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Data-driven bottleneck identification has received an increasing interest during the recent years. This
approach locates the throughput bottleneck of manufacturing systems based on indicators derived from
measured machine performance metrics. However, the variability in manufacturing systems may affect
the quality of bottleneck indicators, leading to possible inaccurate detection results. This paper presents a
statistical framework (SF) to decrease the data-driven detection inaccuracy caused by system variability.
Using several statistical tools as building blocks, the proposed SF is able to analyze the logical conditions
under which a machine is detected as the bottleneck, and rejects the proposal of bottleneck when no
sufficient statistical evidence is collected. A full factorial design experiment is used to study the parameter
effects of the SF, and to calibrate the SF. The proposed SF was numerically verified to be effective in
decreasing the wrong bottleneck detection rate in serial production lines.

Keywords: Data driven; Manufacturing systems; Bottleneck

1. Introduction

Throughput is the most relevant metric to evaluate the efficiency of a production system. High
throughput can be a key factor of the company competitiveness and usually brings large profit
to the companies. Yet, the system throughput is significantly constrained by few machines in the
system, commonly called bottlenecks (Wang et al. 2005). Technically, the bottleneck is defined as
the machine to which the overall system throughput has the largest sensitivity (Li et al. 2009).
Hence, system throughput improvement is quite related to improving the bottleneck. Unfortunately,
locating the bottleneck in complex manufacturing systems is not easy, because a direct measure of
the throughput sensitivity does not exist in factory floors (Kuo et al. 1996).

Bottleneck detection is a crucial and important issue in the production system related research.
During the last two decades, several methods for detecting bottleneck in factory floors have been
proposed in the literature. These make use of the on-line measurable metrics, either from buffers or
machines, for obtaining indirect measures of the throughput sensitivity. Table 1 gives a summary
of the detection methods and their main characteristics, relevant details are available in Betterton
et al. (2012).

In general, bottleneck detection methods are based on one or more bottleneck measures derived
from the collected machine performance metrics (e.g., buffer level, machine blockage and starvation
time). These metrics can also be estimated coupled with analytical models or simulation models.
However, the lack of exact analytical results for complex production systems and the long develop-
ment time and possible misinterpretation of simulation results greatly limit the wide application of
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Table 1. Reviewed bottleneck detection methods

Method Authors Year Adopted metrics Applicable system Num. of bottleneck conditions

Queue length Lawrence and Buss 1994 Buffer level General M-1 ∗

Utilization Hopp and Spearman 2000 Machine utilization General M-1
Active period Roser et al. 2002 Machine blockage and starvation probability General M-1
Queue time Faget and Herrmann. 2005 Buffer time General M-1
OTE Muthiah adn Huang 2007 Several General M-1
Inactive period Sengupta et al. 2008 Machine blockage and starvation probability Serial line M-1
ITV Betterton et al 2012 Machine interdeparture time Serial line M-1
Arrow Kuo et al. 1996 Machine blockage and starvation probability Serial line 1 or more

Biller et al. 2008 Machine blockage and starvation probability Serial line with reworks Several
Turning point Li et al. 2009 Machine blockage and starvation probability Serial line 3 or more

Li 2009 Machine blockage and starvation probability General 3 or more

∗ M: number of machines in the system.

model-based methodology in complex production systems. Actually, with the rapid development
of information and communication technology (ICT), how to collect, analyze and make use of real
data has become a key for the future manufacturing systems. Under this background, the tendency
of detecting the bottleneck without building an analytical or simulation model, but merely with
real-time data collected from the manufacturing systems, is increasing (Li et al. 2009, Betterton
and Silver 2012). Such detection approach is known as Data-driven Bottleneck Detection.

The data-driven approach has obvious advantages, it avoids all the limitations in model building
and potential errors from model assumption violation. Moreover, it allows dynamic bottleneck con-
trol and improvement based on short-term data analysis (Li and Ni. 2009). However, the accuracy
to locate the bottleneck is closely related to the variability of the data coming from the field be-
cause of manufacturing system randomness. Indeed, variability can be introduced by unscheduled
downtime of machines, process time variation, machine setups, recycle, etc. (Hopp and Spearman
2000). These uncertainties render machine performance metrics behaving as random variables, with
an underlying joint distribution that put all of them in correlation. Therefore, estimation errors are
inevitably related to the data-driven bottleneck detection approach, because the machine perfor-
mance metrics are evaluated by using a finite stream of online records. This may result in possible
unreliable bottleneck measures and, finally, inaccurate detections for the manufacturing compa-
nies. In the literature there are still not many concerns about this problem. Kuo et al. (1996) and
Roser et al. (2001) calculated the confidence interval of bottleneck measures to provide statistical
evidence of the detection results. However, detailed studies about how these approaches improve
the detection accuracy were not given. Moreover, their treatments are not general enough to be
adopted in other bottleneck detection methods with more bottleneck measures or more complex
rules.

This paper proposes a Statistical Framework for data-driven detection approach, it is constructed
with versatility allowing to be coupled with almost all bottleneck detection methods. The SF
assesses the reliability of bottleneck detection results, rejecting the proposal of bottleneck when
there is no statistical evidence. The main result is the decrease of wrong bottleneck identifications.
This allows the manufacturing companies avoiding unnecessary machine improving activities, and
increasing the production throughput more cost-effectively.

The rest of this paper is organized as follows. Section 2 offers a problem description. Section 3
reviews two bottleneck detection methods which will be coupled with the SF. Section 4 describes
the proposed SF. Section 5 illustrates the application of the proposed SF to some numerical cases.
Conclusion, discussion and possible future developments are presented in section 6.

2. Problem description

2.1 Bottleneck definition

In this paper, we define the bottleneck as follows:
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Definition 1. A machine is the bottleneck if the sensitivity of the system throughput to its
throughput in isolation is higher than all other machines in the system:

4THsys,i

4THi
>
4THsys,j

4THj
, ∀j 6= i

where 4THsys,i is the system throughput increment due to 4THi, which is the increment of
isolated throughput of single machine i.

In general, there are three factors affecting the isolated throughput: machine cycle time, machine
up time and machine down time. Regarding to each factor and considering it independently, the
bottleneck is further categorized as cycle time bottleneck (Chiang et al. 2001), uptime bottleneck
and downtime bottleneck (Chiang et al. 2000). These bottlenecks are equivalent in some cases but
this is not always true (Li et al. 2009). To be specific, in this paper we will focus on the cycle time
bottleneck identification.

2.2 Problem statement

In a production system consisting of M machines and some finite input buffers, there exists a
machine mbn, which is the bottleneck according to Definition 1. Yet its location is unknown. To
identify it, the bottleneck detection method M is adopted. Assume the production system has
been in its steady state. The detection starts with measuring all the required machine performance
metrics D = {D1, D2, ..., Dq} from the factory floor. Let t be the time length of the measurement.

Then, the collected dataset D̂ = {D̂1, D̂2, . . . , D̂q} is used as inputs for M , which outputs the
detected bottleneck m̂bn ∈ {m0,m1, . . . ,mM}. Specifically, m̂bn = m0 if no bottleneck is detected.

Due to the estimation errors of D derived from system variability, there exists the probability
that M cannot locate the true bottleneck mbn. We name this probability the wrong detection rate
Pw, which is calculated with the following expression:

Pw = lim
N→+∞

∑N
l=1 1(m̂bn,l 6= mbn) · 1(m̂bn,l 6= m0)

N
(1)

where 1 is the indicator function equal to 1 if condition in the argument is true and 0 otherwise,
N is the number of independent and identical detection replications, m̂bn,l represents the detected
bottleneck in the l-th replication.

Actually, in data-driven bottleneck detection, system variability is one of the main factors causing
detection inaccuracy. The problem considered in this paper is to propose a statistical framework
able to recognize and avoid the wrong results caused by system variability, so as to reduce the Pw
in data-driven bottleneck identifications.

3. Examples of bottleneck detection methods

The proposed SF is general enough to be coupled with all the bottleneck detection methods listed
in Table 1. Due to limited space, in this paper we will validate the SF by adopting two powerful
detection methods, the Arrow method (AM) and the Turning point method (TPM), as examples.
The details of these two methods are reviewed as follows.

3.1 Arrow method

The bottleneck is detected with the following rules (Kuo et al., 1996):

3
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Rule 1. Let mbi and msi be the blockage and starvation probabilities of machine mi, M be the
number of machines in the serial production line. If the following condition holds:

mbi > msi+1 : i = 1, . . . ,M − 1,

the bottleneck is downstream of mi, and an arrow is directed from mi to mi+1. If the following
inequality holds:

msi > mbi−1 : i = 2, . . . ,M,

the bottleneck is upstream of mi, and an arrow is directed from mi to mi−1. Then, the machine
with no departing arrows is detected as the bottleneck.

Rule 2. If multiple bottlenecks are detected using Rule 1, the one with the highest bottleneck
severity is the system bottleneck. The bottleneck severity is defined as:

S1 = ms2 −mb1, SM = mbM−1 −msM ,

Si = (mbi−1 +msi+1)− (mbi +msi) : i = 2, . . . ,M − 1

3.2 Turning point method

The bottleneck is detected with the following rules (Li et al., 2009):

Rule 3. With the same notation of mbi, msi and M described before, machine mj is the turning
point of a production segment {mst, . . . ,med},where st, ed ∈ [1,M ], st ≤ j ≤ ed and st 6= ed, if the
following inequalities are satisfied:

mbi −msi > 0 : i = st, st+ 1 . . . , j − 1, j 6= st, j 6= ed,

mbi −msi < 0 : i = j + 1, . . . , ed, j 6= st, j 6=, ed,

mbj +msj < mbj−1 +msj−1 : j 6= st, j 6= ed,

mbj +msj < mbj+1 +msj+1 : j 6= st, j 6= ed.

If j = st :

mbst −msst > 0 and mbst+1 −msst+1 < 0

and mbst +msst < mbst+1 +msst+1

If j = ed :

mbed−1 −msed−1 > 0 and mbed −msed < 0

and mbed +msed < mbed−1 +msed−1

If there is only one turning point in the production system, the turning point is the bottleneck.

Rule 4. If there are multiple turning points in the production system, the turning point with the
maximum bottleneck index is the bottleneck. The bottleneck index is defined as:

Sst =
msst+1

mbst +msst
, Sed =

mbed−1

mbed +msed
,

Si =
(mbi−1 +msi+1)

mbi +msi
: i = st+ 1, . . . , ed− 1

4
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4. Statistical framework

Bottleneck detection is a logical procedure to judge whether a machine is or not the bottleneck.
This judgment can be decomposed into a series of more basic logical operations. These operations,
in the case of data-driven detection, are to verify a set of bottleneck conditions using the on-filed
data. Examples are as in Rule 1. The detection accuracy depends on two factors: first, whether
the bottleneck conditions developed in a detection method can reveal the essence of the bottle-
neck; second, whether the data collected are representative to characterize the machine. Previous
researches were mainly devoted to the first factor but seldom considered the second. Actually, es-
timation error of the performance metrics derived from system variability can greatly distort the
facts of bottleneck conditions, leading to reduction of the detection accuracy. To avoid this problem,
several statistical analysis tools are incorporated into one scheme, which renders the possibility to
assess the reliability of the detection result.

4.1 Proposition of detection

4.1.1 Bottleneck condition verification

For a bottleneck detection method M , let Ci(M ) = {ci1, ci2, . . . , cin} be the set of n bottleneck
conditions under which mi is detected as the bottleneck. To our knowledge, for any M presented in
Table 1, any bottleneck condition cik can be generally formalized into a comparison of two variables
deriving from machine performance metrics, as:

Xik(D) < Yik(D) (2)

Here, Xik and Yik are named bottleneck indicators, which can be easily derived from the description
of bottleneck detection method. For instance when AM is used, Ci(AM) = {msi < mbi−1,mbi <
msi+1}; in the case multiple local bottlenecks are detected simultaneously, for any of them, some
global conditions (as Rule 2) are required to identify the global bottleneck.

Judging whether cik is satisfied in long-term perspective is actually to verify µXik
< µYik

, where µ
stands for the true mean. Actual methods verify this inequality in a deterministic sense neglecting
the randomness of the bottleneck indicators. Instead of simply comparing the sample means, we
propose to verify cik with the following hypothesis test:

H0 : µXik
= µYik

H1 : µXik
< µYik

(3)

Standard statistical methods such as t-test can be adopted to test (3) in the condition that the
observations of (Xik, Yik) are independently and normally distributed. But in manufacturing con-
text, the collected data are generally correlated and might be non-normal. Data independency
and normality can be obtained by applying the batch means technique (Law, 2007), which will be
introduced in detail in section 4.2. However, as noted by Chen and Kelton (2007), batch means
that appear to be independent are not necessarily normally distributed and vice versa. Indeed,
data normality is sometimes difficult to obtain especially when the metric distribution is restricted
by some physical constraints. In order to release the normality requirement, we propose to use
the Mann-Whitney U test for (3). This test has greater efficiency than the t-test on non-normal
distributions and, in most of the cases, it is nearly as efficient as the t-test on normal distributions.

4.1.2 Multiple test problem

In order to conclude mi is the bottleneck, it is necessary to accept all the bottleneck conditions in
Ci(M ) simultaneously. This is actually a multiple test problem. Indeed, when many hypotheses
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are tested simultaneously, and each test has a specified Type I error probability, the probability
that at least some Type I errors are committed increases.

To solve multiple test problems, the simplest and most general procedure is the Bonferroni
approach that controls the familywise error (FWER), i.e., the probability of making one or more
false rejection, below α by adjusting the significance level of individual test to α/n. However, the
Bonferroni method is an example of a single-stage testing procedure. In such procedure, control
of the FWER has the consequence that the larger the number of hypotheses in the family, the
smaller the average power for testing the individual hypothesis. To solve this problem, Holm (1979)
presented a multistage test procedure that sequentially rejects the null hypothesis. The Holm’s
method is less conservative and widely applicable.

Besides the Holm’s method, Hochberg (1988), Hommel (1988) and Rom (1990) proposed dif-
ferent multistage test procedures based on the Simes equality (1986). These procedures are more
powerful, but strictly speaking, they are based on the assumption that the test statistics of the
multiple hypothesis are independent from each other. However, this is not always guaranteed in
the bottleneck detection procedure. Take Ci(AM) as an example, the test statistics of the two bot-
tleneck conditions can be generally formulated as Ti1 = f(mbi−1,msi) and Ti2 = f(mbi,msi+1),
respectively. Due to the blockage and starvation propagation phenomenon, mbi and mbi−1 are not
considered as independent, as well as for msi and msi+1. Such correlation properties result in the
dependence between Ti1 and Ti2 of certain extent. Consequently, the application of these methods
in the context of bottleneck detection may be improper.

Benjamini and Hochberg (1995) introduced an approach, denoted as BH, to control the false
discovery rate (FDR) instead of the FWER. FDR is the proportion of the rejected null hypotheses
which are erroneously rejected. This method adapts for both independent and dependent test
statistics. It has much more statistical power than the methods controlling the FWER but also
higher Type I error as compromise.

In summary, Holm’s method and BH method do not require independent assumption between
bottleneck conditions. The former one is less powerful but more accurate, the latter one is just
the opposite. These two methods are adopted to solve the multiple test problem in bottleneck
detection. Detailed detection propositions are given in the next section.

4.1.3 Bottleneck detection proposition

Applying Holm’s method and BH method respectively, two bottleneck detection propositions are
developed.

Proposition 1. Let H0
ik be the null hypothesis of the test to verify bottleneck condition cik,

and let α be the significance level. First, arrange all the null hypothesis H0
i1, H0

i2, . . . , H0
in in

a non-descending order of their p-values: H0
(1), H

0
(2), . . . , H0

(n), with the corresponding p-value

P(1) ≤ P(2) ≤ · · · ≤ P(n). Define

ξ = min{ max
k∈[1,n]

{(n− k + 1)P(k)}, 1} (4)

If ξ < α, the null hypothesis H0
i1, H0

i2, . . . , H0
in are rejected and machine mi is detected as the

bottleneck. For further technical details, see Holm (1979).

Proposition 2. With the same notation of P(k),∀k and α, Define

ξ = min{ max
k∈[1,n]

{n
k
P(k)}, 1} (5)

If ξ < α, the null hypothesis H0
i1, H0

i2, . . . , H0
in are rejected and machine mi is detected as the

bottleneck. For further technical details, see Benjamini and Hochberg (1995).

6
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Proposition 1 controls the familywise (Type I) error in bottleneck detection, i.e., probability of
accepting any wrong bottleneck conditions of mi, under α. Theoretically, if the bottleneck condi-
tions are correctly developed, this procedure guarantees the accuracy of any detected bottleneck
above 1 − α. On the other hand, the familywise Type II error, i.e., the probability to deny any
bottleneck condition when it is actually satisfied, is closely related to the power of Holm’s method.
Unfortunately, the power of Holm’s method decreases dramatically with the increasing of test
number n. As an alternative, Proposition 2 can be used when n becomes large. In this way, we
compromise between Type I error and Type II error.

4.2 Batch means

An important assumption made by many of the statistical tests is that the observations are an
independent sample from some underlying distribution. Yet, data independence in manufacturing
system is not always assured. In our paper, independent observations for the bottleneck indicators
(Xik, Yik), ∀i, k are generated by the batch means technique (Law 2007), which is applied as follows.

Step 1 Initialize the batch number g ← g0 and set the minimal allowed batch number g∗.
Step 2 Let x̂1, x̂2, . . . , x̂t and ŷ1, ŷ2, . . . , ŷt be the t observations of Xik and Yik. Divide them into

g batches with batch size w = t/g, respectively.
Step 3 Calculate the sample mean of each batch, and the batch means can be obtained:

X̄(1), X̄(2), . . . , X̄(g) for Xik, and Ȳ (1), Ȳ (2), . . . , Ȳ (g) for Yik.
Step 4 Test the independence of both batch means using the Von Neumann’s ratio test (Bartels

1982). If both are independent, go to Step 6; otherwise go to Step 5.
Step 5 If g > g∗, reduce the batch number with g ← g− 1, and return to Step 2; otherwise go to

Step 7.
Step 6 Output the obtained independent batch means for Xik and Yik. Go to Step 8.
Step 7 Independent batch means cannot be obtained for Xik and Yik. Go to Step 8.
Step 8 End the procedure.

Indeed, the batch number, or saying, number of observations after batching, is closely related to
the statistical power of the bottleneck condition test (3). To guarantee the statistical power, the
upper bound g0 and the lower bound g∗ should be chosen carefully. In our case, g0 is set large
enough to guarantee a 90% statistical power of the test in (3). g∗ is a parameter to be tuned, which
will be discussed in Section 5.2.

4.3 Proposed detection scheme

With the detection propositions and the discussed statistical techniques as building blocks, we
propose a new detection scheme. In this scheme, Proposition 1 and 2 are applied to assess the
bottleneck results obtained by conventional detection methods. The detection results are accepted
or rejected according to their statistical evidence. This scheme has five method parameters as
follows: M , α, g∗, n∗, ε. M is the detection method, α is the significance level, g∗ is the minimal
allowed batch number, n∗ is a threshold for the number of bottleneck conditions based on which
we select the detection Proposition, ε ∈ {0, 1, 2} is an integer value indicating what policy to
take when independent batch means cannot be obtained. More specifically, when ε = 0, we reject
the detected bottleneck without further considerations; ε = 1, we ignore the requirement of data
independency for the Propositions; when ε = 2, we accept the detected bottleneck without further
considerations. This scheme, i.e., the SF, is performed with the following steps.

Step 1 Set method parameters M , α, g∗, n∗, ε.
Step 2 Collect real-time data D̂ with length t. Input D̂ into M and obtain the detected bottleneck

m̂bn. In the special case m̂bn = m0, go to Step 7.
Step 3 List all the n bottleneck conditions used to detect the bottleneck m̂bn. For each of them,

7
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Table 2. Case A, configurations of Line A1-A4

Line PT (min) CV MTTF1 (min) MTTR1(min) MTTF2 (min) MTTR2 (min) Downstream buffer capacity

A1 [2.5 2.6 2.7 2.6 2.5] 0.1 300 50 - - 50
A2 [2.5 2.6 2.7 2.6 2.5] 0.5 300 50 - - 50
A3 [2.5 2.6 2.7 2.6 2.5] 0.1 300 50 20 1 50
A4 [2.5 2.6 3.0 2.6 2.5] 0.1 300 50 - - 50

apply the batch means technique described in section 4.2 to obtain independent observa-
tions of the bottleneck indicators. If independent bottleneck indicators can be obtained
for all bottleneck conditions, go to Step 5; otherwise go to Step 4.

Step 4 If ε = 1, go to step 5; If ε = 2, go to step 6; otherwise go to step 7.
Step 5 If n < n∗, apply Proposition 1 to verify whether m̂bn is the bottleneck; otherwise apply

Proposition 2. In the case m̂bn is accepted as the bottleneck by the proposition, go to Step
6; otherwise go to Step 7.

Step 6 Output the bottleneck m̂bn. Go to Step 8.
Step 7 Output no bottleneck, suggest the user to increase data length t. Go to Step 8.
Step 8 End the procedure.

5. Numerical cases

To validate the proposed SF, we use simulation models constructed in the Arena R© software
package. All simulation data are collected after a warm-up period of 120 shifts (1 shift = 480
minutes), which is used to remove the transient effects. The steady state of the each simulation
model has been verified by using the Welch graphical procedure (Law 2007).

5.1 Simulation models

We use serial production lines with the following assumptions as test instances. The serial line
consists of M machines arranged serially and M-1 buffers separating each consecutive pair of ma-
chines. The part processing time at each machine is variable, following a normal distribution with
a coefficient of variation (CV). Machines are unreliable and can fail into one or more failure modes.
Each failure mode is characterized by the time to failure and time to repair, both are exponentially
distributed. Each buffer has finite capacity. Machines could be starved and blocked, except for the
first machine that is never starved and the last machine that is never blocked. A single product is
produced in the line and no machine setups are required. No scrap is produced.

We construct four groups of serial lines meeting the above described assumptions. The four
groups of lines, referred to as Cases A, B, C and D, are described here. Case A is a group of
five-machine serial lines with simple configurations. These lines will be used as standard cases to
calibrate the SF. Case B consists of 3 serial lines, with which we aim to simulate scenarios in which
the bottlenecks are in different locations, and they are due to different reasons, i.e., long processing
time, low machine reliability and insufficient buffer capacity, respectively. Case C contains a long
line. Besides the complex configuration, we introduce multiple failure modes for each machine
aiming at simulate a real industrial case. Case D contains a troublesome line. This line was used
as a counter example in Betterton et al.(2012); the proposed ITV method, as well as many other
methods, failed to locate the bottleneck. Detailed parameters of these lines are reported in Table
2 to Table 5. Note that in Table 2 and Table 3, when a parameter is not identical for all machines,
a set containing the parameter values of individual machine is given.

For all the constructed lines, the true bottleneck according to Definition 1 is located using the
finite difference method as in (Betterton et al., 2012). The obtained bottlenecks are shown in Table
6. They will be used for judging the correctness of the detection results obtained in the following
sections.

8
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Table 3. Case B, configurations of Line B1-B3

Line PT (min) CV MTTF (min) MTTR∗(min) Downstream buffer capacity

B1 [2.5 3.0 2.5 2.8 2.5] 0.2 300 50 50
B2 2.5 0.2 [300 300 200 300 250] [50 50 80 50 65] 50
B3 2.5 0.2 100 15 [30 30 10 15 -]

Table 4. Case C, configurations of Line C1

Machine PT (min) CV MTTF1 (min) MTTR1 (min) MTTF2 (min) MTTR2 (min) Downstream buffer capacity

1 2.65 0.2 1500 200 90 2 60
2 2.85 0.2 450 50 60 5 12
3 2.50 0.2 500 80 50 3 41
4 3.00 0.2 800 20 80 2 93
5 2.40 0.2 650 60 48 5 22
6 2.75 0.2 690 85 30 2 90
7 2.80 0.2 820 40 60 4 80
8 2.65 0.2 520 120 55 6 99
9 2.30 0.2 1200 80 30 1 58
10 2.70 0.2 900 35 85 3 -

Table 5. Case D, configurations of Line D1

Machine PT (min) CV MTTF (min) MTTR(min) Downstream buffer capacity

1 3.49 0.5 300 40 100
2 3.0 0.5 350 100 80
3 2.5 0.5 140 65 150
4 2.86 0.5 400 85 100
5 2.92 0.5 360 120 100
6 3.10 0.5 140 35 -

Table 6. True bottleneck locations in the simulation models

Line A1 A2 A3 A4 B1 B2 B3 C1 D1

Bottleneck m3 m3 m3 m3 m2 m3 m4 m2 m2

5.2 SF parameters effects and calibration

In this section we aim at, first, understanding how the parameters of the SF will affect its detection
performance; second, calibrating the SF, i.e., to determine a parameter combination which leads to
high performance. The detection performance is evaluated by two indicators, Pw and Pc. Here Pc
is named the correct detection rate, and it is defined as the probability that the detection outputs
the correct bottleneck. Note that Pw +Pc +P0 = 1, where P0 is the probability that the detection
outputs no bottleneck. A good performance is featured by low Pw and high Pc.

To study the effects of the SF parameters, a full factor design of experiments (DOE) is conducted
with the following setups. The related factors and levels of the DOE are reported in Table 7. All
cited factors results in a total of 2 · 4 · 3 · 3 · 3 = 216 different parameter combinations. For each
of them, 5 independent replications are performed. In each replication, two response variables are
considered: Pw and Pc. Each of them is evaluated by applying the SF to solve a full set of bottleneck
detection problems that can be described as follows. There are four different configurations for
the production lines (L), which are the four lines in Case A, as L = {A1, A2, A3, A4}, and four
configurations for the data length (t) available for the detection, as t = {1, 6, 18, 30} (shifts). All
the combinations of L and t result in 16 different detection problems. In each problem, the Pw and
Pc are calculated using (1) with N = 100. Then, the two response variables are the average of all
16 problems.

As seen in the ANOVA analysis in Table 8 and Table 9, all the main factors have significant
effect on Pw and Pc. According to Figure 1 and Figure 2, α and ε are the two most influential
factors and have positive correlation with both Pw and Pc. Indeed, increasing α or ε means lowering
standards to accept a detection result, which makes the SF accept more wrong results as well as
correct results of insufficient statistical evidence. For the factor g∗, it seems that smaller g∗ results
in better performance of lower Pw and higher Pc, yet this is not true, the interaction effect between
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Table 7. Factors and levels of the full factor design experiment

Factors M α g∗ n∗ ε

Levels AM, TPM 0.05, 0.2, 0.5, 0.8 5, 10, 20 2, 4, 6 1, 2, 0

Table 8. ANOVA table of the SF with respect to Pw

Source DF Adj SS Adj MS F-Value P

M 1 2821 2821.5 2166.25 0.000
α 3 60059 200119.6 15370.45 0.000
g∗ 2 264 131.9 101.26 0.000
n∗ 2 34 16.8 12.88 0.000
ε 2 48967 24483.5 18797.70 0.000
M ∗ α 3 193 64.4 49.44 0.000
M ∗ g∗ 2 511 255.5 196.14 0.000
M ∗ n∗ 2 30 15.1 11.58 0.000
M ∗ ε 2 60 30.2 23.19 0.000
α ∗ g∗ 6 8718 1453.0 1115.54 0.000
α ∗ n∗ 6 14 2.3 1.74 0.108
α ∗ ε 6 2192 365.4 280.54 0.000
g∗ ∗ n∗ 4 10 2.6 2.01 0.091
g∗ ∗ ε 4 24978 6244.5 4794.35 0.000
n∗ ∗ ε 4 0 0 0 1.000
Error 1030 1342 1.3
Total 1079 150193

S=1.14126 R-sq = 99.11% R-sq(adjusted) = 99.06%

Table 9. ANOVA table of the SF with respect to Pc

Source DF Adj SS Adj MS F-Value P

M 1 3293 3292.9 2509.54 0.000
α 3 65739 21913.2 16700.35 0.000
g∗ 2 2076 1038.1 791.12 0.000
n∗ 2 29 14.3 10.93 0.000
ε 2 76967 38483.3 29328.74 0.000
M ∗ α 3 80 26.8 20.44 0.000
M ∗ g∗ 2 291 145.6 110.99 0.000
M ∗ n∗ 2 27 13.6 10.40 0.000
M ∗ ε 2 44 22 16.73 0.000
α ∗ g∗ 6 10628 1771.3 1349.96 0.000
α ∗ n∗ 6 2 0.3 0.23 0.968
α ∗ ε 6 1611 268.5 204.62 0.000
g∗ ∗ n∗ 4 10 2.6 1.99 0.093
g∗ ∗ ε 4 52106 13026.6 9927.75 0.000
n∗ ∗ ε 4 0 0 0 1.000
Error 1030 1352 1.3
Total 1079 214256

S=1.14549 R-sq = 99.37% R-sq(adjusted) = 99.34%

ε and g∗ should be considered. As we find, when ε = 1 or 2 decreasing g∗ leads to lower Pw and
Pc, whereas when ε = 0 the trend is just opposite. As to the factor M , TPM obtains lower Pw
but also lower Pc than AM. Indeed, TPM has more bottleneck conditions, which makes the SF
more rigorous in accepting a result. Finally, a slightly decreasing tendency of Pw and Pc is observed
when n∗ is increased.

As shown, trade-off between Pw and Pc is inevitable when setting the SF parameters. We choose
the parameters as follows. On one hand, to assure a low Pw, we select low levels for α and ε, and
adopt TPM as the detection method. On the other hand, to pursue a high Pc, low level is selected
for g∗. At last, medium n∗ is adopted. As a consequence, M =TPM, α = 0.05, ε = 0, g∗ = 5,
n∗ = 4 is set as the default parameter combination for the SF.

5.3 Detection performance comparison

In this section, we compare the performance of the three detection schemes: AM, TPM and SF
with default settings, using the simulation models in Case B, C and D as test instances. For each
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Figure 1. Main effect plot for Pw

Figure 2. Main effect plot for Pc

Figure 3. Detection results distribution over 500 experiments, where AM, TPM and SF are applied to identify the bottleneck

in Line B1 with t=3 (shifts). The true bottleneck here is m2

test instance, the AM, TPM and SF are adopted to identify the bottleneck, respectively. For each
detection scheme, we record its detection results obtained by feeding with production data of
different length, which varies from 3 to 90 shifts. For each combination of [Test instance, detection
scheme, data length], 500 experiment replications are performed to evaluate the corresponding Pw
and Pc.
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Figure 4. Detection performance comparison: Line B1

Figure 5. Detection performance comparison: Line B2

Figure 6. Detection performance comparison: Line B3
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Figure 7. Detection performance comparison: Line C1

Figure 8. Detection performance comparison: Line D1

Figure 9. Detection performance comparison: Line B3. The SF adopts AM as the coupled M , other parameter settings are as

default
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First, we make comparisons in Line B1. When t = 3 shifts, the AM and TPM cannot locate the
true bottleneck m2 in all replications, they give wrong detection results with a frequency around
40%, as in Figure 3. These wrong results distribute over all non-bottleneck machines but mainly on
m4, which is the second critical machine in the line. Whereas, the SF has a much lower Pw, because
it rejects most of the wrong results proposed by the coupled M (TPM). Meanwhile, the SF rejects
a portion of the proposed correct results as well, because these results have no sufficient statistical
evidence. They are expected to be accepted when t is longer and more statistical evidences are
collected. The detection results obtained with longer t are reported in Figure 4. As shown, Pw (AM)
and Pw (TPM) decrease along t axis. Indeed, less estimation errors of D are incurred with the use
of longer data and, therefore, the detection inaccuracy of AM and TPM decreases. Even so, the
SF still shows great advantage over AM and TPM in avoiding wrong results, especially when t is
short. On the other hand, Pc (SF) rises gradually along t axis and approaches to Pc (TPM). As
expected, with the accumulation of statistical evidences, more correct results proposed by M are
accepted by the SF.

Same comparisons are made in other production lines. Results are shown in Figure 5 to Figure 8.
On one hand, in all cases, the SF suppresses the Pw at low level, the maximum Pw (SF) is merely
12.2% (Figure 8, t=2 shifts). Whereas the maximum Pw (AM) and Pw (TPM) both exceed 70%, as
observed in Figure 8. It can be concluded that the SF is capable in avoiding wrong detection results
in systems with different configurations. On the other hand, the Pc (SF) is lower than Pc (AM)
and Pc (TPM) in all cases. Nevertheless, Pc (SF) increases with t and converges to the Pc of the
coupled M . Therefore, when the SF obtains no result, the users can input further records to obtain
the correct bottleneck.

Two exceptions where Pc (SF) does not increase with t are observed, one is in Line B3 (Figure
6), and the other is in Line D1 (Figure 8). In both cases, the coupled M of the SF, i.e., TPM, fails
to converge to the true bottleneck no matter how long the input record is. Indeed, the performance
of the SF relies greatly on the coupled M . To fix it, we have to select another M which is effective
in these circumstances for the SF. For example in Line B3, we use AM instead of TPM as the
coupled M and consequently, Pc (SF) increases gradually with t, as in Figure 9.

5.4 Influence on bottleneck investment

The purpose of bottleneck detection is to discover the most critical machine on which investment
can bring the highest benefit. However the risk of detection error can have a great impact on the
benefit. In this section, we study numerically how different detection schemes, i.e., AM, TPM and
SF, will affect the benefit of bottleneck investment, with a simple reward model described below.

Assume a bottleneck investment project requires a cost I. Given the collected data of length t,
if the correct bottleneck is detected and improved, a reward of (1 + τ)I is given, where τ is named
reward rate; otherwise the reward is 0. The cost I is spent whenever a bottleneck is detected then
improved, no matter it is correct or wrong. In the case no bottleneck is detected, no investment is
made so no cost is incurred. The expected return on investment (ROI) can be calculated by:

ROI =
I(1 + τ)Pc − I(Pc + Pw)

I
= τPc − Pw (6)

We calculate the ROI of different cases, results are shown in Figure 10. First, the benefit of
applying the SF comes from its low Pw, which is the key for the users to avoid unnecessary
investments. Therefore, when the available data is too short or the system configuration is too
complex to assure a correct bottleneck, applying the SF is a wise decision which avoids loss. As seen
in the case (Line B1, τ = 0.2) and (Line B2, τ = 0.2), when t < 20 shifts, the SF obtains a better
ROI than AM and TPM. Also, as in the case (Line C1, τ = 0.2), when the system has complex
configurations, the SF outperforms AM and TPM along the t axis. Second, the disadvantage of
the SF is the relatively low Pc, which makes the users become conservative in investing and leads
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Figure 10. ROI of different bottleneck investment projects guided by AM, TPM and SF.

to opportunity costs. So when the reward rate is high, and the potential cost of not investing is
large, the SF is less favored. For instance, in case (Line B1, τ = 0.6), the ROI of SF becomes lower
than that of AM and TPM for any t > 9 shifts. Third, when the characteristics of the production
system are too tricky for a detection method to converge to the true bottleneck, applying the SF
is able to pull down the Pw and prevent losses. Examples are found in the cases of Line D1 with
different τ values.

6. Conclusion

By incorporating several statistical tools such as multiple testing technique and batch means tech-
nique, we proposed a statistical framework for the data-driven bottleneck detection procedure in
manufacturing systems. To the best of our knowledge, this is the first research studying the in-
fluence of system variability on the accuracy of data-driven bottleneck detection and proposing
solution to mitigate the inaccuracy. Simulation and comparisons demonstrate the effectiveness of
the SF in avoiding wrong detection results. Bottleneck investments guided by the SF are more
secure and result in higher ROI, especially when the available data stream is short and the system
configuration is complex. In addition, the SF is easy to implement and needs no other information
but only the on-field records used by the adopted bottleneck detection method.

The main disadvantage of the SF is that the Pc is not high enough. In some cases, the difference
between Pc (SF) and Pc (coupled M ) can be larger than 25%. This is actually caused by the Type
II error in the statistical tests. Indeed, the SF is constructed with some degree of freedom allowing
the users to make trade-off between Type I and Type II error, or saying, between Pw and Pc.
Although we have set the default parameters based on the analysis of 16 problems, the optimal
settings is never static but rather “problem sensitive”. It depends not only on the τ of the investing
environment, but also on the system characteristics, and the available record length. Therefore, one
future research is to develop an algorithm to adjust the SF parameters according to the problem
structure.

Although the Pc (SF) can be increased by inputting more data, there are some practical situations
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where waiting for further data is not feasible. When no significant bottleneck is observed, the SF,
instead of simply giving the “do not invest” instruction, could do more to make better use of the
collected data. One idea is that the SF can try to locate a subset of critical machines which may
contain the bottleneck. Thus the investment can be split among these machines. This could be an
interesting feature to realize for future studies.
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