorem have been written using an
exponential involving the imaginary unit i of the quaternions. Analogous statements can be
written using the imaginary units j or k in the basis or with respect to new basis elements
chosen in S.

6. A theorem of Carathéodory in the quaternionic setting

Definition 6.1. A function r : {−N, . . . ,N} → H
s×s is called positive definite if TN � 0,

where TN is the matrix defined in (1.1).

Definition 6.2. Let r : {−N, . . . ,N} → H
s×s be positive definite. We will say that r has a

positive definite extension if there exists a positive definite function r̃ : Z → H
s×s such that

r̃(n) = r(n), n = −N, . . . ,N.

Theorem 6.3. If r : {−N, . . . ,N} → H
s×s is positive definite, then r has a positive definite

extension.



Remark 6.4. The strategy for proving Theorem 6.3 is to establish the existence of r(N +
1), r(N + 2), . . . so that the block matrices

TN+1 =




r(0) · · · r(N + 1)
...

. . .
...

r(−N − 1) · · · r(0)


 � 0

TN+2 =




r(0) · · · r(N + 2)
...

. . .
...

r(−N − 2) · · · r(0)


 � 0, . . .

Here we let r(−N−1) = r(N+1)∗, r(−N−2) = r(N+2)∗, . . .. We must first establish some
lemmas before proving Theorem 6.3. The proofs of Lemmas 6.5, 6.6 and 6.8 are adapted from
Lemma 2.4.2, Corollary 2.4.3 and Theorem 2.4.5 in Bakonyi and Woerdeman [7], respectively.

Lemma 6.5. If A ∈ H
t×s and B ∈ H

u×s, then

B∗B � A∗A

if and only if there exists a contraction G : ranB → ranA such that A = GB. Moreover, G
is unique and an isometry if and only if B∗B = A∗A.

Proof. If there exists a contraction G : ranB → ranA such that A = GB, then it is easy to
verify that B∗B � A∗A. Conversely, if B∗B � A∗A, then let y ∈ ranB, i.e y = Bx for some
x ∈ H

s. Let G : ranB → ranA be given by

Gy = Ax.

To check that G is well-defined, suppose that

y = Bx = Bx̃,

where x̃ ∈ H
s. Using B∗B � A∗A we get that

0 ≤ (x− x̃)∗A∗A(x− x̃) ≤ (x− x̃)∗B∗B(x− x̃) = 0

and hence Ax = Ax̃. Therefore, G is well-defined.
We will now show that G is a contraction. Let {yn}

∞
n=1 be a convergent sequence in ranB.

If {xn}
∞
n=1 in H

s so that
Bxn = yn,

then

(Gyn −Gym)∗(Gyn −Gym) = [A(xn − xm)]∗[A(xn − xm)]

≤ [B(xn − xm)]∗[B(xn − xm)]

= (yn − ym)∗(yn − ym). (6.1)

Since {yn}
∞
n=1 is a convergent sequence in ranB, {yn}

∞
n=1 is also a Cauchy sequence in ranB

and hence {Gyn}
∞
n=1 is a Cauchy sequence as well. Thus,

lim
n↑∞

Gyn

exists. The inequality given in (6.1) readily yields that y∗G∗Gy ≤ y∗y, whence G is a
contraction. Note that G is unique by construction, since the equation A = GB requires that
whenever y = Bx we get that Gy = Ax.
Finally, if G is an isometry then it follows from the equality A = GB that A∗A = B∗B.
Conversely, if A∗A = B∗B, then y = Bx and Gy = Ax yield that

y∗G∗Gy = x∗A∗Ax = x∗B∗Bx = y∗y.

Thus, u∗G∗Gy = y∗y for y ∈ ranB.



Lemma 6.6. If

K =

(
A B
B∗ C

)
∈ H

(t+u)×(s+u),

then K � 0 if and only if the following conditions hold:

(i) A � 0 and C � 0;

(ii) B = A1/2GC1/2 for some contraction G : ranC → ranA.

Proof. Suppose conditions (i) and (ii) are in force. It follows from (i) that there exist P and
Q such that A = P ∗P and C = Q∗Q. Thus,

K =

(
P ∗ 0
0 Q∗

)(
I G
G∗ I

)(
P 0
0 Q

)
� 0,

since G is a contraction. Conversely, suppose K � 0 and let P and Q be given by

(
P ∗

Q∗

)(
P Q

)
=

(
A B
B∗ C

)
.

Thus, P ∗P = A1/2A1/2 and Q∗Q = C1/2C1/2. Using Lemma 6.5 we arrive at the isometries
G1 : ranA → ranP and G2 : ranC → ranQ which satisfy P = G1A

1/2 and Q = G2C
1/2,

respectively. Therefore,

B = P ∗Q = A1/2G∗
1G2C

1/2

and thus B = A1/2GC1/2, where G = G∗
1G2 is a contraction.

Definition 6.7. We will call a block matrix, with quaternionic entries,

K =




A B ?
B∗ C D
? D∗ E




partially positive semidefinite if all principle specified minors are nonnegative. We will say
that K has a positive semidefinite completion if there exists a quaternionic matrix X so that




A B X
B∗ C D
X∗ D∗ E


 � 0.

Lemma 6.8. If

K =




A B ?
B∗ C D
? D∗ E




is partially positive semidefinite, then K has a positive semidefinite completion given as
follows. Let G1 : ranC → ranA and G2 : ranE → ranC be contractions so that B =
A1/2G1C

1/2and D = C1/2G2E
1/2. Choosing the (1, 3) block entry of K to be A1/2G1G2E

1/2

results in a positive semidefinite completion.

Proof. Since K is partially positive semidefinite,

K1 =

(
A B
B∗ C

)
� 0 and K2 =

(
C D
D∗ E

)
� 0.



Use Lemma 6.6 on K1 and K2 to produce contractions G1 and G2, resepectively, so that
B = A1/2G1C

1/2 and D = C1/2G2E
1/2. Since G1 and G2 are contractions, the factorization

K̃ =




A B A1/2G1G2E
1/2

B∗ C D

E1/2(G2)
∗(G1)

∗A1/2 D∗ E




=




A A1/2G1C
1/2 A1/2G1G2E

1/2

C1/2(G1)
∗A1/2 C C1/2G2E

1/2

E1/2(G2)
∗(G1)

∗A1/2 E1/2(G2)
∗C1/2 E




=



A1/2 0 0

0 C1/2 0

0 0 E1/2






I G1 G1G2

(G1)
∗ I G2

(G2)
∗(G1)

∗ (G2)
∗ I





A1/2 0 0

0 C1/2 0

0 0 E1/2




=



A1/2 0 0

0 C1/2 0

0 0 E1/2






I 0 0
(G1)

∗ I 0
(G1G2)

∗ (G2)
∗ I





I 0 0
0 I − (G1)

∗G1 0
0 0 I − (G2)

∗G2




×



I G1 G1G2

0 I G2

0 0 I





A1/2 0 0

0 C1/2 0

0 0 E1/2


 ,

shows that K̃ is a positive semidefinite completion of K.

We are now ready to prove Theorem 6.3.

Proof of Theorem 6.3. Let r : {−N, . . . ,N} → H
s×s be positive definite. It follows from

Lemma 6.8 with

A = r(0);

B =
(
r(1) · · · r(N)

)
;

C =




r(0) · · · r(N)
...

. . .
...

r(−N) · · · r(0)


 ;

D =
(
r(N)T · · · r(1)T

)T
;

E = A,

that there exist contractions G1 and G2 so that if we put r(N + 1) = A1/2G1G2E
1/2 and

r(−N − 1) = r(N + 1)∗, then



r(0) · · · r(N + 1)
...

. . .
...

r(−N − 1) · · · r(0)


 � 0.

Continuing in this fashion, we can choose r(N + 2), r(N + 3), . . . so that



r(0) · · · r(N + 2)
...

. . .
...

r(−N − 2) · · · r(0)


 � 0,




r(0) · · · r(N + 3)
...

. . .
...

r(−N − 3) · · · r(0)


 � 0, . . . .

Thus we have contructed r̃ : Z → H
s×s which is positive definite and satisfies

r̃(n) = r(n), n = −N, . . . ,N.



7. A theorem of Krein and Iohvidov in the quaternionic setting

Sasvári [19] attributes the following theorem to Krein and Iohvidov [14].

Theorem 7.1. Let a = (a(n))n∈Z be a bounded Hermitian complex-valued sequence on Z.
The sequence a has κ negative squares if and only if there exist measures µ+ and µ− on
[0, 2π] and mutually distinct points t1, . . . , tκ ∈ [0, 2π] satisfying µ+(tj) = 0 for j = 1, . . . , κ
and supp(µ−) = {t1, . . . , tk} and such that

a(n) =

∫ 2π

0
eintdµ+(t)−

∫ 2π

0
eintdµ−(t), n ∈ Z. (7.2)

Proof. A proof for this result when Z is replaced by an arbitrary locally compact Abelian
group can be found in [19]. �

It will be our goal in this section to obtain a direct analogue of Theorem 7.1 when (a(n))n∈Z
is a bounded Hermitian H

s×s-valued sequence. To achieve this goal, we will first generalize
Theorem 7.1 to the case when (a(n))n∈Z is Cs×s-valued sequence and then the desired result
will follow.

Definition 7.2. Let M =
∑k

q=1 Pqδtq be a C
s×s-valued measure on [0, 2π], where δt denotes

the usual Dirac point measure at t. We let

card suppM =

k∑

q=1

rankPq.

Theorem 7.3. Let A = (A(n))n∈Z be a bounded Hermitian C
s×s-valued sequence on Z. A

has κ negative squares if and only if there exist positive C
s×s-valued measures M+ and M− on

[0, 2π] and mutually distinct points t1, . . . , tk ∈ [0, 2π] satisfying M+(tj) = 0 for j = 1, . . . , k,
supp(M−) = {t1, . . . , tk} and card suppM− = κ and such that

A(n) =

∫ 2π

0
eintdM+(t)−

∫ 2π

0
eintdM−(t), n ∈ Z. (7.3)

Proof. If A has κ negative squares, then av = (v∗A(n)v)n∈Z will be a complex-valued sequence
with at most κ negative squares for any v ∈ C

s. It follows then from Theorem 7.1 that there

exist measures µ
(v)
+ and µ

(v)
− on [0, 2π] and mutually distinct points t

(v)
1 , . . . , t

(v)
kv

∈ [0, 2π]

satisfying µ
(v)
+ (t

(v)
j ) = 0 for j = 1, . . . , kv and supp(µ

(v)
− ) = {t

(v)
1 , . . . , t

(v)
kv

}, where kv ≤ κ, and
such that

av(n) =

∫ 2π

0
eintdµ

(v)
+ (t)−

∫ 2π

0
eintdµ

(v)
− (t), n ∈ Z. (7.4)

Let
4µ

(v,w)
± = µ

(v+w)
± − µ

(v−w)
± + iµ

(v+iw)
± − iµ

(v−iw)
± , v, w ∈ C

s.

Then there exist positive C
s×s-valued measures M± such that 〈M±v,w〉 = µ

(v,w)
± and

A(n) =

∫ 2π

0
eintdM+(t)−

∫ 2π

0
eintdM−(t), n ∈ Z. (7.5)

It follows from (7.5) together with the fact that A has κ negative squares that

card suppM− = κ.

By construction, M+(tj) = 0 for all tj ∈ suppM+.
Conversely, suppose (7.3) is in force. It is easy to check that A is a bounded Hermitian
sequence with at most κ negative squares. The fact that A has exactly κ negative follows
from the uniqueness of the measure M = M+ −M− in (7.7) (see Theorem 5.1). �



Definition 7.4. Let ν = ν1 + ν2j be a q-positive measure on [0, 2π] with finite support. We
let

card suppν = (1/2)card suppµ,

where µ is an in (5.2).

Theorem 7.5. Let a = (a(n))n∈Z be a bounded Hermitian H
s×s-valued sequence on Z. The

sequence a has κ negative squares if and only if there exist q-positive measures ν+ and ν−
on [0, 2π] and mutually distinct points t1, . . . , tk ∈ [0, 2π] satisfying satisfying ν+(tj) = 0 for
j = 1, . . . , k, supp(dν−) = {t1, . . . , tk} and card suppν− = κ and such that

a(n) =

∫ 2π

0
eintdν+(t)−

∫ 2π

0
eintdν−(t), n ∈ Z. (7.6)

Proof. If a is a bounded Hermitian H
s×s-valued sequence with κ negative squares, then

A = (A(n))n∈Z, where A(n) = χa(n), has 2κ negative squares (see Proposition 11.4 in [5]).
Thus, Theorem 7.3 guarantees the existence of positive C

2s×2s-valued measures M+ and M−

on [0, 2π] and mutually distinct points t1, . . . , tk ∈ [0, 2π] satisfying satisfying M+(tj) = 0 for
j = 1, . . . , k, supp(M−) = {t1, . . . , tk} and card suppM− = 2κ and such that

A(n) =

∫ 2π

0
eintdM+(t)−

∫ 2π

0
eintdM−(t), n ∈ Z. (7.7)

If we write

dM± =

(
dM

(11)
± dM

(12)
±

(dM
(12)
± )∗ dM

(22)
±

)
C
s

C
s

⊕ → ⊕
C
s

C
s

and proceed as in the proof of Theorem 5.5 we get that

dM
(11)
+ (t)− dM

(11)
− (t) = dM

(22)
+ (2π − t)− dM

(22)
− (2π − t), t ∈ [0, 2π)

and

dM
(12)
+ (t)− dM

(12)
− (t) = −(dM

(12)
+ (2π − t)T − dM

(12)
− (2π − t)T ), t ∈ [0, 2π).

Consequently, it follows from dM+(tj) = 0 for j = 1, . . . , k and supp(dM−) = {t1, . . . , tk}
that

dM
(11)
− (t) = dM

(22)
− (2π − t), t ∈ [0, 2π)

and
dM

(12)
− (t) = −dM

(12)
− (2π − t)T , t ∈ [0, 2π).

Thus,

dM
(11)
+ (t) = dM

(22)
+ (2π − t), t ∈ [0, 2π)

and
dM

(12)
+ (t) = −dM

(12)
+ (2π − t)T , t ∈ [0, 2π).

Taking advantage of the above equalities we can obtain

a(n) =

∫ 2π

0
eintdν+(t)−

∫ 2π

0
eintdν−(t), n ∈ Z,

where ν±(t) = M
(11)
± (t) + M

(12)
± (t)j. It is readily checked that ν± are q-positive measures.

Moreover, a has κ negative squares since A has 2κ negative squares and ν+(tj) = 0 for all
tj ∈ suppν− and cardsuppν− = κ.
Conversely, suppose that a is a H

s×s-valued sequence which obeys (7.6). Consequently, a is
bounded. The fact that a is Hermitian follows from Remark 5.4. To see that a has κ negative
squares, one can consider the C2s×2s-valued sequence (A(n))n∈Z, where A(n) = χa(n), n ∈ Z

and use the converse statement in Theorem 7.3 to see that A has 2κ negative squares. The
fact that a has κ negative squares then follows by definition. �



8. Herglotz’s integral representation theorem in the scalar case

In this section we present an analogue of Herglotz’s theorem in the quaternionic scalar case.
Even though this is a byproduct of the preceding discussion, it may be useful to have the
result stated for scalar valued slice hyperholomorphic functions. We begin by proving an
integral representation formula which holds on Br = {p ∈ H : |p| < r}, namely on the
quaternionic open ball centered at 0 and with radius r > 0. A similar formula which is based
on a different representation of a slice hyperholomorphic function, less useful to determine
the real part of a function, is discussed in [11]. Note also that, unlike what happens in the
complex case, the real part of a slice hyperholomorphic function is not harmonic.

Lemma 8.1. Let f : B1+ε → H be a slice hyperholomorphic function, for some ε > 0. Let
I, J ∈ S with J orthogonal to I and let F,G : B1+ε ∩CI → CI be holomorphic functions such
that for any z = x+ Iy the restriction fI can be written as fI(z) = F (z) +G(z)J. Then, on
B1 ∩ CI the following formula holds:

fI(z) = I[ImF (0) + ImG(0)J ] +
1

2π

∫ 2π

0

eIt + z

eIt − z
[Re(F (eIt)) + Re(G(eIt))J ]dt.

Moreover

Re
(eIt + z

eIt − z
[Re(F (eIt)) + Re(G(eIt))J ]

)
=

1− |z|2

|eIt − z|2
Re(F (eIt)). (8.1)

Proof. The proof is an easy consequence of the Splitting Lemma 2.4: for every fixed I, J ∈ S

such that J is orthogonal to I, there are two holomorphic functions F,G : B1+ε ∩ CI → CI

such that for any z = x + Iy, it is fI(z) = F (z) + G(z)J. It is immediate that these two
holomorphic functions F , G satisfy (see p. 206 in [1])

F (z) = IImF (0) +
1

2π

∫ 2π

0

eIt + z

eIt − z
Re(F (eIt))dt z ∈ B1 ∩ CI ,

G(z) = IImG(0) +
1

2π

∫ 2π

0

eIt + z

eIt − z
Re(G(eIt))dt z ∈ B1 ∩ CI ,

and the first part of the statement follows. The second part is a consequence of the equality

eIt + z

eIt − z
=

1− |z|2

|eIt − z|2
+ 2I

y cos t− x sin t

|eIt − z|2

leading to

Re
(eIt + z

eIt − z
[Re(F (eIt)) + Re(G(eIt))J ]

)
=

1− |z|2

|eIt − z|2
Re(F (eIt)).

Remark 8.2. Let f : Ω → H be a slice hyperholomorphic function and write

f(p) = f0(x0, . . . , x3) + f1(x0, . . . , x3)i+ f2(x0, . . . , x3)j + f3(x0, . . . , x3)k,

with fℓ : Ω → R, ℓ = 0, . . . , 3, p = x0 + x1i+ x2j + x3k. It is easily seen that the restriction
fi = f|Ci

can be written as

fi(x+ iy) = (f0(x+ iy) + f1(x+ iy)i) + (f2(x+ iy) + f3(x+ iy)i)j

= F (x+ iy) +G(x+ iy)j

and so

Re(f|Ci
)(x+ iy) = f0|Ci

(x+ iy)) = Re(F )(x+ iy).



More in general, consider I, J ∈ S with I orthogonal to J , and rewrite i, j, k in terms of the
imaginary units I, J, IJ = K. Then

f(p) = f0(x0, . . . , x
′
3) + f̃1(x0, . . . , x

′
3)I + f̃2(x0, . . . , x

′
3)J + f̃3(x0, . . . , x

′
3)K,

where p = x0 + x′1I + x′2J + x′3K and the x′ℓ are linear combinations of the xℓ, ℓ = 1, 2, 3.

The restriction of f to the complex plane CI is then fI(x + Iy) = F̃ (x + Iy) + G̃(x + Iy)J
and reasoning as above we have

Re(fI(x+ Iy)) = f0|CI
(x0, . . . , x

′
3) = Re(F̃ (x+ Iy)).

We conclude that the real part of the restriction fI of f to a complex plane CI is the restriction
of f0 to the given complex plane. Thus if Re(f) is positive also the real part of the restriction
fI to any complex plane is positive.

Theorem 8.3 (Herglotz’s theorem on a slice). Let f : B1 → H be a slice hyperholomorphic
function with Re(f(p)) ≥ 0 in B1. Fix I, J ∈ S with J be orthogonal to I. Let fI be
the restriction of f to the complex plane CI and let F,G : B1 ∩ CI → CI be holomorphic
functions such that for any z = x + Iy, it is fI(z) = F (z) + G(z)J. Then fI can be written
in B1 ∩ CI as

fI(z) = I[ImF (0) + ImG(0)J ] +

∫ 2π

0

eIt + z

eIt − z
dµJ(t), (8.2)

where µJ(t) = µ1 + µ2J is a finite variation complex measure on CJ with µ1 positive and µ2

real and of finite variation on [0, 2π].

Proof. The proof follows [1, p. 207]. First, we note that by Remark 8.2, Re(f(p)) ≥ 0 in B1

implies that Re(fI(z)) ≥ 0 for z ∈ B1∩CI . Let ρ be a real number such that 0 < ρ < 1. Then
fI(ρz) is slice hyperholomorphic in the disc |z| < 1/ρ and so by Lemma 8.1 the restriction
fI(z) may be written in |z| < 1 as

fI(ρz) = I[ImF (0) + ImG(0)J ] +
1

2π

∫ 2π

0

eIt + z

eIt − z
[Re(F (ρeIt)) + Re(G(ρeIt))J ]dt.

where

dµJ(t, ρ) =
1

2π
[Re(F (ρeIt)) + Re(G(ρeIt))J ]dt

has real positive part, since it is immediate that Re(fI(ρe
It)) = Re(F (ρeIt)) and

∫ 2π

0
dµJ(t, ρ) = [ReF (0) + ReG(0)J ].

Let us set

ΛI(z, t) :=
eIt + z

eIt − z
and consider ∫ 2π

0
ΛI(z, t)dµJ (t; ρ).

Let {ρn}n∈N be a sequence of real numbers with 0 < ρn < 1 such that ρn → 1 when n
goes to infinity. To conclude the proof we need Helly’s theorem in the complex case. This
result assures that the family of finite variation real-valued dν(t; ρn) contains a convergent
subsequence which tends to dν(t) which is of finite variation, in the sense that

lim
n→∞

∫ 2π

0
λ(w, t)dν(t, ρn) =

∫ 2π

0
λ(w, t)dν(t)

for every continuous complex-valued function λ(w, t). In the slice hyperholomorphic set-
ting the integrand is the product of the continuous CI -valued function ΛI(z, t) = Λ1(z, t) +
IΛ2(z, t) where Λ1 and Λ2 are real valued, and of the CJ -valued dµJ(t, ρn) = dµ1(t, ρn) +



dµ2(t, ρn)J (since both dµ1(t, ρn) and dµ2(t, ρn) are real-valued).
Then ΛI(z, t)dµJ (t) can be split in components to which we apply Helly’s theorem. The
positivity of dµ1 follows from the positivity of dµ1(t, ρn), and this completes the proof.

Corollary 8.4. Let f be slice hyperholomorphic function on B1 such that f(0) = 1. Suppose
that f has real positive part on B1. Then its restriction fI can be represented as

fI(z) =

∫ 2π

0

eIt + z

eIt − z
dµJ(t),

where µJ(t) = µ1(t) + µ2(t)J is a finite variation complex measure on CJ with µ1(t) positive
for t ∈ [0, 2π]. Moreover, the power series expansion of f

f(p) = 1 +
∞∑

n=1

pnan

is such that |an| ≤ k, for some k ∈ R, for every n ∈ N.

Proof. The first part of the corollary immediately follows from Theorem 8.3. Then observe
that

eIt + z

eIt − z
= 1 + 2

∞∑

n=1

zne−Int

and so the coefficients an in the power series expansion are given by

an = 2

∫ 2π

0
e−IntdµJ(t). (8.3)

Moreover

|an| ≤ 2

∫ 2π

0
|dµJ(t)| ≤ k,

for some k ∈ R since dµJ(t) is of finite variation and so it is bounded.

Remark 8.5. Formula (8.3) expresses an in integral form. However, there is an infinite
number of ways of writing an with a similar expression, depending on the choices of I and J
made to write (8.2). An important difference with the result in Section 5 is that the measure
dµ in formula (5.3) is quaternionic valued, while in this case it is complex valued (with values
in CJ). One may wonder is there are choices of I, J for which formula (8.3) would allow to
define a−n via (8.3) and then obtain a−n = ān. Since

a−n = 2

∫ 2π

0
eIntdµJ(t), ān = 2

∫ 2π

0
dµJ(t)e

Int,

and

ān = 2

∫ 2π

0
(dµ1(t)− dµ2(t)J)e

Int

= 2

∫ 2π

0
eIntdµ1(t)− e−Intdµ2(t)J

= 2

∫ 2π

0
eInt(dµ1(t)− dµ2(2π − t)J),

the condition a−n = ān translates into Re(G)(eIt) = −Re(G)(eI(2π−t)). If one writes the
power series expansion of fI in the form

fI(x+ Iy) =

∞∑

n=0

(x+ Iy)nan =

∞∑

n=0

(x+ Iy)n(a0n + Ia1n + (a2n + Ia3n)J)



then it follows that

F (x+ Iy) =
∞∑

n=0

(x+ Iy)n(a0n + Ia1n) and G(x+ Iy) =
∞∑

n=0

(x+ Iy)n(a2n + Ia3n).

Then

Re(G)(x + Iy) =
∞∑

n=0

un(x, y)a2n − vn(x, y)a3n

where

(x+ Iy)n = un(x, y) + Ivn(x, y)

and

un(x, y) =

n∑

k=0, k even

(
n

k

)
(−1)k/2xn−kyk,

vn(x, y) =

n∑

k=1, k odd

(
n

k

)
(−1)(k−1)/2xn−kyk.

It is immediate that un and vn are even and odd in the variable y, respectively, thus Re(G)
is odd in the variable y if and only if a2n = 0 for all n ∈ N. In general, given a slice
hyperholomorphic function f on B1 there is no change of basis for which one can have all the
coefficients a2n = 0 for all n ∈ N. Thus, formula (8.3) does not allow to define a−n in order to
obtain the desired equality a−n = ān. The formula is however one of the several possibilities
to assign the coefficients of f in integral form.

We conclude this section with a global integral representation.

Theorem 8.6. Let f : B1 → H be a slice hyperholomorphic function. Let fI be the restriction
of f to the complex plane CI and let F,G : B1 ∩ CI → CI be holomorphic functions fI(z) =
F (z) +G(z)J , z = x+ Iy. Then

f(q) = I[ImF (0) + ImG(0)J ] +
1

2π

∫ 2π

0
K(q, eIt) dµJ(t),

where µJ(t) is a finite variation complex measure on CJ for t ∈ [0, 2π] and

K(q, eIt) =
1

2

(
eIt + z

eIt − z
+

eIt + z

eIt − z

)
+

1

2
IqI

(
eIt + z

eIt − z
−

eIt + z

eIt − z

)

= (1 + q2 − 2qRe(eIt))−1(1 + 2qIm(eIt)− q2).

Proof. From Theorem 8.3 the restriction of f to the complex plane CI is

fI(z) = I[ImF (0) + ImG(0)J ] +

∫ 2π

0

eIt + z

eIt − z
dµJ(t),

where µJ(t) is a finite variation complex measure on CJ . Consider

fI(z) + fI(z) = 2[ImF (0) + ImG(0)J ]

(
eIt + z

eIt − z
+

eIt + z

eIt − z

)
dµJ(t)

and

fI(z)− fI(z) =

∫ 2π

0

(
eIt + z

eIt − z
−

eIt + z

eIt − z

)
dµJ(t);

by applying the Representation Formula we obtain the kernel

K(q, eIt) =
1

2

(
eIt + z

eIt − z
+

eIt + z

eIt − z

)
+

1

2
IqI

(
eIt + z

eIt − z
−

eIt + z

eIt − z

)
.



written in the first form. Now we write it in an equivalent way observing that the slice
hyperholomorphic extension of the function

K(z, eIt) =
eIt + z

eIt − z
, z = x+ Iy

is (for the ⋆-inverse see Ch. 4 in [10]) and the

K(q, eIt) = (eIt − q)−∗ ∗ (eIt + q)

so that

K(q, eIt) = (1 + q2 − 2qRe(eIt))−1(1 + 2qIm(eIt)− q2),

and the statement follows.
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