
Supporting Information: Text 1

In this document we review some results from the theory of stochastic processes, useful 
for supporting our discussion on similarities and differences between Foxʼs and our 
method. We start by verifying the accuracy of the standard numerical method, employed 
for generating realisations of an Ornstein-Uhlenbeck process. We then compare Foxʼs 
equation(s) to an Ornstein-Uhlenbeck process to help us derive its steady-state statistical 
properties and we point out its inaccuracies, when employed for approximating the exact 
simulation of a Markov kinetic scheme.
The code for generating each of the panels of Figures 1-4 is available on ModelDB (see 
the main text), as script in MATLAB (Mathworks, Natick, USA).

Consistent numerical simulation of stochastic differential equations

We consider the continuous-time version of a stochastic differential equation, which 
defines the Ornstein-Uhlenbeck process x(t). We may therefore write:

τxẋ = −x + σx

√
2τxξ(t) " " " " " " "           (1)

In Eq. 1, ξ(t) is a Gauss-distributed continuous-time process, characterized by zero mean 
and covariance given by a Diracʼs delta function δ(Δ). By stochastic process theory and 
probability  calculus (Cox and Miller, 1965; Papoulis and Pillail, 2002), we know that x(t) is 
a non-stationary stochastic process with mean and covariance given by the following 
expressions, where x0 is the initial condition of x(t):

< x(t) > = x0 e−(t−t0)/τx"" " " " " "           ""           (2)

< (x(t + ∆)− x̄(t + ∆)) (x(t)− x̄(t)) > =

= σx
2

�
1 − e−2 (t−t0)/τx

�
e−|∆|/τx

" " " " " "           (3)

By means of a standard iterative numerical simulation procedure, already reviewed in the 
main text, a realisation of the discrete-time process yk = y(tk) = y(k dt), k=1,2,3,... can be 
generated, to equivalently approximate x(t):

y(t + dt) ≈ (1− dt/τx) y(t) + σx

�
2dt/τx ξ̃ " " " " " "           (4)

The noise term in Eq. 4 is generated as a pseudo-random number with normal distribution 
by the Box-Muller algorithm (Press et al., 2007) (for instance, by using the MATLAB randn 
command). The accuracy of the equivalence x ~ y is confirmed by the results shown in 
Figure 1.
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Figure 1: The statistical properties of the continuous-time Ornstein-Uhlenbeck stochastic process x(t) and of 
its discrete-time approximation yk are in agreement: the covariance function is captured both in its peak 
amplitude (the variance of the process) and in its shape (a mono-exponential decay). Markers represent (a) 
the standard-deviation of yk, estimated by the MATLAB std command, and (b) the autocorrelation time-
length of yk, estimated by the xcov and fit commands, obtained from one million values of yk. Each 
parameter combination was repeated 5 times and the standard-deviation of each estimate is represented as 
an error bar, which is smaller than the marker size. The continuous line is the unitary slope line and is plotted 
to indicate ideal agreement. Parameters employed for the simulations: (a) τx = 1 ms, (b) σx = 50; dt was set 
to τx/80.

The definition of the stochastic process as introduced by Fox and collaborators (Fox and 
Lu, 1994; Fox, 1997) consists in adding a noise term to the right-hand side of each kinetic 
equation, associated for example to the variables m, h, and n of the Hodgkin-Huxley 
model. In continuous-time, and abusing the notation, for a generic variable u the following 
equation holds:

du

dt
= αu(V ) (1− u)− βu(V ) u + η(t)

" " " " "                                (5)

For our next discussion, as well as for Figs. 2-3, the coefficients αu and βu are considered 
constant, under the explicit hypothesis of clamping the value of the membrane potential V. 
The term η(t) is a realization of a Gauss-distributed continuous-time process, 
characterized by zero mean and delta-correlated covariance as in the Ornstein-Uhlenbeck 
process:

< η(t)η(t + ∆) >=
2
N

αu βu

αu + βu
δ(∆)

" " " " "                               (6)

By setting τx = 1 / (αu + βu), u∞ = αu / (αu + βu), σx 2 = N -1 αu βu / (αu + βu)2, and x = u - u∞,  
Eqs. 5 and 1 coincide. Then, by analogy and direct inspection, we adapt the 
considerations about x(t) to u(t), stating that u(t) is a Gauss-distributed non-stationary 
process, with mean and covariance given by the following expressions, where u0 is the 
initial condition of u(t):

< u(t) > = (u0 − u∞) e−(t−t0)/τx + u∞" " " " "                     (7)
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< (u(t + ∆)− ū(t + ∆)) (u(t)− ū(t)) > =

= σx
2

�
1 − e−2 (t−t0)/τx

�
e−|∆|/τx

" " " " "                     (8)

Along the same line of reasoning, we anticipate the validity of the numerical method to 
generate a discrete-time process yk = y(tk) = y(k dt), k=1,2,3,..., equivalent to u(t):

y(t + dt) ≈ [1 − dt (αu + βu)] y(t) + dt αu +
�

2dtN−1 αuβu/(αu + βu) ξ̄         (9)

More explicitly, yk and u(t) share the same steady-state mean (αu / (αu + βu)), the same 
variance (N -1αu βu/(αu +  βu)2 ), and an exponentially  decaying covariance function with 
time-constant 1 / (αu +  βu). We verified these considerations numerically, as summarized 
by the results in Figure 2.   

Figure 2: Comparison between the predicted (continuous black lines) and the actual statistical properties 
(markers) of the discrete-time process yk that approximates u(t). Markers represent (a) the actual mean, 
estimated by the MATLAB  mean command, (b) the standard-deviation, estimated by the MATLAB  std 
command, and (c) the autocorrelation time-length, estimated by the xcov and fit commands, obtained 
from ten million values of yk. Each parameter combination was repeated 5 times and the standard deviation 
of each estimate is represented as an error bar, mostly smaller than the marker size. Panels (d-e) confirm 
that the distribution of yk, estimated by the MATLAB hist command, is gaussian and that its (normalised) 
covariance, estimated by the MATLAB  command xcov, is a decaying single-exponential function, with the 
expected time constant. Parameters employed for the simulations: dt = 0.001 ms and N = 100, while αu and 
βu were chosen as those of the Hodgkin-Huxley potassium current.
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Preliminaries on the powers of a Gauss-distributed stochastic process

When x is a generic continuous-valued Gauss-distributed random variable, with mean μ 
and variance σ2, its probability density is by definition

fx(X) =
1√

2πσ2
e−

(X−µ)2

2σ2

"                               " " " "                   (10)

The powers of x (y = xi with i>0), are no longer Gauss-distributed. For instance, when         
i = 2, x2 is distributed according to a non-central chi-square distribution, with a single 
degree of freedom (Papoulis and Pillail, 2002). 
In the general case (i > 0), the probability density function reads (Klugman et al., 2008)

fy(Y ) = Y
1−i

i
1

i
√

2πσ2
e−

(Y 1/i−µ)2

2σ2

"                     "" " " "         (11)

However, as x is Gauss-distributed, calculating mean and variance of y for integer n 
involves only algebraic derivations, requiring the raw moments of x, <xi> where i = 1,2,3,.... 
These are available, as polynomials in μ and σ2 (Papoulis and Pillail, 2002). We provide 
some of these derivations (for i = 2, 3, and 4), indicating by μi, σi2 mean and variance of xi:

µ2 = µ2 + σ2" " σ2
2 = 2σ2 (σ2 + 2µ2)" " " "         "         (12)

"
µ3 = µ (µ2 + 3σ2)** σ2

3 = 3σ2 (3µ4 + 12µ2σ2 + 5σ4)* "         "                   (13)

µ4 = µ4 + 6µ2σ2 + 3σ4* σ2
4 = σ2 (16µ6 + 168µ4σ2 + 384µ2σ4 + 97σ6)   (14)

Finally, if the covariance of the original process x(t) is a decaying single-exponential 
function with time constant τx (as in an Ornstein-Uhlenbeck process) the covariance of its 
integer powers x i(t) takes the form of a linear combination of decaying exponentials, each 
weighted by polynomials in μ and σ2. We donʼt include here the derivation but we note that 
for i = 2, there is only one exponential term in the covariance, weighted by σ22, with time 
constant τx / 2. For i = 3, there are three exponentials, with time constants τx / 3, τx / 2, and 
τx. For i = 4, there are two exponentials, with time constants τx / 4, and τx / 2.

Steady-state statistics of the term n4

We can now derive analytically the statistical properties of the integer powers of Foxʼs 
stochastic process u(t). In this section, we consider u = n, representing the kinetic variable 
associated to Hodgkin-Huxley potassium currents. Figure 3 shows the results of numerical 
simulations for n4 = u4, under the very same conditions employed in Figure 2. These results 
confirm that mean and variance of u4 are correctly accounted for by Eqs. 14, which have 
been used to draw the black continuous curves of Figure 3.
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Figure 3: Comparison between the predicted (continuous black lines) and the actual (markers) statistical 
properties of the discrete-time process (yk)4 that approximates n  4(t)= u  4(t) . Markers represent (a) the actual 
mean, estimated by the MATLAB  mean command, and (b) the standard-deviation, estimated by the MATLAB 
std command, obtained from ten million values of yk. Each parameter combination was repeated 5 times 
and the standard-deviation of each estimate is represented as an error bar, mostly smaller than the marker 
size. Panel (d) confirms the expected deviation from a Gauss distribution for the values of (yk)4, estimated by 
the MATLAB  hist command. Parameters employed for the simulations: dt = 0.001 ms and N = 100, 
whereas αu and βu were chosen as those of the Hodgkin-Huxley potassium current. 

The knowledge of these analytical expressions, as well as their numerical verification, is 
particularly important as the fourth power of n(t) = u(t) is proposed to macroscopically 
approximate the statistics of the open fraction of a population of N delayed-rectifier 
channels. However, in the main text of the paper we have shown how to compute these 
statistics, starting by the theory  of stochastic channel opening and employing those results 
for our method (see Table 2 in the main text). We can therefore check whether or not these 
statistics are correctly  captured by those of n4. The answer is negative, as shown in Figure 
4,a-b. Indeed, the mean of the fraction of open potassium channels (microscopic exact 
description) is given at the steady-state by (see Eqs. 13, 18)

α4

(α + β)4             " " " " " " " " " "         (15)
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The mean of n4 is not identical to the above expression, but converges to it only for large N 
(~100 and more, see Fig. 4a), differently from our method, which is in agreement for any 
N. For finite N, Foxʼs process n4 slightly over-estimates the true mean as its expression 
reads

α4

(α + β)4
+

3 α2 β (2 N α + β)
N2 (α + β)4               " " " " " "         (16)

The variance of the fraction of open potassium channels (microscopic exact description) is 
given at the steady state by the sum of 4 variance terms (see Table 2)

α β

N (α + β)8
α3 (4 α3 + 6 α2 β + 4 α β2 + β3)

               " " "         (17)

The variance of n4 over-estimates the correct values (see Fig. 4b), as it reads (from Eq. 
14)

αβ

N(α + β)8
α3

�
16α3 +

168
N

α2β +
384
N2

αβ2 +
97
N3

β3

�

" " "                              (18)

In addition, the covariance of n4 contains only two exponential terms, with time constants 
τn / 4 and τn / 2, while the true covariance of the process should contain four terms (see 
Eqs. 9-10,15), with time constants τn / 4, τn / 3, τn / 2, and τn (see Table 2).

Steady-state statistics of m3h

We can also derive analytically  the statistical properties of two independent Foxʼs 
stochastic processes m(t) and h(t), generated by employing αm, βm and αh, βh in Eq. 5, 
respectively. In particular, we want to calculate mean and variance of their product, after 
cubic power of m(t). Because of the statistical independence, the mean of the product      
m3(t)h(t) is the product of the means μ3,m μh, while variance is given by the expression 
σ3,m2 σh2 + σ3,m2 μ1,h2 + σh2 μ3,m2 (refer to Eqs. 12-13; Papoulis and Pillail, 2002).  
As for potassium currents, the mean of m3(t)h(t) converges to the true value 

 
α3

m

(αm + βm)3
αh

(αh + βh)             " " " " " " " "         (19)

for large N (~1000 and more, see Fig. 4c). The variance of m3(t)h(t) however under-
estimates the correct values (see Fig. 4c).
In addition, because of the statistical independence, the covariance of the product is the 
product of the covariances (see Eq. 15; Conti & Wanke, 1975) so that the covariance of  
m3(t)h(t)  can be calculated. It contains the correct number (seven) of exponential terms, 
however each weighted by the wrong variance coefficient (see Eqs. 9-10,15 and Table 2). 
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Figure 4: Comparison between the predicted (continuous lines) and the actual statistical properties 
(markers) of (a-b) n 4(t) and (c-d) m3(t)h(t). Markers represent the actual numerical simulations of the Foxʼs 
stochastic process(es), estimating (a) the actual mean, by the MATLAB  mean command, and (b) the actual 
standard deviation, by the MATLAB std command, obtained from one million values. The red dashed line is 
drawn according to the formulae derived in this supplemental material. The black continuous lines represent 
the mean and standard deviation calculated by the theory and coincident with those employed by our 
method. Each parameter combination was repeated 5 times and the standard deviation of each estimate is 
represented as an error bar, mostly smaller than the marker size. Parameters employed for the simulations: 
dt = 0.001 ms and NK = 100, NNa = 1200. 
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Additional Supplemental Figures

Figure 5: As Figure 3A-C and 3G-I in the Main Text, but for a different value of the holding membrane 
potential.

Figure 6: As Figure 3A-C and 3G-I in the Main Text, but for a different value of the holding membrane 
potential.
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Figure 7: As Figure 3A-C and 3G-I in the Main Text, but for a different value of the holding membrane 
potential.

Figure 8: As Figure 3D-F and 3J-L in the Main Text, but for a different value of the holding membrane 
potential.
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Figure 9: As Figure 3D-F and 3J-L in the Main Text, but for a different value of the holding membrane 
potential.

Figure 10: As Figure 3D-F and 3J-L in the Main Text, but for a different value of the holding membrane 
potential.
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Figure 11: As Figure 3A, under voltage-clamp conditions with the holding membrane potential ramping from 
-65mV to -30mV over a time interval T, indicated in each panel. The ramp  is started 100ms after (i.e., 
approximately at the center of each panel) and its slope varies from 0.35mV/ms to 35mV/ms, depending on 
the value of T (i.e., ranging from 1ms to 100ms). The same protocol was repeated for 3000 trials, and both 
the instantaneous mean and variance of the fraction of open potassium delayed-rectifier channels was 
computed across time for the microscopic exact Markov model (black traces) and for our effective diffusion 
approximation (red traces). Both mean and variance are non-stationary under these stimulation protocol 
conditions, and the time-course of the mean is undistinguishable in the two models (see Eqs. 6, 14). The 
instantaneous variance resulting from the effective approximation however slightly anticipate the profile 
obtained from the exact model.
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Figure 12: As Figure 3D, under voltage-clamp  conditions with the holding membrane potential ramping from 
-65mV to -30mV over a time interval T, indicated in each panel. The ramp  is started 100ms after (i.e., 
approximately at the center of each panel) and its slope varies from 0.35mV/ms to 35mV/ms, depending on 
the value of T (i.e., ranging from 1ms to 100ms). The same protocol was repeated for 3000 trials, and both 
the instantaneous mean and variance of the fraction of open sodium fast-inactivating channels was 
computed across time for the microscopic exact Markov model (black traces) and for our effective diffusion 
approximation (red traces). Both mean and variance are non-stationary under these stimulation protocol 
conditions, and the time-course of the mean is undistinguishable in the two models (see Eqs. 6, 14). The 
instantaneous variance resulting from the effective approximation however lags behind the very fast changes 
in the profile obtained from the exact model.
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