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Abstract This work illustrates a fast numerical approach for analyzing the pre-buckling and buckling response
of innovative panel configurations for aerospace structures. Specifically, the approach allows composite panels
with variable-stiffness skins and stiffened by curvilinear stringers to be studied in a fast yet accurate manner.
The method of Ritz is applied in conjunction with first-order theories for modeling the skin and the stiffeners,
the former described referring to Mindlin plate theory, the latter to Timoshenko beam model. Due to the ex-
cellent convergence properties of the approach, pre-buckling stress distributions can be captured with reduced
effort. Similarly, accurate buckling predictions can be obtained with relatively few degrees of freedom, much
less with respect to typical models relying upon the use of finite elements. Results are presented for a number
of test-cases from the literature, illustrating the potential of the proposed approach as a mean for performing
preliminary studies with reduced computational effort.

Keywords Curvilinear stringers · Variable-stiffness · Stiffened panels · Ritz method

1 Introduction

Aerospace structural panels have been classically designed using orthogonal stiffening elements, i.e. stringers
along the longitudinal directions and ribs/frames along the transverse one. However, improved tailoring op-
portunities are available by exploiting the concept of stiffness variability, using tow-steering and curvilinear
stringers, separately or in combination. Potential gains offered by tow-steered panels are well-documented
in the literature [1–5], and several studies clearly illustrated the possibility of improving buckling and post-
buckling responses with respect to corresponding quasi-isotropic configurations. Recent works addressed also
the effects of different kinematic theories when applied to the analysis of tow-steered panels [3,6,7].
In the past years, it was demonstrated that curvilinear stringers can be successfully used to further improve
stiffness tailoring opportunities and, to a more general extent, the structural efficiency of stiffened panels. Pi-
oneering work in this field is due to Kapania and co-workers [8,9], who discussed the possibility of reducing
static stresses and improving buckling loads, in particular for shear-dominated loading conditions [10].
In the past, ad-hoc finite element strategies were developed to facilitate the analysis of curvilinearly stiffened
panels. Indeed, one crucial aspect regards the generation of regular grids, despite the presence of non-straight
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stiffeners. To this aim, a finite element incorporating the stiffener element, whose displacement field is inter-
polated starting from the skin, was proposed in Refs. [11–13]
Another effective strategy consists in adopting a mesh-free approach, so that any issue due to the genera-
tion of the model is essentially removed. This approach was pursued in Refs. [14–19]. Recently, curvilinearly
stiffened panels were analyzed via mesh-free strategies by Yoshida et al. [20] and Ozdemir et al. [21], mod-
eling the stringers as ideal constraints and explicit assemblies of shell elements, respectively. Recently, the
concept of variable-stiffness skin in conjunction with curvilinear stringers has been proposed in the context
of finite-element procedures [22–24]. Optimization studies were carried out to highlight potential advantages
with respect to straight-fiber configurations.
Given the inherent geometrical complexity of variable-stiffness (VS) panels with curvilinear stringers, the de-
velopment of efficient computational tools plays a crucial role in facilitating preliminary design studies and
investigating potential benefits. In this context, semi-analytical procedures have been successfully applied in
the past years for analyzing composite structures (see, e.g. [25–30]).

In this paper, illustrated is a simplified procedure for assessing the structural response – emphasis is given
here to the pre-buckling and buckling response – of VS curvilinearly stiffened panels. The procedure is fast
in so far as relies upon the method of Ritz, where the structure is modelled as an assembly of plate and beam
elements. The displacement field is approximated using orthogonal polynomials, guaranteeing convergence of
the solution with a relatively small number of degrees of freedom, much smaller with respect to those required
by an equivalent Finite Element (FE) analysis. The accuracy of the predictions is shown by comparison against
FE simulations and results from the literature, illustrating the potential of the proposed tool as a valuable mean
for performing parametric studies and preliminary optimizations.

2 Fast Numerical Approach

The approach is developed in the framework of a displacement-based approach, where the governing equations
are derived from a variational formulation of the problem. The approximate solution is retrieved referring to
the Ritz method, leading to the solution of discrete problems characterized by a relatively small number of
degrees of freedom.
A sketch of the structure under investigation is provided in Figure 1.

Fig. 1 Sketch of a stiffened panel with three curvilinear stringers – dimensions and conventions for edge loads and prescribed
displacements.

A reference system xyz is defined at the center of the panel, whose longitudinal and transverse dimensions are
denoted as a and b, respectively. Any boundary condition can be accounted for, and loading conditions are
defined in the form of prescribed displacements and forces. Note, the sketch illustrates compressive loading
conditions, but any other set of loads can be considered within the proposed analysis framework.
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2.1 Plate model

The plate model refers to well-known first-order shear deformation theory (FSDT) [31]. One advantage of-
fered by this model – in addition to the possibility of accounting for transverse shear deformability effects –
consists in the ease in enforcing continuity of rotations between skin and stiffeners. According to FSDT, the
displacement field is expressed as:

u(x,y,z) = u0(x,y)+ zLϕ(x,y)

= [I zL]

{
u0
ϕ

}
= [I zL]d0

(1)

where the vectors u0,ϕ collect the generalized displacement components, i.e. u0 = {u0 v0 w0}T and ϕ ={
ϕx ϕy ϕz

}T. The matrix L has dimension 3×3, the only not-null contributions being the unitary values at
the positions (1,1) and (2,2).
By differentiating the displacement components it is possible to retrieve the strains as function of the kinematic
model strain parameters, which are collected into the vector e as:

e =
{

ξ
T kT

γ
T
}T

(2)

The entries of Eq. (2) represent the membrane, curvature and transverse-shear deformation parameters, respec-
tively.
The skin of the panel is characterized by variable in-plane properties, with fiber orientation defined using
Lagrange interpolation in an arbitrary number of points as:

θ(x,y) =
M−1

∑
m=0

N−1

∑
n=0

θmn ∏
m 6=i

(
|x|− xi

xm− xi

)
∏
n 6= j

(
|y|− y j

yn− y j

)
(3)

Linear fiber orientation variation and straight fiber configurations are retrieved as special cases. As illustrated
next, the variability of elastic properties does not alter the framework for formulating the plate problem. In this
regard, the governing equations are the same of classical straight-fiber configurations. However, non-constant
elastic properties have the effect of coupling the in-plane integrals due to the Ritz approximation. Thus special
care is needed in the implementation to keep at minimum the computational time.

2.2 Stiffener model

Dealing with curvilinear stringers, the first step consists in defining the geometry in terms of path. To this aim,
a Bézier description is used, where the stiffener coordinates are given as:

x(q) =
n

∑
i=0

(
n
i

)
Pi (1−q)n−i qi with q ∈ [0 1] (4)

where the vectors Pi specify the coordinates of the control points.
Once the geometric parametrization is available, the tangent vector, at any point, is obtained as:

t = x,s (5)

where s is the arc-length coordinate. One can observe that the relation between the parameter p and the arc-
length differentials is:

ds = ||x,p||dp = Js dp (6)
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with Js representing the Jacobian of the transformation.
The beam kinematic model is based on Timoshenko beam theory. According to this model, the displacement
field for the generic stiffener i is:

ui(s,n,b) = ui
0(s)+(d×)

T
θ

i(s) (7)

having denoted with s,n,b the coordinates in the curvilinear reference system where n = t and b are the normal
and binormal vectors, respectively. For ease of derivation, the origin of the system is taken in correspondence
of the skin midsurface.
Note that ui

0 and θ
i define the displacements and the rotations around the three axes, while d is the position

vector.
Following Refs. [32,16], the beam strains can be expressed as:

ε
i =


ui

0,s · t
ui

0,s ·n−θ
i ·b

ui
0,s ·b+θ

i ·n

+(d×)
T


θ

i
,s · t

θ
i
,s · t

θ
i
,s · t

+η
i (8)

the first and the second expanded vectors representing the axial strains and the curvatures; the last contribution,
η i stems from the linearization of the Green-Lagrange strain tensor and is introduced for the buckling solution
procedure only.
The compatibility between stringers and skin is enforced in a strong-form manner by expressing the beam
displacement components as function of the plate generalized displacements. This is done by ensuring that:{

ui
0 = u0|Γ i

θ
i = J T

ϕ|Γ i
(9)

where the matrix J is introduced to transform the skin rotation parameters into rotations around the orthogonal
axes xyz.

2.3 Pre-buckling

The pre-buckling analysis is conducted by assuming linear behaviour, and referring to the minimum potential
energy principle to derive the equilibrium conditions. The total potential energy is the sum of skin and stiffeners
contributions, and the relevant variational principle reads:

δΠ = δ

(
U +Wm +Wth +

Ns

∑
i=1

Π
i

)
= 0 (10)

where Ns is the number of stringers.
The strain energy U is [31]:

U =
1
2

∫
A


ξ

k
γ


TA B 0

B D 0
0 0 As




ξ

k
γ

 dA =
1
2

∫
A

eTDpedA (11)

with obvious definition of the vector e and the plate constitutive matrix Dp.
It is important to remark that Dp =Dp(x,y) as fiber orientations are, in general, function of the in-plane position
(see Eq. (3)).
The contribution due to mechanical loads is restricted to the prescribed forces (as prescribed displacements are
part of the essential conditions of the problem) and is:

Wm =−
4

∑
i=1

∫
∂Ai

(
u0Nxi + v0Nyi

)
d∂Ai (12)
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where the summatory is taken at the four edges of the plate. In a similar fashion, the energy term due to thermal
loads can be obtained as:

Wth =−
∫

A
eTR̂(x,y)dA∆T (13)

where R̂ are the unitary thermal loads, e is defined in Eq. (2), and ∆T is the uniform temperature variation,
taken positive for heating.
The stiffener contribution to the total strain energy can be written as:

U i =
1
2

∫
Γ i

{
ξ̃

i

k̃i

}T
Ci

{
ξ̃

i

k̃i

}
+

{
F̂ i

M̂i

}
∆T

 ds (14)

having denoted with a tilde the beam strain parameters once compatibility with the skin dislacements is en-
forced, and with Ci the section constitutive matrix [33].

2.4 Buckling

Buckling equations are derived referring to the Trefftz’s criterion. By splitting the contributions due to the skin
and stiffeners, the reading variational principle is:

δ

(
δ

2
Π +

Ns

∑
i=1

δ
2
Π

i

)
= 0 (15)

The first entry accounts for the quadratic part of the skin strain energy, which is:

δ
2
Π =

1
2

∫
A

eTDpedA +
1
2

∫
A

[
Npre

xx (x,y)w
2
0,x +2Npre

xy (x,y)w0,xw0,y +Npre
yy (x,y)w

2
0,y

]
dA (16)

The membrane forces Npre
ik are those available from the solution of the pre-buckling problem. Note that all the

displacement components entering Eq. (16) should be interpreted as variation with respect to the pre-buckling
condition.
The quadratic part of the stiffeners’ total potential energy is:

δ
2
Π

i =
1
2

∫
Γ i

{
ξ̃

i

k̃i

}T

Ci

{
ξ̃

i

k̃i

}
ds +

1
2

∫
Γ i

Pi
η̃

i
tt ds (17)

where Pi specifies the pre-buckling axial forces carried by the stiffeners.

2.5 Ritz approximation

The approximate solution for the pre-buckling and buckling problem is sought by referring to the Ritz ap-
proach. In this framework, the generalized displacement components are expressed using global trial functions.
Specifically, the displacements components are expanded as:

u0 =

φ
T
u
(
ξ ,η

)
φ

T
v
(
ξ ,η

)
φ

T
w
(
ξ ,η

)



cu
cv
cw

+


φ u(ξ )+ψu(η)
φ v(ξ )+ψv(η)

0

= Φuau +Φu (18)

where Φu is a matrix collecting the trial functions – defined here as the product between Legendre polynomials
and boundary functions – for the approximation of the three displacement parameters u0,v0 and w0, while the
vector au collects the unknown Ritz amplitudes.
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The last vector of Eq. (18), Φ , is introduced to consider any prescribed displacement at the four edges, and its
entries are:

φ u =
u3−u1

2
ξ , ψu =

u4−u2

2
η

φ v =
v3− v1

2
ξ , ψv =

v4− v2

2
η

(19)

The expansion for the rotation parameters is operated similarly to Eq. (18). Upon substitution of Eq. (18)
into the variational principles (see Eqs. (10) and (15)), and after performing numerical integration, the set of
algebraic equations governing the pre-buckling and buckling problem are derived as:

Ka = F ,
(
K +λKg

)
a = 0 (20)

where K, Kg and M are the assembled stiffness, geometric stiffness and mass matrices of the stiffened panel,
while F is the vector of the external loads.

3 Results

The approach is applied to study two test-cases from the literature regarding the mechanical and thermal buck-
ling of panels stiffened by curvilinear stringers. Both concentric and eccentric stiffeners are considered, i.e.
e = 0 and e 6= 0, where e is the stiffener eccentricity, as illustrated in the sketches of Figure 2.

NEW FIGURE
(a) (b)

Fig. 2 Stiffener configurations: (a) concentric, (b) eccentric.

An example is then presented to illustrate the potential of the approach in deriving interaction curves for mul-
tiple loading conditions.
All the computations are performed using the same number of trial functions for all the displacement compo-
nents. The corresponding expansion is then indicated as R×S. The number of functions is chosen on the basis
of preliminary convergence tests.

3.1 Mechanical buckling curvilinearly stiffened panel

The first benchmark is taken from Ref. [24] and deals with the buckling analysis of a square panel with di-
mension 300 mm. A 16-ply lay-up with sequence [±θ1/± θ2]2s is considered. The panel is stiffened by four
stringers of dimensions 2.03× 10.16 mm2. All the relevant data are available in Ref. [24] and are not given here
for the sake of brevity. The panel is simply-supported at the four edges, and is loaded with a uniform prescribed
shortening along the axis x. All the in-plane displacements along the transverse direction are prevented, thus
the skin experiences a biaxial pre-stress state.
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A preliminary convergence study is illustrated in Table 1 for the pre-buckling and buckling analysis, where the
buckling multiplier corresponding to an axial shortening of 0.02 mm is reported. A fixed grid of 30 integration
points along the two in-plane directions is considered for evaluating the in-plane integrals.

Concentric (e = 0) Eccentric (e 6= 0)
Rbuck Rbuck

Rpre 5 10 15 20 25 5 10 15 20 25

3 8.70 7.68 7.50 7.46 7.44 23.78 17.89 17.24 17.06 16.96
5 8.82 7.69 7.49 7.45 7.43 24.82 16.79 16.23 16.06 15.96

10 8.92 7.61 7.40 7.35 7.33 25.57 15.57 14.96 14.79 14.70
15 8.94 7.62 7.41 7.36 7.34 25.65 15.53 14.92 14.75 14.66
20 8.95 7.63 7.42 7.37 7.35 25.67 15.53 14.92 14.75 14.66
25 8.95 7.63 7.42 7.37 7.35 25.68 15.53 14.92 14.75 14.66

FEM ([24]) - NASTRAN ([24]) 7.09 - 7.29 14.70 - 14.91

Table 1 Buckling multipliers for simply-supported VS panels with four curvilinear stringers under prescribed axial shortening of
0.02 mm. Convergence analysis using Rpre×Rpre and Rbuck×Rbuck functions for the pre-buckling and buckling analysis, respec-
tively.

One can assess the convergence of the pre-buckling solution by moving along the rows of the table, while that
of the buckling solution can be analyzed moving along the column-wise direction. It is interesting to note the
faster convergence achieved for the pre-buckling analysis, where just 15 trial functions are needed. The buck-
ling problem, due to the presence of local modes, is more demanding, and more trial functions are necessary
to reach convergence.
The buckling values obtained by means of finite element calculations are also reported in Table 1. Close agree-
ment can be noted between the reference results and those obtained using the present formulation. It should
be noted that slight differences are due to different descriptions of the stiffener path, represented here using a
minimum least-square technique to fit the Hobby spline representation of Ref. [24].
Pre-buckling stress distributions are reported in Figure 3 for a prescribed axial shortening of 0.02 mm. The
combined presence of curvilinear stringers and variable fiber orientations is responsible for a relatively com-
plex pattern. To facilitate the understating of the internal load paths, the fiber orientations of plies at θ1 and θ2
are reported in Figure 3(a). Looking at the Nxx component, load re-distribution towards the edges can be noted
as response to fiber steering. The external portion of the panel are indeed the areas where fibers are mostly
aligned with the loading direction, thus offering the highest stiffness along the x direction. Local peaks of axial
compressions (blue regions) can be seen due to stringers’ local stiffening effects.

(a) (b) (c) (d)

Fig. 3 Pre-buckling stress resultants for VS panels with four concentric curvilinear stringers under prescribed axial shortening: (a)
fiber path (θ1 black, θ2 red), (b) Nxx, (c) Nyy, (d) Nxy.

In addition, the comparison of the buckling modes is reported in Figure 4, where the contour refers to the
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(a) Mode 1, Present (b) Mode 1, Ref. [24] (c) Mode 1, Present (d) Mode 1, Ref. [24]

Fig. 4 Buckling modes for simply-supported VS panels with four curvilinear stringers under prescribed axial shortening: (a)-(b)
e = 0, (c)-(d) e 6= 0.

out-of-plane displacements.
It is observed that, for the concentric case (e = 0), the mode displays a global pattern, and all the stiffeners lift
from the midsurface. When eccentricity effects are considered, the modal shape is strongly different, and the
onset of a local buckle can be noticed in the upper part of the skin. As seen by comparison against reference
results, the quality of the predictions is very satisfactory. This is even more true if one considers the small num-
ber of degrees of freedom involved in the analysis process, which is equal to 3000, approximately. A similar
approach based on finite element calculations, such as the one reported Ref. [24] and where second-order plate
element are used, requires a number of dofs which is 6 to 10 times larger.

3.2 Thermal buckling curvilinearly stiffened panel

A second test case deals with the buckling analysis in the presence of a thermal load (Ref. [23]). A composite

panel made of carbon/epoxy is considered. The thermal expansions coefficients are α1 = −0.9 · 10−6 1
◦C

and

α2 = 27 · 10−6 1
◦C

, while the remaining elastic properties are available in Ref. [23]. The panel is square with

size of 150 mm, and the skin is characterized by a lay-up [±< 69|−5.705 >]2s. The two curvilinear stringers
have dimensions 1.02 × 5.08 mm2, with all the plies oriented at 0 degrees. The panel is subjected to uniform
heating, while the in-plane motion along panel edges is prevented, implying that normal and shearing resultants
are introduced through edge reactions forces. Simply-supported flexural boundary conditions are considered:
out-of-plane displacements are prevented, but all rotations are left free along the boundaries. For clarity, a
sketch of the boundary and thermal loading conditions is presented in Figure 5.
The path of the plies at [+ < 69| − 5.705 >] is sketched in Figure 6(a), while the pre-buckling stress distri-
bution is presented in Figures 6(b) to 6(d). It can be observed that the central area of the panel experiences a
tensile Nyy pre-buckling state, due to the negative thermal expansion coefficient along the fiber direction. On
the contrary, the external parts undergo a compressive Nyy pre-stress of increasing magnitude as the fibers are
progressively aligned with the horizontal direction. Indeed, the positive thermal expansion coefficient along the
matrix direction determines a compressive stress as a reaction to the edges’ prevented displacement along the
y direction.
A summary of the first five critical temperatures is available in Table 2, where the comparison is presented
against results from the literature. The results are computed using 20× 20 functions, leading to a number of
dofs that is 5 to 6 times smaller with respect to the FEM models used in the reference.
Additional results are presented for different sets of flexural boundary conditions, referring to the notation
where S stands for simply-supported and C for clamped. Each letter refers to one edge, starting from the one
at x =−a/2 and rotating in counterclockwise direction.
The quality of the prediction in terms of buckling temperatures can be seen by inspection of Table 2, where a
maximum difference of 1.5% is obtained. It is interesting to highlight the strong dependency of the buckling
multiplier on the flexural boundary conditions, in particular with respect to the rotational restraint at the first
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NEW FIGURE
Fig. 5 Boundary conditions for curvilinearly stiffened panel.

(a) (b) (c) (d)

Fig. 6 Pre-buckling stress resultants for VS panels with two concentric curvilinear stringers subjected to unitary thermal heating:
(a) fiber path [+< 69|−5.705 >], (b) Nxx, (c) Nyy, (d) Nxy.

Concentric (e = 0) Eccentric (e 6= 0)
BC Mode FEM ([23]) NASTRAN ([23]) Ritz FEM [23] NASTRAN ([23]) Ritz

20 × 20 20 × 20

1 77.78 78.00 77.89 101.03 100.92 101.83
2 117.44 118.07 118.02 122.61 123.27 123.51

SSSS 3 138.78 140.06 137.97 150.08 152.25 149.55
4 143.09 144.65 143.04 151.75 153.83 151.13
5 149.92 151.97 149.69 160.01 162.38 160.49

SCSC 1 - - 111.44 - - 117.42
CSCS 1 - - 181.17 - - 195.32
CCCC 1 - - 202.02 - - 202.88

Table 2 Critical temperatures (◦C) for for simply-supported VS panels with two curvilinear stringers under uniform temperature
increase.

and third edges.
The comparison with literature results is presented Figure 7, where the first buckled shapes are plotted in terms
of out-of-plane deflection contours. As observed, the agreement with the results obtained in Ref. [23] is excel-
lent.
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(a) Mode 1, Present (b) Mode 1, Ref. [23] (c) Mode 1, Present (d) Mode 1, Ref. [23]

Fig. 7 Buckling modes for simply-supported VS panels with two curvilinear stringers under uniform temperature increase: (a)-(b)
e = 0, (c)-(d) e 6= 0.

3.3 Thermo-mechanical buckling of curvilinearly stiffened panel

To illustrate the potential of the approach, the thermo-mechanical buckling response is now assessed for the
same configuration discussed in the previous example. The panel, which is stiffened by means of two concen-
tric stiffeners, is subjected to a combination of mechanical loads, introduced by means of a prescribed uniform
displacement applied at the two parallel edges at x = const, and a uniform temperature variation. Two different
sets of in-plane boundary conditions are considered and denoted hereinafter as B1 and B2. In the first case
(B1 condition) the transverse contraction/expansion is prevented by enforcing the displacement component v
to vanish along the two edges at y = const. This condition is inherently biaxial, as thermally-induced resultants
Nyy are promoted by retaining the transverse displacements. In the second case (B2 condition), no essential
boundary conditions are imposed at the edges at y = const, so the transverse resultant Nyy develops internally
due to stiffness variability, but is not introduced at the edges in the form of reaction forces. Regarding the
flexural behaviour, two sets of conditions are considered, and are denoted next as SSSS and CSCS. Note, the
letter S specifies here prevented out-of-plane deflection and free rotations φx, φy, whilst C defines prevented
out-of-plane deflections and rotations. Nothing is implied with respect to the in-plane displacement degrees of
freedom.
The results are summarized in the interaction curves of Figure 8, where positive values of ∆U denote axial
shortening, whilst heating and cooling are associated with positive and negative values of the temperature vari-
ation T , respectively. Each point of the curves corresponds to one single buckling analysis. Hence, several
repeated runs are needed to obtain these plots, further providing evidence of the advantages offered by a model
characterized by relatively few degrees of freedom.
The plots summarize the first buckling modes obtained for different ratios between prescribed temperature and
axial displacement, furnishing an overview of the modal changes experienced by the panel when the loading
conditions are modified.
Referring to Figure 8, it is noted that pre-buckling stress resultants do not depend on the flexural boundary
conditions. Indeed, the symmetry of the skin stacking sequence and the presence of concentric stiffeners lead
to uncoupled membrane and bending behaviour. Therefore any difference between SSSS and CSCS configura-
tions is fully due to the bending-related response of the panel. The effect of adding constraints, which is well
known in classical buckling theory, is noticeable, inasmuch preventing the loaded edges from rotation has the
effect of strongly improving the buckling loads. For positive temperatures, i.e. heating, the skin experiences a
compressive resultant Nxx along with a pattern of Nyy where the central region is subjected to traction and the
outer regions to compression – one can refer to Figure 6 for the pre-buckling contour plot relative to a set of
boundary conditions similar to the case B1. In case of cooling, the patterns are reversed, with tensile Nxx (in
average) over the domain and transverse resultant Nyy characterized by a compressively loaded inner region.
This help explaining the buckled patterns available in the plots of Figure 8. The negative side of the y-axis
(cooling) corresponds to pre-buckling compressive forces affecting the central part of the structure, where the
buckle tends to localize. For positive temperature changes, the central part of the structure is stabilized through
tensile transverse stresses, whilst the outer parts are subjected to biaxial compression. Buckling deflections are
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(a) (b)

Fig. 8 Interaction curve for VS panels with two concentric curvilinear stringers and subjected to combined thermo-mechanical
loads. In-plane conditions: (a) B1, (b) B2.

thus promoted in the outer parts the structure, leading to larger halfwave lengths and, eventually, to buckling
localization. It is interesting to notice that the slope of the interaction plots tends to remain constant as the
buckled shape is preserved, whilst changes of slope are accompanied by modal changes.

4 Conclusions

The work discussed a fast numerical approach for the pre-buckling and buckling analysis of composite stiffened
panels, where the skin can be characterized by non-uniform stiffness properties and the stiffeners can run
along curvilinear paths described by Bézier splines. The comparison with reference finite element calculations
demonstrates the accuracy of the approach proposed. Main advantages are the reduced number of degrees of
freedom involved in the computations along with the ease in generating the models. These aspects render the
formulation particularly suitable for those cases where several analysis need to be run, such as in the early steps
of the design phase. Furthermore, the ease in generating and analyzing relatively complex configurations allows
to perform parametric studies and preliminary optimizations, which can be useful for gathering understanding
into the mechanical response of curvilinearly stiffened panels. While the combined effects of VS skin and
curvilinear stringer can be exploited for achieving improved buckling response, future work should be directed
towards the introduction of blending requirements between the skin and stiffeners.
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