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Abstract

The stability of the straight ahead running motion of automobiles is studied with proper
theoretical tools pertaining to bifurcation theory. The study is both theoretical and experi-
mental. Four theoretical models have been employed. They refer respectively to one simple
car model, one simple driver model, one complex car model and one complex driver model.
The existence of bifurcations, namely Hopf bifurcations, is found for both the simple car/sim-
ple driver model combination and for the complex car/complex driver model combination.
The experimental study refers to the employment of a driving simulator in which a human
driver controls the complex car model. At the driving simulator, bifurcations are found which
correspond to the ones predicted either with the simple car/simple driver model combination
or the complex car/complex driver model combination. The correspondence is approximate,
due mainly to the fact that especially the simple driver model seems inadequate to capture
the actual human driver behaviour. After a subcritical Hopf bifurcation, a chaotic motion
is found at the driving simulator. The driving simulator does not seem introducing factors
affecting sensibly bifurcations, so the bifurcations that have been found appear to be real,
i.e. bifurcations could be found on an actual car running straight ahead.

1 Introduction

Every common driver feels that a car, running straight ahead, may become unstable if a dis-
turbance of sufficient level occurs. To describe accurately such an intuitive fact, an in-depth
mathematical reasoning is needed. Nonlinear models of cars and nonlinear models of drivers
are the only mathematical representations of reality that may work [27, 24, 28]. Often, classical
academic books deal with the stability of cars referring to linearized models [10, 25]. This im-
plies that the disturbance is limited. In other words, classical academic hypotheses on straight
running stability of cars cannot provide any prediction if the disturbance is strong. Bifurcation
theory covers this gap, as shown in [27, 8, 6, 5, 7, 18, 26, 34]. To date, a sound experimental sub-
stantiation of bifurcation theory is lacking referring to straight running stability of cars. This
paper aims at covering this gap, focusing on both mathematical modeling and experimental
substantiation.

In the literature, a number of papers have been written on bifurcations of road vehicle
models [8, 3, 13, 15, 17, 22, 30, 31, 35, 36]. In [27] a pioneering early representation of phase
portraits is given. Still today it seems that the current understanding of bifurcations would refer
to simple vehicle models only, namely single-track or slightly more complex models. An analysis
seems lacking on bifurcations occurring for complex vehicle models. The paper aims at covering
this gap. We will not mention here the bifurcations of truck-trailer combination or car-trailer
combination, because this would be out of scope.
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Referring to driver models, we refer to the main contributions available in the literature [28,
12, 21, 4] which deal with both linear and nonlinear models. Such contributions are fundamental
to establish the basic understanding of how drivers act and form the basis for this paper. Driver
models with delay seem necessary to produce bifurcations and to describe properly car driver
behaviour [33, 19, 20, 18, 6, 5]. In these papers bifurcation of vehicle and driver models refer
usually to simple vehicle models. Such simple models have been preferably used due to the
difficult usage of phase portraits referring to models with tens of state variables. Bifurcations
of complex car models in combination with driver models seem not studied accurately in the
literature. The paper aims at covering this gap.

Studying straight ahead running stability in the real world is quite dangerous. It is compli-
cated to apply a significant disturbance to the vehicle and, especially at high speeds, loosing
control leads directly to life threatening. So a driving simulator seems the only viable way to
study running stability [29, 14]. Obviously, driving simulator is a complex machine that may
introduce into the loop some damping or latence effects that might influence the accuracy and
even the correctness of results. In big driving simulators, latence is an issue which implies enor-
mous power demand. We used a mid-size driving simulator which has a mean latence of less
than 20ms, a very low time lag that, as a first approximation, can be neglected with respect to
driver’s delay [2]. Since the driving simulator that has been employed does not seem introducing
relevant factors that could influence the nature of bifurcation, we have decided to use it as a
reliable means to study straight ahead running stability.

The paper is organized as follows. At first the four theoretical models are described. Then the
bifurcations occurring during straight ahead motion are studied and compared. Then the Driving
simulator is introduced and the results of the tests that have been performed are summarized
and duly commented.

2 System models

To perform an accurate bifurcation analysis of the car & driver system, a proper mathematical
modelling has to be done.

2.1 Simple car model

Let us focus on the 2 degrees of freedom single-track model shown in Fi. 1(a). The degrees of
freedom are the lateral motion and the yaw rotation. The longitudinal motion is not considered
as a degree of freedom because the longitudinal speed is considered constant. Longitudinal forces
Fxi are needed to keep constant the longitudinal speed, their magnitude is considered small and
they are neglected. The lateral axle forces Fyi can be modelled by using the well known Pacejka
Magic Formula [27] and refer, for this single-track model, to the whole axle characteristic

Fyi = Di sin(Ci arctan(Biαi − Ei(Biαi − arctan(Biαi)))) (1)

where αi, i = {f, r} are the front and rear slip angles, defined as

αf = δ −
(
v + ra

u

)
, αr = −

(
v − rb
u

)
. (2)

where a and b are the distances from the centre of gravity of the front and rear axles, respectively.
The coefficients of the Magic Formula define the shape of the axle characteristic and the handling
properties of the vehicle. In this work two different configurations of axle characteristics have
been used, one referring to an understeering vehicle and one referring to an oversteering vehicle.
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Figure 1: Simple car model and simple driver model.

B C E D

Front 6.92 2.34 0.83 9493.94

Rear 10.31 2.30 1.02 9805.56

Table 1: Magic formula tyre coefficients of understeering vehicle.

B C E D

Front 10.31 2.30 1.02 10872.50

Rear 6.92 2.34 0.83 8562.27

Table 2: Magic formula tyre coefficients of oversteering vehicle.
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Figure 2: Handling properties of understeering vehicle.
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Figure 3: Handling properties of oversteering vehicle.
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The coefficients that define such configurations are listed in Table 1 and 2, respectively. The
axle characteristics and the corresponding handling diagrams are reported in Fig. 2 and 3. The
equations of motion of the single-track model can be derived using the D’Alembert principle
and the following equations are derived

v̇ =
1

m
(Fyf + Fyr)− ur

ṙ =
1

J
(aFyf − bFyr)

(3)

2.2 Simple driver model

For what concerns the simple driver model, the well known model developed by Weir [37] is used.
The driver control logic is illustrated in Fig. 1(b), where a general straight path is illustrated.
To simplify the computations, the straight path chosen in this work is the one congruent to the
X axis of the global reference system, so basically the driver has to nullify the lateral position
coordinate in the global reference system. The steering action is proportional to the path error
computed at a certain distance in front of the vehicle. This distance L is proportional to the
longitudinal speed u by setting a fixed preview time Tprev, so L = Tprevu. The coordinates of
the preview point in the global reference system and its speed components can be computed
starting from the coordinates of the centre of gravity in the global reference system as follows

P = (xP )i0 + (yP )j0 = (xG + L cosψ)i0 + (yG + L sinψ)j0 (4)

VP = (ẋP )i0 + (ẏP )j0 = (ẋG − ψ̇L sinψ)i0 + (ẏG + ψ̇L cosψ)j0 (5)

The path error and its time derivative, considering as reference path the X axis of the global
reference system, have the following expressions

e = (yref − yP ) = −yP (6)

ė = (ẏref − ẏP ) = −ẏP (7)

The steering action of the driver is modelled as a first order system with a time constant τ

δ̇ =
1

τ
(−δ + ke+ kdė) (8)

Coupling the vehicle model with the driver model, the final state-space representation of the car
& driver system can be obtained

v̇ = 1
m(Fyf + Fyr)− ur

ṙ = 1
J (aFyf − bFyr)

δ̇ = 1
τ (−δ + ke+ kdė)

ẏG = u sin(ψ) + v cos(ψ)

ψ̇ = r

(9)

In Table 3 the vehicle and driver parameters that have been used in this work are listed.

2.3 Complex car model

To check the results obtained with the simple car/simple driver model combination, the complex
car/complex driver model combination has been used. The description of the complex car model
is provided in the manual of the software Vi-Grade [2]. Basically, the car model is a 14 degrees of
freedom multi-body model, in which the bodies are the vehicle chassis and the four wheels. The
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Mass m [kg] 1938

Moment of inertia J [kgm2] 3992

Front axle distance from center of gravity a [m] 1.628

Rear axle distance from center of gravity b [m] 1.636

Delay time τ [s] 0.2

Preview time Tprev [s] 0.5

Proportional gain k [rad/m] 0.02

Derivative gain kd [rad/(m/s)] 0

Table 3: Simple car/simple driver model data.

car body has six degrees of freedom and each wheel has two degrees of freedom, one corresponding
to the rolling rotation and one corresponding to the relative displacement between the wheel
and the car body. Two reference systems are used, one global, fixed with respect to the ground
and one local, fixed with the vehicle, with the origin fixed at the mid point of the front axle,
the longitudinal axis is parallel to the vehicle centreline, the normal axis is orthogonal to the
ground and directed upwards. The lateral axis is a right-hand reference system with the other
mentioned axes. The reference systems are represented in Fig. 4. The directions of both the
lateral and vertical axes of the simple car/simple driver model combination are reversed with
respect to the corresponding axes of the complex car/complex driver model combination in Fig.
1. In the sequel, the results will be reported using the reference systems of the simple car/simple
driver model combination. In Table 4 the main parameters of the complex car model are listed.
Camber angles are positive if the wheels are inclined towards the chassis. The steering ratio and

(a) 14 dof vehicle model (b) Reference systems

Figure 4: Vi-Grade vehicle modelling framework.

the wheel angles are referred to the equilibrium position of the car running straight at constant
speed. Due to the rolling and pitching motions these quantities can vary, the software takes
into account such phenomenon. The vehicle that is modelled is a rear wheel drive E segment
passenger car equipped with a limited slip differential. In order to make the complex car model
more similar to the simple car model, the differential is changed to a simple open differential. The
modelling of the tyre is done by using the complete Pacejka Magic Formula, whose coefficients
correspond to the parameters in Table 1 and 2. The aerodynamic forces have been reduced, in
order to have the possibility to reach very high longitudinal velocities, actually at such speeds
important nonlinear behaviour, e.g. bifurcations, occur.
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Chassis mass (mc) 1691 kg

Chassis inertia moment (Jc) 3340 kgm2

Front tire-hub mass (mf ) 52 kg

Front tire-hub inertia moment (Jf ) 1.35 kgm2

Rear tire-hub mass (mr) 40 kg

Rear tire-hub inertia moment (Jr) 1.04 kgm2

Fuel mass (mfuel) 63 kg

Fuel mass longitudinal position (xfuel) -2.8 m

Center of gravity distance from the front axle (a) 1.628 m

Center of gravity distance from the front axle (b) 1.636 m

Wheelbase (l) 2.97 m

Front track (tf ) 2.97 m

Rear track (tr) 2.97 m

Steering ratio 14.54

Toe angle Front Left (static) -0.36 deg

Toe angle Front Right (static) 0.36 deg

Toe angle Rear Left (static) 0.165 deg

Toe angle Rear Right (static) -0.165 deg

Camber angle Front Left (static) -0.35 deg

Camber angle Front Right (static) -0.35 deg

Camber angle Rear Left (static) -0.9 deg

Camber angle Rear Right (static) -0.9 deg

Table 4: Vi-Grade vehicle model: data.

2.4 Complex driver model

The Virtual Driver provided by the Vi-Grade software has been used as it seems more accurate
with respect to the single-point preview driver model (simple driver model). The Virtual Driver
logic is based on an MPC control logic. MPC stands for Model Predictive Control and it is a
control algorithm that optimizes a control variable in order to minimize a cost function over a
finite-time horizon. In order to have a better explanation of the driver control logic the reader
is invited to consult the Vi-Grade manual [2].

2.5 Perturbation method

When simulating a dynamical system, in order to evaluate the stability of an equilibrium position
or the stability of a limit cycle, a perturbation has to be generated. In this paper two strategies
have been used to perturb the car & driver dynamical system. The first one is simply an initial
lateral displacement. It has been used to evaluate the stability of straight running. The second
strategy applies a lateral impulse force to the vehicle. The second strategy has been introduced
since the first one does not work properly for the complex or human driver model. Actually,
during tests at the driving simulator, we found that recovering a sudden lateral displacement
applied to the vehicle resulted in a simple task for the driver. In fact, no input energy was
associated to such a disturbance that was just a re-positioning of the vehicle in a displaced initial
position on the road. The driver did not feel any lateral acceleration and this was perceived as an
unrealistic situation. In other words, the initial condition at the driving simulator, as it is comes
from the first strategy, was not associated to an actual disturbance by the driver. So we decided
to adopt the second strategy. The perturbation scheme and impulse force shape are reported in
Fig. 5. The magnitude of the force has been fixed and equal to Fdist = −10000 N , congruent

7



with the global reference system defined in the previous section. The parameter chosen to vary
the magnitude of the perturbation has been the arm of the force with respect to the vehicle
centre of gravity. Increasing the arm of the external force results in an increasing moment acting
on the system, thus giving bigger perturbation.

External force

Arm

(a) Impulse force perturbation
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(b) Impulse force shape

Figure 5

3 Bifurcation analysis - combination of simple car model and
simple driver model

In this section we take into account the simple car/simple driver model combination. To evaluate
the related dynamical behaviour, bifurcation theory has been used [16, 32, 11]. We perform
our analysis for different values of the longitudinal speed, that thus becomes our bifurcation
parameter. Bifurcation diagrams have been produced using Matcont [9]: in Fig. 6a, 7a we report
a three-dimensional projection of the bifurcation diagram of our 5 dimensional simple system.
Solid blue lines indicate stable equilibria or stable limit cycles, dashed red lines indicate unstable
equilibria or unstable limit cycles. A critical speed, i.e. a bifurcation speed, is found in either
cases. At longitudinal speeds lower than the bifurcation one, an unstable limit cycle exists in
the state-space. The unstable limit cycle repulses the state space trajectories. The motion of
the vehicle can be repulsed towards the straight running equilibrium or can diverge, depending
on the initial state-space condition. The amplitude of the unstable limit cycle increases as the
speed decreases, so at lower speeds the perturbation able to make unstable the response of the
vehicle has to be very high, as common sense suggests.

In Fig. 6b and Fig. 7b projections of the bifurcation diagrams in the lateral position–
longitudinal speed plane are reported. To visualize better the trend of the limit cycles, the
maximum value of the lateral position variable reached during the cycle is reported. In both
cases, namely understeering and oversteering, the simple car/simple driver model predicts a
stability loss of the desired trajectory, due to a subcritical Hopf bifurcation. In the oversteering
case, the stability loss occurs at a longitudinal speed of nearly 20 m/s. In the understeering
case, the stability loss occurs at a longitudinal speed of nearly 100 m/s. Passed those values, the
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equilibria are unstable and the driver is not able to find another stable motion, so such types of
bifurcations are catastrophic.
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Figure 6: Combination of simple car model and simple driver model - understeering configuration:
Bifurcation analysis varying longitudinal speed. Data in Tab.1 and Tab.3.
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Figure 7: Combination of simple car model and simple driver model - oversteering configuration:
Bifurcation analysis varying longitudinal speed. Data in Tab.2 and Tab.3.

We check now the existence of a critical, or bifurcation, speed by resorting to time history
simulations. In Fig. 8 the dynamical response of the simple car/simple driver model combination
in understeering configuration is shown. Due to a small perturbation, the dynamical behaviour
of the system changes its nature as the longitudinal speed is increased. The starting lateral
position is equal to y0 = 0.1 m. Increasing the speed, the response is less and less damped, but
stable, till a certain critical speed, if such a speed is passed, the response is unstable. The system
has two low frequency eigenmodes at 0.35 Hz and 1 Hz; increasing the speed, the magnitude of
the component at 1 Hz increases because this is the eigenmode that causes instability.

The simulations mentioned above have been done providing to the system a perturbation
of low magnitude. It is important to investigate how the behaviour of the system changes by
increasing the magnitude of the perturbation. The perturbation strategy is now the second one
described in the previous section, an impulse force is applied at a certain distance from the centre
of gravity. Let us consider Fig. 9. We want to see whether the stability depends on the amplitude
of the disturbance. The analysis has been done at 70 m/s, a velocity for which the response to a
small perturbation is stable. If the perturbation is too high, the response is unstable. The driver
is able to restore the straight running condition till a certain threshold, which is found in Fig.
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Figure 8: Combination of simple car model and simple driver model - understeering configuration:
Estimation of the bifurcation longitudinal speed by applying a small initial condition (first
perturbation strategy). Data in Tab.1 and Tab.3.

9. We do not show the threshold for other speeds here because no additional information could
be provided. The impulse force starts after 1 s and lasts 1 s.
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Figure 9: Combination of simple car model and simple driver model - understeering configuration.
A slight increase of disturbance (second perturbation strategy) causes instability, u = 70 m/s.
Data in Tab.1 and Tab.3.

The simulations presented in Fig. 8 and in Fig. 9 have been done considering the understeer-
ing configuration. The corresponding investigations for oversteering configuration are reported
in Fig.10 and in Fig.11. The qualitative behaviour is equal to the one observed with understeer-
ing configuration, but the main difference is the speed range at which the system loses stability,
which is lower with respect to the one of understeering configuration. Similar theoretical results
concerning the subcritical Hopf bifurcation as a source of instability for the car & driver sys-
tem have been obtained in other papers [6, 5, 7, 19] and [20]. Qualitatively the results are here
confirmed.

In Fig. 12 different bifurcations are obtained by varying the driver parameters. In Fig. 12a it
can be noted that increasing the lag or delay time of the driver, the bifurcation speed decreases.
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Figure 10: Combination of simple car model and simple driver model - oversteering configuration:
Estimation of the bifurcation longitudinal speed by applying a small initial condition (first
perturbation strategy). Data in Tab.2 and Tab.3.
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Figure 11: Combination of simple car model and simple driver model - oversteering configuration.
A slight increase of disturbance (second perturbation strategy) causes instability, u = 15 m/s.
Data in Tab.2 and Tab.3.
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In Fig. 12b the Lyapunov coefficient is given as function of the proportional gain of the driver.
The Lyapunov coefficient describes the type of Hopf bifurcation. If the coefficient is positive,
the Hopf bifurcation is subcritical, if it is negative, the Hopf bifurcation is supercritical. It can
be seen that simply varying the proportional gain, the Hopf bifurcation changes its nature from
supercritical to subcritical. This is consistent with and substantiates what was found in [6], i.e.
either subcritical or supercritical bifurcation may occur, given a car, depending on the driver
parameters.
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Figure 12: Combination of simple car model and simple driver model. Influence of driver param-
eters. Data in Tab.1 and Tab.3.

Since many different bifurcations may occur, we wanted to investigate whether with more
complex vehicle systems, bifurcations phenomena do exist.

4 Bifurcation analysis - combination of complex car model and
complex driver model

The same simulations performed with the simple car/simple driver model combination were per-
formed with the complex car/complex driver model combination. We investigated the presence
of Hopf bifurcations by varying the longitudinal speed. Additionally, the presence of stable or un-
stable limit cycles was studied. This procedure has been done both considering an understeering
car or an oversteering one.

Referring to the understeering configuration, Fig. 13 shows the behaviour of the car & driver
system as speed increases. For longitudinal speeds lower than 75 m/s, the system is asymptoti-
cally stable towards the straight running condition. Increasing the speed, the lateral motion of
the car centre of gravity is less damped. The time response has a frequency content with only
one main component at 0.2 Hz. For longitudinal speeds equal or higher than 78 m/s, the sys-
tem is not asymptotically stable, actually it continues oscillating with a main component of the
frequency spectrum at 0.18 Hz. The motion is not periodic, but it looks chaotic. By inspection
of the spectrum of the yaw rate at a longitudinal speed equal to 100 m/s it can be noted that
the main component of the spectrum has a frequency that is decreased to 0.14 Hz and other
components with significant amplitudes are present at higher frequencies. The irregularity of the
time series and the shape of the frequency spectrum indicates that the motion is fully chaotic.
The amplitude of this chaotic motion is not very high, having a range of ±0.15 m of lateral
displacement with respect to the reference straight path. Nevertheless if this motion would be
replicated in a real environment, it would be sensed by the human driver and the driving experi-
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Figure 13: Combination of complex car model and complex driver model - understeering config-
uration: Estimation of the bifurcation longitudinal speed by applying a the second perturbation
strategy. Data in Tab.4. and in [2]

ence would be negatively influenced. In [20] a chaotic motion was found after a Hopf bifurcation
for a simple vehicle model, this occurrence is here confirmed for a complex car model.

After having estimated the bifurcation speed, the response due to different magnitudes of
perturbation is analyzed. Simulations have been performed at 70 m/s and 90 m/s, such values
of longitudinal velocity occur before and after the bifurcation speed respectively. The results are
reported in Fig. 14 and Fig. 15. Note that the scale of the vertical axis in these figures is much
wider that the one of Fig.13. In both of the tests there is a threshold value of the perturbation
that makes the type of response changing form stable to unstable (red curve in the figures).
On the other hand, in both of the cases small perturbations are absorbed by the system (blue
curves), either coming back to an equilibrium (Fig. 14) or to a small-amplitude attractor (Fig.
15).
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Figure 14: Combination of complex car model and complex driver model - understeering configu-
ration. A slight increase of disturbance (second perturbation strategy) causes instability, u = 70
m/s. Data in Tab.4. and in [2].

A bifurcation diagram like the one in Fig.6b cannot be obtained for the combination of
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Figure 15: Combination of complex car model and complex driver model. Understeering configu-
ration. A slight increase of disturbance (second perturbation strategy) causes instability, u = 90
m/s. Data in Tab.4. and in [2].

complex car model and complex driver model. Actually, the equations describing the complex
driver model are not available for commercial reasons. Nevertheless based on the simulations
results, the properties of the straight running equilibrium and the existence of stable or unstable
limit cycles can be estimated. This estimation is presented in Fig. 16 which corresponds to
Fig.6b. The oscillations approaching the bifurcation are less and less damped (Fig. 13, panels
a and b), after a small perturbation, the system evolves towards the equilibrium or a nearby
attractor (blue curve in Fig.14 and 15, respectively). We identify the type of bifurcation that
causes the loss of stability of the desired equilibrium as a supercritical Hopf bifurcation. After
this bifurcation, the new born periodic attractor undergoes a Neymark-Sacker bifurcation (in
which multiple armonics are created) and the invariant torus is finally destroyed giving rise to
the strange attractor identified in Fig. 13(c). We also conjecture the presence of an unstable
limit cycle that is sufficiently far -not involved- in the bifurcation. Such limit cycle should be
present, causing the response to be unstable if the perturbation is high enough (red curves in in
Fig. 14 and 15).
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Figure 16: Combination of complex car model and complex driver model. Understeering configu-
ration. Approximation of the maximum value of the lateral position in the bifurcation diagram.
Upper dashed line: amplitude of the unstable limit cycle.

The analysis concerning the oversteering configuration qualitatively matches the one obtained
with the simple car/simple driver model combination. In Fig. 17 the simulations obtained by
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providing a small perturbation to the system and increasing the longitudinal speed are reported.
The bifurcation speed is in between 30 m/s and 35 m/s, due to the change in the stability
properties of the straight running equilibrium. After the bifurcation, no stable motions has been
appreciated. The bifurcation is thus a catastrophic bifurcation. The presence of oscillations lead
us to classify the bifurcation as a subcritical Hopf.
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Figure 17: Combination of complex car model and complex driver model. Oversteering configu-
ration. Estimation of the bifurcation longitudinal speed. Data in Tab.4 and in [2]

.

We have found that stability can be lost during straight running by increasing the speed
for the complex car /complex driver model combination. Furthermore the presence of unstable
limit cycles has been confirmed. Additionally a chaotic motion has been highlighted.

5 Driving simulator

To validate the theoretical results, we performed experimental tests using a professional dynamic
driving simulator. The driving simulator, shown in Fig. 18, has been provided by Danisi Engi-
neering [1]. The simulator has 9 degrees of freedom and it can rotate and translate to reproduce
as accurately as possible the accelerations of the vehicle. The vehicle dynamics fidelity and the
driving experience has been validated by professional drivers. This is due to low latence of the
simulator, less than 20 ms. Results obtained using the driving simulator can be found in real
driving conditions with high probability. The vehicle model implemented in the simulator has
14 degrees of freedom and corresponds to the complex car model we presented previously.

6 Driving simulator experimental tests

The tests have been divided into two different sets, the first set considers the understeering
vehicle, the second set considers the oversteering vehicle. The loop is closed by an actual human
driver. The tests follow the same scheme used in the previous sections. First, the bifurcation
speed has been estimated by increasing the longitudinal speed while the system is excited by a
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Figure 18: Danisi Engineering dynamic driving simulator.

low magnitude perturbation (that is, the irregularity of the road surface). Secondly, the presence
of an unstable limit cycle has been investigated by doing multiple tests at constant speed with
perturbations of increasing amplitude.

The first vehicle configuration is understeering. The longitudinal speed has been increased
till 120 m/s, and no unstable behaviour has been observed. The results corresponding to a
longitudinal speed of 90 m/s are reported in Fig. 19. It can be noted that it is present a low
amplitude chaotic motion, as it was observed doing simulations with the complex car/complex
driver model combination. Unfortunately, in this case it is not possible to establish a speed range
in which the bifurcation occurs, since the perturbation (irregularity of the road surface) is always
present. Thus, understanding if the chaotic motion is caused by the road irregularity or by the
driver inability to follow a straight path requires a deeper investigation, using a different set-up in
the driving simulator. This is left to a forthcoming research which involves an accurate modeling
of ply-steer and conicity [23]. Understanding this difference can be important at a practical level
but the aim of this paper is to have a broad overview on the existence of bifurcations.

To investigate the existence of an unstable limit cycle, in Fig. 20 and 21 experimental tests
obtained by varying the perturbation magnitude at two different constant speeds are reported.
Keeping constant the longitudinal speed, and varying the magnitude of perturbation provided to
the system, the response of the car & driver system passes from being stable to being unstable.
Considering the state variables trends during the impulse force application (that starts at 1 s
and finishes at 2 s), it can be noted that, at the very beginning, the difference between the two
responses is not high, but it is sufficient to change the type of the subsequent time history.

This suggests the presence of an unstable limit cycle. Considering the resume of all the
experimental tests reported in Fig.22, it can be seen that the boundary between stable and
unstable tests follows the trend of the amplitude of the unstable limit cycle seen with simulations
in the previous sections, referring both to the simple car/simple model and complex car/complex
model.

Note that the ability of the human driver to adapt to the manoeuvre allows, after a transient,
the red curve to come back to the desired equilibrium state. From the tests at the simulator we
argue that an understeering vehicle driven by a human is not always stable, but its dynamical
response depends on the magnitude of the perturbation.

The second vehicle configuration is oversteering. To estimate the bifurcation speed, the lon-
gitudinal speed has been increased from 15 m/s, with low longitudinal acceleration in order to
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Figure 19: Experimental results. Understeering configuration. Chaotic motion, u = 90 m/s. Data
in Tab.4.

0 1 2 3 4 5 6

-50

-40

-30

-20

-10

0

10

U080 10000Nm

U080 11000Nm

(a) Lateral position

0 1 2 3 4 5 6

-60

-50

-40

-30

-20

-10

0

10

20

U080 10000Nm

U080 11000Nm

(b) Yaw angle

0 1 2 3 4 5 6

-10

-5

0

5

10

15

20

U080 10000Nm

U080 11000Nm

(c) Steering angle

Figure 20: Experimental results. Understeering configuration. A slight increase of disturbance
(second perturbation strategy) causes instability, u = 80 m/s. Data in Tab.1 and Tab.4.
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Figure 21: Experimental results. Understeering configuration. A slight increase of disturbance
(second perturbation strategy) causes instability, u = 110 m/s. Data in Tab.1 and Tab.4.
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Figure 22: Experimental results. Understeering configuration. Estimation of the unstable limit
cycle amplitude. Data in Tab.1 and Tab.4

make negligible the longitudinal tire forces. The results are reported in Fig. 23, where the longi-
tudinal speed time history is presented. The dynamical response of the system can be divided in
two kinds, one characterizing longitudinal speeds lower than 50 m/s and the second for higher
speeds. The first dynamical response is similar to the low amplitude chaotic motion seen with
the understeering configuration, possibly caused by road irregularities or by the driver. When
the speed of 50 m/s is passed the chaotic motion gets bigger amplitudes. The different types
of motion can be seen by comparing the frequency spectra at low and at high forward velocity,
reported in Fig. 23f. It is clear how the amplitudes of the frequency components increase in
all the frequency domain when the speed is higher than 50 m/s. Analyzing the time response,
beatments-like behaviour can be seen, caused by the presence of two main harmonic components
with similar frequency, one at 0.38 Hz and the second at 0.42 Hz. At 50 m/s a supercritical Hopf
bifurcation occurs. The human driver is able to control the vehicle after the bifurcation speed,
although it is not able to stabilize the system to the follow a straight path, since the motion is
chaotic.

In Fig. 24 the results of the experimental tests performed to investigate the presence of the
unstable limit cycle are reported. It can be seen that also in this oversteering configuration an
unstable limit cycle is always present. The amplitude of the cycle at the same speed compared
to the one of the understeering configuration is lower. To make the system unstable with an
oversteering car the magnitude of the perturbation that has to be provided is lower.

7 Conclusion

The paper deals with the safety of road vehicles during straight ahead running. Both an under-
steering and an oversteering car are considered. The study is both theoretical and experimental.
Different mathematical models of cars and drivers are considered. The combination of a simple
car model with a simple driver model allowed to establish a link between this paper with previous
theoretical studies presented in the literature. We manged to confirm that bifurcations during
straight ahead motion can be found. Such bifurcations are often of the Hopf kind. They are either
sub- or, less frequently, super-critical. The existence of bifurcations, namely Hopf bifurcations,
is found for both the simple car /simple driver model combination and for the complex car/
complex driver model combination. This qualitative correspondence seems an original contribu-
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Figure 23: Experimental tests. Oversteering configuration. Estimation of the bifurcation speed
and evaluation of the chaotic motion after the bifurcation. Data in Tab.2 and Tab.4.
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Figure 24: Experimental results. Oversteering configuration. Estimation of the unstable limit
cycle amplitude. Data in Tab.2 and Tab.4.
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tion produced in the paper. Such a correspondence is extremely useful for interpretation of the
simulations performed by a complex car/ complex driver model combination. The amplitudes
of the limit cycles and the critical speeds are different between the simple car /simple driver
model combination and for the complex car/ complex driver model combination. This, of course
depends on both the car model and the driver model. With such a comparison we have some-
how substantiated the previous papers in the literature that predicted bifurcations resorting to
simple models only. The experimental study involved the employment of a driving simulator in
which a human driver controlled the complex car model. The driving simulator does not seem
introducing negative effects able to influence the occurrence of bifurcations, actually the latence
of the simulator is more than one order of magnitude smaller than the driver’s time lag. Tests
at the simulator seem to be the only possible way to study experimentally the running safety
of cars. At the driving simulator bifurcations were found which correspond qualitatively to the
ones predicted either with the simple car / simple driver model combination or the complex
car / complex driver model combination. The correspondence that was found was reasonable
but not quantitatively accurate. In fact, especially the simple driver model seems inadequate to
capture the actual human driver behaviour. Additionally, the driver adapts to the car behaviour
so some differences were found between subsequent runs. The theoretical prediction made in
the literature with a simple car/simple driver model combination, referring to a chaotic motion
occurring after a subcritical Hopf bifurcation, was experimentally substantiated at the driving
simulator. The nature of bifurcations that have been found seem real, i.e. they could be found
on an actual car running straight ahead. It is a common belief that understeering vehicles are
(globally) stable independently from the driving velocity: our study shows that this is not the
case when the driver is in the loop. This result is confirmed both by theoretical results (using
either simple or complex models) and by experiments with the driving simulator. Additionally,
in the oversteering case, at speeds higher than the critical one, the motion is heavily chaothic.
The study has disclosed a wealth of possible behaviours of cars, all useful to provide designers
information on proper design of chassis systems, namely: tyres, suspensions, steering, powertrain
and, even, in general, vehicle architecture. The study will evolve in the future into considering
more complex driving manoeuvres like running into a bend or lane change. The existence or not
of subcritical Hopf bifurcations should be carefully investigated for automated or autonomous
vehicles.
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