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Abstract: Photochromic materials are attractive for the development of holograms for different
reasons: they show a modulation of the complex refractive index, meaning they are suitable for
both amplitude and phase holograms; they are self-developing materials, which do not require any
chemical process after the light exposure to obtain the final hologram; the holograms are rewritable,
making the system a convenient reconfigurable platform for these types of diffractive elements. In
this paper, we will show the features of photochromic materials, in particular diarylethenes in terms
of the modulation of a transparency and refractive index, which are mandatory for their use in
holography. Moreover, we report on the strategies used to write binary and grayscale holograms and
their achieved results. The outcomes are general, and they can be further applied to other classes
of photochromic materials in order to optimize the system for achieving high efficiency and high
fidelity holograms.
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1. Introduction

The possibility of storing a 3D scene in a substrate has been a dream for a long time. Thanks to
Gabor and his invention of holography in 1948 [1] and laser development in the following decades [2],
such a dream has come true. Since then, holography has found many potential technological uses,
while important developments for both theory and application have been achieved [3].

When considering the hologram manufacturing, issues related to photosensitive material are
crucial. Indeed, an ideal material for hologram manufacturing should show [4]: a high spatial
resolution, a large dynamic range, a good signal to noise ratio, high optical quality, and large sensitivity
in a wide spectral range. Another attractive property that holographic materials may show is the
ability to self-develop, namely, no chemical process is required after the pattern transfer to obtain the
final usable hologram. Clearly, the choice of the photosensitive material depends on different factors,
in particular, if the hologram is a phase or amplitude, and the technique used to transfer the pattern.
In addition, strategies to obtain holograms that are reconfigurable and switchable are highly desired.

There are different approaches to achieve these kinds of diffractive devices and photochromic
dyes surely are an interesting option. Nice features of such materials include their rewritability, which
is intrinsic in the reversible transformation. Moreover, they can be used for making both amplitude
and phase holograms [5]. Among the different classes of photochromic materials, T-type materials are
interesting in the case of real-time holography because of their efficient thermal decoloration process [6];
whereas the P-type (thermally stable) holograms are much more interesting where re-addressable
holograms are required. Diarylethenes are surely the most studied holograms for holographic optical
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memories, 3D displays, and holographic gratings [7–12] belonging to the P-type class, thanks to
their well-known good overall photochromic properties [13] and the possibility of obtaining highly
responsive films. In addition, the use of diarylethenes in combination with nanoparticles (in particular
gold ones) could be of great interest in this field, since the optical properties and their switching can be
tuned by acting both on the nanoparticles side (mainly size and dispersion, which affect the plasma
frequency) and the photochromic unit side [14–19]. The performances of diarylethene based holograms
are strongly related to the optimization of the photochromic substrate and to the writing procedure.

Other strategies and materials are possible to use to obtain reconfigurable holograms:
photorefractive materials and photosensitive liquid crystals are two interesting families. As for
photorefractive materials, they show a refractive index modulation as the result of the photoconductive
and the Pockels effects [20], which makes them suitable for phase holographic elements [21]. Fast
reconfigurable holograms [22,23], 3D holographic displays [24,25], and holographic memories [26] can
be obtained thanks to the rapid growth of refractive index modulation, a very peculiar characteristic
of such systems. On the other hand, the hologram is not usually persistent, so this approach is not
suitable for long lasting devices. Regarding holographic liquid crystals (LCs), there are different
possibilities since the LCs can change their properties (orientation, phase separation, and refractive
index modulation) through both optical stimuli and electric stimuli. Consequently, rewritable systems,
ON-OFF grating, and polarized sensitive gratings are possible. In the case of light sensitive LCs,
azobenzene photochromic moieties are often used [27,28] and rewritable holograms can be obtained by
achieving major modulation of the refractive index. Similar systems were also considered for making
holographic memories [29]. By using polymer-dispersed liquid crystal combined with holography
(H-PDLC), it is possible to obtain switchable phase gratings and other optical elements thanks to
the phase separation that induces the refractive index modulation and the application of the electric
field [30,31].

In this paper, we report on the main features of photochromic diarylethenes in terms of relevant
properties for phase and amplitude holograms. A hybrid computation tool is shown to help the
optimization of the films, mainly focusing on the chemical structure of the diaryelethene; the different
strategies for writing photochromic holograms are also discussed. Examples are reported in order
to support the discussion. The results here reported can be easily generalized to other classes of
photochromic materials and could inspire the development of new/optimized photochromic systems
for high efficiency and high fidelity holographic optical elements.

2. Computer-Generated Holograms

Holograms digitally calculated are called Computer-Generated Holograms (CGHs). The ideal
wavefront to be reconstructed is computed on the basis of the diffraction theory, starting from the wave
field distribution of the object beam [32,33]. Such an approach is of great interest since it allows for
recording holograms of virtually any object or scene without the existence of the physical object. They
can also use optical elements and filters to manipulate light phase and intensity. In the same manner as
traditional holograms, CGHs are classified as either phase or amplitude.

In the scalar diffraction approach, if we neglect the reconstruction noise, depending on the
hologram type and discretization levels, both types of hologram are able to reconstruct the desired
object with the main difference being in the diffraction efficiency [32], as will be discussed later on
(see Section 2.2). When diffraction efficiency is not an issue, amplitude holograms may be preferred
for their easier manufacture. CGHs, thanks to their ability to generate custom wavefronts, are
finding applications in beam shaping, particles manipulation, interferometric optical testing, and
anti-counterfeiting [34–36].

Concerning interferometry, great efforts have been done in the recent years to improve CGH
capabilities beyond their first development by Wyant almost 50 years ago [37]. Nowadays, they
are used as optical surface references, to cope with the production of complex and non-standard
optical surfaces (aspherical and free form), which are made possible by new optical fabrication



Materials 2019, 12, 2810 3 of 23

technologies [38]. They are applied to test different optics, even large aspherical mirrors for the new
generation telescopes [39,40].

Two main type of holograms can be recorded in the holographic material [41]: the Fourier
hologram, which exploits the inverse Fourier transformation of the image, and the Fresnel hologram,
which encodes the interference pattern of the wave propagated to the object.

2.1. Fourier and Fresnel CGHs

A collimated beam passing through a lens undergoes a Fourier transformation. Thus, starting
from the image to be reconstructed, it is possible to calculate the complex wavefront to be encoded in
the CGH using Equation (1). Moreover, the inverse transformation, can be used to reconstruct the
image from the CGH pattern [42]. Here, we report the mathematical operator of the direct F and
inverse F −1 Fourier Transformations:

g(µ, ν) = F [ f ](µ, ν) =
x

R2
f (x, y) e−2πi(xµ+yν)dxdy (1)

f (x, y) = F −1[g](x, y) =
x

R2
g(µ, ν) e2πi(xµ+yν)dµdν (2)

where x, y and µ, ν are the coordinates of the image plane and Fourier space, respectively.
Fresnel holograms are directly calculated by propagating the wavefront to be reconstructed and

exploiting the light propagation equations that are modeled by the Rayleigh-Sommerfeld diffraction
theory [43]. If we consider to have the hologram plane in z = 0 and the object plane at z, we can write:

Ez(x, y) =
x

E0(u, v)
eikr

r
dudv (3)

The resulting complex wave Ez is estimated by calculating the sum of the contributions of each
pixel of the hologram anywhere on the screen located at a distance z. Each pixel is considered as
a secondary spherical wave source weighted by the function E0(u, ν). These secondary waves are
generated when the incident wave, characterized by its complex amplitude E0 and wavelength λ,
reaches the hologram. The same strategy can be applied to calculate E0 by inverting Equation (3) and
positioning the object plane at −z, in order to keep the same direction of propagation.

E0(u, ν) =
x

E−z(x, y)
eikr

r
dxdy (4)

The function E0(u, v) is the complex amplitude of the hologram, which must be approximated before
the encoding.

2.2. Diffraction Efficiency

Once the complex electric field function at the hologram plane has been calculated, the next step
is the encoding into the CGH. However, to transfer all the complex information, a material able to
modulate both amplitude and phase of a wavefront is needed. Despite some successful attempts,
multi-step processes and complex procedures are ultimately required for this approach [44]. The
traditional approach is to code the complex wavefront in the form of a phase only or amplitude only
map. The main difference between the two coding strategies is the hologram diffraction efficiency.

In order to give an estimation of the hologram efficiency, we make use of a model reported by Brown
in 1969 [32], which considers monodimensional gratings with a periodical structure that is either binary
or grayscaled. The wavelength of the incident light is assumed to be much smaller than the grating
period, so the scalar diffraction approximation can be applied. Figure 1 reports the theoretical efficiency of
gray-scaled (a) and binary (b) amplitude holograms, and gray-scaled (c), binary (d) and blazed (e) phase
holograms. The efficiency is related to the amplitude of the modulation A, which varies between 0 and 1
in the case of amplitude holograms and between 0 and 2π in the case of phase holograms.
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Figure 1. Modulation profiles for grayscaled (a), binary (b) amplitude holograms, grayscaled (c),
binary (d) and blazed (e) phase holograms. Dependence of the first order diffraction efficiency on the
modulation parameter A (right).

The efficiency of (a) and (b) reaches, in the best conditions, 6.2% and 10.1%, respectively, while
for phase hologram (c) and (d) the efficiency is 34% and 41% respectively. In the case of the blazed
hologram, it can even reach the 100% efficiency.

In the case of photochromic materials, both amplitude and phase holograms are possible, according
to the working region of the hologram. For amplitude holograms, the parameter A is directly linked to
the contrast between transparent and opaque regions, i.e., to the transmission of the photochromic film
in the transparent and colored forms. The contrast, which is a wavelength dependent quantity, in a
region where only one of the two forms is fully transparent, is given by the dye concentration C, the
molar absorbance ε of the colored form, and the thickness of the film d as follows:

Contrast =
Ttransparent

Tcoloured
=

1
10−Abs

= 10εCd (5)

Figure 2 reports the first order diffraction efficiency of a binary hologram as function of the film
contrast [45].
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Figure 2. First order diffraction efficiency of a binary amplitude grating as function of the contrast value [45].

The contrast is asymptotic to the maximum efficiency of 10.1% for values larger than 5000, but values
around 8% are good enough for many applications and in particular for interferometric purposes. These
efficiencies are reached when the contrast is larger than 100, value that is obtained for optical density of the
film in the colored form larger than two (considering again an absorbance zero for the uncolored form).

Concerning phase holograms, the key parameter to deal with is the product between the refractive
index modulation and the film thickness d·∆n. For example, if we take the efficiency of volume phase
gratings working in the Bragg regime, we can write the first order diffraction efficiency at the Bragg angle
(αB) as [46]:

η =
1
2

sin2
(
π∆nd

2λcosαb

)
+

1
2

sin2
(
π∆nd

2λcosαb
cos(2αB)

)
(6)
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where λ is the wavelength of the incident light. We studied the efficiency dependence by ∆n,
considering λ = 650 nm, 750 nm, 850 nm and αB = 19◦. In Figure 3, we report the results for a ∆n in
the range 0–0.08.
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Figure 4. Photoreaction in 1,2-diarylethenes considered in this work. (a) open form (uncolored); (b) 
close form (colored). The detailed structures are reported in Figure 5.  

Actually, hundreds of diarylethenes have been synthesized so far, and comprehensive reviews 
report on the main characteristics and possible applications of this important family of photochromic 
compounds [47,48]. In this review, we limit the discussion to a series of diarylethenes, and we discuss 
the modulation of absorption properties in the UV-Vis as a function of the chemical structure 
specifically to later highlight the conversion in the film state, which is of fundamental relevancy to 

Figure 3. Theoretical efficiency of phase gratings as function of the refractive index modulation for
films with a thickness of 2, 4, 6 and 8 µm. The results are shown for three different wavelength 650,
750 and 850 nm; the grating line density is 1000, 870, 770 lines/mm, respectively.

Considering that diarylethene based photochromic films can reach ∆n of 1–4%, we are able to write
phase binary gratings with good efficiency, depending on the film thickness. However, the maximum
useful thickness of the photochromic materials is limited by the UV penetration (more details are
provided later on), which determine the degree of conversion through the film thickness. Therefore,
we can conclude that there is a sort of upper limit in the d·∆n value for the photochromic films.

3. Diarylethenes: Properties Modulation

Diarylethenes show a light-induced transformation between two forms a and b as reported in
Figure 4 in the case of the perfluorocycplopentene derivatives. The a form, called open form, is usually
uncolored since the π-conjugation is interrupted between the two side parts of the molecule. Upon
illumination with UV light, a 4n + 2 electrocyclization occurs, and the b form, called close form, is
obtained. This state is characterized by a π-conjugation extended along the whole molecular backbone,
with a consequent coloration of the materials.
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(b) close form (colored). The detailed structures are reported in Figure 5.

Actually, hundreds of diarylethenes have been synthesized so far, and comprehensive reviews
report on the main characteristics and possible applications of this important family of photochromic
compounds [47,48]. In this review, we limit the discussion to a series of diarylethenes, and we discuss
the modulation of absorption properties in the UV-Vis as a function of the chemical structure specifically
to later highlight the conversion in the film state, which is of fundamental relevancy to reaching an
adequate contrast in amplitude holograms. Moreover, for possible application as phase holograms,
features for maximizing the refractive index modulation are reported.
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3.1. UV-vis Absorption

In a liquid solution, the photochromic process approximately occurs uniformly in the whole
volume, and the conversion at the photosteady state depends on the absorption coefficients (εA, εB)
of the two isomeric forms at the irradiation wavelength and on the quantum yield of forward and
backward reactions (φAB,φBA). All these quantities depend on the molecular building blocks, both
those ones involved in the 4n + 2 electrocyclization (i.e., the photoactive part of the molecule) and the
lateral substituents. Many diarylethene derivatives have been synthesized so far, and the effect on the
specific chemical structure on the absorption properties for a selection of compounds (see Figure 5) is
highlighted in Table 1.
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Figure 5. Series of 1,2-diarylethenes in their open state (uncolored). They differ for the aromatic ring
in the switching structure (thienyl from 1 to 19 or thiazolyl from 20 to 24) and for the lateral groups.
Electroactive substituents can be also present to give push-push structures (compounds from 4 to 9),
pull-pull structure (compounds 3, 10 and 11) or push-pull structures (compounds from 12 to 14) in
their closed (colored) state.
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Table 1. Absorption maxima (λ) and molar extinction coefficient (ε) of diaryletenes shown in Figure 5
in their two isomeric forms (uncolored and colored). Absorption spectra measured in hexane solution
(* in EtOH).

Compound Uncolored Form Colored Form

λUV (nm) εUV (M−1 cm−1) λVIS (nm) εVIS (M−1 cm−1)

1 278 34,660 575 14,990
2 * 288 38,720 584 16,400
3 328 40,450 608 14,450
4 293 43,610 582 20,050
5 297 41,660 583 21,110
6 294 36,580 582 16,940
7 296 35,980 592 18,010
8 320 49,960 607 24,300
9 353 51,040 613 28,100
10 315 27,670 598 9790
11 315 33,060 591 11,425
12 330 44,230 642 25,860
13 305 37,970 597 18,070
14 305 35,390 602 16,620
15 251 21,410 546 10,910
16 282 30,780 587 15,420
17 310 28,190 592 16,750
18 318 32,480 598 21,490

19 * 320 32,420 608 19,090
20 301 30,640 519 10,810
21 316 23,700 534 11,800
22 329 37,310 549 19,400

23 * 304 35,050 530 12,690
24 * 330 31,520 553 15,820

Despite the fact that the values reported in Table 1 seem to be highly scattered, correlations between
the different parameters can be found for the different groups of diaryethenes herein synthesized
and analyzed. The comparison between the molar extinction coefficients of the uncolored and the
colored forms of any diarylethene (εUV , εVIS, respectively) shows that the maximum absorbance of the
visible band of the colored isomer is roughly half of the absorbance in the UV (Figure 6a). Moreover,
diarylethenes with lateral substituents characterized by the presence of a phenyl group, either alone or
linked with a withdrawing functional group, have a lower intensity of the visible band (green series).
Indeed, all of these molecules have a less-conjugated structure in their colored forms. Conversely,
molecules belonging to the blue series have a more intense visible absorption, which can arise from all
the possible different chemical structures allowing for an extended π-conjugation in the closed form,
e.g., the use of thiophene-thiophene as lateral substituent (compounds from 17 to 19) and the push-pull
substituents (compounds from 12 to 14). In addition, the triphenylamine as substituent is known to
give an effective π-conjugation (herein compound 9).
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Figure 6. (a) Plot of the molar extinction at the maximum absorbance in the visible of the colored
isomer εvis and in the UV of the transparent isomer εUV , for the diarylethenes of 5; (b) Plot of the
wavelength of the visible peak for the colored isomer and for the UV peak of the transparent isomer;
(c) Plot of the position and the molar extinction coefficient of the band in the visible for the colored
isomers. Molecules were characterized in hexane except for * which were dissolved in ethanol.

The analogous analysis, but considering the absorption maxima instead of the absorption
coefficient, leads to the general conclusion that a redshift of the visible band of the colored form
corresponds to a redshift of the UV band of the uncolored form (Figure 6b). The two series of data
in the figure correspond to the dithienylethenes (orange data) and the dithiazolylethenes (blue data).
For both series, the wavelength gap between the absorption maxima of the colored and uncolored
forms is approximately the same inside the members of the same series. In particular, the gap is about
220 nm for the thiazole based series and 290 nm for the thienyl based one. Actually, the presence of
electroactive substituents can modify this wavelength gap, i.e., push-pull substituted dithienylethenes
(compounds from 12 to 14) are characterized by a larger λVIS-λUV, with the largest difference value for
the compound 12, having both very strong donor and acceptor groups.

Finally, the relationship between εvis and λVIS is highlighted (Figure 6c), since the behavior of the
photochromic molecules in the visible (i.e., the contrast) is relevant for the development of amplitude
holograms. The overall evidence is that the longer the wavelength of the peak, the higher its absorption
intensity [49], which is a common trend in conjugated molecules [50]. However, the presence of
withdrawing groups (e.g., compounds 9 and 10) decreases the absorption coefficient, whereas donor
groups lead to higher absorbance (compounds 4–9).

At the solid state, including dyes in the crystalline or amorphous state and polymer dispersed
dyes, the situation is more complex since the light-induced process proceeds from the outer layer to
the inner layer. Actually, the full transformation from the colored to the uncolored forms is always
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possible, since only the colored isomer absorbs in the visible. Instead, the coloration process is not
straightforward as both the isomeric states of diarylethenes absorb UV light. Therefore, the radiation is
attenuated through the volume while the coloration proceeds and a limit depth of UV penetration
exists, beyond which the photochromic reaction cannot further occur. In addition, the degree of
conversion through the thickness follows a gradient depending on the illumination time [45]. In this
condition, the measurement of molecular absorption properties (ε, ϕ) is tricky. Nevertheless, it is still
possible, by considering the local degree of conversion of the molecules inside the film or by using
very thin films where the conversion can be considered uniform.

Supposing that the transparent form absorbs more than the colored one in the UV range
of illumination, the UV penetration at the end of the conversion is determined by εUV

C , namely,
the extinction coefficient of the colored form in the UV. In Figure 7, the case of a 10 µm thick film with a
concentration of 400 mol/m3 of molecule 6 is reported, showing the measured absorption spectra of the
two forms and the calculated penetration depth as a function of the molar extinction coefficients.

Materials 2019, 12, x FOR PEER REVIEW 9 of 24 

 

possible, since only the colored isomer absorbs in the visible. Instead, the coloration process is not 

straightforward as both the isomeric states of diarylethenes absorb UV light. Therefore, the radiation 

is attenuated through the volume while the coloration proceeds and a limit depth of UV penetration 

exists, beyond which the photochromic reaction cannot further occur. In addition, the degree of 

conversion through the thickness follows a gradient depending on the illumination time [45]. In this 

condition, the measurement of molecular absorption properties (ε, φ) is tricky. Nevertheless, it is still 

possible, by considering the local degree of conversion of the molecules inside the film or by using 

very thin films where the conversion can be considered uniform.  

Supposing that the transparent form absorbs more than the colored one in the UV range of 

illumination, the UV penetration at the end of the conversion is determined by 𝜀𝐶
𝑈𝑉 , namely, the 

extinction coefficient of the colored form in the UV. In Figure 7, the case of a 10 μm thick film with a 

concentration of 400 mol/m3 of molecule 6 is reported, showing the measured absorption spectra of 

the two forms and the calculated penetration depth as a function of the molar extinction coefficients. 

Figure 7. (a) UV-vis absorption spectra of the two isomers of molecule 6; (b) time necessary to reach 

the photostationary state as function of the ratio 𝜀𝑂
𝑈𝑉/𝜀𝐶

𝑈𝑉; (c) penetration depth as function of the 

irradiation wavelength. With the green circles the values of the molar extinction coefficients at the 

wavelength corresponding to the highest penetration are highlighted. Each point of figure (b) and (c) 

corresponds to a different simulation with a λ of irradiation changing between 250 nm and 350 nm. 

The lower the absorption of the UV light by the colored form, the higher the penetration (Figure 

7c). Fixed the quantum yield of the transformations (𝜙𝐶𝑂
𝑈𝑉 , 𝜙𝑂𝐶

𝑈𝑉), the time required to reach a stationary 

situation decreases while increasing the ratio 𝜀𝑂
𝑈𝑉/𝜀𝐶

𝑈𝑉. It has been also demonstrated that this ratio 

affects the fatigue resistance of the diarylethenes [51]. 

Open isomer of molecule 8 

Closed isomer of molecule 8 

a) 

c) 

250nm> λ >350nm 

𝜀𝑐
𝑈𝑉 

250nm> λ >350nm 

b) 

𝜀𝑂
𝑈𝑉 𝜀𝐶

𝑈𝑉Τ  

Figure 7. (a) UV-vis absorption spectra of the two isomers of molecule 6; (b) time necessary to reach
the photostationary state as function of the ratio εUV

O /εUV
C ; (c) penetration depth as function of the

irradiation wavelength. With the green circles the values of the molar extinction coefficients at the
wavelength corresponding to the highest penetration are highlighted. Each point of figure (b) and
(c) corresponds to a different simulation with a λ of irradiation changing between 250 nm and 350 nm.

The lower the absorption of the UV light by the colored form, the higher the penetration (Figure 7c).
Fixed the quantum yield of the transformations (φUV

CO , φUV
OC ), the time required to reach a stationary
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situation decreases while increasing the ratio εUV
O /εUV

C . It has been also demonstrated that this ratio
affects the fatigue resistance of the diarylethenes [51].

All these considerations point out that the actual coloration of a photochromic material at the solid
state depends not only on the intrinsic capability of absorbing visible light by the colored form, but also on
its absorption at the illumination wavelength. This means that to reach large contrasts, large εvis

C cannot be
the only selection criteria of a photochromic dye. If the absorption at the illumination wavelength (εUV

C ) is
high and comparable to the εvis

C (highlighted in Figure 8a for compound 13), the penetration depth will
be low, and the contrast will be similarly visible (C = 160). Instead, if the absorption is much lower, a
consistent raise of the contrast value results (C = 3000 for compound 7, Figure 8b).
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Figure 8. Comparison between two diarylethenes showing a different εvis
C /εUV

C ratio: (a) Molecule
13; (b) molecule 7. On the left the molecules used in the simulations, together with their absorption
properties are reported (the green circles highlight εUV

C and εvis
C ); on the right, the value of the ratio

εvis
C /εUV

C and the contrast C computed at 600 nm are reported for a 10 µm film with a concentration of
300 mol/m3.

3.2. Computational Tool

Once we had determined the relevant parameters that characterize the general photochromic
behavior at the solid state, we made use of a kinetic model which describes both the coloration and the
fading of a diarylethene film under specific illumination conditions [52], and we combined here all
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these pieces of information in a computational tool, which predicts its performance a priori. This allows
for a proper selection of the photochromic material, which is necessary to satisfy the target properties
of the optical elements (both phase and amplitude holograms), without a number of optimization
experiments that would have been otherwise necessary, saving time and material.

In order to efficiently exploit the kinetic model, a Graphical User Interface (GUI) using Matlab®

R2016b (The MathWorks, Natick, MA, USA) was built, facilitating the selection of the simulation
parameters and displaying the desired results with a fast and practical routine. GUI is user-friendly,
hence it can be used without any specific computational ability.

Two different versions of the tool were developed, enabling to simulate a photochromic film based
on either one or two molecules, mixed together. In the following, the two molecules case is detailed,
being the most complex one.

The program is organized in three different sections: (i) selection of the molecules, (ii) parameters
choice and (iii) results visualization (Figure 9).
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The colored boxes indicate three different sections: selection of the molecules (red), parameters choice
(green) and results visualization (blue).

3.2.1. Selection of the Molecules

The absorption properties in solution or solid state of the transparent and colored isomers
(e.g., molar extinction coefficient as function of the wavelength) of a series of dyes are previously
uploaded in a database. In this window, the UV-vis absorption spectra of one or two dyes picked up
from this database are shown, allowing for an easy and rapid comparison (Figure 9 red box).

The key features usually considered are: (i) the wavelengths at which the photochromic
transformation can be triggered; (ii) the correspondent absorbance values and the position and
width of the absorbance band in the visible. Considered together, they give hints about the efficiency
of the transformation and the possible final behavior of the materials.

3.2.2. Parameters Choice

In this window, the illumination conditions, including the wavelength and the illumination
intensity, and the film thickness are set (Figure 9 green box). Setting the first parameters, the
discretization of time and space is defined. In this section, we also set the wavelength range where the
results will be computed.
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On the material regard, the concentration of the selected molecule and its photochromic properties
are selected, specifically the quantum yield of conversion at the illumination wavelength for the direct
(φOC) and inverse (φCO) transformation, and the density of the material (usually considered equal to
the density of the chosen polymer matrix). In the case of two dyes, the concentration of molecule 1 and
molecule 2 is set.

3.2.3. Visualization of the Results

Once we had selected the molecules and the simulation parameters, the computation could start.
The program is divided into two steps, enabling us to simulate a double illumination process, with one
process for each side of the film. At each stage, the concentration profile of the transparent isomer
is plotted, as function of time and space, and the limit of the UV penetration is computed. By the
analysis of these plots, it is possible to understand if either the molecular concentrations or the film
thickness is too large to have a complete conversion inside the sample volume. In Figure 10, we
show examples where the total conversion inside the film volume is reached or not, depending on the
material thickness. The plots show the transparent isomer concentration in dependence of time and
thickness, after one (a1, b1) and two (a2, b2) sides were illuminated.
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Figure 10. Concentration profile of the transparent isomer after the simulated irradiation of one (a1,b1)
and two sides (a2,b2). The plots show the time evolution of the profile and the penetration inside the
volume. In this example, we show a film of 4 µm, where it is impossible to convert all the material (a2),
but lowering the value to 2.5 µm means the total conversion is reached after the two side illumination
(b2). Photostationary state after 2000 s.

In the case reported in Figure 10a1, we notice that a large amount of the film is not converted
by a single side illumination. Also with a double side illumination (Figure 10a2), the inner part of
the film remains unconverted. In the case b, a single side exposure is not enough to achieve the total
conversion, but a double illumination (Figure 10b2) induces a complete coloration.

In Figure 11, we report an example of how the absorbance properties of two different dyes can be
combined to reach higher contrast performances.
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In this case, two molecules with a visible absorbance around 550 nm and 650 nm are combined to cover
a wide wavelength range. In panel b), we report the absorbance and relative contrast of the film, after one
and two sides exposure considering a thickness of 4 µm and a concentration of about 16 wt % for both dyes.

We notice that the absorbance almost double going from one side to the both sides illumination,
meaning that the penetration depth is roughly half of the film thickness. As for the contrast (plots on
the right), the increase is very large by the double exposition, reaching values larger than 1000 in a
range wider than 100 nm. We also notice that in the 400 nm region, the contrast is quite good (>100)
thanks to the presence of the secondary peak in mol1 (Figure 11a) and only a small spectral region
around 450 nm has a low absorbance.

3.3. Remarks on the Absorption Properties

According to the discussions we reported, it is clear how useful such tool can be in designing
high performance photochromic films and how many pieces of information can be retrieved from the
simulations. Given a desired contrast in a certain wavelength range for a specific application, this
tool supports the choice of the right set of molecules to be used. Once they have been selected, the
illumination wavelength has to be carefully chosen: εUV

c should be low, to have a deep penetration
through the film, thus achieving a full conversion; moreover, the εUV

O /εUV
C and εvis

C /εUV
C ratios should

be high in order to have a fast kinetic and high contrast.
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Figure 11. (a) Molar extinction coefficient of two diarylethenes (molecule 12 and 24) used for the
simulation; (b) Screenshot of the results computed: the figure shows absorbance and contrast of the
film after one and two exposures (performed on two sides) in the spectral range of interest.
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In the case of a mix of two dyes, the choice must be particularly careful. Both molecules have to
be efficiently converted at the same time with the same illumination wavelength, meaning that they
should have similar absorbing profiles in the UV region. Otherwise, one dye could behave as a barrier
for the conversion of the other one, resulting in lower and unexpected absorption performances.

Finally, information on the concentration of the dye and the film thickness are provided to fulfill
the requirement of contrast. With the proper selection of the diarylethene and films of few microns of a
polymer matrix containing 20–25% of chromophore or backbone photochromic polymers, it is possible
to reach a suitable contrast for the application herein reported.

3.4. Refractive Index Modulation

In the case of volume phase devices, we showed that a modulation of the refractive index is
necessary in order to induce a controlled phase delay, which is equal to the product refractive index
n times the film thickness d. Considering a target product d·∆n of about 0.4–1 µm, values of ∆n =

0.04–0.1 are required for film thicknesses in the range of 1–10 µm.
In order to understand this requirement from a materials point of view, we start from the

Lorentz-Lorenz equation. This equation [53] links the macroscopic refractive index with the material
density and the molecular polarizability α (since we are in the optical spectral region only electronic
polarizability is considered):

N =
n2
− 1

n2 + 2
=

4π
3

NA
V

α (7)

where n is the material refractive index, NA the Avogadro number, V is the molar volume. This is valid
for a monocomponent material, but photochromic films are multicomponent and the refractive index
contains a contribution of both the matrix and the photochromic dye. Considering no interaction between
these two components, we can write an effective refractive index as the sum of their contributions:

n2
− 1

n2 + 2
= Cmatrix

n2
matrix − 1

n2
matrix + 2

+ Cdye

n2
dye − 1

n2
dye + 2

= CmatrixNmatrix + CdyeNdye (8)

Cmatrix + Cdye = 1 (9)

where ndye, nmatrix are the refractive indices of a material composed by the pure dye and the polymer
matrix respectively and Cmatrix, Cdye are the relative volume concentrations. Accordingly, the refractive
index of the colored (or uncolored) material is then:

nc(o) =

√√√√√√√√√2Cdye

(
Nc(o)

dye −Nmatrix

)
+ 2Nmatrix + 1

1−Nmatrix −Cdye

(
Nc(o)

dye −Nmatrix

) (10)

We noticed that the refractive index of the film depends on the contrast between the value of the
matrix and of the photochromic dye. Usually, the matrix shows a refractive index lower than the value
of the photochromic dye. Even more important for determining the refractive index of the doped film
is the concentration of the photochromic species. It must be as large as possible, but avoiding any side
effects such as segregation or aggregation. Actually, we are interested in the change in the refractive
index going from one photochromic form to the other. Looking again to the Equation (7), we notice
that a large change in the molecular polarizability α between the two forms is necessary, in addition to
the previous requirements, to enhance the modulation in the refractive index. The polarizability is
proportional to the number of electrons in the molecule, but it is known that π conjugated systems
exhibit higher polarizability, and the enhancement is proportional to the degree of delocalization [54].
Considering diarylethenes, it is apparent that the closed (colored) form is more conjugated than the
open (uncolored) form; therefore, it shows a larger refractive index. The presence of electroactive
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substituents can play a role in increasing the modulation of the refractive index [55]. Moreover, the
molecular polarizability is wavelength dependent as the refractive index. In the optical regime, it
increases with the frequency in a marked way approaching the resonance frequencies due to the
electronic transitions [56]. Since the colored form shows visible absorption bands, this pre-resonance
effect will be more important than for the uncolored form (only UV absorptions). Moreover, a steeper
increase in the molecular polarizability takes place in the NIR. Consequently, the modulation of the
refractive index will benefit from this effect and it increases with the frequency too [57]. This feature has
been recently highlighted [49] in a series of diarylethene based polyurethanes, where a clear positive
trend existed between the ∆n and the absorption wavelength of the colored form.

To sum up, in order to maximize the modulation, it will be necessary to:

• maximize the concentration of the photochromic dye in the film;
• design a photochromic molecule with specific chemical groups that enhance the change in the

molecular polarizability (large change in the π conjugation path and efficiency);
• increase the wavelength gap between the absorption band in the UV of the uncolored form and

the visible band of the colored form.

According to the experimental results reported in the literature, the concentration parameter is
the most important one in affecting the ∆n and for these reasons, backbone photochromic polymers
have been developed. Values of the order of 0.08 at 800 nm were measured [58].

4. Writing Strategies and Examples of CGHs

In a typical route for the CGH production, the photochromic film is converted to the colored form
by irradiation with UV light. Then, the layer is patterned upon exposure to visible light, which induces a
selective bleaching of the film. We considered two different strategies here for the substrate patterning: (i) a
mask projection system, based onto a spatial light modulator; (ii) a scanning system, by direct laser writing
(maskless lithography). The two techniques, presented hereafter, are complementary. In both cases, the
writing process may not introduce imperfections, called pattern distortions, especially when the holograms
are used in interferometric applications. They are basically due to a misalignment of the writing beam with
respect to its ideal position and can be quantified as the introduced wavefront error ∆Wζ [59]:

∆Wζ = −
mλζ

G
(11)

where m is the diffraction order, ζ is the grating position error in the direction perpendicular to the
pattern lines and G is the local line spacing. To minimize these errors, it is convenient to work at low
diffraction orders and with coarse line patterns. Along with this, the quality of the reconstructed image
depends on the planarity of the substrate, since any imperfection produces phase contaminations.
This is valid for the substrate itself, as well as for the photochromic film. It is crucial, accordingly,
to optimize the depositing process not to introduce high spatial frequency errors in the transmitted
wavefront, for both the film thickness and planarity.

4.1. Mask Projection

This approach consists in the projection of a mask specifically designed with the target pattern onto the
photochromic substrate. Such approach derives directly from the well-established mask lithography [60].
An interesting possibility consists of the image projection through an Offner relay, which produces a one
to one projection of the mask plane, where a Digital Micromirror Device (DMD) is placed, onto the sample
plane, where the photochromic film is [61]. A DMD is a rectangular pattern of micromirrors that can be
independently addressed between two specific angular positions. The device used in our tests by Texas
Instruments (Dallas, TX, USA), is composed by 2048 × 1080 micro-mirrors with a pitch of 13.64 µm. The
optical quality of the system is limited by the micromirror size and not by the optical aberrations. During
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the writing process, the DMD is homogeneously illuminated by a filtered light source. A CGH imaging
system is also present, to follow the writing process in real time (Figure 12).Materials 2019, 12, x FOR PEER REVIEW 16 of 24 
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Figure 12. DMD based set-up for writing the photochromic CGHs. The three main subsystems, namely
illuminating system, DMD mask projection and CGH imaging are highlighted. In the inset, a picture of
the DMD used is reported [61].

Recording a binary CGH requires the projection of a single DMD mask for enough time to produce
the full conversion of the film from the opaque to the transparent form. The advantage of the DMD
projection system is the possibility to easily write grayscale CGHs [62]. Since the DMD is a programmable
device, any mask can be projected for a specific amount of time. In fact, the photochromic material
becomes progressively transparent when illuminated by visible light, and a given level of transparency,
i.e., a given level of gray, is obtained with a well-defined exposure time. Caution is needed since the
material response is not linear with the exposure time, but the transmission curve as function of the expose
time can be measured before the CGH production and used for the linearization. Figure 13 illustrates an
example of a grayscale CGH, with four different masks used for its realization.
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The versatility of the DMD is the great advantage of this technique: although a binary amplitude
CGH has a higher efficiency, a grayscale hologram enables for much better image reconstruction quality,
which leads to a better control on the wavefront generated by the CGH. On the other hand, the image
resolution is limited by the micromirror size and number, i.e., by the ratio between the dimensions of
the single micromirror and the whole chip. A possible step forward could be the stitching of different
DMD projections to create a larger CGH or to demagnify the DMD, thus increasing the resolution (the
image of the single mirror is smaller) and then stitching the different DMD images.

4.2. Direct Laser Writing

With direct laser writing, the pattern is transferred to the photosensitive layer using a light
beam focalized in a theoretically diffraction limited spot onto the substrate. The laser power can
be continuously adjusted while the substrate is scanned in the plane and exposed where necessary.
Usually, an autofocus system keeps the substrate in the correct axial position to guarantee the best
spot resolution. In the past, we investigated the possibility to use commercial direct laser machines
to transfer patterns onto photochromic substrates [63], but we faced problems due to the writing
speed, light power, and wavelength. In fact, commercial systems are characterized by high speed rates
(hundreds of mm/s), very high light powers (tens of mW/µm2), and usually work in the spectral region
suitable for photoresists, namely in the UV, which is not really suitable for diarylethenes. We observed
a low definition of the pattern, and the formation of surface reliefs on the coating given by the local
heating of the substrate. In contrast, the resolution was very high, being limited by the spot size (down
to 1 µm). We therefore developed custom direct laser machines for the production of photochromic
CGHs, where we optimized the writing speed, the light power and the writing wavelength.

The developed system is shown in Figure 14 [64]. It is composed by a moving table (raster X-Y
scan) and an optical bench (Offner relay layout), mounted vertically on a fixed bridge. The light source
is a multichannel laser system equipped with four heads at 406 nm, 520 nm, 638 nm and 685 nm. The
different wavelengths were selected as function of the sensitivity curve of photochromic materials and
can be used independently. The light is coupled to an optical fiber and guided to the writing head. A
trigger mechanism driven by the linear stage switches the lasers on and off at MHz speed. A viewing
camera is also present to align the substrate and follow the writing process. The spot size is 3–4 µm
depending on the wavelength, the writing speed 1–3 mm/s, and the laser power at the focal plane
1–3 mW.
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4.3. Examples of Diarylethene-based CGHs

Here we show some examples of holograms obtained with photochromic films based on
diaryletehenes. As previously discussed, the calculated hologram phase function can be approximated
as an amplitude or phase pattern, both binary and grayscale, and transferred to the photochromic layer
with the most appropriate technique. While for binary CGHs direct laser writing is preferred, grayscale
CGHs can be more easily obtained with the mask projection technique. In the latter case, recording
a binary CGH requires the projection of a single mask to the photochromic plate, while grayscale
holograms can be obtained by sequentially displaying a series of binary masks to locally create the
desired level of transparency [61]. Considering diarylethenes, amplitude holograms performs well in
the visible region, approximately between 500 and 800 nm, while phase holograms performed well in
the NIR region, approximately between 800 and 1500 nm.

A nice example is the CGH of a Fresnel lens reported in Figure 15 [49]. This CGH behaves as
a spherical lens and the focal length is dependent on the spacing of the lines. As clearly shown in
Figure 15b, it is possible to identify a focused spot on the camera both illuminating the CGH with
a red laser (650 nm), where the hologram behaves as an amplitude hologram, and illuminating the
CGH with a NIR laser (980 nm), where the hologram is a pure phase hologram. The corresponding
transmission spectra and the refractive index dispersion curves are reported in Figure 15a, where it is
marked with arrows showing the change of property between the two forms in the film.
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Figure 15. (a) Measured modulation of transmittance and refractive index of a high content
photochromic film; transparent form (red line) and opaque form (blue line). The arrows highlight the
change in the transparency and refractive index; (b) Left: Microscope images (phase and amplitude) of
a Fresnel CGH recorded on a diarylethene based film. Right: CCD images of the laser spot in the focal
plane [49].

Another example of photochromic CGHs is reported in Figure 16. It is the image of a dandelion
(430 × 430 pixels), that has been transferred by direct laser writing. The hologram is a binary amplitude
type, square with a 17 mm side, and a pixel size of 3 µm.
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Figure 16. Image of a dandelion and the calculated binary Fresnel CGH (4 × 4 mm2 size at a focus of
0.5 m) [64].

The calculated CGH was transferred on the photochromic film by means of the direct laser writing
machine and the result is reported in Figure 17 details of the pattern.
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Figure 17. (a) Photograph of the CGH and a magnification of the written pattern; (b) The reconstructed
image at 633 nm [64].

The image is reconstructed at 0.5 m, with a size of 4× 4 mm2 (Figure 17b). We notice the complexity
of the image with small details, which requires a large hologram due to the high information density
on its edge. Hologram resolution and size prevented the use of the mask projection technique to obtain
the same level of details.

The second example is the image of a letter “Z” (200 × 200 pixels), obtained by mask projection.
Accordingly, the hologram is grayscale amplitude. The size of the CGH is limited to 10 × 10 mm2,
which leads to a CGH resolution of 720 × 720 pixels according to the DMD size. In order to be sure that
all the fringes in the CGHs are resolved, the image physical size and the focus are fixed at 2 × 2 mm2

and 2 m, respectively. Once we obtained the continuous complex pattern, its magnitude was discretized
to twenty gray levels with thresholds ranging from 0 to 1 in steps of 0.05.

Figure 18 shows the calculated and the actual grayscale CGH of the letter Z, along with the
theoretical and experimental reconstructed image.
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as the original “Z” image. Also in this case, we can notice the fidelity of the reconstruction, confirming
the effectiveness of the mask projection approach to produce amplitude grayscale holograms.

5. Conclusions

Photochromic materials give interesting opportunities as substrates for the manufacturing of
rewritable Computer-Generated Holograms (CGHs). Indeed, phase and amplitude holograms are
demonstrated and binary and grayscale pattern can be easily transferred. In order to make high
quality holograms, the optimization of both the photochromic material and the writing procedure
is necessary. As for the material optimization, the combination of a kinetic model and experimental
UV-vis data makes possible the development of a computational tool to predict the performances
in terms of transparency contrast of photochromic films. In this way, a balanced choice of the film
thickness and photochromic content leads to high efficiency amplitude holograms. In addition, the
versatility in the synthesis of photochromic diarylethenes provides many possibilities in tuning the
spectral position and intensity of the band along the whole visible region. As for the phase hologram
and the modulation of the refractive index, important guidelines are provided in order to maximize
the efficiency. We also highlighted that another crucial aspect is the writing strategy; here both a
reconfigurable mask approach based on a DMD chip and a direct laser writing machine are reported.
The former is more suitable for the realization of grayscale patterns, but suffers from a low spatial
resolution; the latter is more suitable for binary patterns and provides a much larger spatial resolution
in the case of large area CGHs.
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