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Abstract. In this paper we investigate the structure of intermediate vertex al-
gebras associated with a maximal conformal embedding of a reductive Lie algebra
in a semisimple Lie algebra of classical type.

1. Introduction

Let g be a semisimple finite-dimensional complex Lie algebra and k a reductive 
subalgebra of g. The embedding k →֒ g is called conformal if the central charges 
of the Sugawara construction of the Virasoro algebra for the affinizations ĝ, k̂ are 
equal. Conformal embeddings were popular in physics literature in the mid 80’s, 
due to their relevance for string compactifications. In particular, maximal conformal 
embeddings were classified in [SW], [AGO]. In the vertex algebra framework the
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definition can be rephrased as follows: the simple affine vertex algebras Vk(k) and
V1(g) have the same Sugawara conformal vector for some multiindex k of levels.

Recall that an irreducible module M over a vertex algebra V is called a simple
current if for any irreducible V -module M2 there exists a unique irreducible V -

module M3 such that the space of intertwiners

[
M3

M M2

]
is one-dimensional and

[
S

M M2

]
= {0} for any irreducible V -module S not isomorphic to M3. A simple

current extension of V is a simple vertex operator algebra W containing V such
that V and W have the same Sugawara conformal vector and there is grading
W =

∑
a∈DW

a of W by an abelian group D such that W 0 = V and W a is a simple
current for V for any a ∈ D.

Our main result is the following theorem, which appears as Theorem 7.4 in the
body of the paper.

Theorem 1.1. Let k →֒ g be a maximal conformal embedding and g a simple
classical Lie algebra. Assume that W is a simple vertex subalgebra of V1(g) such
that Vj(k) ⊂ W . Then either W = V1(g) or W is a simple current extension of
V j(k). Moreover, all these extensions are explicitly described.

As detailed in Remark 7.1, the theorem holds when k is a regular subalgebra of a
simple Lie algebra g of exceptional type. We have not been able to settle the case
when k is not regular. However Remark 7.2 leads us to think that the theorem is
true in this case too:

Conjecture 1.1: Theorem 1.1 holds for any conformal embedding k →֒ g.

A motivation for this paper comes from the following conjecture, which is a
modified vertex algebra version of conjecture 1.2 in [X]:

Conjecture 1.2 (generalized Wall’s conjecture for vertex algebras): Suppose that
B is a vertex operator algebra and A ⊂ B is a vertex operator subalgebra. Assume
that B decomposes into a direct sum of finitely many irreducible representations of
A. Then the number of minimal (resp. maximal) vertex subalgebras between A and
B is less than C · (dim EndA(B))3/2 , where C is a constant and EndA(B) is the
space of linear maps from B to itself which commute with the action of A.

Consider the special case when A is the fixed point subalgebra of a simple vertex
operator algebra D under a faithful action of a finite group G, and B is the fixed
point subalgebra of D under a faithful action of a finite subgroup H of G. By
the Galois correspondence (cf. [HMT], [KR]), the intermediate vertex subalgebras
between A and B are in one to one correspondence with subgroups of G which con-
tain H , and minimal/maximal vertex subalgebras correspond to maximal/minimal
subgroups of G which contain H . So the minimal version of the above conjecture
in this case states that the number of maximal subgroups of G which contain H
is less than C · n

3
2 where n is the number of double cosets of H in G. When H is

trivial or a normal subgroup of G, this is a theorem of Liebeck, Pyber and Shalev
[LPS]. It is believed that the constant C can be chosen to be 1.

At the time of this writing, the original 1961 conjecture of G.E. Wall (corre-
sponding to bounding the number of maximal subgroups by |G|) seems to have
been disproven. But the above conjecture is still open even for group cases when
the subgroup H of G is not normal.
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The maximal version of the above conjecture in the group case can be easily
verified. For example when H is trivial the conjecture follows from the fact that
the number of minimal subgroups of G is less than |G|, and this can be directly
checked as follows: note that any minimal subgroup of G is a cyclic group of prime
order, and so any two such minimal subgroups intersect only at identity. It follows
that the number of minimal subgroups of G is less than |G|.

In Xu’s paper [X], the above conjecture was tested for a special class of A ⊂ B
coming from conformal embeddings. In particular, in Theorem 3.14 of [X] all simple
intermediate vertex algebras in these cases are listed. The proof in [X] is a mixture
of techniques from the theory of subfactors and uses unbounded smeared vertex
operators. The main theorem of this paper gives a vast generalization of Theorem
3.14 of [X] using very different methods.

Theorem 1.1 can be nicely illustrated by the case of the maximal conformal em-
bedding g →֒ so(g). This example does not have the many technical complications
of the general case, but it is enlightening in showing the ideas underlying the proof.
We therefore refer the reader to Section 2 for an outline of proof in this special case.

A key tool in our treatment is given by the decomposition formulas found in
[CKMP]. In that paper, starting from a conformal embedding k →֒ so(p) associated
to an infinitesimal symmetric space g = k⊕p, we found explicit formulas expressing

the decomposition of the basic module of ĝ in k̂-irreducibles. Also, we provided a
combinatorial interpretation of these decompositions in terms of the abelian sub-
spaces of p that are stable with respect to the action of a Borel subalgebra of k.

In the present paper, we first generalize the results of [CKMP] to any conformal
embedding in a classical simple Lie algebra. It is very convenient, in view of this
generalization, to reformulate our previous result in the framework of affine vertex
algebras rather than that of basic modules of affine Lie algebras. This is done in
Theorem 6.1. The generalization to the classical case is given in Theorem 6.5. With
this generalized result available, we proceed to prove Theorem 1.1 along the lines
of the adjoint case.

A natural question left open by Theorem 1.1 is to analyze the structure of the
simple current extensions, or, in other terms, to determine the abelian groups
parametrizing the extensions. This is done in the last section, where we relate
these groups to certain subgroups of the center of the connected simply connected
Lie group corresponding to k (cf. Proposition 8.2). These subgroups turn out to be
characterized by suitable integrality conditions: see Proposition 8.3 and Corollary
8.4.

The paper is organized as follows. In Section 2 we discuss the strategy of proof
of Theorem 1.1 in the adjoint case. Section 3 is divided in several subsections.
In the first three subsections we recall a few basic facts on vertex algebras and
perform some calculations in the fermionic vertex algebra needed in what follows.
In Section 3.4 we discuss the notion of conformal embedding from several points of
view. In 3.5 we highlight the relationships of conformal embeddings with the finite
decomposition property and we also apply results by Kac and Wakimoto to classify
certain instances of finite decomposition at admissible rational non-integer levels.
Section 4 contains the material we need about representations of vertex algebras,
with special emphasis on fusion coefficients and simple currents. In Section 5 we
collect all the results from the theory of symmetric pairs which will be used in
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the derivation of the decomposition formulas. In Section 6 we state and prove
the decomposition theorems, and in Section 7 we apply them to prove Theorem
1.1. Section 8 illustrates the final sentence of Theorem 1.1, yielding an explicit
description of the groups parametrizing the simple currents extensions.

Notational conventions. Regarding Dynkin diagrams, we use the conventions for
names and numberings of [K1], Chapter 4, Tables Fin, Aff 1-2.

We denote by N the set of nonnegative integers.

2. The adjoint case

In this section we sketch the proof of Theorem 1.1 in the case of the conformal
embedding of a simple Lie algebra g in so(g). Precise definitions and references will
be given in the next sections.

Let Vk(g) denote the simple affine vertex algebra of level k ∈ N (cf. 3.3). It
is known that the irreducible Vk(g)-modules with highest weight kω where ω is a
minuscule fundamental weight of g are simple currents for Vk(g). We call them
special simple currents. In this section we give an outline of proof of the following
special case of Theorem 1.1.

Theorem 2.1. Let g be a simple Lie algebra and let h∨ be its dual Coxeter number.
The only simple vertex operator algebras V such that Vh∨(g) ⊆ V ( V1(so(g)) are
simple currents extensions of Vh∨(g) whose factors are special simple currents.

We identify V1(so(g)) with the basic module L(Λ̃0), where Λ̃0 is the 0-th funda-

mental weight for ŝo(g). Next we realize L(Λ̃0) explicitly as the even part of the
fermionic vertex algebra F (ḡ) of (ḡ, (·, ·)) where ḡ is g seen as an odd space and (·, ·)
is the Killing form on g (cf. 3.1). If x ∈ g, we let x̄ be the corresponding element
of F (ḡ).

If X ∈ so(g), set Θ(X) = 1
2

∑
i : X(xi)x̄

i : where {xi} is a basis of g and {xi} its

dual basis. In the identification V1(so(g)) = L(Λ̃0) ⊂ F (ḡ), an element X of so(g)
is mapped to Θ(X).

Let h be a Cartan subalgebra of g. Choose a non-zero vector xα in the root space
gα corresponding to the positive root α and consider x−α such that (xα, x−α) = 1.

Let Λ0 be the 0-th fundamental weight for ĝ. According to [CKMP], as a repre-
sentation of the derived algebra of ĝ, we have

L(Λ̃0) =
⊕

I∈Ab0

L(h∨Λ0 + 〈I〉),

where Ab0 is the set of even dimensional abelian ideals in a (suitable) Borel subal-
gebra b of g and 〈I〉 =

∑
gα⊂I

α. Moreover, the highest vector of L(h∨Λ0 + 〈I〉) is
given by

vI =:
∏

gα⊂I

x̄α : .

Likewise, we introduce

v−I =:
∏

gα⊂I

x̄−α : .
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We identify Vh∨(g) with L(h
∨Λ0), so, if V is a vertex algebra intermediate between

L(h∨Λ0) and L(Λ̃0), then

V =
∑

I∈AbV

L(h∨Λ0 + 〈I〉)

with AbV a subset of Ab0.
Write Eα,α ∈ gl(g) for the linear transformation, diagonal in the given basis, such

that Eα,α(xα) = xα, Eα,α(xβ) = 0 for β 6= α, and Eα,α(h) = 0 for h ∈ h. A special
case of formula (3.9) gives that,

(vI)(2n−2)v−I =
∑

gα⊂I

Θ(Eα,α − E−α,−α).

If I ∈ AbV then vI ∈ V . It is easy to check (see also [Ko, Remark 4.10]) that if
I ∈ Ab0, then there is a unique ideal I∗ ∈ Ab0 such that 〈I∗〉 = −w0(〈I〉). Here
w0 is the longest element of the Weyl group of g. The simplicity of V implies that,
if L(h∨Λ0 + 〈I〉) ⊂ V , then L(h∨Λ0 + 〈I∗〉) ⊂ V (see Lemma 4.1 below). Since
v−I ∈ L(h∨Λ0 + 〈I∗〉), we have that v−I ∈ V . It follows that

∑
gα⊂I

Θ(Eα,α −
E−α,−α) ∈ V , so that V contains both Θ(ad(g)) and

∑
gα⊂I

Θ(Eα,α − E−α,−α). If∑
gα⊂I

(Eα,α − E−α,−α) 6∈ ad(g), then, since the conformal embedding of ad(g) in

so(g) is maximal , we have that so(g) ⊂ V , but then V = V1(g). Otherwise, we
have

∑
gα⊂I

(Eα,α − E−α,−α) = ad(h) with h ∈ h. Since ad(h) =
∑

α∈∆ α(h)Eα,α,
there is a simple root αi such that αi ∈ I and this can be shown to imply that αi
has coefficient 1 in the highest root and I is the nilradical of the maximal parabolic
corresponding to αi. Thus 〈I〉 = h∨ωi, and ωi is a minuscule fundamental weight
of g. But then L(h∨(Λ0 + ωi)) is a special simple current.

3. Vertex algebras

For basic notions on the theory of vertex algebras we refer the reader to [K2] or
[DK, §1]. We will be mainly consistent with notation used in the latter reference.
In particular, we shall denote by a 7→ Y (a, z) =

∑
n∈Z a(n)z

−n−1 the state-field
correspondence, by T the translation operator and by p(a) the parity of a ∈ V . For
a, b ∈ V we set p(a, b) = (−1)p(a)p(b).

A conformal (or Virasoro) element in a vertex algebra V is a vector ω in V ,
such that the associated field Y (ω, z) =

∑
n∈Z ω(n)z

−n−1 has the following three
properties:

(1) [ωλω] = (T + 2λ)ω + cλ
3

12
for some c ∈ C;

(2) ω(1) is diagonalizable;
(3) ω(0) = T .

The number c is called the central charge of ω. Write V = ⊕n∈CVn for the eigenspace
decomposition of V with respect to ω(1). If v ∈ Vn, then n is called the conformal
weight of v and it is denoted by ∆v. As shown in Proposition 1.15 of [DK]

(3.1) ∆a(n)b = ∆a +∆b − n− 1, ∆T (a) = ∆a + 1.

Recall that V1/TV0 acquires a natural structure of Lie algebra, with bracket
defined by [a + TV0, b + TV0] = a(0)b+ TV0. In particular, if V0 = C|0〉, then V1 is
a Lie algebra with bracket [a, b] = a(0)b.
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If A,B are subspaces of V , we define, following [BK, Remark 7.6]

(3.2) A · B = Span{a(n)b | a ∈ A, b ∈ B, n ∈ Z}.

Lemma 3.1. (a) The product (3.2) and the vector space sum define on the set of
all T -stable subspaces of V a structure of unital associative commutative ring AV .

(b) If V is a simple vertex algebra, then the ring AV is a domain.
(c) If V is a simple vertex algebra, and a, b ∈ V are such that b 6= 0 and Y (a, z)b =

0, then a = 0.

Proof. The subspace C|0〉 is an identity element of AV by (1.23) and (1.24) of
[DK]. The associativity of the product (3.2) follows from the Borcherds identity
(see [DK, (1.28)]) and commutativity follows from the skewsymmetry (see [DK,
(1.29)]), proving (a).

Claim (b) follows from (c). In order to prove (c), it is enough to show that, if
a, b ∈ V, b 6= 0 and Y (a, z)b = 0, then a = 0. Consider the set Cent(b) = {a ∈
V | Y (a, z)b = 0}. We claim that Cent(b) is an ideal of V . It is T -stable, since
Y (Ta, z) = ∂zY (a, z). Moreover by the Borcherds identity (cf. (1.28) of [DK]),
letting m >> 0, we find that if x ∈ V , a ∈ Cent(b), then, for any k, n ∈ Z,

∑

j∈N

(
m

j

)
(x(n+j)a)(m+k−j)b = 0

Choose N so that x(h)a = 0 for h > N . An obvious induction on t ≥ 0 shows that
(x(N−t)a)(r)b = 0 for all t ≥ 0 and all r. Hence Cent(b) is a left ideal, and since
it is T -stable it is a 2-sided ideal (by skewsymmetry). Since V is simple, we have
either Cent(b) = {0} or Cent(b) = V . In the latter case, from the skewsymmetry
relation, we get that Y (b, z) = 0, which contradicts the assumption that b 6= 0. �

3.1. The fermionic vertex algebra. If A is a vector space we write Ā for the
totally odd vector superspace such that Ā0 = {0} and Ā1 = A. If a ∈ A, write ā to
denote a seen as an element of Ā. Assume that A is equipped with a nondegenerate
symmetric bilinear form (·, ·). Then one can construct the Clifford Lie conformal
algebra as

RCl(Ā) = (C[T ]⊗ Ā)⊕ CK,

with the λ-bracket

(3.3) [āλb̄] = (a, b)K [āλK] = [KλK] = 0, a, b ∈ A,

and T acting on C[T ] ⊗ A by left multiplication and trivially on K. Let V (Ā) be
the universal enveloping vertex algebra of this Lie conformal algebra. The vertex
algebra

F (Ā) = V (Ā)/ : (K − 1)V (Ā) :

is called the fermionic vertex algebra.
The fermionic vertex algebra has a Virasoro element:

(3.4) ωĀ =
1

2

∑
: T (x̄i)x̄

i :,

where {xi} and {xi} is a pair of dual bases of A.
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Remark 3.1. The vertex algebra F (Ā) can be constructed explicitly as follows:
consider L(Ā) =

∑
r∈ 1

2
+Z t

r ⊗ A and set L(Ā)+ =
∑

r>0 t
r ⊗ A. Extend the form

(·, ·) to L(Ā) by setting

(tr ⊗ a1, t
s ⊗ a2) = δr,−s(a1, a2).

Let Cliff(L(Ā)) be the corresponding Clifford algebra. Then one can identify F (Ā)
and the Clifford module Cliff(L(Ā))/(Cliff(L(Ā))L(Ā)+). If x ∈ A, then the corre-
sponding field is Y (x, z) =

∑
n∈Z x(n)z

−n−1 where x(n) is the operator given by the

action of tn+
1
2 ⊗ x. (See [K2, 3.6]).

3.2. Some calculations in the fermionic vertex algebra. The goal of this
section is to prove formula (3.8) in Proposition 3.6, which will be needed in the
sequel.

Lemma 3.2. If x, y ∈ A are such that (x, y) = 1, then

(1)

[T n(ȳ)λ : T
n1(x̄)T n2(x̄) . . . T nk(x̄) :]

=

k∑

i=1

(−1)i+1(−λ)nλni : T n1(x̄)T n2(x̄) . . . T̂ ni(x̄) . . . T nk(x̄) : .

(2)

[: T n1(x̄)T n2(x̄) . . . T nk(x̄) :λ T
n(ȳ)]

=

k∑

i=1

(−1)k−i(λ+ T )n(−λ− T )ni : T n1(x̄)T n2(x̄) . . . T̂ ni(x̄) . . . T nk(x̄) : .

Proof. The first formula is a direct application of Wick’s formula. The second
formula is obtained from the first by applying skew-symmetry of the λ-bracket. �

We let ∆[aλb] be the conformal weight of the leading coefficient of the polynomial
[aλb]. If n ∈ Nk, set T n(x̄) = T n1(x̄) · · ·T nk(x̄). In what follows we will use many
times (3.1).

Lemma 3.3. If n ∈ Nh, m ∈ Nk with h < k, and [: T n(x̄) :λ: T
m(ȳ) :] 6= 0, then

∆[:Tn(x̄):λ:Tm(ȳ):] ≥ min(mi) +
1
2
.

Proof. The proof is by induction on h. If h = 1, then the result follows from Lemma
3.2. If h > 1, set ni = (n1, . . . , n̂i, . . . , nh) ∈ Nh−1. By Wick’s formula

[: T n(x̄) :λ: T
m(ȳ) :] =: [: T n(x̄) :λ: T

m1(ȳ) :]Tm1(ȳ) :

+ (−1)h : Tm1(ȳ)[: T n(x̄) :λ: T
m1(ȳ) :] :

− (−1)h
h∑

i=1

(−1)i+1

∫ λ

0

(λ− µ)m1(−λ+ µ)ni[: T ni(x̄) :µ: T
m1(ȳ) :]dµ.

The conformal weight of the first summand is clearly bigger than m2 +
1
2
. The

conformal weight of the second summand is clearly bigger than m1 +
1
2
. Finally, by

the induction hypothesis,

∆[:Tni(x̄):µ:Tm1(ȳ):] ≥ min(m2, . . . , mk) +
1
2
.

The result follows.



8

If n,m ∈ Nk, set A(n,m) = ((−1)nj(mi+nj)!)1≤i,j≤k and C(n,m) = detA(n,m).
For k = 0, we set C(∅, ∅) = 0. Let Nk

reg be the set of all n such that ni 6= nj for

i 6= j. Introduce the divided powers λ(s) = λs

s!
.

Lemma 3.4. Assume n,m ∈ Nk
reg, k ≥ 1. Let j0 (resp. i0) be the index such that

nj0 = min(nj) (resp. mi0 = min(mi)). Set N = ∆:Tn(x̄): +∆:Tm(ȳ): − 1.
If (x, y) = 1, then

[: T n(x̄) :λ: T
m(ȳ) :] =

(−1)[k/2]C(n,m)λ(N)|0〉

+ (−1)[k/2](−1)i0+j0C(ni0 ,mj0)λ
(N−nj0

−mi0
−1) : T nj0 (x̄)Tmi0 (ȳ) :

+ lower order terms.

Proof. The proof is by induction on k. If k = 1, then

[: T n(x̄) :λ: T
m(ȳ) :] = (−1)nλn+m = (−1)n(m+ n)!λ(n+m),

as desired.
If k ≥ 1, we can assume that i0 = j0 = 1. By Wick’s formula and Lemma 3.2,

[: T n(x̄) :λ: T
m(ȳ) :] =: [: T n(x̄) :λ: T

m1(ȳ) :]Tm1(ȳ) :

+ (−1)k : Tm1(ȳ)[: T n(x̄) :λ: T
m1(ȳ) :] :

− (−1)k
k∑

i=1

(−1)i+1

∫ λ

0

(λ− µ)m1(−λ+ µ)ni[: T ni(x̄) :µ: T
m1(ȳ) :]dµ.

By Lemma 3.3, the conformal weights occurring in the first summand are greater or
equal than n1 +min(mi | i ≥ 2)+ 1. Since n1 +min(mi | i ≥ 2)+ 1 > m1 + n1 +1,
we see that

[: T n(x̄) :λ: T
m(ȳ) :] = (−1)k : Tm1(ȳ)[: T n(x̄) :λ: T

m1(ȳ) :] :

(3.5)

− (−1)k
k∑

i=1

(−1)i+1

∫ λ

0

(λ− µ)m1(−λ+ µ)ni[: T ni(x̄) :µ: T
m1(ȳ) :]dµ

+ lower order terms.

Applying Wick’s formula and Lemma 3.2, we obtain that

[: T n(x̄) :λ: T
m1(ȳ) :] =: eT∂λT n1(x̄)[: T n1(x̄) :λ: T

m1(ȳ) :] :

+ (−1)k−1 : eT∂λT n1(x̄)[: T n1(x̄) :λ: T
m1(ȳ) :] :

+ (−1)k−1
k−1∑

i=1

(−1)i+1

∫ λ

0

(−λ + µ)n1(λ− µ)mi+1[: T n1(x̄) :µ: T
(m1)i(ȳ) :]dµ.

The conformal weight of the second summand is bigger than min(ni | i > 1) + 1
2

and, by Lemma 3.3, the conformal weights of the terms occurring in the third sum
are bigger than min(ni | i > 1) + 1

2
as well. Since min(ni | i > 1) + 1

2
> n1 +

1
2
,
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substituting in (3.5), we have

[: T n(x̄) :λ: T
m(ȳ) :] = (−1)k : Tm1(ȳ)eT∂λT n1(x̄)[: T n1(x̄) :λ: T

m1(ȳ) :] :

− (−1)k
k∑

i=1

(−1)i+1

∫ λ

0

(λ− µ)m1(−λ + µ)ni[: T ni(x̄) :µ: T
m1(ȳ) :]dµ

+ lower order terms.

By the induction hypothesis, we find that

[ : T n(x̄) :λ: T
m(ȳ) :] = (−1)k+[(k−1)/2]C(n1,m1)λ

(N−m1−n1−1) : T n1(x̄)Tm1(ȳ) :

− (−1)k+[(k−1)/2]
k∑

i=1

(−1)i+1C(ni,m1)

∫ λ

0

(−1)ni(λ− µ)m1+niµ(N−ni−m1−2)|0〉dµ

+ lower order terms.

Now observe that
∫ λ

0

(−1)ni(λ− µ)m1+niµ(N−ni−m1−2)dµ = (−1)ni(m1 + ni)!λ
(N)

and that −(−1)k+[(k−1)/2] = (−1)[k/2], hence the proof is complete.

Let n! = (0, 1, . . . , n) ∈ Nn+1.

Corollary 3.5. Let N = (n + 1)2 − 1. If n ≥ 1 and (x, y) = 1 then

[: T n!(x̄) :λ: T
n!(ȳ) :] = (

n∏

i=0

i!)2(λ(N)|0〉+ (n+ 1)λ(N−1) : x̄ȳ :) + lower order terms.

Proof. We note that ∆:Tn!(x̄): = (n+ 1)2/2. Moreover

C(n!,n!) = det((−1)j(i+ j)!)0≤i,j≤n = (−1)[k/2]det((i+ j)!)0≤i,j≤n.

The latter determinant is classically evaluated as (see e.g. [KRA])

det((i+ j)!)0≤i,j≤n =

n∏

i=1

(i!)2.

Note that

C(n!1,n!1) = det((−1)j(i+ j)!)1≤i,j≤n = (−1)[k/2]det((i+ j)!)1≤i,j≤n

Using Proposition 1 in Section 2.1 of [KRA], one can show that

(3.6) det((i+ j)!)1≤i,j≤n = (n+ 1)
n∏

i=1

(i!)2.

The statement now follows from Lemma 3.4.

Let A′ be a subspace of A such that A = A′ ⊕ (A′)⊥. Then the map a⊗ b 7→: ab :
establishes an isomorphism between F (Ā′)⊗ F ((Ā′)⊥) and F (Ā). Hence, if a′, b′ ∈
F (Ā′) and a′′, b′′ ∈ F ((Ā′)⊥),

: a′a′′ :(n): b
′b′′ := p(a′′, b′)

∑

r+s=n−1

: (a′(r)b
′)(a′′(s)b

′′) : .
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In particular, if N ′ = ∆a′ +∆b′ − 1, N ′′ = ∆a′′ +∆b′′ − 1, and N = N ′ +N ′′ + 1,
then

[a′a′′λb
′b′′] = p(b′, a′′) : (a′(N ′)b

′)(a′′(N ′′)b
′′) : λ(N)(3.7)

+ p(a′, a′′)(: (a′(N ′−1)b
′)(a′′(N ′′)b

′′) : + : (a′(N ′)b
′)(a′′(N ′′−1)b

′′) :)λ(N−1)

+ lower order terms.

We are now ready to prove the main result of this section. Set Cn =
∏n

i=0(i!)
2.

Proposition 3.6. Assume that x1, . . . , xk, y1, . . . , yk ∈ A are such that (xi, xj) =
(yi, yj) = 0 for all i, j and (xi, yj) = δij. Fix n1, . . . , nk ∈ N and set

a =: T n1!(x̄1) . . . T
nk!(x̄k) :

and
b =: T n1!(ȳ1) . . . T

nk!(ȳk) : .

Then

[aλb] =
∏

i<j

(−1)(ni+1)(nj+1)
k∏

i=1

Cni

(
λ(N)|0〉+ λ(N−1)

k∑

i=1

(ni + 1) : x̄iȳi :

)
(3.8)

+ lower order terms,

where N =
∑k

i=1(ni + 1)2 − 1. In particular

[: x̄1 . . . x̄k :λ: ȳ1 . . . ȳk :] = (−1)⌊k/2⌋(|0〉λ(k−1) + λ(k−2)(
∑

i

: x̄iȳi :))(3.9)

+ lower order terms.

Proof. By formula (1.40) of [DK], we have that

a =:: T n1!(x̄1) : · · · : T
nk!(x̄k) ::, b =:: T n1!(ȳ1) : · · · : T

nk!(ȳk) :: .

We can therefore apply repeatedly (3.7) combined with Corollary 3.5 to obtain the
result. �

3.3. The affine vertex algebra. Let g be a simple or abelian finite dimensional
complex Lie algebra.

Let (·, ·) be the normalized nondegenerate invariant symmetric bilinear form on
g (i.e., the square length of a long root of g is 2); if g is abelian, any non-degenerate
symmetric bilinear form will do. One defines the Lie conformal algebra Cur(g) as

Cur(g) = (C[T ]⊗ g) + CK

with λ-bracket defined for a, b ∈ 1⊗ g by

[aλb] = [a, b] + λ(a, b)K, a, b ∈ g,

[aλK] = [KλK] = 0.

Let V (g) be its universal enveloping vertex algebra. Let h∨ be the dual Coxeter
number of g (h∨ = 0 if g is abelian), and choose k ∈ C with k 6= −h∨. The vertex
algebra

V k(g) = V (g)/ : (K − k|0〉)V (g) :

is called the level k universal affine vertex algebra. It has a unique simple quotient
Vk(g) called the level k simple affine vertex algebra. If g is reductive, let g =
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g0 ⊕ g1 ⊕ · · · ⊕ gs with g0 abelian and gi simple ideals for i = 1, . . . , s. If k ∈ Cs+1,
we define

V k(g) = V k0(g0)⊗ V k1(g1)⊗ · · · ⊗ V ks(gs)

and
Vk(g) = Vk0(g0)⊗ Vk1(g1)⊗ · · · ⊗ Vks(gs).

Note that both V k(g) and Vk(g) are vertex algebras with Virasoro element ωg given
by the Sugawara construction:

ωg =
s∑

j=0

1

2(kj + h∨j )

dim gj∑

i=1

: xjix
i
j : .

Here {xji}, {x
i
j} are dual bases of gj and h

∨
j is its dual Coxeter number.

Observe that V k(g)0 = C|0〉, so V k(g)1 is a Lie algebra. The obvious embedding
of g in Cur(g) defines an embedding of g in V k(g) and it is easy to check that the
image of this embedding is precisely V k(g)1. If π : V k(g) → Vk(g) is the canonical
homomorphism, then it is not hard to check that π is injective when restricted to
V k(g)1, thus we can identify Vk(g)1 and g.

3.4. Conformal embeddings.

Definition 3.1. Let V and W be vertex algebras equipped with Virasoro elements
ωV , ωW and assume that W is a vertex subalgebra of V . We say that W is confor-
mally embedded if ωV = ωW .

The following construction provides several examples of conformal embeddings.
Let a = r⊕p be the eigenspace decomposition of an involution σ of a semisimple Lie
algebra a. In this case it is usually said that (a, r) is a symmetric pair. Let a = ⊕as
be the decomposition of a into σ-indecomposable ideals. Let (·, ·) be the Killing

form of a. Clearly (·, ·) is nondegenerate when restricted to p. Write r =
∑M

S=0 rS
with r0 abelian and rS simple ideal for S > 0. Let (·, ·)0 =

1
2
(·, ·)|r0×r0 and, if S > 0,

let (·, ·)S be the normalized invariant form on rS . Let adp denote the adjoint action
of r on p. Set h∨i to be the dual Coxeter number of ai (since σ|ai is indecomposable,
ai is either simple or the sum of two isomorphic simple ideals, and in the latter case
h∨i is the dual Coxeter number of one of these simple ideals). If S > 0, let h∨S be
the dual Coxeter number of rS. Set, for S > 0,

jS = nSh
∨
iS
− h∨S

where nS = 1
h∨iS

(α,α)
, α is any long root of rS and aiS is the unique indecomposable

ideal containing rS. Set also j0 = 1. Then, (see [CKMP, Section 2])

(3.10) 1
2
tr(adp(h)adp(h

′)) = jS(h, h
′)S

for any h, h′ ∈ rS. Set

(3.11) j = (j0, . . . , jM).

Let {xi} a basis of p, and {xi} its dual basis. It was shown by Kac and Peterson
(when σ is inner) [KP] and by Goddard, Nahm and Olive [GNO] that the map

(3.12) Θ(X) = 1
2

∑

i

: [X, xi]x̄
i :

can be extended to an embedding of Vj(r) in F (p̄).
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Moreover the image of the Virasoro element of Vj(r) in F (p̄) coincides with ωp̄

(cf. (3.4)). Thus Vj(r) embeds conformally in F (p̄).
The other way around also holds: let

(3.13) k = k0 ⊕
s∑

i=1

ki

be a reductive Lie algebra with, as usual, k0 abelian and ki simple ideals for i > 0.
The symmetric space theorem [GNO] implies the following statement.

Proposition 3.7. If k is such that

i. there is vertex algebra embedding of Vk(k) in F (Ā) for some vector space A
and some k ∈ C∗ × Ns;

ii. the Virasoro elements of Vk(k) and F (Ā) coincide,

then there is a symmetric pair (a, r) such that r = k and p = A; moreover, k = j.

A special case of the above discussion occurs when we consider a vector space A
with a nondegenerate bilinear symmetric form (·, ·), and embed A in Ã = A ⊕ C
with the form extended by (a, 1) = 0 for a ∈ A and (1, 1) = 1. Let L be the linear

map on Ã defined by L(a + c) = −a + c. Then σ = Ad(L) is an involution of
so(Ã, (·, ·)) and the corresponding eigenspace decomposition is

so(Ã, (·, ·)) = so(A, (·, ·))⊕A.

The adjoint action of so(A, (·, ·)) onA coincides with the standard action of so(A, (·, ·))
on A. In this case the above construction gives that V1(so(A, (·, ·)) embeds confor-
mally in F (Ā) and the embedding is given by the extension of the map Θ defined
by

(3.14) Θ(X) = 1
2

∑

i

: X(xi)x̄
i : .

Note also that F (Ā)0 = C|0〉, so F (Ā)1 is a Lie algebra. One checks easily that
the map Θ between so(A, (·, ·)) = V1(so(A, (·, ·)))1 and F (Ā)1 defined above is onto.
Thus Θ gives an isomorphism between F (Ā)1 and so(A, (·, ·)).

Set

(3.15) F (Ā)0 = ⊕n∈NF (Ā)n.

Since V1(so(A, (·, ·))n 6= {0} only if n ∈ N, it is clear that Θ(V1(so(A, (·, ·))) ⊂
F (Ā)0. Since F (Ā)1 ⊂ Θ(V1(so(A, (·, ·))), we can identify F (Ā)0 and V1(so(A, (·, ·)).

Definition 3.2. If g is a simple Lie algebra and k is a reductive subalgebra as in
(3.13), we say that k is conformally embedded in g, if there is k ∈ C∗ × NM such
that Vk(k) is conformally embedded in V1(g).

Remark 3.2. If (a, r) is a symmetric pair, it is clear that Θ maps Vj(r) in F (p̄)
0 =

V1(so(p)). Thus r is conformally embedded in g = so(p) and the symmetric space
theorem implies that any conformal embedding in so(n,C) arises in this way.

Remark 3.3. If k →֒ g is a conformal embedding and v is a reductive subalgebra
of g containing k, then v is conformal in g. This follows from the fact that, since
V1(g) is a unitarizable V1(g)-module, then the equality of the Virasoro elements is
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equivalent to the equality of the corresponding central charges. Thus, if k is a max-
imal conformal subalgebra of g, then it is actually a maximal reductive subalgebra.
The list of such maximal embeddings is given in [AGO].

3.5. Finite decomposition property. The notion of conformal embedding first
arose in literature in a slightly different way. Consider a pair (g, k), where g is a
finite-dimensional simple Lie algebra over C and k is a reductive subalgebra of g,
such that the restriction of the Killing form of g to k is non-degenerate. Denote

by ĝ, k̂ the corresponding affinizations [K1]. Recall that a level k highest weight
representation of ĝ can be naturally viewed as a representation of V k(g) (cf. [K2]).

It is well-known that any integrable highest weight ĝ-module, when restricted to k̂,

decomposes into a direct sum of irreducible k̂-modules [K1], but almost always this
decomposition is infinite. As we have already remarked, the first cases of a finite
decomposition were found in [KP]. This led to define the notion of a conformal pair
in terms of the following finite decomposition property: k was called a conformal
subalgebra of g if there exists a non-trivial integrable highest weight module V

over the affine Kac–Moody algebra ĝ, such that the restriction to k̂ of each weight
space of the center z(k) of k in V decomposes into a finite direct sum of irreducible

k̂-modules.
It was readily found that the decomposition in question is finite if and only if the

central charges of the Sugawara construction of the Virasoro algebra for ĝ and k̂ are
equal [GNO]. Recall that the function

cg(k) =
k dim g

k + h∨

expresses the central charge of the Sugawara construction at level k for a simple
Lie algebra g with dual Coxeter number h∨. In [AGO, Section 2] it is shown that
cg,k(k) = cg(k) −

∑
S ckS(jSk) is strictly increasing as a function of k. By [K1,

Proposition 12.12.c)] we have cg,k(k) ≥ 0 if k is a positive integer. By the coset
construction, we have the finite decomposition property of an irreducible highest
weight ĝ-module V of level k only if the coset central charge is zero:

(3.16) cg,k(k) = 0.

Hence the decomposition in question has a chance to be finite only if the level of
the ĝ-module V is equal to 1, and if it is finite for one of the ĝ-modules of level 1,
it is also finite for all others.

A more conceptual argument, kindly suggested by the referee (see also [AP]), is
the following: if the embedding is conformal then ωg−ωk is in the maximal ideal of
V k(g), hence there must be a singular vector in V k(g) of conformal weight 2. This
implies that there is λ, with λ either zero or a sum of at most two roots of g, such
that

(2ρ̄+ λ, λ)− 2(k + h∨)

k + h∨
= 2.

Here ρ̄ is a Weyl vector for g and (·, ·) is the normalized invariant form. Since
(ρ̄, α) ≤ h∨ − 1 for any root α and ‖λ‖2 ≤ 8, we see that the above equality implies
that 2h∨+4−2k

k+h∨
≥ 2, so k ≤ 1.

On the other hand, if we remove the integrability condition, equality of central
charges may happen at levels less than 1. Some examples of this phenomenon were
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found in [AP]; it was also noted that sometimes one also gets the finite decompo-
sition property. We would like to put the examples discovered by Adamović and
Perše [AP] in the framework of Kac-Wakimoto theory of admissible representations
[KW3].

Let ĥ = h⊕ CK ⊕ Cd a Cartan subalgebra of ĝ (h is a Cartan subalgebra of g).
Let ρ be a Weyl vector for ĝ (cf. [K1]). Recall that an irreducible highest weight

module L(λ), λ ∈ ĥ∗ over an affine algebra ĝ is said to be admissible if

(1) (λ+ ρ)(α) /∈ −N, for each positive coroot α;
(2) the rational linear span of positive simple coroots equals the rational linear

span of the coroots which are integral valued on λ+ ρ.

Admissible modules are classified in [KW3]; their importance lies in the fact that the
character of these representations has modular invariance properties even though
they are not necessarily integrable. We are concerned about admissible representa-
tion by virtue of the following observation, which relies on the theory developed in
[KW3].

Denote by gg(λ) the number, called the growth of L(λ), defined by formula (3.20b)
of [KW3] for the weight λ of ĝ. It expresses the asymptotic behavior of the character
of L(λ): in the limit t→ 0+ of the real parameter t

trL(λ)e
2πt(d+z) ∼ bλ · e

π
12t

gg(λ) (z ∈ h)

where bλ = bλ(z) is a nonzero function of z.

Theorem 3.8. Let g be a simple Lie algebra and k =
∑r

S=0 kS a reductive equal
rank maximal subalgebra of g. Assume that L(kΛ0), k ∈ Q \ Z, is admissible and

that any irreducible subquotient of L(kΛ0) is admissible as a k̂-module. Then the

ĝ-module L(kΛ0) decomposes finitely w.r.t. k̂ if and only if (3.16) and

(3.17) gg(kΛ0) =

r∑

S=0

gkS(jSkΛ0S)

hold.

Proof. Consider µ ∈ h∗0 and define U(Λ, µ) as in [K1, 12.12]. Then L(kΛ0) =⊕
i

U(kΛ0, λi)⊗Lk̂(λi) as representation of V ir⊕ k̂, where V ir is the coset Virasoro

algebra.
If L(kΛ0) decomposes finitely then U(kΛ0, λi) are finite dimensional hence the

central charge of the coset Virasoro, which is cg,k(k), is zero, hence (3.16) holds.
Next we prove (3.17). Since k is an equal rank subalgebra of g and Lk(λi) occurs in

L(kΛ0), we have that λi−λj is a sum of roots of k̂. Since the growth of an admissible

k̂-module Lk(λ) depends only on the set of roots α of k̂ such that λ(α∨) ∈ Z,
we see that the growth of Lk(λi) does not depend on i. Denote it by g′. Since
Lk(
∑

S jSkΛ0S) clearly occurs in L(kΛ0), we have that g′ =
∑r

S=0 gkS(jSkΛ0S).
Setting g = gg(kΛ0) we have, as t→ 0+,

bkΛ0(z)e
πg/12t(1 + o(1)) = (

∑

i

bλi(z))e
πg′/12t(1 + o(1)).

If g′ < g, we obtain by dividing by eπg/12t, as t → 0+, that bkΛ0(z) = 0 for all z. If
g′ > g, we obtain by dividing by eπg

′/12t, as t→ 0+, that (
∑

i bλi(z)) = 0, but then
again bkΛ0(z) = 0 for all z, a contradiction.
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Assume now that (3.16) and (3.17) hold. If λ is admissible, then, by Proposition 5
of [KW2], which holds under the additional assumption that the eigenspaces of (ωg)0
on L(λ) are finite-dimensional, the V ir-modules U(λ, λi) have finite Jordan-Holder
series. The additional hypothesis is satisfied in the special case λ = kΛ0. Moreover
each irreducible subquotient has central charge given by cg,k(k) and growth given
by gg(kΛ0)−

∑r
S=0 gkS(jSkΛ0S). Since they are both zero, we see that U(kΛ0, λi) is

finite dimensional, hence the decomposition is finite.

Remark 3.4. Computing explicitly equal rank pairs (g, k) having levels satisfying
condition (3.16) and condition (3.17), we obtain just the following three cases

k g k

−l + 3/2 Bl Dl

−5/3 G2 A2

−5/2 F4 B4

Table 1

The finiteness of the decomposition in these cases has been proved in [AP] for
(Bl, Dl), (G2, A2) and in [Pe] for (F4, B4). Note that our methods do not cover the
cases when one of the levels involved is a negative integer (see e.g., [AP, Table 2]).

4. Representations of vertex algebras

4.1. Intertwining operators and simple currents. Let V be a vertex algebra.
A V -module is a vector superspace M endowed with a parity preserving map Y M

from V to the superspace of End(M)-valued fields

a 7→ Y M(a, z) =
∑

n∈Z

aM(n)z
−n−1

such that

(1) Y M(|0〉, z) = IM ,
(2) for a, b ∈ V , m,n, k ∈ Z,

∑

j∈N

(
m

j

)
(a(n+j)b)

M
(m+k−j)

=
∑

j∈N

(−1)j
(
n

j

)
(aM(m+n−j)b

M
(k+j) − p(a, b)(−1)nbM(k+n−j)a

M
(m+j)).

Given three V -modules M1, M2, M3, an intertwining operator of type

[
M3

M1 M2

]

(cf. [FZ]) is a map I : a 7→ I(a, z) =
∑

n∈Z a
I
(n)z

−n−1 from M1 to the space of

End(M2,M3)-valued fields such that for a ∈ V , b ∈ M1, m,n ∈ Z,

∑

j∈N

(
m

j

)
(aM1

(n+j)b)
I
(m+k−j)

=
∑

j∈N

(−1)j
(
n

j

)
(aM3

(m+n−j)b
I
(k+j) − p(a, b)(−1)nbI(k+n−j)a

M2

(m+j)).
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Example 4.1. Let W be a vertex algebra and V a simple subalgebra of W . Let
Mi, i = 1, 2, 3, be V -submodules (with respect to the standard representation of W
to itself, restricted to V ), and let π : W → M3 be a linear map, commuting with
the action of V on W . Let a ∈M1. Then

I(a, z) = πY (a, z)|M2
,

is an intertwining operator of type

[
M3

M1 M2

]
.

We let NM3
M1,M2

be the dimension of the space of intertwining operators of type[
M3

M1 M2

]
. When NM3

M1,M2
is finite, it is usually called a fusion coefficient.

Definition 4.1. Let V be a vertex algebra.
1. A simple current for V is a V -module S such that, for any irreducible V -

module M , there is a unique irreducible V -module MS such that NMS

S,M is nonzero

and also NMS

S,M = 1.
2. Let V be a vertex algebra equipped with a Virasoro vector. A simple current

extension of V is a simple vertex algebra W such that V →֒ W is a conformal
embedding and there is grading W =

∑
a∈DW

a of W by an abelian group D such
that W 0 = V, W a ·W b ⊂W a+b and W a is a simple current for V for any a ∈ D.

Remark 4.1. Simple currents are usually defined in terms of a tensor product
between V -modules (see, for example, [DLM] and references therein). They are
defined by the condition that S ⊗M is irreducible whenever M is. We won’t need
this general theory.

We are mainly interested in the vertex algebra Vk(g) when g is a simple Lie
algebra and k ∈ N.

Choose a Cartan subalgebra h of g and a set of simple roots {α1, . . . , αn} for the
root system of (g, h). Let b be the Borel subalgebra corresponding to these choices
and let θ be the highest root.

If λ ∈ h∗, we denote by Lg(λ) the irreducible representation of V k(g) having a
vector vλ such that

x(n)vλ = 0 for x ∈ g and n > 0,(4.1)

x(0)vλ = λ(x) for x ∈ b.(4.2)

Here λ is extended trivially on [b, b]. If the action of V k(g) pushes down to an action
of Vk(g), we keep denoting by Lg(λ) the corresponding Vk(g) module. The module
Lg(λ) is called the irreducible module of highest weight λ and the vector vλ is called
a highest weight vector. Let P denote the weight lattice of g, and let {ω1, . . . , ωn} be
the fundamental weights. Let P+ =

∑
iNωi be the set of dominant integral weights.

Set P k
+ = {λ ∈ P+ | λ(θ∨) ≤ k}. The irreducible Vk(g)-modules are precisely the

irreducible highest weight modules Lg(λ) with λ ∈ P k
+. In particular Vk(g) has a

finite number of irreducible representations. Exercise 13.35 of [K1] gives an explicit

formula for the fusion coefficents N
Lg(ν)
Lg(λ),Lg(µ).
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Write θ =
∑

i aiαi. It is well known (cf. [DLM]) that if ai = 1, then Lg(kωi) is a
simple current for Vk(g). Set J = {i | ai = 1}. To simplify notation, set

1 = Vk(g),(4.3)

oi = Lg(kωi), (i ∈ J),(4.4)

and define

(4.5) Ωg = {1} ∪ {oi | i ∈ J}.

We call the elements of Ωg the special simple currents for Vk(g).
It turns out that the special simple currents are related to the the center z(G) of

the connected simply connected Lie group G corresponding to g. let P ∨ ⊂ h denote
the coweight lattice of g, and let {ω∨

1 , . . . , ω
∨
n} be the fundamental coweights.

Let f : Ωg → P ∨ be defined by

(4.6) f(oi) = ω∨
i , f(1) = 0.

Then we have the following bijection exp ◦f :

Ωg
f

−−−→ P ∨ exp
−−−→ z(G).

Thus Ωg acquires a group structure (M,M ′) 7→MM ′ from this bijection; as notation
suggests, 1 = Vk(g) is the identity element. It is well known that, if M1,M2 ∈ Ωg

and M3 is an irreducible Vk(g)-module, then

(4.7) NM3
M1,M2

= δM3,M1M2 .

This result easily extends to the case when g is reductive. First remark that if g
is abelian, letting b = g, then (4.1) and (4.2) define Lg(λ) for any λ ∈ g∗. Moreover
Lg(λ) is a simple current for Vk(g), k ∈ C∗. Indeed, in this case we have,

N
Lg(ν)
Lg(λ),Lg(µ) = δν,λ+µ.

We therefore set
Ωg = {Lg(λ) | λ ∈ g∗}

and call its elements special simple currents. Identifying Ωg and g∗ gives a group
structure to Ωg and (4.7) holds also in this case.

If, finally, g is reductive, let g = ⊕s
i=0gi be the decomposition into the center

g0 and the sum of the simple ideals of g. Fix k ∈ C∗ × Ns. Set, for λ ∈ h∗,
Lg(λ) = Lg0(λ0)⊗ Lg1(λ1)⊗ · · · ⊗ Lgs(λs), where λi = λ|h∩gi, and

(4.8) Ωg = {⊗s
i=0Mi | Mi ∈ Ωgi}.

The elements of Ωg are simple currents that we call the special simple currents for
Vk(g). The mapM0⊗M1⊗· · ·⊗Ms 7→ (M0,M1, . . . ,Ms) identifies Ωg and

∏s
i=0 Ωgi

thus giving a group structure to Ωg that makes (4.7) to hold also in this case.

4.2. Relative fusion ring. Let W be a simple vertex algebra and V a simple
subalgebra of W . Assume that the standard representation of W , when restricted
to V , decomposes into a direct sum of T -invariant irreducible modules. Write

(4.9) W =
⊕

j∈J

Wj ,

for the decomposition of W as a V -module into isotypic components. Here J is
the set of all j in the set of isomorphism classes of irreducible representations of V
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such that Wj 6= {0}. As in the previous section we let 1 be the isomorphism class
of V as a V -module. Define ckij to be 1 if Wi ·Wj (which is a V -submodule of W ,
due to the Borcherds identity) intersects non-trivially Wk and 0 otherwise.

Definition 4.2. The relative fusion ring FR(W,V ) is the free Z-module with basis
J and product

(4.10) i · j =
∑

k∈J

ckijk.

Example 4.2. The complete reducibility Theorem 10.7 from [K1] implies that
(4.9) holds in the case of the conformal embedding of an affine vertex algebra
V = Vk(k) →֒ V1(g) with g a simple Lie algebra, k a reductive algebra as in (3.13)
and k ∈ C∗ × Ns. Thus, we can define the relative fusion ring F (V1(g), Vk(k)).

Formula (4.9) holds also in the case of the conformal embedding Vj(k) →֒ F (Ā)
for some vector space A (see Section 3.1). Indeed, by Proposition 3.7 above, (4.9)
is given by the results of [CKMP] (see Theorems 6.1 and 6.2 below). Thus, we have
the relative fusion ring FR(F (Ā), Vj(k)).

By Lemma 3.1 (a), (c), FR(W,V ) is a unital commutative associative ring (with
identity element 1), such that i · j 6= 0 for all i, j ∈ J .

Definition 4.3. Let k be a reductive complex Lie algebra, t a Cartan subalgebra of
k. For λ ∈ t∗, set

λ∗ = −w0(λ),

where w0 is the longest element of the Weyl group of k.

Lemma 4.1. Let W be a simple vertex algebras and V a vertex subalgebra such
that (4.9) holds.

(1) For each j ∈ J there exists j∗ ∈ J such that c1j,j∗ 6= 0.

(2) Let V = Vk(k) with k as in (3.13) and k ∈ C∗ × Ns. If j = Lk(λ) then then
there exists a unique j∗ as in (1), and j∗ = Lk(λ∗).

Proof. To prove (1) assume that for j ∈ J the contrary case holds. Then subspace
W ·Mj is a non-trivial proper ideal of W if j 6= 1. The case j = 1 is obvious.

To prove (2) we observe that, as a consequence of Verlinde’s formula (see e. g. [W,

(5.4)]), Lk(λ∗) is the unique irreducible V -module such that N
Lk(0)

Lk(λ),Lk(λ∗)
= 1 and

N
Lk(0)

Lk(λ),M
= 0 for any other irreducible V -module M . Applying Example 4.1, with

M1 = j = Lk(λ) ⊂ Wj, M2 = j∗ = Lk(µ) ⊂ Wj∗ and π the projection W → V , we

see that N
Lk(0)

Lk(λ),Lk(µ)
6= 0 so µ = λ∗.

Assume V = Vk(k) and define a Z-valued pairing on FR(W,V ) by:

(4.11) (i, j) = δi,j∗.

Lemma 4.1 implies the following proposition.

Proposition 4.2. (a). The bilinear form induced by (4.11) on FR(W,V ) is asso-
ciative, i.e. (i · j, k) = (i, j · k).

(b). The map i → i∗ is an involution of the ring FR(W,V ), leaving the bilinear
form invariant.
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Definition 4.4. Set Sk
W = J ∩ Ωk and let SR(W,V ) be the free Z-submodule of

FR(W,V ) with basis Sk
W .

Lemma 4.3. SR(W,V ) is a subring of FR(W,V ). Moreover Sk
W is a subgroup of

Ωk and SR(W,V ) is isomorphic as a ring with basis to the group ring Z[Sk
W ] of Sk

W .

Proof. Let i, j ∈ Sk
W . Let Wk be such that Wk ∩ (Wi ·Wj) 6= {0}. As shown in

Example 4.1, Nk
i,j 6= 0. It follows from (4.7) that k = ij ∈ Ωk and i · j = k. Thus

i · j = ij ∈ Sk
W .

To prove the second claim first observe that we already proved above that Sk
W

is a submonoid of Ωk. It is clear that, if Lk(λ) ∈ Ωk, then Lk(λ∗) ∈ Ωk. Thus, by
Proposition 4.2, if j ∈ Sk

W , then j∗ ∈ Sk
W . Since 1 = j · j∗ = jj∗, Sk

W is a subgroup
of Ωk. �

Corollary 4.4. If W is a sum of special simple currents for Vk(k), then it is a
simple current extension of W

1

.

Proof. W is graded by the abelian group Sk
W .

Corollary 4.5. Set V = Vk(k) and assume that W
1

= V .

(1) U =
∑

j∈Sk
W
Wj is a simple current extension of V and U =

∑
j∈Sk

W
Wj is a

multiplicity free decomposition.
(2) The intermediate simple vertex algebras V ⊂ U ′ ⊂ U are in one to one

correspondence with the subgroups of Sk
W .

Proof. Since U · U ⊂ U , U is a vertex subalgebra. If I is an ideal of U and
Wj ∩ I 6= {0}, then, since W is simple, Wj∗ · (Wj ∩ I) 6= {0}, hence V ⊂ I. It
follows that I = U . This proves that U is simple. By Corollary 4.4, it is a simple

current extension. The character group Ŝk
W of Sk

W acts on U by χ · v = χ(j)v

for v ∈ Wj, χ ∈ Ŝk
W . By Theorem 3 of [DM] (or Theorem 1.1 of [KR]), Wj is an

irreducible V -module. This proves (1).
If U ′ is a simple intermediate vertex subalgebra, then Sk

U ′ is a subgroup of Sk
W ,

hence we have a map from simple intermediate vertex subalgebras to the set of sub-
groups of Sk

W . This map is surjective: ifH ⊂ Sk
W is a subgroup, then U ′ =

∑
j∈HWj

is an intermediate vertex subalgebra since U ′ · U ′ ⊂ U ′. The same argument em-
ployed for U shows that U ′ is simple. The map is obviously injective by the multi-
plicity free property. This proves (2). �

We will compute explicitly Sk
V1(g)

and SR(V1(g), Vj(k)) in Section 8 for any max-
imal conformal embedding k →֒ g with g of classical type.

5. Symmetric pairs

We will consider conformal embeddings Vk(k) ⊂ V1(g) closely related to symmet-
ric pairs. In this section we review the basic features of such pairs.

Let (a, r) be a symmetric pair and write a = r ⊕ p for the corresponding eigen-
value decomposition. As in Section 3.4, we let a = ⊕as be the decomposition of a
into σ-indecomposable ideals and (·, ·) the Killing form of a. Let h0 be a Cartan
subalgebra of r and h the centralizer of h0 in a. Write h = h0⊕hp for the orthogonal
decomposition of h. Denote by ∆(r) the set of h0-roots of r and by ∆(p) the set of
h0-weights of p. A choice of an element in h0 which is regular for a defines a set of
positive roots ∆+ for the set of h-roots of a. Clearly the same element defines a set
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of positive roots ∆+(r) ⊂ ∆(r) such that ∆+(r) ⊂ ∆+
|h0
. Let b0 be the corresponding

Borel subalgebra and set ∆+(p) = ∆(p) ∩∆+
|h0

\ {0}.

Clearly ∆ = ∪s∆(as), where ∆(as) is the set of roots for as with respect to
h ∩ as. If α ∈ ∆, then α ∈ ∆(as) for some s and we say that it is long if its
length is largest among all root lengths in ∆(as). Likewise, if λ ∈ ∆(r)∪∆(p), then
λ ∈ (∆(r) ∪∆(p)) ∩ (∆(as)|h0) for some s. We say that λ is a long weight if there
is a long root of α ∈ ∆(as) such that ‖λ‖ = ‖α‖.

We say that a nonzero weight λ ∈ ∆(r) ∪ ∆(p) is a complex weight if λ ∈
∆(r) ∩ ∆(p). If λ is not complex, then we say that it is a compact weight if
λ ∈ ∆(r), and a noncompact one if λ ∈ ∆(p).

Fix a maximal isotropic subspace h+p of hp. Let moreover h−p be a complementary
isotropic subspace (if p is odd dimensional) also choose a unit vector h such that
hp = Ch⊕ h+p ⊕ h−p . Fix a basis of p by extending a basis of hp with weight vectors
xα, x−α for α ∈ ∆+(p) chosen in such a way that (xα, x−α) = 1. Order the basis
of p as follows: h (if p is odd-dimensional), a basis {h+i } of h+p , xα, α ∈ ∆+(p), a

basis {h−i } of h−p dual to the chosen basis of h+p , x−α, α ∈ ∆+(p).
Let pα denote the weight space associate to α. Introduce the following notation.

Σ = set of b0-stable abelian subspaces of p,

Σeven = subset of even dimensional subspaces in Σ,

Φl = {α ∈ ∆(p) | pα ⊂ l}, (l ∈ Σ),

Φ±
l = Φl ∩∆±(p).

We will need an explicit description of the weights in ∆(p). Since ∆(p) =
∪s∆(p)∩∆(as), we can assume that σ is indecomposable. Recall that a symmetric
pair (a, r) is called irreducible if the corresponding involution σ is indecomposable.

With this assumption the weights of p can be described using the relation-
ship between irreducible symmetric pairs and affine diagrams, that we now re-
call (see [KMP1] and [KMP2] for details). One can associate to an indecom-

posable automorphism σ an affine Kac-Moody Lie algebra L̂(a, σ). Recall that

L̂(a, σ) = L(a, σ)⊕ Cd⊕ CK where

L(a, σ) =
(
C[t, t−1]⊗ r

)
⊕
(
t1/2C[t, t−1]⊗ p

)
,

K is a central element, and d acts as td/dt. Let ĥ = h0 ⊕ CK ⊕ Cd be the Cartan

subalgebra of L̂(a, σ) and ∆̂ be the corresponding set of roots.

Fix the following set of positive roots in ∆̂:

∆̂+ = ∆+(r) ∪ {α ∈ ∆̂ | α(d) > 0}.

Let Π̂ be the corresponding set of simple roots. In what follows we will denote by
the same letter both diagrams and the corresponding sets of nodes. In particular
Π̂ will also denote the Dynkin diagram of L̂(a, σ).

If γ ∈ ∆̂, we write γ =
∑

α∈Π̂ cα(γ)α. Let also α 7→ ᾱ be the restriction map

from ĥ to h0. Let δ
′ ∈ ĥ∗ be defined by δ′(d) = 1 and δ′(K) = δ′(h0) = 0. Then ∆̂+

can be explicitly described as

∆+(r) ∪ {sδ′ + η | s ∈ N\{0}, η ∈ ∆(r)} ∪ {(1
2
+ s)δ′ + η | s ∈ N, η ∈ ∆(p)}.
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If α is a node of Π̂, let aα be the label associated to it in Tables Aff r of [K1]
(r = 1, 2). If a is simple, according to Kac’s classification of automorphisms ([K1,
Ch. 8]), one can encode σ by a pair (η; s′) where η is an automorphism of the
diagram of a and s′ = (s′α)α∈Π̂ is a set of labels s′α ∈ Z+. Since σ is an involution,

η and s′ must satisfy the following constraints: s′α ∈ {0, 1} for all α ∈ Π̂, and
r
∑

α∈Π̂ s
′
αaα = 2. Define

(5.1) sα =
s′α
2
.

If a is not simple then a = s⊕ s, then Π̂ = {1
2
δ′ − θ, α1, . . . αl} where {α1, . . . , αl}, θ

are a set of simple roots and the highest root of s, respectively. In this case we set

(5.2) sα =

{
1
2

if α = 1
2
δ′ − θ

0 otherwise

.
Let P = {α ∈ Π̂ | sα 6= 0}. Note that P has at most two elements. Set

∆̂1 = {γ ∈ ∆̂ |
∑

α∈P

cα(γ) = 1}.

By the explicit description of the set of simple roots corresponding to ∆̂+ given in
[KMP1, Proposition 3.2], one obtains that

∆̂1 = {1
2
δ′ + η | η ∈ ∆(p)},

thus the restriction map γ 7→ γ̄ establishes a bijection between ∆̂1 and ∆(p).

If P = {p} and γ ∈ ∆̂1, the bijection is given by

(5.3) γ 7→ γ̄ =
∑

α6=p

(cα(γ)−
aα
ap

)α.

Recall that P has only one element if and only if r is semisimple. In such cases
p is irreducible as a r-module. We let θp be the highest weight of p with respect
to ∆+(r). Since (·, ·) is nondegenerate when restricted to p, it is clear that p is
a self dual r-module. It follows that −θp is the lowest weight of p. In the above
correspondence −θp clearly corresponds to p so

(5.4) θp =
∑

α6=p

aα
ap
α.

In the cases when P has two elements, the explicit description of the map γ 7→ γ̄
is as follows. Let Πa be the set of simple roots for a corresponding to ∆+. If
P = {p, q}, there is a simple root αp ∈ Πa such that Π = Πa\{αp}. Moreover a is
simple and h ∩ a = h0 ∩ a. Let θ be the highest root of a with respect to ∆+. One
can always set up the bijection in such a way that p̄ = −θ, q̄ = αp, hence, if γ ∈ ∆̂1,

(5.5) γ 7→ γ̄ =
∑

α6∈P

cα(γ)α− cp(γ)θ + cq(γ)αp.

Let Ŵ be the Weyl group of L̂(a, σ). If w ∈ Ŵ , set

N(w) = {α ∈ ∆̂+ | w−1(α) ∈ −∆̂+}.
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Set Wab
σ = {w ∈ Ŵ | N(w) ⊂ ∆̂1}. In [CMP2] it has been shown that there is a

bijection l 7→ wl from Σ to Wab
σ such that, if l is a b0-stable abelian subspace of p,

then Φl = {−β̄ | β ∈ N(wl)}.
Let Π be the set of simple roots for r corresponding to our choice of ∆+(r). It

turns out that Π = Π̂ \ P . In particular, to each simple ideal rS corresponds a
connected component ΠS of Π.

If α ∈ ΠS, set ω
∨
α to be the unique element in h0 ∩ rS, such that β(ω∨

α) = δα,β for
all β ∈ Π.

We say that a pair (a, r) is hermitian symmetric if it is irreducible and r is
reductive but not semisimple. In such a case, we let ̟ be the element of h = h0
defined by α(̟) = δα,αp

for all α ∈ Πa. Then C̟ is the center of r. For notational
convenience, we set ̟ = 0 in the semisimple case.

Lemma 5.1. Assume that (a, r) is irreducible. Let l ∈ Σ and assume that there is
h ∈ h0, h 6= 0, such that γ(h) = 1 for γ ∈ Φl and γ(h) = 0 for γ ∈ ∆(p)\(Φl∪(−Φl)).

Then there are the following possibilities:

(1) there exists α ∈ Π such that h = ω∨
α + (ǫ− 1− αp(ω

∨
α))̟, ǫ = 0, 1;

(2) there exist α, α′ ∈ Π such that h = ω∨
α + ω∨

α′ + (−1− αp(ω
∨
α + ω∨

α′))̟;
(3) h = ±̟.

Proof. Since l is b0-stable, there exists an irreducible component p0 of p whose
highest weight λ is such that λ(h) = 1. Let µ be the corresponding lowest weight.
We can find a string λ0, λ1, . . . , λN of weights of p such that λ0 = µ, λN = λ and, if
t > 0, λt = λt−1+α for some α ∈ Π. If p is irreducible, then λ = θp, µ = −θp and by
(5.4), λN−λ0 = 2

∑
α6=p

aα
ap
α. Otherwise, either λ = θ, µ = αp or λ = −αp, µ = −θ,

so that λN − λ0 =
∑

α6=αp
aαα. In both cases, for any α ∈ Π, there is t such that

λt+1 = λt + α.
Let t0 be the first index such that λt0(h) = 1. Since l is b0-stable, we have that

λt(h) = 1 for all t > t0. Assume first that µ(h) = −1. Let s0 be the largest
index such that λs0(h) = −1. This implies that −λs0 ∈ Φl, hence the fact that l

is b0-stable implies as above that λt(h) = −1 for t < s0. Since λt(h) ∈ {−1, 0, 1},
we have two cases. Either t0 = s0 + 1 or λt(h) = 0 for s0 < t < t0. In the first
case let α ∈ Π be such that λt0 = λs0 + α. We obtain that α(h) = 2 and β(h) = 0
for β ∈ Π, β 6= α. Thus h = 2ω∨

α + (−1 − 2αp(ω
∨
α))̟. In the second case let α, α′

be such that λs0+1 = λs0 + α and λt0 = λt0−1 + α′. Then α(h) = α′(h) = 1 and
β(h) = 0 for β ∈ Π, β 6= α, α′. If α = α′, we have h = ω∨

α + (−1 − αp(ω
∨
α))̟. If

α 6= α′, we have h = ω∨
α + ω∨

α′ + (−1− αp(ω
∨
α + ω∨

α′))̟ as wished.
Assume now that µ(h) = 0. In this case, if λt0 = λt0−1 + α, we have h =

ω∨
α − αp(ω

∨
α)̟ if β = αp and h = ω∨

α + (−1− αp(ω
∨
α))̟ otherwise.

Finally, if µ(h) = 1, then h = ±̟.

If l and h are as in Lemma 5.1, then we write that l = l(h). Let θS be the highest
root of rS with respect to ∆+(r). Write θS =

∑
α∈ΠS

aSαα.

Lemma 5.2.

(1) If l = l(h) with h as in Lemma 5.1 (1), let ΠS be the component of Π
containing α. Then either aα = ap for some p ∈ P or aα =

∑
p∈P ap.

Moreover aSα = 1.
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(2) If l = l(h) with h as in Lemma 5.1 (2), let ΠS,ΠS′ be the components of Π
such that α ∈ ΠS, α

′ ∈ ΠS′. Then aα = aα′ = aSα = aS
′

α′ = 1 and S 6= S ′.

Proof. Let us prove (1). If p is irreducible, then θp(h) = 1 hence, by (5.4), ap = aα.
If p is reducible then θ(h) ∈ {0, 1}. If θ(h) = 0 then aα + αp(h) = 0 so aα = 1 = ap
for some p ∈ P . If θ(h) = 1 then 1 = aα + αp(h) so aα = 2 =

∑
p∈P ap.

Let now β be the lowest weight of an irreducible component of p such that
β(h) = −1. We have that β = p̄ for some p ∈ P . We use the known fact that

p + θS ∈ ∆̂1. It follows that β + θS ∈ ∆(p). Observe that (β + θS)(h) = aSα − 1.
If aSα > 1, then aSα − 1 = 1, thus β + θS ∈ Φl. On the other hand −β ∈ Φl so
−β + (β + θS) is a root of r. This contradicts the fact that l is abelian.

Let us prove (2). Let λ, µ be respectively the highest and lowest weight of an
irreducible component of p such that λ(h) = 1. In this case we have µ(h) = −1.
Then, if p is irreducible, 1 = λ(h) =

∑
γ 6=p

aγ
ap
γ(h) =

aα+aα′

ap
hence aα + aα′ = ap.

It follows that ap = 2 and aα = aα′ = 1. If p is reducible, under our hypothesis,
we have that θ(h) = 1 hence aα + aα′ − 1 = 1. We obtain aα = aα′ = 1 as well.

Choose p ∈ P so that p̄ = µ. If S 6= S ′, it is easy to check that p+ θS + θS′ ∈ ∆̂1, so
µ+θS+θS′ ∈ ∆(p). Since (µ+θS+θS′)(h) = aSα+a

S′

α′ −1, we find that aSα+a
S′

α′ = 2,
so aSα = aS

′

α′ = 1.
It remains to check that S 6= S ′. If, on the contrary, S = S ′, use the known fact

that p + θS ∈ ∆̂1. Hence µ+ θS ∈ ∆(p). Since (µ+ θS)(h) = aSα + aSα′ − 1 = 1, we
have µ+θS ∈ l. But also −µ ∈ Φl and −µ+(µ+θS) is a root of r. This contradicts
the fact that l is abelian. �

Let ν : h → h∗ be the identification via the Killing form of a. If α ∈ ΠS, let ωα be
the corresponding fundamental weight of rS. We need one more general notation,
which will be used often in the rest of the paper. If M is a set of weights of a Lie
algebra, we let

〈M〉 =
∑

µ∈M

µ.

Proposition 5.3. Assume that l ∈ Σ is such that l = l(h) for some h ∈ h0. Then

(1) 〈l(h)〉 = jSωα +
|Φ+

l
|−|Φ−

l
|

dim(p)
ν(̟) if h is as in Lemma 5.1, (1).

(2) 〈l(h)〉 = jSωα + jS′ωα′ +
|Φ+

l
|−|Φ−

l
|

dim(p)
ν(̟) if h is as in Lemma 5.1, (2).

Proof. Let us prove (1). Let rα be the Levi component of the parabolic of r defined
by ω∨

α . Observe that if β ∈ Φl and γ ∈ Π ∩∆(rα), then clearly β + γ ∈ Φl and also
β − γ ∈ Φl, since γ(h) = 0. It follows that there is a 1-dimensional representation
of rα whose weight is 〈Φl〉, hence we have that 〈Φl〉 = xωα + zν(̟). We now prove

that if ̟ 6= 0, then z =
|Φ+

l
|−|Φ−

l
|

dim(p)
. Indeed, on one hand 〈Φl〉(̟) = |Φ+

l | − |Φ−
l |. On

the other hand, since ωα(̟) = 0,

〈Φl〉(̟) = zν(̟)(̟) = ztr(adp(̟)2) = z dim p.

Recall that h = ω∨
α + y̟ with y explicitly given in Lemma 5.1. We now show that

y = 2z. Indeed,
∑

γ∈∆+(p)

γ(h) =
∑

γ∈∆+(p)

γ(ω∨
α) + y

∑

γ∈∆+(p)

γ(̟).
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On one hand, the left hand side equals |Φ+
l | − |Φ−

l |. On the other hand,
∑

γ∈∆+(p) γ

is a multiple of ν(̟), hence vanishes on ω∨
α , whereas

∑
γ∈∆+(p) γ(̟) = dim(p)/2.

Note that 1
2
tr(adp(h)

2) = dim l, hence, by (3.10),

dim l = jS(ω
∨
α , ω

∨
α)S + 2z2ν(̟)(̟).

Note also that 〈Φl〉(h) = dim l. Since aSα = 1, we have that (α, α)S = 2 so
(ω∨

α , ω
∨
α)S = (ωα, ωα)S = ωα(ω

∨
α). We therefore obtain that

x(ωα, ωα)S + zyν(̟)(̟) = dim l = jS(ωα, ωα)S + 2z2ν(̟)(̟),

hence x = jS as claimed.
Let us prove (2) in the semisimple case. As above we note that 〈Φl〉 is the weight

of a one-dimensional representation of rα ∩ rα
′
, so that 〈Φl〉 = xωα+ yωα′. By (5.4)

and Lemma 5.2, (2), we know that θp(ω
∨
α) = θp(ω

∨
α′) = 1

2
. If β, γ ∈ ∆(p), let us

write β ≤ γ if γ − β =
∑

γ∈Π nγγ with nγ ∈ N. Since β ≤ θp, then β(ω
∨
α) ≤

1
2
and

β(ω∨
α′) ≤ 1

2
. Moreover β(ω∨

α) ∈
1
2
+ Z, β(ω∨

α′) ∈ 1
2
+ Z. Since β(ω∨

α + ω∨
α′) = 1 for

β ∈ Φl, then β(ω
∨
α) = β(ω∨

α′) = 1
2
. Thus

〈Φl〉(ω
∨
α) = 〈Φl〉(ω

∨
α′) =

dim l

2
.

Since S 6= S ′,

1
2
tr(adp(ω

∨
α + ω∨

α′)2) = dim l = jS(ω
∨
α , ω

∨
α)S + jS′(ω∨

α′, ω∨
α′)S′.

Since aSα = aS
′

α′ = 1, we have (ω∨
α , ω

∨
α)S = (ωα, ωα)S, (ω

∨
α′ , ω∨

α′)S′ = (ωα′, ωα′)S′, and

〈Φl〉(ω
∨
α′) = x(ωα, ωα)S, 〈Φl〉(ω

∨
α′) = y(ωα′, ωα′)S′.

To conclude we need only to check that jS(ωα, ωα) = jS′(ωα′, ωα′)S′. Let β ∈
∆(p). Since −θp ≤ β ≤ θp, we have −1

2
= −θp(ω

∨
α) ≤ β(ω∨

α) ≤ θp(ω
∨
α) = 1

2
and

likewise for ω∨
α′ . So

jS(ωα, ωα)S = 1
2
tr(adp(ω

∨
α)

2) =
1

8
dim p = 1

2
tr(adp(ω

∨
α′)2) = jS′(ωα′, ωα′)S′,

as wished.
It remains to deal with the hermitian symmetric case. If R is a subset of Aαα′ :=

{α, α′}, let ∆+(p, R) be the subset of ∆+(p) consisting of the weights λ such that
supp(λ) ∩ Aαα′ = R. Note that Φ+

l = ∆+(p, Aαα′) and Φ−
l = −∆+(p, ∅). Let

η ∈ ∆+(p, ∅) ∪ ∆+(p, α′) and γ ∈ Π\{α}. Since, by Lemma 5.2, aα = 1, we see
that, if η+γ is a root, then η+γ ∈ ∆+(p, ∅)∪∆+(p, α′). Also, if η−γ is a root, then
η − γ ∈ ∆+(p, ∅) ∪∆+(p, α′). This implies as above that 〈∆+(p, ∅) ∪∆+(p, α′)〉 =
xωα + zν(̟). Arguing as for the proof of (1) above we obtain that

−〈∆+(p, ∅)〉 − 〈∆+(p, α′)〉 = jSωα −
|∆+(p, ∅)|+ |∆+(p, α′)|

dim(p)
ν(̟).

Likewise

−〈∆+(p, ∅)〉 − 〈∆+(p, α)〉 = jS′ωα′ −
|∆+(p, ∅)|+ |∆+(p, α)|

dim(p)
ν(̟),



25

Thus, noting that 〈∆+(p)〉 = 1
2
ν(̟), we obtain

〈Φl(h)〉 = −2〈∆+(p, ∅)〉 − 〈∆+(p, α′)〉 − 〈∆+(p, α)〉+ 〈∆+(p)〉

= jSωα + jS′ωα′ +
|Φ+

l | − |Φ−
l |

dim(p)
ν(̟)

as wished.

Assume now that P = {p} and that θp is a long non compact weight. If rS is a
simple ideal of r, let αS be the unique element of ΠS not orthogonal to p. Then
it is shown in [CMP2] that aSαS

= 1. Denote by ωS the fundamental weight of rS
corresponding to αS. Set

(5.6) m = {µ ∈ ∆(p) : µ = θp − β, β ∈ ∆+(k) ∪ {0}}.

Lemma 5.4.

〈m〉+ θp =
∑

S

jSωS.

Proof. Let wσ ∈ Ŵ be as defined in [CKMP, Proposition 3.8]. According to [CKMP,
(3.14)],

N(wσ) = {1
2
δ′ − α | α ∈ m} ∪ {3

2
δ′ − θp}.

It can be deduced from [CMP2, Lemma 5.7] that θp =
∑

S nSωS. Set ΨS = {α ∈
ΠS | α(ωS) > 0}. We have

(5.7) 〈m〉+ θp = (|m|+ 1)θp −
∑

S

〈ΨS〉 =
∑

S

(nSℓ(wσ)− h∨S)ωS.

It has been proved in [CMPP, Lemma 7.5 (4)] that ℓ(wσ) equals the dual Coxeter
number of a, hence (5.7) reads 〈m〉+ θp =

∑
S jSωS, as desired. �

6. Decomposition formulas for conformal embeddings in the

classical cases

Let g be a simple complex Lie algebra of classical type and let k be a proper re-
ductive subalgebra conformally embedded in g. We also assume that the embedding
is maximal among conformal ones.

In order to study the intermediate vertex algebras between Vk(k) and V1(g), we
need an explicit description of the decomposition of V1(g) as a representation of
Vk(k). We shall introduce a symmetric pair (a, r), a = r⊕p, associated to (g, k) and
we shall decompose V1(g) into irreducible Vk(k)-modules indexed by suitable Borel
stable abelian subspaces of p.

Let t be a Cartan subalgebra of k. Fix a Borel subalgebra bk containing t. Recall
from Section 4.1 that Lk(λ) denotes the irreducible highest weight module for Vk(k)
of highest weight λ.

6.1. The case of so(n,C). We first discuss the case when g = so(n,C). As ob-
served in Remark 3.2 above, there is a symmetric pair (a, r) such that g = so(p), k =
r, t = h0, bk = b0. Recall that we have denoted by Σ the set of abelian b0-stable
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subspaces of p. If l ∈ Σ, k ∈ Z, we set (see notation from Section 3)
(6.1)

vk,l =





:
∏
η∈Φ+

l

T k!x̄η
∏

η∈−Φ−
l

T (k−2)!x̄η
∏

η∈∆+(p)\(Φ+
l
∪−Φ−

l
)

T (k−1)!x̄η : if k > 0,

:
∏

η∈Φ−
l

T (−k)!x̄η
∏

η∈−Φ+
l

T (−k−2)!x̄η
∏

η∈−∆+(p)\(−Φ+
l
∪Φ−

l
)

T (−k−1)!x̄η : if k < 0,

:
∏
η∈Φl

x̄η : if k = 0.

Define j as in (3.11). The following result provides the decomposition of F (p̄) as
a Vj(k)-module when σ is indecomposable and k is semisimple. In [CKMP] we found
explicit r̂-decompositions of the Clifford module Cliff(L(p̄))/(Cliff(L(p̄))L(p̄)+). Re-
mark 3.1 allows us to use these results. We now state them in the present setting.

Theorem 6.1. [CKMP, Theorem 3.9] Assume σ indecomposable and k semisimple.
Then

(1) If θp is not long noncompact then

(6.2) F (p̄) =
⊕

l∈Σ

Lk (〈Φl〉) .

(2) If θp is long noncompact then

(6.3) F (p̄) =
⊕

l∈Σ

Lk (〈Φl〉)
⊕

Lk (〈m〉+ θp)

where m is as in (5.6).

Moreover, in both cases the highest weight vector of Lk (〈Φl〉) is, up to a constant
factor, v0,l (cf. (6.1)). A highest weight vector of the rightmost component of (6.3)
is

(6.4) vm =: T (x̄θp)x̄η1 . . . x̄ηs :

if m = {η1, . . . , ηs}.

We now discuss the hermitian symmetric case. For C ∈ Z, denote by F (p̄)[C]
the eigenspace of eigenvalue C of ̟ (recall that ̟ is the generator of the center of
r such that αp(̟) = 1). Also set

(6.5) Σ′ = {l ∈ Σ | a−αp
⊂ l}.

Theorem 6.2. [CKMP, Theorem 5.4] In the hermitian symmetric case,

(6.6) F (p̄)[C] =
∑

l∈Σ′

|Φ+
l
|−|Φ−

l
|≡Cmod

dim(p)
2

Lk(〈Φl〉+ kl(C)ν(̟)),

where kl(C) =
(C−|Φ+

l
|+|Φ−

l
|)

dim(p)
.

Remark 6.1. If σ is not indecomposable then, clearly, F (p̄) = ⊗sF (p ∩ as), so
combining Theorems 6.1 and 6.2 one has the decomposition of F (p̄) as a Vj(k)-
module.
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In order to write down explicit formulas for highest weight vectors for the irre-
ducibles appearing in the r.h.s. of (6.6), we need the following refined analysis. Iden-

tify h0 and h∗0 via ν and set (h0)R to be the real span ∆|h0. Set ĥR = (h0)R⊕RK⊕Rd.
Define

(6.7) A = {h ∈ (h0)R | ᾱ(h) > −sα, α ∈ Π̂}

(the sα were defined in (5.1),(5.2)). Clearly Ŵ acts naturally on d + (h0)R viewed

as a subspace ĥR/RK. The same argument used in [K1, Chapter 6] shows that the
closure of d+A is a fundamental domain for this action.

Let Lk(〈Φl〉 + kν(̟)) occur in F (p̄)[C] with k = kl(C). Let wk be the unique

element of Ŵ such that

(6.8) wk(d+A) = t2k̟wl(d+A)

(here th : h0 → h0 is the translation by h). Write explicitly N(wk) = {β1, . . . , βs}.
If x ∈ A, it is clear that

(6.9) N(wk) = {α ∈ ∆̂+ | α(t2k̟wl(d+ x)) < 0}.

If α = hδ′ + ᾱ ∈ ∆+(k) ∪ {sδ′ + η | s > 0, η ∈ ∆(k)}, then

α(wl(d+ x) + 2k̟) = h+ α(wl(d+ x)) ≥ 0,

thus, for i = 1, . . . , s,

βi = (ni +
1
2
)δ′ + β̄i.

By Lemma 5.1 of [CKMP] and Theorem 1.1 of [KMP1], we have that

F (p̄) =
∑

k∈Z

Lk(w−1
k (ρ)− ρ)

with wk as in (6.8). In the proof of Theorem 1.1 of [KMP1] an explicit expression
for the highest weight vector for Lk(w−1

k (ρ) − ρ) is given. Since w−1
k (ρ) − ρ ≡

〈Φl〉+ kν(̟) mod Cδ′ (see again Section 5 of [CKMP]), the highest weight vector
of Lk(〈Φl〉+ kν(̟)) is, under the isomorphism described in Remark 3.1,

(6.10) v =: T n1(x̄−β̄i) · · ·T
ns(x̄−β̄s) : .

We need to express v more explicitly in terms of the roots in Φl, thus we compute
N(wk). By (6.9), we have to solve the inequality α(wl(d + x) + 2k̟) < 0, with
α = hδ′ + (1

2
δ′ + ᾱ), ᾱ ∈ ∆(p).

If ᾱ = 0, then α(wl(d+ x) + 2k̟) = h + 1
2
> 0. If ᾱ 6= 0, we first observe that

(6.11) (1
2
δ′ + ᾱ)(wl(d+ x)) > −1

Indeed, if (1
2
δ′ + ᾱ)(wl(d + x)) ≤ −1, then (δ′ + 1

2
δ′ + ᾱ)(wl(d + x)) < 0, contrary

to the fact that wl is W
ab
σ .

If ᾱ ∈ Φl, then

(6.12) 1 < (1
2
δ′ + ᾱ)(wl(d+ x)) < 2

Indeed, by (6.11), we have −1 < (1
2
δ′−ᾱ)(wl(d+x)) < 0, so −2 < (−1

2
δ′−ᾱ)(wl(d+

x)) < −1.
If ᾱ ∈ −Φl, then, by (6.11)

(6.13) − 1 < (1
2
δ′ + ᾱ)(wl(d+ x)) < 0
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Finally, if ᾱ ∈ ∆(p)\(Φl ∪ (−Φl)), then

(6.14) 0 < (1
2
δ′ + ᾱ)(wl(d+ x)) < 1

Indeed, since ᾱ 6∈ −Φl, we have (1
2
δ′ + ᾱ)(wl(d + x)) > 0. Since ᾱ 6∈ Φl, we have

(1
2
δ′ − ᾱ)(wl(d + x)) > 0, so (−1

2
δ′ − ᾱ)(wl(d + x)) > −1. Observe also that, if

η ∈ ∆(p) and η 6= 0, then η(̟) = 1 if and only if η ∈ ∆+(p).
Assume k > 0. If ᾱ ∈ ∆+(p), then α(wl(d + x) + 2k̟) = h + (1

2
δ′ + ᾱ)(wl(d +

x)) + 2k, hence, by (6.12), (6.13), and (6.14), we deduce that α(wk(d+ x)) > 0. If
ᾱ ∈ −∆+(p), then α(wl(d+ x) + 2k̟) = h + (1

2
δ′ + ᾱ)(wl(d + x)) − 2k, hence, by

(6.12), (6.13), and (6.14), we get

((h+ 1
2
)δ′ + ᾱ)(wk(d+ x)) < 0 ⇔





h ≤ 2k − 2 if ᾱ ∈ Φl

h ≤ 2k − 1 if ᾱ 6∈ (Φl ∪ (−Φl))

h ≤ 2k if ᾱ ∈ −Φl

.

Summarizing, we obtain that, if k > 0,

N(wk) = {(h+ 1
2
)δ′ + η | η ∈ −Φ+

l , h ≤ 2k} ∪ {(h+ 1
2
)δ′ + η | η ∈ Φ−

l , h ≤ 2k − 2}

∪ {(h+ 1
2
)δ′ + η | η ∈ −∆+(p)\(−Φ+

l ∪ Φ−
l ), h ≤ 2k − 1}.

If instead k < 0 and ᾱ ∈ −∆+(p), then α(wl(d+x)+2k̟) = h+(1
2
δ′+ ᾱ)(wl(d+

x))− 2k, hence, by (6.12), (6.13), and (6.14), α(wk(d+x)) > 0. If ᾱ ∈ ∆+(p), then
α(wl(d + x) + 2k̟) = h + (1

2
δ′ + ᾱ)(wl(d + x)) + 2k, hence, by (6.12), (6.13), and

(6.14),

((h+ 1
2
)δ′ + ᾱ)(wk(d+ x)) < 0 ⇔





h ≤ −2k − 2 if ᾱ ∈ Φl

h ≤ −2k − 1 if ᾱ 6∈ (Φl ∪ (−Φl))

h ≤ −2k if ᾱ ∈ −Φl

.

Hence we obtain that, if k < 0

N(wk) =

{(h+ 1
2
)δ′ + η | η ∈ −Φ−

l , h ≤ 2|k|} ∪ {(h+ 1
2
)δ′ + η | η ∈ Φ+

l , h ≤ 2|k| − 2}

∪ {(h+ 1
2
)δ′ + η | η ∈ ∆+(p)\(−Φ−

l ∪ Φ+
l ), h ≤ 2|k| − 1}.

Combining our description of N(wk) with (6.10) we have proven the following
proposition:

Proposition 6.3. If (a, k) is an hermitian symmetric pair and l ∈ Σ′, then a highest
weight vector of Lk(〈Φl〉+ kν(̟)) in F (p̄) is v2k,l (cf. (6.1)).

6.2. Two special cases. In order to obtain decomposition formulas for conformal
embeddings in a simple Lie algebra of classical type other than so(n,C), we need
an application of the results of Section 6.1 to two special cases. Let gn be either
sp(n,C) or sl(n+ 1,C). Set u = sl(2,C) in the former case, u = C in the latter. It
turns out that (gn+1, u× gn) is a symmetric pair, and let gn+1 = (u× gn)⊕ q be the
corresponding eigenspace decomposition. In these special cases j = (ju, jgn) and it
turns out that jgn = 1.

Choose Cartan subalgebras hu, hn of u, gn, respectively. If M is an irreducible
Vj(u× gn)-module, then M = Lu(λ)⊗Lgn(µ) with λ ∈ h∗u, µ ∈ h∗n, and L

u(λ) (resp.
Lgn(µ) ) an irreducible highest weight module for Vju(u) (resp. V1(gn)). Given a
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Vj(u× gn)-module M , denote by Λk(M) the set of irreducible modules appearing in
the decomposition of M .

Lemma 6.4. If Lu(0) ⊗ Lgn(µ) ∈ Λk(F (q̄)), then µ = 0 and Lu(0) ⊗ Lgn(0) =
Vj(u× gn) occurs with multiplicity one.

Proof. Suppose gn of type Cn, so that gn+1 is of type Cn+1. The Lie algebra

L̂k(gn+1, σn) corresponding to the symmetric pair (gn+1, gn × u) is of type C
(1)
n+1.

If we use the numbering of Dynkin diagrams given in [K1], then the A1-factor cor-
responds to label 0 and the Cn factor to labels 2, . . . , n+1. Since θq is short, formula
(6.2) gives

F (q̄) =
∑

l∈Σ

Lk(〈Φl〉).

The set of elements of Ŵ encoding Σ is given by {wj | 0 ≤ j ≤ n− 1} where

(6.15) wj = s1s2 · · · sj .

It follows that, if wl = wj , then 〈Φl〉 = −jᾱ1 − (j − 1)α2 − . . . − αj and ᾱ1 =
−1

2
α0 − α2 − . . .− αn −

1
2
αn+1, hence the coefficient of α0 is zero only if j = 0, i.e.

w0 = Id, so l = {0}.

Assume now gn of type An. The Lie algebra L̂(gn+1, σn) corresponding to the sym-

metric pair (gn+1, gn×u) is of type A
(1)
n+1. We can assume that Π = {α2, . . . , αn+1}.

In this setting the set of elements of Ŵ encoding the abelian subspaces in Σ′ is {wj |
1 ≤ j ≤ n+1} with wj as in (6.15). If l ∈ Σ′, then Φ±

l = {β ∈ Φl | β(̟) = ±1}. It
follows that Φ+

l = ∅. By Theorem 6.2, Lk(〈Φl〉+kl(0)ν(̟)) occurs in F (q̄)[0] if and
only if |Φl| ≡ 0 mod n + 1. Only wn+1 has this property, proving our claim. �

6.3. A general decomposition theorem. Let now k →֒ g be a maximal confor-
mal embedding with g simple of classical type. If g = so(n,C), let (a, r) be the
symmetric pair associated to the conformal embedding k →֒ g by Proposition 3.7.
If g = sp(n,C) or sl(n + 1,C), let u and q be as in Section 6.2. Remark that u× k

is conformal in u × g. Thus u × k is conformal in so(q), hence, by the Symmetric
Space Theorem, there is a symmetric pair (a, r) with r = u× k.

Recall the eigenspace decomposition a = r ⊕ p. Let h0, b0, Σ be as defined
in Section 5. Recall that t is a Cartan subalgebra of k. Then h0 = t′ × t with
t′ = {0} when g = so(n,C) and t′ = hu in the other cases. Let z(k) be the center
of k. Browsing through the maximal conformal embedding described in [AGO], one
checks that dim z(k) = 1, hence we can choose κ ∈ t so that z(k) = Cκ. Let κ ∈ t∗

be defined by setting κ(κ) = 1 and κ(t ∩ [k, k]) = 0. Write a =
∑

i∈I ai for the
decomposition of a into indecomposable ideals. Divide the index set I in the two
subsets I0 and I ′ according to whether z(r) ∩ ai = {0} or not.

Set a0 =
∑

i∈I0
ai, a

′ =
∑

i∈I′ ai, and let, for l ∈ Σ,

(6.16) l0 = l ∩ a0 l′ = l ∩ a′.

For i ∈ I ′, choose κi ∈ z(r) ∩ ai normalized by setting αp∩ai(κi) = 1. Set

Σ′ = {l ∈ Σ | −αp∩ai ∈ Φl for all i ∈ I ′}.

Clearly this definition of Σ′ generalizes the one given in (6.5). Set

Σ0 = {l ∈ Σ | 〈Φl〉|t′ = 0}, Σ′
0 = Σ′ ∩ Σ0, Σeven0 = Σ0 ∩ Σeven.
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Set χ to be the truth function that is 1 if and only if g = so(n,C), k semisimple,
σ indecomposable, and θp long noncompact. Recall from Theorem 6.1 that in such
cases we defined a set of roots m. Set ǫm = 1 if m has odd cardinality and ǫm = 0
otherwise.

Theorem 6.5. Let k →֒ g be a maximal conformal embedding with g simple of
classical type. Then its decomposition into irreducible Vj(k)-modules is given by

(6.17) V1(g) =
⊕

l∈Σeven
0

Lk(〈Φl〉|t)⊕ χǫmL
k(〈m〉+ θp)

if k is semisimple.
If k is not semisimple and z(r) = z(k), so that I ′ = {i} and we can set κ = κi,

then

(6.18) V1(g) =
⊕

l∈Σ′
0,k∈

1
2
Z

dim l+k dim(p∩ai)∈2Z

Lk(〈Φl〉|t + k dim(p ∩ ai)κ)

In particular v0,l, vm give highest weight vectors in F (p̄) for the irreducibles ap-
pearing in (6.17). The highest weight vector for the irreducible occurring in (6.18)
is : v2k,l′v0,l0 : (cf. (6.1), (6.4)).

Remark 6.2. Actually the hypothesis of Theorem 6.5 that z(k) = z(r) in the non
semisimple case rules out only the conformal embedding sl(p)×sl(q)×C →֒ sl(p+q).
This latter case requires a special discussion which will be done in Proposition 6.7.

Proof. Assume first k semisimple. Since V1(so(p)) = F (p̄)0, formula (6.17) follows
immediately from Theorem 6.1 in the case when g = so(p) and σ indecomposable,
because, in this case, Σeven0 = Σeven. The only case with g of type so(n,C) and σ
decomposable occurs when k = so(p,C)×so(q,C) and a = so(p+1,C)×so(q+1,C).
Set ΣN to denote the set of abelian subspaces corresponding to the pair (so(N +
1,C), so(N,C)). Then Theorem 6.1 gives in this case that

F (p̄) =
⊕

l∈Σp,i∈Σq

Lso(p,C)(〈Φl〉)⊗ Lso(q,C)(〈Φi〉) =
⊕

l∈Σ

Lk(〈Φl〉)

hence (6.17) follows also in this case from the observation that V1(so(p)) = F (p̄)0.
It remains to check formula (6.17) in the cases g = sp(n,C) and g = sl(n+1,C).

Recall that we are assuming k semisimple. Looking at the possible cases listed
in [AGO] one checks that σ is indecomposable. By Lemma 6.4, Lu(0) ⊗ Lg(0) =
Lu(0) ⊗ V1(g) is the unique factor in V1(so(p)) of type Lu(0) ⊗ Lg(µ). It follows
that Lk(λ) occurs in V1(g) if and only if Lu(0)⊗ Lk(λ) occurs in F (p̄). By [CMP2,
(5.13)], we have that (〈m〉+ θp)|t′ 6= 0 (see also (5.7)). By Theorem 6.1, we get

Lu(0)⊗ V1(g) =
⊕

l∈Σ0

Lu(0)⊗ Lk(〈Φl〉|t),

In particular, since Lu(0)⊗ V1(g) ⊂ F (p̄)0, we get Σ0 = Σeven0 and (6.17) follows in
this case. The same argument applied for g = sl(n+ 1,C) gives, by Theorem 6.2,

(6.19) V1(g) =
∑

l∈Σ′

|Φ+
l
|≡|Φ−

l
|mod

dim(p)
2

Lk(〈Φl〉|t).
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Following the notation preceding Theorem 6.2, define ̟ to be the element in h0
such that α(̟) = δα,αp

for all α ∈ Πa. Observe that 〈Φl〉|t′ = −kl(0)ν(̟), hence

l ∈ Σ′
0 if and only if |Φ+

l | = |Φ−
l |. Split the sum appearing in the r.h.s. of (6.19)

into two pieces as

(6.20) V1(g) =
∑

l∈Σ′
0

Lk(〈Φl〉|t) +
∑

l∈Σ′,|Φ+
l
|6=|Φ−

l
|

|Φ+
l
|≡|Φ−

l
|mod

dim(p)
2

Lk(〈Φl〉|t)

A result of Panyushev [P] guarantees that, in the hermitian symmetric case, dim(p)
2

is the maximal dimension of an abelian subspace. Hence the conditions |Φ+
l | 6=

|Φ−
l |, |Φ

+
l | ≡ |Φ−

l |mod
dim(p)

2
imply that either Φ+

l or Φ−
l is empty. By the definition

of Σ′, we have Φ−
l 6= ∅, hence Φl = Φ−

l and |Φl| =
dim(p)

2
. In turn, l is the nilradical

of the parabolic defined by −̟ and 〈Φl〉 = −1
2
ν(̟), so 〈Φl〉|t = 0. We conclude

that (6.20) can be written as

V1(g) =
∑

l∈Σ′
0∪{0}

Lk(〈Φl〉|t).

To finish the proof of (6.17) observe that
∑

l∈Σ0
Lk(〈Φl〉|t) must occur in V1(g), so

Σ′
0∪{0} = Σ0. Since L

u(0)⊗V1(g) ⊂ F (p̄)0, we see that also in this case Σ0 = Σeven0

and (6.17) follows in this case.
Assume now that k is reductive but not semisimple and z(r) = z(k). As observed

in Remark 6.2, this hypothesis covers all cases when σ is indecomposable and the
case r = k = so(p,C)× so(2,C) →֒ so(p+ 2,C).

We now discuss the cases when σ is indecomposable. Since z(r) = z(k), we have
that u ⊂ [r, r] for otherwise u ⊂ z(r). Also recall that we normalize κ assuming
that αp(κ) = 1. Set g′ = g when g = so(n,C) and g′ = u × g in the other cases.
According to Theorem 6.2,

(6.21) V1(g
′) =

∑

k∈ 1
2
Z,l∈Σ′

k dim(p)+|Φ+
l
|−|Φ−

l
|∈2Z

Lr(〈Φl〉+ kν(κ)),

so, applying Lemma 6.4 if g 6= so(n,C), we obtain in all cases that

(6.22) V1(g) =
∑

k∈ 1
2
Z,l∈Σ′

k dim(p)+|Φ+
l
|−|Φ−

l
|∈2Z

(〈Φl〉+kν(κ))(u)=0

Lk((〈Φl〉+ kν(κ))|t).

Since u ⊂ [r, r] and κ ∈ z(r), we have ν(κ)(u) = 0. Thus (〈Φl〉 + kν(κ))(u) = 0
if and only if 〈Φl〉(u) = 0. This implies that l ∈ Σ′

0. Observe that ν(κ)(κ) =
tr(adp(κ)2) = dim p, so ν(κ)|t = (dim p)κ. It follows that

(6.23) V1(g) =
∑

k∈ 1
2
Z,l∈Σ′

0

kdim(p)+|Φ+
l
|−|Φ−

l
|∈2Z

Lk(〈Φl〉|t + k dim pκ).

which is (6.18) in these cases.
It remains to check the case when r = k = so(p,C) × so(2,C) with p ≥ 3. We

observe that a′ = so(3,C) and a0 = so(p + 1,C). Since (a0, r ∩ a0) is irreducible
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with r∩ a0 semisimple, we can apply Theorem 6.1. Since θp∩a0 is short or complex,
(6.2) holds. We apply Theorem 6.2 to a′. We get

(6.24) F (p̄) =
∑

l0∈Σ,k∈
1
2
Z,l′∈Σ′

Lk(〈Φl0〉+ 〈Φl′〉+ kν ′(κ)),

where ν ′ is the identification of h0 ∩ a′ with its dual via the Killing form of a′. Note
that in this case Σ′ = Σ′

0 and that l ∈ Σ′ if and only if l0 ∈ Σ and l′ ∈ Σ′. Since
V1(g) = F (p̄)0 we see that Lk(〈Φl0〉+ 〈Φl′〉+kν

′(κ)) occurs in V1(g) if and only if its
highest weight vector : vk,l′v0,l0 : is in F (p̄)

0. It is clear from its explicit description
given in (6.1) that this happens if and only if dim l0+dim l′+k dim p ∩ a′ = dim l+
k dim p ∩ a′ ∈ 2Z. This observation proves (6.18) in this case. �

We now discuss the missing case sl(p) × sl(q) × C →֒ sl(p + q). Here a = a′ =
sl(p + 1,C) × sl(q + 1,C). Write a1 = sl(p + 1,C) and a2 = sl(q + 1,C). Set
m = GCD(p+1, q+1) and M = GCD(p(p+1), q(q+1)). Realizing explicitly the
embedding k →֒ g, we see that we can choose κ = Mq

(q+1)(p+q)
κ1 −

Mp
(p+1)(p+q)

κ2 and

u = C((p+ 1)κ1 + (q + 1)κ2).
We will later need the following elementary result.

Lemma 6.6. Consider the map ϕ : Z× Z → Z/MZ defined by setting

ϕ(i, j) = (p+ 1)i+ (q + 1)j +MZ.

Choose (x, y) ∈ Z2 such that

(6.25) xp(p+ 1) + yq(q + 1) =M.

Then

(1) If (i, j) ∈ Kerϕ, then −m
M
(yqi− xpj) ∈ Z.

(2) The map ϕ pushes down to define a map on Z/pZ× Z/qZ.
(3) The map ψ : Kerϕ→ Z/mpq

M
Z defined by setting

ψ(i+ pZ, j + qZ) = −
m

M
(yqi− xpj) +

mpq

M
Z

is a group isomorphism.

Recall from the proof of Lemma 6.4 that given i = 1, . . . , p and j = 1, . . . , q
there is a unique l(i, j) ∈ Σ′ such that dim l(i, j) ∩ a1 = i and dim l(i, j) ∩ a2 = j.
Moreover Σ′ = {l(i, j) | 1 ≤ i ≤ p, 1 ≤ j ≤ q}.

Proposition 6.7. If g = sl(p+ q) and k = sl(p)× sl(q)× Cκ, then

(6.26) V1(g) =
∑

i=1,...,p, j=1,...,q
(i,j)∈Kerϕ, t∈ψ(i+pZ,j+qZ)

Lk(〈Φl(i,j)〉|t∩[k,k] + tκ).

Proof. Lemma 6.4 and Theorem 6.2 give that

(6.27) V1(u× g) =
∑

l∈Σ′,h,k∈ 1
2
Z

(〈Φl〉+hν(κ1)+kν(κ2))|u=0

Lu×k(〈Φl〉+ hν(κ1) + kν(κ2)).
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As in Theorem 6.5, the decomposition of V1(g) is obtained by dropping the factor
Lu(0) from (6.27):

(6.28) V1(g) =
∑

l∈Σ′,h,k∈ 1
2
Z

(〈Φl〉+hν(κ1)+kν(κ2))|u=0

Lk((〈Φl〉+ hν(κ1) + kν(κ2))|t).

We now make explicit the condition (〈Φl〉+ hν(κ1) + kν(κ2))|u = 0. Recalling that
u = C((p+ 1)κ1 + (q + 1)κ2), the condition becomes, if l = l(i, j),

2h(p+ 1)p+ 2kq(q + 1) = (p+ 1)i+ (q + 1)j,

which has solution if and only if (i, j) ∈ Kerϕ. Set r = (p+1)p
M

and s = (q+1)q
M

and
choose x, y such that (6.25) holds. The solutions are given by

(
2h
2k

)
=

(
−s
r

)
z +

(p+ 1)i+ (q + 1)j

M

(
x
y

)

as z varies in Z. Substituting in (6.28), observing that

〈Φl(i,j)〉|t = 〈Φl(i,j)〉|t∩[k,k] − (i
Mq

(q + 1)(p+ q)
− j

Mp

(p+ 1)(p+ q)
)κ

and that hν(κ1)+kν(κ2))|t = (hν(κ1)+kν(κ2))(κ)κ, we get, after some elementary
computations, that

V1(g) =
∑

i=1,...,p, j=1,...,q
(i,j)∈Kerϕ,z∈Z

Lk
(
〈Φl(i,j)〉|t∩[k,k] +

(
−
mpq

M
z −

m

M
(yqi− xpj)

)
κ
)

which is (6.26).

7. Intermediate vertex subalgebras of (V1(g), Vj(k))

Recall that in (6.1) we introduced the elements vk,l ∈ F (p̄). Define
(7.1)

v∗k,l =





:
∏
η∈Φ+

l

T (k)!x̄−η
∏

η∈−Φ−
l

T (k−2)!x̄−η
∏

η∈∆+(p)\(Φ+
l
∪−Φ−

l
)

T (k−1)!x̄−η : if k > 0,

:
∏

η∈Φ−
l

T (−k)!x̄−η
∏

η∈−Φ+
l

T (−k−2)!x̄−η
∏

η∈−∆+(p)\(−Φ+
l
∪Φ−

l
)

T (−k−1)!x̄−η : if k < 0,

:
∏
η∈Φl

x̄−η : if k = 0.

By Proposition 3.6, we see that

(vk,l)(N−1)(v
∗
k,l) = Ck,l((k + 1)

∑

η∈Φ+
l

: x̄ηx̄−η : +(k − 1)
∑

η∈−Φ−
l

: x̄ηx̄−η :(7.2)

+ k
∑

η∈∆+(p)\(Φl∪(−Φl))

: x̄ηx̄−η :)

The multiplicative constant Ck,l can be calculated explicitly using Proposition 3.6.
In particular it is nonzero.

Lemma 7.1. Set λk,l = 〈Φl〉|t + kν(κ). Then v∗2k,l ∈ Lk(λ∗k,l) ⊂ F (p̄).



34

Proof. Recall that λ∗ = −w0(λ), with w0 the longest element of the Weyl group
of k. Recall that v2k,l is constructed as in (6.10) from the roots in N(wk). If
N(wk) = {β1, . . . , βs} with βi = (ni +

1
2
)δ′ + β̄i, set γi = (ni +

1
2
)δ′ − w0(β̄i) and

observe that {γ1, . . . , γs} is biconvex with respect to ∆̂+. Thus there is uk ∈ Ŵ
such that N(uk) = {γ1, . . . , γs}.

If we use v(∆̂+) as a set of positive roots with v an element of the Weyl group of
k then, letting Lv(b)(µ) denote the irreducible highest weight module defined using
v(b) instead of b, it is clear that, since λ is dominant integral, Lk(λ) = Lv(b)(v(λ)).

On the other hand, by Theorem 1.1 of [KMP1], if w ∈ Ŵ encodes via (6.10)
an highest weight vector for Lk(λ), then the highest weight vector for Lv(b)(v(λ))
is encoded by vwv−1, thus it is constructed, via (6.10), from Nv(∆̂+)(vwv

−1) =

v(N(w)). Applying this discussion to v = w0 and w = uk we find that the highest
weight vector for Lw0(b)(−λ) = Lk(λ∗) is precisely v∗2k,l. �

Recall that Σ is the set of b0-stable abelian subspaces of p for the symmetric pair
(a, r) we associated to the conformal embedding k →֒ g. If l ∈ Σ, we say that l

occurs in V1(g) if l ∈ Σeven0 when k is semisimple, l ∈ Σ′
0 if z(k) = z(r) 6= {0}, and

λ ∈ Σ′ if z(r) 6= (k) 6= {0}. For notational convenience we set κ = 0 when k is
semisimple.

Proposition 7.2. Consider a conformal embedding k →֒ g where g is a Lie algebra
of classical type. Assume that the embedding is maximal among conformal ones.

Let W be a simple vertex subalgebra of V1(g) such that there is l that occurs in
V1(g) and ki ∈

1
2
Z, i ∈ I ′ such that Vj(k)⊕ Lk((〈Φl〉+

∑
i∈I′ kiν(κi))|t) ⊂ W .

Then either W = V1(g) or there is h ∈ h0 such that β(h) = 1 for β ∈ Φl and
β(h) = 0 for β ∈ ∆(p) \ (Φl ∪ (−Φl)).

For the proof of Proposition 7.2, we need the following technical result.

Lemma 7.3. Let k ⊂ g′ ( g be finite-dimensional Lie algebras with k reductive and
g semisimple. Assume k maximal in g among reductive subalgebras. Let h0 be a
Cartan subalgebra of k, h a Cartan subalgebra of g containing h0. Then h∩ g′ = h0.

Proof. First remark that, if g′ is semisimple, it coincides with its algebraic closure
ḡ′, and if it is not, ḡ′ is not semisimple, hence ḡ′ ( g. We may therefore assume that
g′ is algebraic (replacing it with ḡ′). Let k1 be a maximal reductive subalgebra of
g′, containing h ∩ g′. But all maximal reductive subalgebras in g′ are conjugate; in
particular, k and k1 have the same rank, hence h ∩ g′ cannot be larger than h0. �

Proof of Proposition 7.2. Set, for k ∈ Z and l ∈ Σ,

hk,l = (k + 1)
∑

η∈Φ+
l

: x̄ηx̄−η : +(k − 1)
∑

η∈−Φ−
l

: x̄ηx̄−η : +k
∑

η∈∆+(p)\(Φl∪(−Φl))

: x̄ηx̄−η :,

and hl = h0,l.
Set λ = 〈Φl〉|t +

∑
i∈I′ kiν(κi). Recall that W = ⊕n∈CWn is the eigenspace

decomposition of W with respect to ω(1).
We now prove that

∑
i∈I′ h2ki,l′∩ai + hl0 ∈ W1. With the notation of (6.16), we

have that l = l′⊕ l0. By Theorem 6.5, :
∏

i∈I′ v2ki,l∩a′iv0,l0 : is a highest weight vector

for Lk(λ). Since W is simple, by Proposition 4.2, Lk(λ∗) occurs in W . By Lemma



35

7.1, we have that :
∏

i∈I′ v
∗
2ki,l∩a′i

v∗0,l0 :∈ W , hence
(
:
∏

i∈I′

v2ki,l∩a′iv0,l0

)

(N−1)

(
:
∏

i∈I′

v∗2ki,l∩a′iv
∗
0,l0 :

)
∈ W.

By Proposition 3.6, we have that
∑

i∈I′ h2ki,l′∩ai + hl0 ∈ W . By (7.2), since ω is the
Virasoro vector of F (p̄), it follows that

∑
i∈I′ h2ki,l′∩ai + hl0 ∈ W1.

We can now prove the statement. Given α, β ∈ ∆(p), let Eα,β be the linear map
on p given by Eα,β(xβ) = xα. By (3.14) we have

Θ(Eβ,β − E−β,−β) =: x̄β x̄−β :,

hence
∑

i∈I′ h2ki,l′∩ai + hl0 belongs to the diagonal Cartan of so(p). By the explicit
description of the embedding Θ of g in F (p̄), we see that a Cartan subalgebra of g
containing t is contained in the diagonal Cartan of so(p). Since

∑
i∈I′ h2ki,l′∩ai+hl0 ∈

W1 ⊂ g, it follows that
∑

i∈I′ h2ki,l′∩ai + hl0 belongs to a Cartan subalgebra of
g containing h0. Then, applying Lemma 7.3 with h =

∑
i∈I′ h2ki,l′∩ai + hl0 and

g′ = W1, we get that either W1 = Θ(g) or
∑

i∈I′ h2ki,l′∩ai + hl0 ∈ Θ(t).
In the first case V1(g) = W . In the second case, since Θ(κi) =

∑
α∈∆+(p∩ai)

:

x̄αx̄−α :∈ Θ(h0), we have that hl =
∑

i∈I′ h2ki,l′∩ai −
∑

i∈I′ 2kiΘ(κi)+hl0 = Θ(h) for
some h ∈ h0. Clearly

Θ(h) = 1
2

∑

β∈∆(p)

β(h) : x̄β x̄−β : =
∑

β∈∆+(p)

β(h) : x̄β x̄−β : .

Thus ∑

β∈Φl

: x̄βx̄−β :=
∑

β∈∆+(p)

β(h) : x̄βx̄−β :

for some h ∈ h0. Notice that {: x̄β x̄−β :| β ∈ ∆+(p)} is a linearly independent set.
Moreover, since l is abelian, if β ∈ Φl, then −β 6∈ Φl. Thus, since

hl =
∑

β∈Φl∩∆+(p)

: x̄β x̄−β : −
∑

β∈(−Φl)∩∆+(p)

: x̄β x̄−β :=
∑

β∈∆+(p)

β(h) : x̄βx̄−β :,

the statement follows.

Theorem 7.4. Let k →֒ g be a maximal conformal embedding and g a simple
classical Lie algebra. Assume that W is a simple vertex subalgebra of V1(g) such
that Vj(k) ⊂ W . Then either W = V1(g) or W is a simple current extension of
Vj(k).

Proof. Assume W 6= V1(g). If Lk((〈Φl〉 +
∑

i∈I′ kiν(κi))|t) occurs in W , then, by
Proposition 7.2, l = l(h) for some h ∈ h0. But then we can apply Proposition 5.3
to each irreducible component of (a, r) to deduce that Lk((〈Φl〉+

∑
i∈I′ kiν(κi))|t) is

a simple current.
If g = so(n,C) and Lk(〈m〉 + θp) ⊂ W , then, by Lemma 5.4, we have that

Lk(〈m〉 + θp) is also a simple current. We have shown that W is a sum of special
simple currents. The result now follows from Corollary 4.4. �

Corollary 7.5. If k →֒ g is a maximal conformal embedding with g of classical type
then the simple intermediate vertex algebras Vj(k) ⊂ W ⊂ V1(g) are in one to one
correspondence with the subgroups of Sk

V1(g)
.
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Proof. By Theorem 7.4, W is a simple current extension. The result now follows
from Corollary 4.5. �

Remark 7.1. Theorem 7.4 holds also when g is of exceptional type and k is a max-
imal conformal regular subalgebra. In this case there is indeed nothing to prove:
browsing through decomposition formulas given in [KS] one finds that in the de-
composition of V1(g) either the summands are simple currents or the decomposition
has exactly two summands. In both cases any intermediate simple vertex algebra
is a simple current extension.

Remark 7.2. We want to present some argument towards conjecture 1.1. By
Remark 7.1, we are left to deal with embeddings k →֒ g where k is not a regular
subalgebra of g. Again one looks at decomposition formulas given in [KS]; it turns
out that there are six cases in which there are more than two summands in the
decomposition and not all of them are simple currents:

(1) G2 × A1 →֒ F4,
(2) A2 →֒ E6,
(3) A2 →֒ E7,
(4) C2 →֒ E8,
(5) A1 × A2 →֒ E8,
(6) A1 ×G2 →֒ E7.

Cases 1-4 can be settled under the additional hypothesis that a proper simple inter-
mediate algebra Vj(k) ⊂W ⊂ V1(g) is rational. Case (1) is dealt with the following
argument. The decomposition of V1(g), in the notation of [KS], is:

Λ0 = (Λ̇0, 8Λ̈0) + (Λ̇2, 4Λ̈0 + 4Λ̈1) + (Λ̇0, 8Λ̈1).

The middle summand in the right hand side is not a simple current. Assume by
contradiction that the sum of the first two factors is a proper algebra W . Then
(Λ̇0, 8Λ̈1) is a W -module: looking at the fusion rules one gets (Λ̇2, 4Λ̈0 + 4Λ̈1) ·
(Λ̇0, 8Λ̈1) = 0, against the fact that V1(g) is simple.

For cases 2,3,4, we can invoke Gannon’s classification of A2 and C2 modular
invariants to get our claim. Indeed, according to [G1], [G2], in all these cases there
are only three physical modular invariants that can arise from conformal embeddings
Vj(k) ⊂ W , with W a rational vertex algebra. Since one arises from the conformal
embedding of Vj(k) in itself, one from the embedding of Vj(k) in the sum of its
simple currents and the third from the embedding of Vj(k) in V1(g), there are no
other possibilities. Cases 5,6 are unclear.

8. Computing SR(V1(g), Vj(k)) for maximal conformal

embeddings

Motivated by Corollary 7.5, in this section we compute explicitly the groups Sk
V1(g)

and the rings SR(V1(g), Vj(k)) for maximal conformal embeddings k →֒ g with g of
classical type.

Let (a, r) be an irreducible symmetric pair. Lemma 5.2 singles out the following
elements of Ωr (cf. (4.8), (4.4) for notation; also recall from the discussion before
Lemma 5.4 the definition of ωS and set oS = Lk(jSωS)):

(1) x0 :=
∏

S oS,
(2) os, s ∈ S : as = ap for some p ∈ P or

∑
p∈P ap = as,
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(3) osos′, s ∈ S, s′ ∈ S ′, S 6= S ′,
∑

p∈P ap = 2, as = as′ = 1.

If r is semisimple, let Hr be the set of representation of type (2) and (3) with 1

added and, if θp is long noncompact, also x0 is added. If r is not semisimple, let
̟ ∈ z(r) be the element such that αp(̟) = 1. Define ω ∈ z(r)∗ by setting ω(̟) = 1.
If x ∈ Ω[r,r], define Φx = {α ∈ ∆(p) | α(f(x) + (−1 − αp(f(x))̟) = 1}. In this

section we identify Ωz(r) with C by identifying Lz(r)(cω) with c ∈ C. Note finally
that Ωr = Ωz(r) × Ω[r,r].

Set

Hr = {(n, x) ∈ Z× Ω[r,r] ⊂ Ωr | x of type (2) or (3), 〈Φx〉(κ) ≡ n mod dim p

2
}.

Finally, if (a, r) is any symmetric pair and (ai, r ∩ ai) (i ∈ I) are the irreducible
components, then we set Hr =

∏
i∈I Hr∩ai.

Proposition 8.1. If (a, r) is a symmetric pair then Hr = Sr
F (p̄). Moreover, Hr is a

subgroup of Ωr and

(8.1) SR(F (p̄), Vj(r)) = Z[Hr].

Proof. Since F (p̄) = ⊗i∈IF (p ∩ ai), we can clearly assume that (a, r) is irreducible.
Assume first r semisimple. Consider x ∈ Hr\{x0}. Assume x of type (2). Let

λ ∈ ∆(p) and let γ ∈ ∆̂ corresponding to it under the map described in (5.3).
Observe that λ(ω∨

s ) = cs(γ) − 1. Since 2
ap
δ − γ is positive root, we have cs(γ) ≤

2as
ap

= 2. It follows that λ(ω∨
s ) ∈ {1, 0,−1}. Set l =

∑
λ(ω∨

s )=1 Cxλ. This is obviously

an abelian b0-stable subspace of p and, by Proposition 5.3, x = Lk(〈Φl〉). Thus,
by Theorem 6.1, x occurs in F (p̄). Assume now x of type (3). Let λ ∈ ∆(p)

and let γ ∈ ∆̂ corresponding to it under the map described in (5.3). Observe
that λ(ω∨

s + ω∨
s′) = cs(γ) + cs′(γ) − 1. Since ap = 2, δ − γ is a positive root so

cs(γ) + cs′(γ) ≤ as + as′ = 2. It follows that λ(ω∨
s + ω∨

s′) ∈ {−1, 0, 1} and we can
conclude as in the previous case. If finally x = x0 then, by Lemma 5.4 and Theorem
6.1, x occurs in F (p̄).

On the other hand, if x ∈ Sr
F (p̄), then either θp is long and x = x0 or x = Lk(〈Φl〉).

In the first case we have x ∈ Hr. In the second case, since F (p̄) is simple, the proof
of Proposition 7.2 gives that l = l(h) for some h ∈ h0 and Lemma 5.2 gives that
x ∈ Hr.

Assume now r not semisimple. Consider (n, x) ∈ Hr. We now show that Φx = Φl

for some l ∈ Σ′. Assume that x is of type (2). Let λ ∈ ∆(p) and let γ ∈ ∆̂+ be
the root corresponding to it under the map described in (5.5). Let h = ω∨

s + (−1−
αp(ω

∨
s ))κ. Observe that λ(h) = (1−as)cp(γ)+cs(γ)−cq(γ). Since δ−γ is a positive

root, we have cs(γ) ≤ as ≤ 2. It follows that λ(h) ∈ {1, 0,−1}. Set l =
∑

λ(h)=1 Cxλ.
This is obviously an abelian b0-stable subspace of p and l ∈ Σ′. By Proposition 5.3,
Lk(〈Φl〉|z(r)) ⊗ x = Lk(〈Φl〉). Thus, by Theorem 6.2, (n, x) occurs in F (p̄). Assume

now x of type (3). Let λ ∈ ∆(p) and let γ ∈ ∆̂ corresponding to it under the
map described in (5.5). Let h = ω∨

s + ω∨
s′ + (−1 − αp(ω

∨
s + ω∨

s′))κ. Observe that
λ(h) = cs(γ)+ cs′(γ)−1. Since δ−γ is a positive root, cs(γ)+ cs′(γ) ≤ as+as′ = 2.
It follows that λ(h) ∈ {−1, 0, 1} and we can conclude as in the previous case.

On the other hand, if (n, x) ∈ Sr
F (p̄), then (n, x) = Lk(〈Φl〉 + kν(κ)) with l ∈ Σ′

and n = k dim p + 〈Φl〉(κ). Since F (p̄) is simple and Lk(〈Φl〉) occurs in F (p̄), by
Lemma 4.1, we have that Lk(〈Φl〉

∗) occurs in F (p̄). The proof of Proposition 7.2
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then gives that l = l(h) for some h ∈ h0 and Lemma 5.2 gives that (〈Φl〉(κ), x) ∈ Hr,
thus (n, x) ∈ Hr.

Since F (p̄) is simple, formula (8.1) follows from Lemma 4.3. �

Let (g, k) be a conformal pair with g of classical type. Recall from Section 5.3 the
symmetric pair (a, r) associated to the pair (g, k). Note that Ωk

∼= Lu(0)⊗Ωk ⊂ Ωr.
We set

Hk = Hr ∩ Ωk.

Proposition 8.2.

(1) Assume k semisimple. If g = so(n,C) then

Sk
V1(g) = {x ∈ Hk | x = Lk(〈Φl〉) for some l ∈ Σeven} ∪ {x0},

where the rightmost element appears only if dimm is odd. If g = sp(n,C)
or g = sl(n+ 1,C), then Sk

V1(g)
= Hk.

(2) Assume k not semisimple and z(k) = z(r). Then

Sk
V1(g) = {(n, x) ∈ Hk | (n, x) = Lk(〈Φl〉|t + k dim(p ∩ a′)κ), k ∈ 1

2
Z,

l ∈ Σ′
0, dim l+ k dim(p ∩ a′) ∈ 2Z}.

(3) If k = C×sl(p,C)×sl(q,C) and g = sl(p+q,C) then there is an isomorphism
Ωk

∼= C× Z/pZ× Z/qZ such that, with the notation of Lemma 6.6,

Sk
V1(g) = {(t, x, y) | (x, y) ∈ Kerϕ, t ∈ ψ(x, y)}.

In particular Sk
V1(g)

∼= Z.

Proof. We first prove (1), so that k is assumed to be semisimple. Assume first that
(a, r) is irreducible.

If g = so(n,C), it suffices to remark x ∈ Hr actually belongs to Sk
V1(g)

if and

only if x occurs in F (p̄)0 (cf. (3.15)). Assume x 6= x0. Let l ∈ Σ be such that
x = Lk(〈Φl〉). Then vl ∈ F (p̄)0 if and only if dim l is even. Now assume x = x0.
Then the highest weight vector of x0 is, by (6.3), given by : T (x̄θp)v0,m :, hence it
belongs to F (p̄)0 if and only if dimm is odd.

Now let g = sp(n,C), sl(n + 1,C). If x ∈ Sk
V1(g)

, then Lu(0) ⊗ x occurs in F (p̄),

so, by Proposition 8.1, Lu(0)⊗ x ∈ Hr, hence x ∈ Hk.
On the other hand, if x ∈ Hk, by Proposition 8.1, Lu(0)⊗ x = Lk(〈Φl〉) for some

l ∈ Σ. Thus 〈Φl〉|t′ = 0. It follows that l ∈ Σ0, hence, by Theorem 6.5, x occurs in
V1(g). If (a, r) is reducible, then the result follows by applying the above argument
to each irreducible component.

Part (2) follows from (6.18).
We now prove (3). Enumerate the simple roots of type An by 1, . . . , n from left

to right. We note that 〈l(i, j)〉|t∩[k,k] = (ωi, ωj). In particular L[k,k](〈l(i, j)〉|t∩[k,k]) is a
special simple current. We define the isomorphism between Ωk and C×Z/pZ×Z/qZ
by L(cκ) ⊗ L[k,k](〈l(i, j)〉|t∩[k,k]) 7→ (c, i + pZ, j + qZ). Then the result follows from
Proposition 6.7 and Lemma 6.6. �

Using Proposition 8.2, we can describe explicitly the structure of Sk
V1(g)

when g

is of classical type. In tables below we use the list of conformal embeddings from
[AGO]. Our results in the adjoint case are given in Table 2. For all other conformal
embeddings in so(n,C) our results are given in Table 3, and for those in sp(n,C)
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and sl(n + 1,C) in Tables 4 and 5, respectively. We number the simple roots of k
by seeing its diagram as a sub-diagram of the affine diagram corresponding to the
pair (a, r).

Type of k Sk
F (̄k)

Sk
V1(so(k))

generators for Sk
V1(so(k))

An, n odd Z/(n+ 1)Z Z/n+1
2
Z o2

An, n even Z/(n+ 1)Z Z/(n + 1)Z o1
Bn Z/2Z {1}
Cn, n ≡ 0, 3 mod 4 Z/2Z Z/2Z on
Cn, n ≡ 1, 2 mod 4 Z/2Z {1}
Dn, n ≡ 0 mod 4 Z/2Z× Z/2Z Z/2Z× Z/2Z on−1, on
Dn, n ≡ 1 mod 4 Z/4Z Z/4Z on
Dn, n ≡ 2 mod 4 Z/2Z× Z/2Z Z/2Z o1
Dn, n ≡ 3 mod 4 Z/4Z Z/2Z o1
E6 Z/3Z Z/3Z o1
E7 Z/2Z {1}
E8 {1} {1}
F4 {1} {1}
G2 {1} {1}

Table 2: the adjoint case.
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conformal embedding Sk
F (p̄) Sk

V1(so(p))
generators

for Sk
V1(so(p))

so(m,C) →֒ so((m+ 2)(m− 1)/2), Z/2Z {1}
m ≡ 1, 3 mod 8
so(m,C) →֒ so((m+ 2)(m− 1)/2), Z/2Z Z/2Z o(m−3)/2

m ≡ 5, 7 mod 8
so(m,C) →֒ so((m+ 2)(m− 1)/2), Z/2Z× Z/2Z Z/2Z × Z/2Z o0, o1
m ≡ 0 mod 8
so(m,C) →֒ so((m+ 2)(m− 1)/2), Z/4Z Z/4Z o0
m ≡ 6 mod 8
so(m,C) →֒ so((m+ 2)(m− 1)/2), Z/4Z Z/2Z o(m−2)/2

m ≡ 2 mod 8
so(m,C) →֒ so((m+ 2)(m− 1)/2), Z/2Z× Z/2Z Z/2Z o(m−2)/2

m ≡ 4 mod 8
A1 →֒ B2 Z/2Z {1}
Cm →֒ so((2m+ 1)(m− 1)), Z/2Z Z/2Z om
m ≡ 0, 1 mod 4
Cm →֒ so((2m+ 1)(m− 1)), Z/2Z {1}
m ≡ 2, 3 mod 4
C×Am−1 →֒ Dm Z 2Z (−2, o3)

(−2,1) if m = 1
sp(m,C)× sp(n,C) →֒ so(4mn,C) Z/2Z Z/2Z o0om+n

mn odd
sp(m,C)× sp(n,C) →֒ so(4mn,C) Z/2Z {1}
mn even
so(m,C)× so(n,C) →֒ so(mn,C) (Z/2Z)3 (Z/2Z)3 o(m−2)/2, o(m+2)/2,
m ≡ n ≡ 0 mod 4 o0o(m+n)/2

so(m,C)× so(n,C) →֒ so(mn,C) Z/2Z× Z/4Z Z/2Z × Z/4Z o(m−2)/2,
m ≡ 0, n ≡ 2 mod 4 o0o(m+n)/2

so(m,C)× so(n,C) →֒ so(mn,C) Z/2Z× Z/4Z Z/2Z × Z/2Z o(m−2)/2, o(m+2)/2

m ≡ n ≡ 2 mod 4
so(m,C)× so(n,C) →֒ so(mn,C) Z/2Z× Z/2Z Z/2Z o(m+2)/2

m even, n odd
so(m,C)× so(n,C) →֒ so(mn,C) Z/2Z× Z/2Z Z/2Z o(m−3)/2o(m+1)/2

m,n odd
C4 →֒ D21 Z/2Z Z/2Z o3
F4 →֒ D13 {1} {1}
A7 →֒ D35 Z/4Z Z/2Z o3
D8 →֒ D64 Z/2Z Z/2Z o6
B4 →֒ D8 {1} {1}
so(m,C)× so(n,C) →֒ so(m+ n,C) Z/2Z× Z/2Z Z/2Z o⌊m

2
⌋−1o

′
⌊n
2
⌋−1

m ≥ 3, n ≥ 3
so(m,C)× so(2,C) →֒ so(m+ 2,C) Z/2Z× Z Z (1, om−1)
m ≥ 3

Table 3: Sk
V1(so(p))

with (a, k) symmetric pair not of adjoint type.
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conformal embedding Sk
V1(sp(n,C))

generators

C×Am−1 →֒ Cm Z (−2, o3)
so(m,C)×A1 →֒ Cm, m odd Z/2Z o3
so(m,C)×A1 →֒ Cm, m ≡4 0 Z/2Z× Z/2Z om

2
+2o1, om

2
+1o1

so(m,C)×A1 →֒ Cm, m ≡4 2 Z/4Z om
2
+1o1

A5 →֒ C10 Z/3Z o2
D6 →֒ C16 Z/2Z o1
E7 →֒ C28 {1}
C3 →֒ C7 {1}
A1 →֒ C2 {1}

Table 4: Sk
V1(sp(n,C))

.

conformal embedding Sk
V1(sl(n+1,C)) generators

Ap−1 ×Aq−1 →֒ Apq−1, Z/uZ, u = GCD(p, q) orop+s,
r = p/u, s = q/u

so(m,C) →֒ Am−1 Z/2Z o2
Am−1 →֒ A(m2 )−1, m odd {1}

Am−1 →֒ A(m−1
2 )−1, m odd {1}

Am−1 →֒ A(m2 )−1, m even Z/2Z om/2

Am−1 →֒ A(m−1
2 )−1, m even Z/2Z om/2

E6 →֒ A26 {1}
D5 →֒ A15 {1}

C×Ap−1 ×Aq−1 →֒ Ap+q−1 Z (1, oio
′
j), i− 1 ≡ − q+1

m mod p,

j − 1 ≡ p+1
m mod q

Table 5: Sk
V1(sl(n+1,C)).

The last line of Table 5 is a restatement of Proposition 8.2 (3). We used the notation
of Proposition 6.7. The other instances in Tables 4 and 5 have been derived using the
following procedure. We first find the subspaces l ∈ Σ0 such that l = l(h) for some
h ∈ h0. To accomplish this, we simply list all the weights of p+ and, for any h ∈ h0 of
the type described in Lemmas 5.1, 5.2, we compute the number of weights λ for which
λ(h) = 1, the number of weights for which λ(h) = −1 and we pick the h for which these
two numbers coincide. As an example, we work out the most difficult case, that of the
conformal embedding Ap−1 ×Aq−1 →֒ Apq−1 in Table 5.

Recall that in this case the corresponding symmetric pair is (Ap+q−1, Ap−1×Aq−1×Cκ).
Order the roots of Ap+q−1 from left to right so that the first p− 1 (resp. the last q − 1)
correspond to the roots of the Ap−1-component (resp. Aq−1-component) of k. We want

to prove that if r = p/M, s = q/M , then Sk
V1(g)

is cyclic of order M generated by orop+s.

Denote by α1, . . . , αp+q−1 the simple roots of Ap+q−1 and set αij = αi+ . . .+αj . Then

∆+(p) ={αij | 1 ≤ i ≤ p ≤ j ≤ p+ q − 1}.

Consider x ∈ Sk
V1(g)

. If x = os, we observe that αij(ω
∨
s + (−ǫ − αp(ω

∨
s ))̟) ≤ 0 if ǫ = 1

and αij(ω
∨
s + (−ǫ − αp(ω

∨
s ))̟) ≥ 0 if ǫ = 0 (cf. Lemma 5.1, (1)), hence 〈Φl〉|t′ 6= 0. So

we may assume that x = ouop+v, 1 ≤ u < p, 1 ≤ v < q. Let ωuv = ω∨
u + ω∨

p+v + (−1 −
αp(ω

∨
u + ω∨

p+v))̟ . Then αij(ω) = 1 exactly when i ≤ u, p + v ≤ j; these indices are
u(q − v) in number. Similarly, αij(ω) = −1 exactly when i > u, p + v > j; these indices
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are (p − u)v in number. Therefore we are led to solve the linear Diophantine equation
uq = pv, which gives the desired result.

The above procedure is easily done in the exceptional cases; in the remaining classical
cases it is performed in the same way using the pictorial display of positive roots given in
[CP].

Remark 8.1. If g = sp(n,C) and k is semisimple, then Sk
V1(g)

is a subgroup of index 2 of

Ωk.

Remark 8.2. The structure of simple current extension in the framework of conformal
nets has been studied, in special cases, in [X] (cf. Theorems 3.8 and 3.11). The results
obtained there agree with those displayed in Tables 2-5.

We give now a more geometric characterization of the groups Sr
F (p̄)[0] for (a, r) a sym-

metric pair. Recall from (4.6) the definition of f : Ωg → P∨.

Proposition 8.3. If r →֒ so(n,C) is a conformal embedding, and (a, r) is the associated
symmetric pair, we have

(8.2) Sr
F (p̄)[0] = {(0, x) ∈ Ωz(r) × Ω[r,r] | f(x)(∆(p)) ⊂ Z}.

In particular, if r is semisimple, Sr
F (p̄) has index ap in Ωr.

Proof. We can assume that the pair (a, r) is irreducible. Let H̃ denote the right hand side
of (8.2).

Assume first that r is semisimple. Then (8.2) turns into

Sr
F (p̄) = {x ∈ Ωr | f(x)(∆(p)) ⊂ Z}.

By (5.3), we have that either λ(∆(p)) ⊂ Z or λ(∆(p)) ⊂ 1
2 + Z, (λ ∈ P∨

r ). Also note

that λ(∆(p)) ⊂ Z if and only if λ(θp) ∈ Z. If ap = 1, then clearly H̃ = Ωr. If ap = 2,

consider the map from Ωr = P∨
r /Q

∨
r to 1

2Z/Z given by x+Q∨
r 7→ θp(x) + Z. Recall that

in any affine Dynkin diagram there is a simple root with label 1, hence the map is onto.
Since H̃ is the kernel of the map, it is a subgroup of Ωr of index 2.

By our description of Hr, we have that Hr ⊂ H̃. This is clear from the proof of
Proposition 8.1 for elements of types (2) and (3) and follows from [CMP2, Lemma 5.7]

for x0. Viceversa, assume h ∈ H̃. Then h =
∏
S hS , with hS = oi, i ∈ S and aSi = 1 or

hS = 1. Moreover
∑

hS 6=1
ai
ap

∈ Z. If ai ∈ {1, 2} for all i and ap = 2, then h is a product

of elements of Hr hence, since Hr is a group, h ∈ Hr. This rules out all the classical
untwisted cases. The same argument works when ap = 1 and ai = aSi = 1 for all i. This

rules out the adjoint case and D
(2)
l+1. The exceptional cases and the remaining twisted

cases are dealt with by a direct inspection.
Assume now r not semisimple. For k ∈ N set Φk = {α ∈ ∆+(p) | (α − αp)(f(x)) =

k}. Set T = as if x = os and T = as + as′ if x = osos′ . Since 0 = 1
2ν(κ)(f(x)) =∑

α∈∆+(p) α(f(x)) we have that 0 = dim p
2 αp(f(x)) +

∑T
k=0 k|Φk| so

(8.3) αp(f(x)) = −

∑T
k=0 k|Φk|∑T
k=0 |Φk|

.

Clearly

Sr
F (p̄)[0] = {(n, x) ∈ Hr | n = 0}.

We now prove that Sr
F (p̄)[0] ⊂ H̃. If x = 1 then f(x) = 0 and there is nothing to prove.

We can therefore assume that x 6= 0. By the definition of Hr we have that 〈Φx〉(κ) ≡ 0

mod dim p
2 . As shown in Proposition 8.1, there is l ∈ Σ′ such that Φx = Φl. As shown in
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the proof of Theorem 6.5, |〈Φl〉(κ)| <
dim p
2 , so 〈Φl〉(κ) = 0. It is clear from (5.5) that

h(∆(p)) ⊂ Z if and only if h(αp) ∈ Z. We now check that αp(f(x)) = −1. Note that
Φ+
l = Φ2 and Φ−

l = −Φ0, hence, since 〈Φl〉(κ) = |Φ+| − |Φ−| = 0, we have that

αp(f(x)) = −
2|Φ+

l |+ |Φ1|

|Φ+
l |+ |Φ1|+ |Φ−

l |
= −1.

Finally we prove that H̃ ⊂ Sr
F (p̄)[0]. Choose (0, x) ∈ H̃. We are assuming that

αp(f(x)) ∈ Z, hence, by (8.3),

T∑

k=0

k|Φk| ≡ 0 mod
dim p

2
.

Assume first T = 1, so x = os for some s ∈ S and as = 1. Then, by (8.3), αp(ω
∨
s ) > −1

hence αp(f(x)) = 0. This implies Φ2 = Φ1 = ∅, so Φ0 = ∆+(p). In this case 〈Φx〉(κ) =
−|Φ0| =

dim p
2 , hence (0, x) ∈ Hr. Now assume T = 2. Then

2|Φ2|+ |Φ1| ≡ 0 mod
dim p

2
.

Since 2|Φ2|+ |Φ1| = |Φ2|− |Φ0|+
dim p
2 and 〈Φx〉(κ) = |Φ2|− |Φ0|, we are done also in this

case.

Corollary 8.4. If k →֒ g is a conformal embedding of a semisimple Lie algebra k in
g = sp(n,C) or g = sl(n+ 1,C) and (a, r) is the associated symmetric pair, then

Sk
V1(g)

= {x ∈ Ωk | f(x)(∆(p)|t) ⊂ Z}.

Proof. If x ∈ Sk
V1(g)

then, by Proposition 8.2, x ∈ Hr. Recall that r = u × k. Since

k is semisimple, then z(r) ⊂ u, hence Lu(0) ⊗ x occurs in F (p̄)[0]. By Proposition 8.3,
f(x)(∆(p)|t) = f(x)(∆(p)) ⊂ Z.

Viceversa, if x ∈ Ωk is such that f(x)(∆(p)|t) ⊂ Z, then, by Proposition 8.3, (0, x) ∈ Hr,

hence, by Proposition 8.2, x ∈ Sk
V1(g)

. �

Remark 8.3. Observe that in all cases ∆(p)|t is the set of weights of the standard
representation of g when restricted to k.
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