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Codimension-Two Homoclinic Bifurcations Underlying Spike Adding in the
Hindmarsh–Rose Burster∗
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Abstract. The Hindmarsh–Rose model of neural action potential is revisited from the point of view of global
bifurcation analysis, with the singular perturbation parameter held fixed. Of particular concern is
a parameter regime where lobe-shaped regions of irregular bursting undergo a transition to stripe-
shaped regions of periodic bursting. The boundary of each stripe represents a fold bifurcation that
causes a smooth spike adding transition where the number of spikes in each burst is increased by one.
It is shown via numerical path-following that the lobe-to-stripe transition is organized by a sequence
of codimension-one and -two homoclinic bifurcations. Specifically, each of a sequence of homoclinic
bifurcation curves in the parameter plane is found to undergo a sharp turn, due to interaction
between a two-dimensional unstable manifold and the one-dimensional slow manifold that persists
from the singular limit. Local analysis using approximate Poincaré maps shows that each turning
point induces an inclination-flip bifurcation that gives birth to the fold curve that organizes the
spike adding transition. Implications of this mechanism for other excitable systems are discussed.
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1. Introduction. The Hindmarsh–Rose (HR) model [19] is one of the most widely stud-
ied parameterized three-dimensional systems of ordinary differential equations (ODEs) that
arises as a reduction of the conductance-based Hodgkin–Huxley model for neural spiking [20].
Its success comes from both its simplicity—there are just three ODEs with polynomial non-
linearity and only a few key parameters—and its ability to qualitatively capture the three
main dynamical behaviors displayed by real neurons, namely, quiescence, tonic spiking, and
bursting. Moreover, transitions between these behaviors can be easily described in terms of
the biophysically motivated parameters. Even reduced-order models like the HR equations
can have direct physiological meaning and so can be used to match or indeed predict detailed
in vivo recordings; for instance, in [10] the authors use the HR model (after appropriately
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rescaling the state variable x, the parameter I, and time) to fit the activity of both pyramidal
cells and neocortical interneurons. Nevertheless, a key argument for their use is that they
can point to generic understanding of which kinds of interventions or perturbations are likely
to lead to certain kinds of transition. These understandings can then be used to help guide
parameter searches for more in-depth computational models which can be investigated only
by direct numerical simulation (DNS). In turn, these simulations can help guide experimental
or clinical control strategies and protocols.

Many papers have investigated the bifurcations that occur in the HR model upon variation
of one [4, 23, 41] or more [16, 39] of its parameters. These studies have typically focused on
particular transitions—from periodic to irregular (chaotic) spiking-bursting dynamics, from
tonic spiking to bursting, and on the two possible kinds of bursting (square-wave and pseudo-
plateau). For perhaps the most comprehensive bifurcation analysis to date the reader is
referred to the work of Shilnikov and Kolomiets [35].

In this paper we shall be concerned with understanding the complete bifurcation scenario
that underlies the smooth transition from tonic spiking to bursting, paying particular attention
to an observed sequence of spike adding transitions. This form of period adding behavior
would cause a variation of the average number of spikes within a burst, and it is believed to
have important physiological implications [31]. The key point of the paper is to show that
codimension-one homoclinic bifurcations and their degeneracies are crucial to understanding
how such transitions are organized in parameter space. The methodology we shall adopt will
be a combination of brute-force methods, slow-fast arguments, numerical continuation (using
AUTO-07P [14]), and geometric analysis using approximate Poincaré maps.

A key feature of the HR model is that it can be decomposed into a reduced two-dimensional
“fast” ODE system with an additional slow variable. Such slow-fast arguments (see, e.g., [35]
and references therein) can provide much generic information about the original model and
tend to work best close to the singular limit of infinite time-scale separation. However, most
physical systems operate away from the singular limit, and the mutual interactions between
slow and fast dynamics are typically very subtle and give rise to further bifurcations in the
complete system that occur in the singular limit.

Numerical continuation analysis [25] is typically quite robust, and, through its use of
boundary-value problems to solve for recurrent trajectories, does not suffer from the same
problems as DNS in the singular limit. Nevertheless, as we shall see, problems can still arise
in the presence of “canard-like” phenomena [12, 17]. In this case, a mix of numerical results
and geometrical analysis can prove pivotal, as is the case in this paper.

1.1. The Hindmarsh–Rose model. The phenomenological neuron model proposed by
Hindmarsh and Rose [18, 19] is given by the following set of ODEs:

(1.1)

⎧⎪⎪⎨
⎪⎪⎩
ẋ = y − x3 + bx2 + I − z,

ẏ = 1− 5x2 − y,

ż = μ (s (x− xrest)− z) .

The model is dimensionless, and the variables have only phenomenological interpretations.
The variables x and y represent the fast charging dynamics (related to voltage and current,
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respectively) associated with a single neuron, whereas z is a slow variable mirroring the action
of slow ionic channels, which means that 0 < μ � 1. Hence, (1.1) is a slow-fast system with
two fast variables and one slow variable. Its fast nullcline Meq := {(x, y, z) ∈ R

3; z =
y − x3 + bx2 + I, y = 1 − 5x2} is the so-called critical manifold of the system. The critical
manifold Meq is a manifold of equilibria for the limiting problem obtained by setting μ = 0
in (1.1) and called the fast subsystem. Furthermore, Meq plays a crucial role in the nontrivial
dynamics of the full system; see section 1.2 below. The roles played by the system parameters
can be described as follows. The parameter I mimics the membrane input current for biological
neurons, whereas b is an excitability parameter that allows one to switch between bursting
and spiking behaviors and to control the spiking frequency. The parameter μ controls the
time scale of the slow variable z, that is, the efficiency of the slow channels in exchanging ions.
In the presence of spiking behavior, it affects the interspike interval, whereas in the case of
bursting it affects the number of spikes per burst. The phenomenological parameter s governs
the degree of adaptation in the neuron. A value of s around unity causes spiking behavior
with no spike-frequency accommodation or subthreshold adaptation, whereas values around
s = 4 (the value we shall use in this paper) allow strong accommodation and subthreshold
overshoot and can even allow oscillations. The parameter xrest sets the resting potential of
the system and is usually set to −1.6 in the dimensionless units in which (1.1) is written.

Applying a slow-fast analysis to (1.1), the fast subsystem is given by the equations

(1.2)

{
ẋ = y − x3 + bx2 + I − z,
ẏ = 1− 5x2 − y,

which contain only two out of the five initial parameters (b and I), but in the limit μ = 0, z
becomes a constant parameter.

In what follows, unless otherwise stated, we shall consider (1.1) at parameter values

(1.3) s = 4, xrest = −1.6, μ = 0.01,

and we allow I and b to be bifurcation parameters.

1.2. Spike adding and slow-fast analysis. Typical spiking neurons occurring across biol-
ogy can undergo a variety of distinct dynamical behaviors, according to the values of biophys-
ical parameters. Among the most important behaviors, one may find [24] quiescence, which
occurs when the input to the neuron is below a certain threshold and the output does not
include any action potential firing events (or spikes); spiking, in which the output is made
up of a regular series of spikes; bursting, where the output consists of groups of two or more
spikes separated by periods of inactivity; and irregular spiking, where the output is made up
of an aperiodic series of spikes.

Previous studies have shown that the HR model is able to reproduce all these dynamical
behaviors; see [35, 39] and references therein. Specifically, one- and two-parameter bifurca-
tion analysis has been used to unfold cascades of smooth transitions between stable bursting
solutions and continuous spiking regimes, both regular (periodic) and irregular (chaotic). A
key feature displayed by the HR model and many other neuronal models is the so-called spike
adding mechanism. That is, by changing one parameter, it is possible to sequentially change
the behavior of the system from spiking to bursting via transitions that add one spike to
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each burst. In the HR model, changing the parameter b allows one to observe this transition
among periodic responses. To some extent, also raising the injected current I leads to this
spike adding, but this also typically increases the frequency of the bursts. Other combinations
of parameters, e.g., μ and I, lead to similar results; see [16, 32, 39] and references therein.

In particular, the earlier paper [39] presented a comprehensive brute-force bifurcation
diagram in the (b, I) parameter plane. The purpose of this paper is to explain a key feature
of that work, namely, the nature of the global bifurcations that bound the region in which
periodic spike adding is observed.

1.3. Outline. The rest of this paper is outlined as follows. Section 2 presents the numerical
bifurcation analysis through numerical continuation. Particular attention is focused on an
infinite family of bifurcation curves of homoclinic orbits that connect an equilibrium on the
unstable part of the critical manifold to itself. Various codimension-two homoclinic bifurcation
points are detected, and local bifurcation curves arising from them are computed. It is found
that the key fold bifurcations underlying spike adding transitions originate from a sharp
turning point along the homoclinic bifurcation curves, caused by the interaction between a one-
dimensional slow manifold and a two-dimensional unstable manifold of an equilibrium point.
Owing to the sharpness of the folding of the unstable manifold, numerical continuation is found
to be inconclusive. Section 3 therefore presents a geometric analysis of such a situation and
shows that there has to be an additional codimension-two homoclinic bifurcation of inclination-
flip type very close to this point of interaction. An unfolding of the inclination flip gives
the required extra curves of fold bifurcations. Finally, section 4 draws conclusions, suggests
avenues for further work, and points to some wider implications of the results.

2. Numerical bifurcation results. In particular, in this paper we will focus our attention
on a specific portion in the (b, I)-plane brute-force bifurcation diagram obtained in [39]. One of
the weaknesses of that method is that the presence of regions admitting coexisting asymptotic
behaviors cannot be directly inferred from the color map, and the details of bifurcations can
be smeared out in the process.

2.1. The regular-to-irregular bursting transition. In terms of bifurcation analysis, the
area with the richest dynamics on the plane (b, I) occurs in the region b ∈ [2.5, 3.2], I ∈
[2, 4.5]. Here we can observe lobe-shaped regions of irregular bursting and stripe-shaped
regions of regular bursting, with each successive stripe corresponding to one extra spike per
period. To try to understand the mechanism by which this transition from regular to irregular
bursting regions occurs, Figure 1 shows a zoom of the parameter region in question with three
different sets of bifurcation curves superimposed. These curves were computed using numerical
continuation in the software AUTO-07P [14] and its extension HomCont for the localization
of codimension-two homoclinic bifurcation points.

In the diagram, we have adopted the following color and labeling codes for the bifurcation
curves:

• folds of cycles (tangent bifurcations) are labeled t and colored blue;
• period doublings (flips) are labeled f and colored red;
• homoclinic bifurcations are labeled h and colored black.

Moreover, a single superscript index indicates the approximate number of spikes per period
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Figure 1. Numerically computed bifurcation curves showing (in panels A, B, and C, respectively) bifurca-
tions associated with one, two, and three bursts per period. See text for details.
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Figure 2. Schematic representation of an inclination flip bifurcation in the case (relevant to (1.1)) of a
saddle equilibrium in a three-dimensional vector field with a two-dimensional unstable manifold. The two panels
show the same homoclinic orbit before (panel A) and after (panel B) the bifurcation; note how the unstable
manifold changes from orientable to nonorientable between panels A and B, respectively. The notation is as
described in section 3 below.

of the limit cycle (or homoclinic orbit) undergoing the bifurcation. So, for example, the label
f (1) indicates a period doubling bifurcation curve involving a 1-spike cycle. Note that each
of the flips typically represents the first in an entire period doubling cascade. Superscripts
(n,m) indicate that the cycle involved in the bifurcation undergoes a transition from n to
m spikes, as is typical of bifurcations involved in the period adding mechanism. In addition,
we use letters to distinguish distinct bifurcations of the same kind; e.g., h(2) and h(2a) will
represent different homoclinic orbits that have two spikes.

In Figure 1 we have also identified several codimension-two homoclinic bifurcation points.
Specifically purple, green, and black dots indicate, respectively, inclination flip, orbit flip, and
Belyakov points. An inclination-flip bifurcation represents a point along a curve of homoclinic
orbits to a real saddle at which the orientability of the global stable or unstable manifold
changes; see Figure 2. For information on the complex codimension-one curves that can
emanate from the codimension-two point, see, for example, [21, 22] and references therein.
In particular, there are three topologically distinct cases. An orbit flip occurs when the
trajectory undergoing the homoclinic orbit flips between the two components of the (weak)
stable or unstable manifold. In the case of a real saddle in three dimensions, the same three
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topological cases apply as for the inclination flip; again see [33, 21] and references therein. A
Belyakov bifurcation [1, 2, 3] occurs when the leading eigenvalues (closest to the imaginary
axis) of the saddle-point involved in the homoclinic orbit are double and undergo a transition
to a complex pair. More precisely, there are three kinds of Belyakov codimension-two points:
transition from saddle to saddle-focus with a saddle index less than 1, saddle-focus with saddle
index equal to 1, and what is called a Shilnikov–Hopf bifurcation.

The theory predicts the presence of several families (of infinite cardinality) of bifurcation
curves originating at these points and accumulating exponentially on the homoclinic curve.
See [6, 26, 38] for more details of the dynamics near codimension-two homoclinic bifurcations.

As we shall see in more detail shortly, these codimension-two points, and more besides,
play a key role in unfolding the regular-to-irregular bursting transitions.

Note that each of the three homoclinic bifurcation curves computed in Figure 1 actually
represents an approximate double cover of the same curve in parameter space, with the seeming
endpoint of the curve in fact representing a sharp U-turn. Therefore, the fine structure of the
bifurcation curves is not apparent without looking at the particular shapes of the trajectories,
which will be elucidated in the following subsections and also through sketches. The structure
of the homoclinic curve h(3) and the associated local bifurcations of cycles depicted in panel
C of Figure 1 is similar to that relevant for all subsequent lobe-to-stripe transitions for k > 3.
Therefore, the case k = 3 will serve as an illustrative example in what follows. The cases for
k = 1 and k = 2 (depicted in panels A and B, respectively) are special and will be dealt with
separately.

Before proceeding with a more in-depth examination of the homoclinic bifurcations, it is
worth showing how the local bifurcations of cycles that bifurcate below (for lower I-values) the
homoclinic bifurcation curves organize the boundaries of the stripe-shaped periodic bursting
regions. Figure 3 shows in detail the bifurcations associated with the spike adding boundary
between the 3-spike and 4-spike regular bursting regions. Note that the transition is hysteretic;
that is, there is a parameter window of bistability in which both 3- and 4-spike regular bursting
can be observed.

Panel A of the figure shows the nature of the transition under variation of b. Upon de-
creasing the parameter from the point labeled S, the stable 3-spike cycle (labeled a) becomes
unstable through a fold t(3), leading to interval of unstable 3-spike cycles (such as the one
labeled b), until another fold t(3,4), after which it remains unstable. The branch then restabi-
lizes at a period doubling bifurcation f (4) to form the 4-spike cycle labeled c. Upon further
decrease of b, this stable 4-spike cycle will remain until a further bifurcation t(4) (not shown
in this sketch), and the whole process repeats for the 4-to-5-spike cycle transition. Thus from
the point of view of a single limit cycle, the whole spike adding process from one to many can
be thought of as a single smooth process.

Panel B of Figure 3 shows a zoom from Figure 1C of the bifurcation curves that are involved
in the spike adding mechanism. Note, in particular, that two of the crucial codimension-one
bifurcations involved, t(3) and f (4), originate in the parameter plane from two distinct orbit
flips that lie on the apparent h(3) homoclinic bifurcation curve. The other local bifurcation
curves involved, t(3,4) and f (3,4), appear to originate from the endpoint of the homoclinic curve.
As we shall show in section 3, these bifurcation curves are actually caused by an inclination
flip that occurs at this apparent endpoint.
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Figure 3. Sketch of the period adding mechanism and corresponding bifurcation curves. In panel A the
colored traces indicate the maximum z coordinate of the solution; color encodes stability: Green is stable, and
red is unstable. The trajectories a, b, and c are projections on the (z, x)-plane of the full three-dimensional
solution. Panel B shows the actual orbit flip points and the bifurcation curves that take part in the period
adding mechanism. The continuation shown in panel A can be obtained by following, for example, the dashed
grey line that crosses t(3), f (4), t(3,4), and f (3,4).

2.2. The homoclinic curve h(1). The first characteristic feature of each homoclinic curve
h(k) is its U-shape, as qualitatively sketched in Figure 6 for the lower part of the homoclinic
curve h(3) (this curve is depicted only qualitatively). In fact, the U-turn is so sharp that it
can be detected only on a very small scale in the parameter space, and on any wider scale,
as in Figure 1A, the two branches appear almost as a double cover of the same curve. Note
that, as the U is traced, there is a transition between a homoclinic with k spikes and one with
k + 1 spikes. Such sharp U-turns of homoclinic orbits have been observed in other systems
(see, e.g., [27, 9]) and are typically characterized by orbits gaining an extra spike or pulse.

The homoclinic bifurcation curve h(1) is reported (panel A) and sketched (panel B) in
Figure 4. In this and subsequent similar figures bifurcation curves are both shown as they
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Figure 4. Real (panel A) and sketched (panel B) bifurcation structure around h(1): Note the presence of
just one flip bifurcation (f (1)) that connects the inclination flip point IF (1) to the orbit flip point OF (1).

really are (numerically detected by AUTO-07P) and depicted in an exaggerated way in a
pseudoparameter plane in order to elucidate their topological features. The key feature here
is an inclination-flip point labeled IF (1) that separates two portions of the homoclinic branch
that are both U-shaped. We shall focus on the lower portion. The inclination flip in this case
is of type B according to the classification reported in [21] and [30, Fig. 7]; there are single
curves of period doubling and a fold of cycle bifurcations emanating from the codimension-two
point. Following the branch h(1) away from the inclination flip, we find an orbit flip. Again,
two other curves of local bifurcations emanate—a period doubling and a fold. Note how the
period doubling bifurcation f (1) connects the two codimension-two points IF (1) and OF (1),
whereas the two folds of cycle curves labeled t(1) are distinct. We also note the presence of
Belyakov points, labeled as B(1) on the 1-spike branch h(1) and as B(2) on the 2-spike branch
h(2a). Between these two points along the homoclinic curve, the saddle equilibrium is actually
a saddle focus (with complex eigenvalues). With respect to this figure, in Figure 1 (panel
A) one further period doubling and two folds of cycle (meeting at a cusp point) curves are
displayed (right bottom corner). One of these folds of cycles is rooted at the Belyakov point
B(1).

The numerical continuation suffers convergence problems along the branches of 2-spike
homoclinic orbits as they return toward IF (1) and are depicted to end in “mid air.” The
eventual fate of the multispike branches remains an open issue which we shall not address
here, partly because they do not seem to play any further role in the regular-to-irregular
bursting transition of interest in this paper.

2.3. The homoclinic bifurcation curves h(k) and their degeneracies. The qualitative
feature of the homoclinic bifurcation curve h(3), which is sketched in Figure 5, is valid for
any k ≥ 3. The fundamental difference with respect to h(1) is the absence of any Belyakov
point. This is due to the fact that the whole homoclinic curve lies in a region of the parameter
plane where the eigenvalues of the equilibrium involved in the homoclinic trajectory are real.
The curve h(3) emanates from an inclination-flip point IF (3), which appears to be distinct
from IF (1) but occurs nearby in parameter space. One distinction from the previous case
is that the inclination flip is now of type C, which means that an entire period doubling
cascade emanates, as do multiple-pulse homoclinic orbits for all periods (h(3), h(6), . . .). These
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h(3)

h(4a)

f (3)

f (4)

IF(3)

OF(3) OF(4)

IF(3,4)

f (3,4)
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I

OF(3)

IF(3,4)

OF(4)

IF(4)
IF(3)

t(4)

f (3)

t(3,4)t(3)

h(3)

h(4a)

f (4)

f (3,4)

h(4)

B

A

Figure 5. Real (panel A) and sketched (panel B) bifurcation structure around the kth homoclinic bifurcation
h(k). In this particular sketch, k = 3, but the general sketch is valid for any k ≥ 3. For completeness, the
sketch also shows the homoclinic curve for k = 4. This undergoes the same sequence of bifurcations as h(3),
which are not depicted.

cascades are illustrated schematically via the sequence of lines superimposed with curved
arrows in Figure 5. We do not focus here on these additional bifurcations. Also, there are
again computational difficulties with determining precisely what happens to the branch on
the “far” side of IF (3), or to the homoclinic curve h(4a) as it returns toward the vicinity of
IF (3). Instead we focus on the transitions that occur close to the U-turn as h(3) transitions
into h(4a).

Each branch of the U-turn undergoes two orbit-flip bifurcations:
• OF (3), where the first bifurcation of the period doubling cascade ends and meets a

fold of cycles (respectively, f (3) and t(3) in Figure 5).
• OF (4), where t(4) and f (4) are rooted: the former is connected with IF (4) on the pri-

mary homoclinic bifurcation of the subsequent homoclinic doubling cascade, whereas
the latter takes part in the period adding process, as described in Figure 3.

Very close to the tip of the U-shaped homoclinic bifurcation, there is an additional
inclination-flip point, labeled IF (3,4) in Figure 5. From this point, the two curves t(3,4) and
f (3,4) are born, which are the additional bifurcations that take part in the spike adding process
depicted in Figure 3. However, we have not been able to numerically detect IF (3,4), due it
would seem to the very sharp turn of the homoclinic curve, but we can infer its presence as
we now explain. Furthermore, the geometric analysis in section 3 shall provide more careful
justification for the presence of this bifurcation.

Figure 6 shows more details of the orbits close to the U-turn, which provides further
evidence for the presence of the additional inclination flip IF (3,4). In this figure, the cen-
tral U-shaped curve represents the homoclinic bifurcation, and the eight surrounding panels
display the homoclinic trajectories (black thick lines) at significant points on the curve, super-
imposed onto the bifurcation diagram of the fast subsystem (thin colored lines and points).
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C
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H

Figure 6. Representation of how the homoclinic trajectories change along the U-shaped homoclinic bifurca-
tion curve h(3). Each panel contains the homoclinic orbit (thick black line) on the plane (z, x) and the results of
a bifurcation analysis of the slow-fast subsystem of (1.2) (thin colored lines and dots); the blue arrows are the
unstable eigenvectors of the saddle node equilibrium. The arrows in the central panel, on the parameter plane,
indicate the direction of bifurcation of periodic orbits from the homoclinic bifurcation curve. For a detailed
description of each panel, see the main text.

In particular, there is the manifold of equilibria Meq, represented by a solid green (stable) line
and a dashed red (unstable) line, which undergoes two folds (red dots) and a supercritical
Hopf bifurcation (green dot); the grey vertical lines are the projections onto the (z, x)-plane
of the stable limit cycles of system (1.2), which organize the bursting behavior of the full HR
model; the periodic solutions of the fast system do not constitute a unique “funnel,” but rather
they are separated into two distinct sets, due to the presence of two homoclinic bifurcations
in the fast subsystem, at the coordinates where the periodic solutions accumulate.

Panels A and H of Figure 6 are “above” OF (3) and OF (4), respectively, on opposite
branches of the homoclinic curve: in both panels, the homoclinic trajectory leaves the saddle
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node along the leading unstable direction and returns along the only stable direction after
three (panel A) or four (panel H) turns. Panels B and G correspond to the orbit-flip points
OF (3) and OF (4), respectively: it can be clearly seen how the homoclinic trajectory leaves
the saddle node along the nonleading unstable direction. Again, the trajectory returns to
the equilibrium point after three (panel B) or four (panel G) spikes. Panels C–F are located
between OF (3) and OF (4), and their purpose is to illustrate the qualitative changes that the
homoclinic trajectory undergoes between the two orbit-flip points and especially near the tip
of the homoclinic curve, where we conjecture the presence of the inclination-flip point IF (3,4).
In particular, in panels C and E it can be observed how the homoclinic trajectory leaves the
saddle node again along the leading unstable direction, but this time in the opposite sense
than in panels A and H. This makes the homoclinic orbits sort of canard cycles that spend a
large amount of time on the unstable part of the slow manifold. In the 0 < μ � 1-regime of
the HR model it has been shown that canard trajectories (not specifically homoclinic orbits)
of this kind exist for a wide range of parameters, and they are known to be directly involved in
the spike adding mechanism [11, 17, 40]. Finally, panels D and E are topologically similar to
panels C and F, with the only difference being that, being so close to the tip of the homoclinic
curve, the canard orbits are maximal : in particular, when the orbit goes past the upper
fold of equilibria in the fast subsystem, an additional turn is added to the trajectory, which
is the fundamental mechanism behind period adding in this and other models. Numerical
evidence shows that this happens exactly at the parameter values corresponding to the tip of
the homoclinic bifurcation curve.

The arrows in the central panel of Figure 6 indicate the direction of bifurcation of periodic
orbits from the homoclinic bifurcation curve: the three points OF (3), OF (4), and IF (3,4)

divide the homoclinic curve into four distinct regions. By going from one region to the
other, the direction of bifurcation of periodic orbits changes, due to the presence of the orbit-
flip degeneracies and of the turning point at the tip of the U-shaped curve: this gives a
first, intuitive, indication that another degeneracy point where the homoclinic bifurcation
undergoes side-switching must be present. There are three such generic codimension-two
points that lead to side-switching in the case that the saddle point is a real saddle; these are
orbit flip, inclination flip, and resonant eigenvalues. The latter occurs when μ1 = −λ1, where
μ1 is the stable eigenvalue of the saddle point and λ1 is the weakest unstable eigenvalue. We
can easily check that the eigenvalue condition is not satisfied, and we can rule out the presence
of an orbit flip, since the direction along which the trajectory leaves the saddle node does not
change. Hence we are left only with the possibility that the point at the tip is indeed an
inclination flip. A very similar structure has been found in [5, Fig. 19] in another context.
However, in section 3 we shall prove categorically that an inclination flip occurs very close to
the sharp turning point.

We finally remark that Shilnikov [36, 37] proved and pointed out the conditions, originally
called the change of the leading direction and the sign change of the separatrix value (actually
more meaningful compared to orbit and inclination switches), under which the homoclinic
loop bifurcation of a hyperbolic saddle results in a single saddle periodic orbit.

2.4. The special case k = 2. The homoclinic bifurcation curve h(2) is sketched in Fig-
ure 7 (the real curves were superimposed on the brute-force bifurcation diagram in panel B
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Figure 7. Real (panel A) and sketched (panel B) bifurcation structure around h(2): The inclination flip
point IF (2) gives birth to both a homoclinic doubling and a period doubling cascade. Note the presence of two
Belyakov points, B(1) and B(2).

of Figure 1). Here we also compute a separate homoclinic curve h(4b) with four spikes that
also comes out of the inclination flip point IF (2), which again appears to be distinct from
IF (1) although nearby it in parameter space. This curve exists because the inclination flip is
of type C and is the first in an infinite sequence of the subsidiary homoclinic bifurcations that
emanate from the codimension-two point. Like in the general case for k > 2, each homoclinic
branch emanating from the IF has an orbit flip. The fold bifurcation t(2) is the one that
is directly involved in the spike adding from two to three spikes similarly to what shown in
Figure 3 for the 3-to-4-spikes transition. A connection between the homoclinic curves h(3a)

and h(3) is provided by the fold of cycles t(3): this latter bifurcation terminates the chaotic
region that is born with the period doubling cascade that starts with f (2), as can be seen in
panel A.

The curves t(2,3) and f (2,3) converge on the tip of the U-turn. Note that there can be
no inclination flip in this case, because between the two Belyakov points B(2) and B(3) the
equilibrium has complex eigenvalues.

3. Analysis of inclination flip due to fold in slow manifold. The purpose of this section
is to show theoretically the presence of an inclination-flip codimension-two point at the sharp
turning points of each of the curves h(k) with k > 2. Moreover, we aim to show that this process
is a natural consequence of the sharp folding in the curve of homoclinic orbits and that this
sharp turn is itself a consequence of the canard-related transition of an n-spike homoclinic orbit
into an (n + 1)-spike homoclinic orbit. Furthermore, by constructing an approximate return
map around the critical homoclinic orbit, we are able to derive asymptotic expressions for the
curve of the saddle node of limit cycle bifurcations that emanates from this codimension-two
point.

The method of analysis is the standard one (see, e.g., [38]) of constructing the return map
as a composition of approximate Poincaré maps in a full neighborhood of both parameter and
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2 3 4
 -2

0

2

•

Σ0

Σ1

Σ2

z

x

p
vs

vu

-vuu

Π1

Π2

Π0

γ

Figure 8. A 3-spike homoclinic orbit γ of system (1.1) projected onto the (z, x)-plane and superimposed
onto the bifurcation diagram of the fast subsystem. The values of parameters b and I for this orbit correspond to
the tip of the homoclinic curve computed in [28] and, hence, to the conjectured inclination-flip bifurcation. We
also show the saddle equilibrium p together with its strong unstable, weak unstable, and stable eigendirections
vuu, vu, and vs, respectively. The three cross-sections Σi, i = 0, . . . , 2, allow us to construct a return map
Π from Σ1 back to itself, in order to study the behavior of nearby trajectories (for fixed b and I close to the
transition of interest).

phase space of the codimension-two point in question; see Figure 8. The analysis is general
and can apply to any three-dimensional system with the same generic features as the HR
model. However, the key hypothesis has to be justified numerically (in subsection 3.1); this is
namely that the forward image of any smoothly parameterized set of trajectories that interacts
transversely with the fold of the critical manifold of the slow-fast system undergoes a sharp
fold when viewed in any transverse Poincaré section. This assumption is formalized in the
construction of the map Π2 in subsection 3.2 below.

3.1. The process of spike adding. It is useful to examine in detail what happens to the
trajectory of the homoclinic orbit as it passes close to the sharp turning point in one of the
loops of the loci of homoclinic orbits. Consider Figure 8, which depicts just such an orbit that
is undergoing a transition from three to four spikes at parameter values b = 2.9427488761,
I = 2.7111448924. We shall henceforth refer to these as the critical parameter values. Note
that the nascent fourth spike forms via the interaction of the unstable manifold with the fold
point of the critical manifold (depicted by a dashed red line). Figure 6 shows homoclinic orbits
on the branch just before (panel D) and just after (panel E) this critical codimension-two orbit.

Figures 9 and 10 show the results of a numerical computation of a portion of the unstable
manifold of the saddle point at the critical parameter values. The map shown in Figure 9
(panel B) was computed by variation of a transverse coordinate in the unstable manifold close
to the equilibrium point p and computing until the first return to a Poincaré section given by
z = 2.75. In particular, the set U1 of initial conditions chosen was of the form

U1 = {(x, y, z) = p+ εvu + θvuu| for θ ∈ (−ε, ε)},
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Figure 9. (Panel A) Trajectories in the unstable manifold at the critical parameter values b = 2.9427488761,
I = 2.7111448924. (Panel B) Approximate one-dimensional map showing that the unstable manifold of the
homoclinic trajectory is folded. For a detailed description of each panel, see the main text.
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Figure 10. (Panel A) Image of the initial conditions U1 computed as in Figure 9 projected onto the x
and y coordinates of the outgoing Poincaré section z = 2.75. (Panel B) Schematic representation of a general
slow-fast system in three dimensions with a saddle-type slow (Fenichel) manifold S and an underlying critical
manifold Meq that is folded. Also shown are two orbit segments with very close initial conditions; only one gets
a twist when passing close to the upper fold of Meq, due to the relative position of its initial conditions with
respect to S.

where ε = 0.1 was chosen to give a close approximation to the unstable manifold W u
loc(p) in a

neighborhood of the critical homoclinic orbit. Since the unstable manifold is an invariant set,
the theory predicts that trajectories that start on the manifold should remain on it indefinitely:
unfortunately, due to errors in the numerical integration of this slow-fast system close to the
critical manifold, such a result cannot be obtained with standard integration techniques.
However, it is possible to overcome this problem by resorting to continuation techniques by
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setting up a proper boundary-value problem (BVP), where one of the parameters that are
allowed to vary is the integration time. This particular technique has been exploited, for
example, in [13] to compute part of the manifold of the Lorenz equations.

By solving BVP with AUTO-07P, we can obtain the results shown in Figure 9. As in
previous figures, in panel A the thin colored lines represent the bifurcation diagram of the fast
subsystem, and the blue arrows are the unstable eigenvectors of the saddle node equilibrium.
The purple dashed line is the section that constitutes the terminating point of the integrations.
The thin grey lines are the integrations of the system obtained by varying the parameter θ in
the range [−0.1, 0.1]; the thick black line is a piece of the homoclinic trajectory that satisfies
the boundary conditions and is used to start the continuation procedure (which corresponds
to θ ≈ −0.001). Panel B shows an approximate one-dimensional map of the initial versus the
final x-coordinate. It can be clearly seen that such an approximate map is not invertible (see
also the inset, which contains a zoom of the central part); i.e., two distinct initial conditions
lead to the same final condition. This constitutes a further justification of our conjecture,
since it shows that the unstable manifold of the homoclinic trajectory is folded.

To show this folded manifold in more detail, we depict in Figure 10 (panel A) the image of
U1 in the Poincaré section z = 2.75. Note the folded shape of the image of U1. We conjecture
that this fold is a direct consequence of a portion of the unstable manifold passing close to
the fold point of the critical manifold Meq. This conjecture is confirmed by noting from the
computation of the trajectories in question in Figure 9 that the region of the sharp turning
point in the image of U1 corresponds to the trajectories that pass the closest to the fold in
Meq (actually since Figure 9 was computed at the critical parameter values, the trajectory
that corresponds to the closest point to the fold is on the homoclinic orbit). A similar passage
near such a fold of the critical manifold has previously been found in the HR model and
has previously been shown to underlie spike adding at the level of periodic orbits. It was
first reported by Terman [40, 41], who focused on chaotic dynamics in between n-spike and
(n+ 1)-spike orbits as well as the disappearance of bursting upon parameter variation. This
mechanism has been studied more recently using the framework of slow-fast dynamical systems
in [17].

We show in Figure 10 (panel B) a schematic representation of the dynamical behavior
suggested by our numerical results. We depict a three-dimensional slow-fast system with
all the generic features of the HR model—two fast variables and, hence, a one-dimensional
critical manifold Meq. The figure shows the projection onto the (z, x)-plane, where z is slow
and x is fast, and we superimpose two segments of trajectories with initial conditions chosen
to be very close to one another and to Meq. When Meq is cubic-shaped (i.e., with two fold
points) and when its middle branch is composed by saddle equilibria of the fast subsystem,
then away from the fold points this middle branch perturbs smoothly with respect to the
small parameter ε to a saddle slow (Fenichel) manifold S [15]. In this configuration, one
can observe at the level of both transient and long-term dynamics nearby trajectories and
attractors that diverge from one another when one gains an extra twist as it passes close to
the upper fold of Meq, whereas the other does not; see two such orbit segments in Figure 10.
This particular dynamical behavior can be understood by further looking at the underlying
slow-fast structure of the problem. Indeed, the families of (un)stable manifolds W u,s(p) of the
saddle equilibria p associated with the fast dynamics perturb smoothly to stable and unstable
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manifolds W u,s(S) of the Fenichel manifold S [15]. Then, if initial conditions are taken close
to but on opposite sides of the unstable manifold of S, they will follow S for some time until
one trajectory jumps up and the other continues down. The trajectories that jump up cause
an extra twist in that portion of the manifold.

Thus, these numerical results provide strong justification that the process of spike adding
is caused by the portion of the trajectory of the homoclinic orbit that is closest in time to
the local unstable manifold passing close to the fold point of the slow manifold. In turn, such
a passage causes a sharp fold in the forward image of the local unstable manifold. The aim
of the rest of this section is then to argue that this process causes a sharp turning point in
parameter space of the locus of homoclinic orbits and that there is necessarily an inclination-
flip bifurcation point there. Moreover, a fold curve of periodic orbits and a period doubling
bifurcation curve emanate from the inclination flip.

3.2. Construction of Poincaré return map. Consider a sufficiently smooth three-dimen-
sional vector field

ẋ = f(x, μ), x ∈ R
3, μ ∈ R

2,

that has a saddle point p with real eigenvalues λuu > λu > 0 > λs, with corresponding
eigenvectors vuu, vu, and vs. We assume for simplicity (after a parameter dependent change of
coordinates if necessary) that the location of and linearization at p is parameter independent.
Suppose that, at a critical codimension-two point μ = 0, a homoclinic orbit γ(t) to p exists
that satisfies certain nondegeneracy hypotheses:
(H1) γ(t) → p as t → ±∞.
(H2) γ(t) is tangent to vu as t → −∞ and specifically approaches p along the positive vu

direction.
We also suppose that the sign of vs has been chosen so that γ(t) approaches p along the
positive vs direction as t → +∞.
(H3) The map Π2 (defined below) is degenerate such that it can be described by the given

quadratic form to leading order.
(H4) The parameter μ unfolds this codimension-two singularity in a generic way. (Specific

choices for μ = (μ1, μ2) are defined below.)
We begin the analysis by considering three separate Poincaré sections Σ0, Σ1, and Σ2 as

depicted in Figure 8 for the HR model and in Figure 11 for a general system. The cross-
sections Σ0 and Σ1 are defined in terms of local coordinates (ξ1, ξ2, ξ3) corresponding to
projection along the three-dimensional basis (vs, vu, vuu). Specifically, let

Σ0 = {(ξ1, ξ2, ξ3)|ξ1 = ε}, Σ1 = {(ξ1, ξ2, ξ3)|ξ2 = ε}

for 0 < ε � 1.
The section Σ2 is chosen to be transverse to the flow at a point γ(0) along the critical

homoclinic orbit, at an O(1) distance from p. Let local coordinates (η1, η2) be chosen within
Σ2 such that γ(0) is at the origin and the tangent vector to W u(p) ∪ Σ2 at γ0 lies along the
η1-axis. Furthermore, after a parameter dependent change of coordinates if necessary, we
shall suppose that the flow from Σ1 to Σ2 is independent of the unfolding parameters μ. A
convenient choice of unfolding parameters is to assume that the intersection between Σ2 and
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Σ0

Σ2

Π0

Π1

Π2

Σ1
ξ1

ξ2

ξ3

Figure 11. Poincaré sections Σ0, Σ1, and Σ2 for the study of the inclination-flip bifurcation in a general
three-dimensional system.

(a) (b) (c)

(a)

(b)

(c)

μ1

μ2

•

•
•

Before IF At IF After IF

x

y

Figure 12. Schematic representation of the return map computed for this system.
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the component of the one-dimensional stable manifold W s(p) that corresponds to γ(0) when
μ = 0 is precisely given by (η1, η2) = (μ1, μ2). See Figure 12.

We are now in a position to define leading-order Poincaré maps obtained by following
trajectories between each of these Poincaré sections. The local map from Π0 : Σ0 → Σ1 can
be obtained by solving the linear equations in a neighborhood of p. It is most useful in what
follows to instead deal with Π−1

0 : Σ1 → Σ0. Specifically, to leading order we obtain

Π−1
0 :

⎛
⎝ξ1

ε
ξ3

⎞
⎠ 	→

⎛
⎝ ε
ξ2
ξ3

⎞
⎠ =

⎛
⎝ ε

K1ξ
Δ1
1

K2ξ3ξ
Δ2
1

⎞
⎠ ,

where

0 < Δ2 =
-λuu
λs

< Δ1 =
-λu
λs

, K1 = ε1−Δ1 , and K2 = ε−Δ2 .

Hypothesis (H3) can now be encapsulated in the leading-order expression for the Poincaré
map Π1 : Σ1 → Σ2. We construct this map in two stages. First consider the image of W u(p),(

η1
η2

)
=

(
ξ3
βξ23

)
,

where the unit coefficient of the η1-term is chosen without loss of generality. Also, the η2
coordinate is chosen so that β > 0. Moreover, the assumption (H3) of a sharp fold in the
image of W u(p) implies

(3.1) βε 
 1.

Thus the leading-order expression for the unit tangent vector to W u(p) ∩ Σ is

(3.2) τ(ξ3) =

(
D(ξ3)

2βξ3D(ξ3)

)
, where D(ξ) =

1√
1 + 4β2ξ2

,

from which we obtain that the unit normal (in the sense of positive ξ1 coordinate) is

τ⊥(ξ3) =
(−2βξ3D(ξ3)

D(ξ3)

)
.

Hence, the leading-order expression for the full map Π1 can be written as

Π1 :

⎛
⎝ξ1

ε
ξ3

⎞
⎠ 	→

(
η1
η2

)
=

(
ξ3 − 2βξ1ξ3D(ξ3)
βξ23 + ξ1D(ξ3)

)
.

Finally, we suppose that the mapping Π2 : Σ2 → Σ0 is a diffeomorphism that can be
expressed to leading order by its linear terms,

Π2 :

(
η1
η2

)
	→

(
ξ2
ξ3

)
= B

(
η1 − μ1

η2 − μ2

)
,

where B = {bij}i,j=1,2 can be assumed generically to be an invertible matrix with all elements
nonzero.
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3.3. The inclination-flip bifurcation. In the context of the example system in question,
an inclination flip is a codimension-two bifurcation that occurs when a path of homoclinic
orbits to p undergoes a change in orientation.

From the construction above, the locus of homoclinic orbits to p in the μ-plane is given
to leading order by

(3.3) μ2 = βμ2
1,

which describes a sharp folded curve pointing along the positive μ2-axis. For parameter values
within this curve, the twistedness of the unstable manifold along the homoclinic loop γ can
be computed by following the tangent vector to the stable manifold around the homoclinic
orbit γ(t).

Let (μ1, μ2) be a point within the homoclinic locus given by (3.3), and consider such a
tangent vector with initial condition in the positive vuu direction within Σ1. By construction,
the image of this initial condition under Π1 is the vector τ(μ1) defined above (Figure 8). The
image of τ(μ1) under Π2 is then

τ̂(μ1) :=

(
(b11 + 2βb12μ1)D(μ1)
(b21 + 2βb22μ1)D(μ1)

)
.

Consider τ̂ for μ1 = ε. To leading order we find

τ̂(ε) =

(
b12
b22

)
,

in which we have used the form of D defined above (3.2) and the scaling (3.1). Now, under the
nondegeneracy hypothesis that b22 �= 0, as t → ∞, the tangent vector will tend to sign(b22)vuu.

A similar argument shows that the τ̂ in Σ0 for μ1 = −ε along the homoclinic locus maps
is given by

τ̂(ε) =

(−b12
−b22

)
.

In turn, this vector tends to −sign(b22)vuu as t → ∞.
Hence we have shown that the tangent vector to the homoclinic orbit, which is in the

positive vuu component as t → −∞, flips its vuu component as t → +∞, for μ varying along
the homoclinic locus (3.3) between μ1 = ε and μ1 = −ε. This shows that there must be (at
least one) inclination flip somewhere in between. In other words, there must be an orbit flip
close to the sharp fold in the homoclinic locus.

3.4. Unfolding the dynamics near the inclination flip. It is straightforward to extend
the analysis to provide a local asymptotic prediction of the bifurcations of periodic orbits that
emanate from the inclination-flip point. Note that this is just one of a number of bifurcation
curves that can be found to emanate from the inclination-flip point (see [33, 21]), but the
point here is to produce an asymptotic formula that is valid in the present context of a folded
manifold.

To this end we look for the simplest periodic orbits as fixed points of the return map

Π2 ◦ Π1 ◦Π0 : Σ0 → Σ0.D
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In fact, it is most convenient to consider the Poincaré section Σ2 and seek a condition for a
fixed point in the form

Π−1
2 ◦Π−1

0 (ξ1, ξ3)
T = Π1(ξ1, ξ3)

T .

To this end we find (
μ1

μ2

)
+ B̂

(
K1ξ

Δ1
1

K2ξ3ξ
Δ2
1

)
=

(
ξ3(1− 2βξ1D(ξ3))
βξ23 + ξ1D(ξ3)

)
,

where

B̂ = B−1 =
1

det(B)

(
b22 −b12
−b21 b11

)
.

We now need to analyze these fixed point equations and find fold and flip bifurcations.
We suppose we can do a rescaling so that B = Id. Then the equations for the fixed points of
the return map read

μ1 +K1ξ
Δ1
1 = ξ3 − 2βξ1ξ3D(ξ3),

μ2 +K2ξ3ξ
Δ2
1 = βξ23 + ξ1D(ξ3).

Given that β is assumed to be large (βε 
 1), we make the following approximation for ξ3
such that it is at least of order 1, that is, “nonsmall”:

(3.4) D(ξ3) :=
1√

1 + 4β2ξ23
≈ 1

2β|ξ3| .

The fixed point equations (multiplying the second one by ξ3) then reduce to

μ1 +K1ξ
Δ1
1 = ξ3 ∓ ξ1,

μ2ξ3 +K2ξ
Δ2
1 ξ23 = βξ33 ±

ξ1
2β

.

We look for μ1 - and μ2 -families of fixed points of the previous set of equations with
AUTO [14]. We fix the signs and continue in μ1 and in μ2 the solutions to the system

μ1 +K1ξ
Δ1
1 = ξ3 − ξ1,

μ2ξ3 +K2ξ
Δ2
1 ξ23 = βξ33 +

ξ1
2β

.

These equations define saddle-node bifurcations of the fixed point which we can continue in
two parameters to obtain a curve of fold points of the corresponding periodic orbits in the
(μ1, μ2)-plane. In order to compute the curve of homoclinic bifurcations in this plane, we use
the fact that, in the map Π2, the homoclinic connection corresponds to

η1 = μ1, η2 = μ2.

In the preceding system of equations, this gives

K1ξ
Δ1
1 = 0, K2ξ

Δ2
1 ξ3 = 0.
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h(3) h(4)

•

μ1

μ2

IF (3,4)

t(3,4)

Figure 13. Curve of fold and homoclinic bifurcation points in the (μ1, μ2)-plane, obtained from the return
map that we derived above.

Hence, we obtain the equation for the homoclinic curve

μ1 = ξ3 − ξ1,

μ2 = βξ23 +
ξ1

2βξ3
.

We can then compare the computed curve of folds with the curve of homoclinic points, and
we present the result in Figure 13. We obtain a qualitative agreement with the similar curves
computed from the HR system. Indeed, the homoclinic curve is folded and, from the tip of
that curve, corresponding to the inclination-flip bifurcation IF (3,4), emanates a curve of fold
bifurcation, which corresponds to t(3,4). Note that our numerics are not valid in the vicinity
of this tip (dashed circle in Figure 13); however, the trend of both the homoclinic and the fold
curves outside this small region seems to indicate that they indeed meet at the tip.

For values of I and b corresponding to the numerical return map described above and
to the inclination-flip bifurcation, we can compute the eigenvalue ratios Δ2 = −λuu/λs and
Δ1 = −λu/λs and check where the point (Δ2,Δ1) is located in the diagram of Figure 4 (left)
in [21], where different unfoldings of the inclination-flip bifurcation are studied. It appears that
the HR system for the parameter values mentioned above falls into case C of the classification
derived in [21]; therefore, horseshoe dynamics is expected in the vicinity of the inclination-flip
point, which is consistent with the results of [40].

4. Discussion. This paper has revisited the well-known HR neuron model from a global
bifurcation analysis standpoint. To this end, we used different tools, geometrical and nu-
merical. We extracted specific information by relying on the strengths of each method and
depicted a global bifurcation scenario by exploiting the tools’ redundancy to overcome specific
weaknesses of each method.
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In particular, the analysis we have carried out has shown that numerical continuation
based on boundary-value problems can be extremely useful in slow-fast systems where pure
simulation can run into difficulties in unfolding bifurcations that are very close to one an-
other. Note also that the homoclinic bifurcations studied here do not themselves represent
stable dynamical behavior. Nevertheless, their influence on the global bifurcation structure is
profound.

On the other hand, the geometrical analysis provided details that were not possible to ob-
tain numerically. Moreover, the geometrical analysis points to a generic phenomenon. Namely,
a sharp fold in the curve of homoclinic orbits in the parameter plane should usually (Figure 7
is an evident exception) be associated with an inclination flip. Such a phenomenon, for exam-
ple, was also observed as part of the unfolding of a tangent period-to-equilibrium heteroclinic
cycle [5].

The obtained bifurcation scenario is organized by various curves of homoclinic bifurca-
tions and their codimension-two degeneracies and explains the smooth spike adding transition
(where the number of spikes in each burst is increased by one) typical of the HR model and
of many other neuron models. In some sense, the work presented here extends the work of
Shilnikov and Kolomiets [35], who also detected the presence of inclination-flip and orbit-flip
bifurcations in the HR neuron model. They found a wealth of complex dynamics; how-
ever, their bifurcation analysis was limited to the curve h(1), and the connection between
codimension-two homoclinic bifurcations and period adding (the precise focus of our paper)
is not treated. The results here have shown that the key to understanding the origins of the
spike adding behavior is to analyze the inclination-flip and orbit-flip bifurcations occurring on
the homoclinic curves h(n) for n > 1.

In [5], the analysis applies to the unfolding of a certain codimension-two heteroclinic
tangency and is not specifically relevant to the present model. There, an inclination flip is
argued to be the only possible codimension-two homoclinic bifurcation that explains a side-
switching along certain curves of n-homoclinic bifurcations present in the unfolding. The
present paper, therefore, adds further information to that analysis by showing the inclination
flip to be a consequence of the sharp turning point of n-homoclinic bifurcation curves in that
unfolding. It is also interesting to note that various sharp turning points of homoclinic curves
in models of excitable systems are also discussed in [7]. However, in that case, the turning
points were always close to a Hopf bifurcation of the underlying equilibrium and so not related
to the case discussed here as the eigenvalues are always complex.

From a more practical point of view, all the stable time series one can obtain by integrating
the HR neuron model (evidenced in the brute-force bifurcation diagrams) are organized by
bifurcation curves, which are in turn organized by the codimension-two degeneracies illustrated
in this paper, including the inclination-flip point not detected by HomCont, and analyzed by
geometrical methods.

The analysis reported in this paper is interesting not only for its intrinsic value in ex-
plaining spike adding in the HR neuron model through codimension-two organizing points,
but also because similar bifurcation structures have been found and analyzed in other stud-
ies. In particular, in [29] the authors perform a bifurcation analysis of a model of pancreatic
β-cells, which show excitable features similar to those of neurons, and find a global bifurca-
tion structure that strikingly resembles what we found for the HR model (see Figure 4 of the
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cited paper). In [8, 34], the authors present an analysis of a reduced model of leech heart
interneuron: also in this case, the period adding mechanism is regulated by the presence of
homoclinic bifurcations and their degeneracies.

Obviously, a detailed bifurcation analysis of each model will show differences among mod-
els, but we dare say that the global bifurcation structure, i.e., the presence of homoclinic
bifurcations and the interplay of period doubling and folds of cycle bifurcations, remains un-
changed and constitutes a trademark of models of excitable cells that display the widespread
period adding mechanism.

The analysis in this paper tells a coherent story. The new cascade of inclination flips we
have found at turning points of n-homoclinic curves explains the folds of cycles that organize
spike adding cascades. However, various global aspects of the bifurcation scenario remain to
be investigated. For example, a further detailed unfolding in a neighborhood of the IF (1)
point seems to be required in order to understand the origin of each of the n-homoclinic loops.
This would seem to require a new form of slow-fast analysis of a point in the parameter plane
from which many curves seem to emanate and may well involve the canard-like growth of the
1-homoclinic orbit in the first place.

Finally, since the HR model is really a reduction of other more complex bursting models,
it would also be interesting to see the extent to which the bifurcation structures described
here are present in more physiologically based models that show spike adding behavior.
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