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Abstract

At least in the far scrape-off layer of magnetically confined fusion plasmas transport is inter-

mittent and non-diffusive as observed by the appearance of plasma filaments. Transport codes

using effective diffusion coefficients are still the main workhorse investigating the scrape-off layer

and divertor regions. An effective perpendicular diffusion coefficient for intermittent filamentary

dominated perpendicular transport in the scrape-off layer is motivated by the telegraph equation,

describing an exponentially decaying correlated random walk. On short time scales the telegraph

equation describes ballistic transport of filamentary structures with a typical velocity ub and cor-

relation time τ . In stationary conditions the corresponding diffusion coefficient is given by u
2
bτ .

Since ub and τ can be determined experimentally it is proposed to use u2bτ as an input for modeling

or for interpretation of perpendicular transport in the far scrape-off layer.
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INTRODUCTION

A magnetically confined fusion plasma is surrounded by a region of open field lines in-

tersecting on material surfaces. This region is called the scrape-off layer (SOL). It governs

the heat load on the plasma facing components, the power and particle balance and the

impurity dynamics. The SOL region can be further divided into two regions, a near and a

far SOL [1]. The region close to the separatrix, called near SOL, exhibits gradient lengths

close to those in the edge of the confined region. The much flatter SOL profile away from the

separatrix is called the far SOL region. At least in the far SOL transport is determined to a

huge fraction by intermittently occurring coherent structures of enhanced plasma pressure

[2–5]. In the poloidal cross-section or drift-plane they appear compact and localized and

are therefore called plasma blobs. These structures are also field-aligned [6] and therefore

also called plasma filaments. Blobs are driven by the interchange instability [7, 8]. Due to

these blobs the transport shows non-Gaussian statistics with exponential tails and hence is

non-diffusive. Due to the rather flat gradients transport in the far SOL cannot be locally

generated [9] and the observed high fluctuation levels are due to non-local transport [10].

Transport codes like SOLPS [11, 12], EDGE2D [13], EMC3 [14], UEDGE [15] or

SOLedge2D [16] are still the main workhorses for interpretative and predictive studies in the

scrape-off layer (SOL) and divertor region of magnetically confined fusion plasmas. These

transport codes include atomic, molecular and plasma physical effects important for the

SOL and divertor region, but they do not treat turbulence self-consistently. Instead the

transport is approximated by spatially varying effective diffusion or convection coefficients.

This leads to problems illustrated in the following in simplified geometry. The scrape-off

layer in the poloidal cross-section of a tokamak is shown on the l.h.s. in Fig. 1. In this

simplified geometry the scrape-off layer is straightened out as shown on the r.h.s. in Fig. 1.

The straightened out scrape-off layer is bound by the opposite-facing solid surfaces (divertor

targets or limiters) at the top and the bottom and to the left by the confined plasma. The

problem reduces from three to two dimensions, the straightened out SOL exhibits a radial

coordinate across the SOL and a coordinate parallel to the field lines (z) from the inner

to the outer target. The evolution of the density in such a straightened out SOL can be

provided by
∂

∂t
n = D

∂2

∂r2
n− uz

∂

∂z
n+ S (1)
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using a diffusive ansatz for the perpendicular transport given by Γdiff = −D ∂
∂r
n. This

equation can be further simplified by approximating the parallel speed by the ion sound

speed u‖ ≈ cs and the parallel derivative by the parallel connection length ∂
∂z

≈ 1/L‖.

Neglecting sources and sinks, the gradient scale length λn = −n/ ∂
∂r
n can be approximated

by

λn =
√

DL‖/cs. (2)

For example in typical attached conditions in the near SOL ASDEX Upgrade tokamak

λn ∼ 10−2 m, cs ∼ 105 m/s and L‖ ∼ 102 m, hence D ∼ 10−1 m2/s.

FIG. 1: The straightened out scrape-off layer concept. The private flux region is indicated by PFR,

the outer midplane by OMP.

How to choose reasonable radial transport coefficients for the SOL? Bohm predicted a

diffusion coefficient of DB ≈ 0.06Te/eB, which only depends on magnetic field and tempera-

ture. The same holds for gyro-Bohm transport DgB = (ρs/λn)Te/eB with ρs =
√
miTe/eB.

The density SOL length λn changes from about 10 mm in attached conditions up to 45 mm

at the end of the formation of the density shoulder [17]. Assuming gyro-Bohm diffusion in

this simple SOL model Te ∼ λ3
n, a temperature increase by a factor 90 is needed to explain

such a transition. However, experimentally the temperature is not found increasing nearly

two orders of magnitude approaching detached conditions. Assuming the temperature un-

changed in the simple SOL model, this corresponds to a difference of a factor of 20 in the

corresponding diffusion coefficient.
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To reproduce the shoulder formation in simulations an enhanced diffusion coefficients have

to be assumed [18]. How can such a high diffusion coefficient be motivated? The broadening

of λn is accompanied by a strong increase in filamentary transport [17, 19], which is mainly

convective. Would a convective description of the SOL transport be more appropriate? In

a convective ansatz the transport is given by Γconv = Un. In a time independent approach

diffusion and convection are formally exchangeable by defining U =
√

Ddiffcs/L‖. In this

case convective and diffusive transport are equal Γconv = Γdiff. Their combination seems to

be described by convection or (preferred) diffusion only. Only a factor of four is needed in

the convective velocity to explain the observed change in λn during the density ramp up,

this factor of four is also observed in the experiment [20].

The radial velocity of the filaments (ub ∼ 100 m/s to km/s) are much too high for

effective convective velocities in the transport codes. The discrepancy is usually understood

by the fact that the blobs appear only intermittently and not continuously in the time

signal. Therefore, the filamentary transport should be weighted by the so-called blob packing

fraction fp (the blob frequency fb times the auto-correlation time τb of the blobs). Using

such a packing fraction the effective convective velocity is about two orders of magnitude

lower than the typical filament velocity. Once the blob packing fraction and the filament

velocity are known, the SOL length λn can be predicted [21]. Although the blob packing

fraction provides means to obtain reasonable diffusion coefficients or effective convective

velocities, there are at least two caveats using blob packing fractions. First, whereas the

density transported by the filaments is reduced by the packing fraction, this approach reduces

the speed U = fpub) instead. Hence, the ratio of the time scales of the perpendicular and

parallel dynamics are wrong. This intrinsically reduces the impact of the radial transport

as the parallel dynamics has more time to deplete the density upstream. Second, the blob

packing fraction depends on the blob generation process, which is highly non-linear and not

understood well. One describes an unknown (perpendicular transport) by another unknown

(blob packing fraction).

In the present contribution an effective diffusion coefficient describing non-diffusive fil-

amentary transport in the SOL is motivated by the telegraph equation. The telegraph

equation describes nonlocal, ballistic transport on the time scale of the plasma filaments

and, as desired for transport codes, it provides a diffusive transport on equilibrium time

scales. Furthermore, it is consistent with the correlation characteristics in the SOL. After
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introducing the telegraph equation in Sec. , its dynamic features are illustrated in Sec. . An

order of magnitude estimate of the effective diffusion coefficient is given in Sec. and an ex-

ample of an application with the transport code SOLPS-ITER is shown in Sec. . Summary

and conclusion are given in Sec. .

CORRELATION BASED DIFFUSION

Approaches to sub- and super-diffusion

In general turbulent transport is non-diffusive. In 1926 Richardson introduced the concept

of anomalous diffusion to describe turbulent transport [22]. One way to describe anomalous

diffusion is by generalized random walks, defined in terms of non- Gaussian jump and waiting

time probability distributions. Unlike typical diffusion, where the mean square displacement

scales linearly with time 〈∆x〉2 ∼ Dt, anomalous diffusion [23] differs from this linear scaling

and 〈∆x〉2 ∼ tν . In this generalized random walk framework the process is classified diffusive

for ν = 1, sub-diffusive for ν < 1 and super-diffusive for ν > 1. An alternative approach

to anomalous diffusion is provided by a fractional diffusion equation ∂β

∂tβ
n = ∂α

∂xαDn where

the parameters α and β do not have to be integers. The process can be classified by their

ratio µ = β/α and is diffusive for µ = 0.5, sub-diffusive for µ < 0.5 and super-diffusive

for µ > 0.5. Fractional diffusion has been studied in magnetically confined plasmas before

[24–26], reduced resistive MHD turbulence has been shown to be super-diffusive [24], plasma

core turbulence is close to diffusive, but becomes sub-diffusive in the presence of shear flows

[26]. Where fractional calculus is interesting for interpretation, fractional derivatives are

difficult to integrate in the numerical architecture of the already existing transport codes.

Concept of correlation based diffusion

A third concept of anomalous diffusion is correlation based diffusion [27]. From the

continuity equation
∂

∂t
n+ ur

∂n

∂r
= S (3)

where the transport is represented by the second term on the l.h.s. and S represents possible

sources and sinks. To study the impact of fluctuations, density and velocity are decomposed
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in background and fluctuating quantities n = n0 + ñ and ur = ur0 + ũr. In Ref. [27]

the background is obtained by averaging 〈·〉 the continuity equation over the ensemble of

realizations. In the following, we will neglect the contribution of the background radial

velocity ur0, which is usually expected to be small in a tokamak. In the original work [27]

the effect of ur0 can be found. The evolution of the background density is

∂

∂t
n0 = −〈ũr

∂ñ

∂r
〉+ S. (4)

Turbulent transport Γ = 〈ũrñ〉 is given by the second term. It does not vanish, if density and

radial velocity fluctuations are correlated. The time evolution of the density perturbation is

∂

∂t
ñ = −ũr

∂n0

∂r
. (5)

This equation can be solved by integration

ñ(x, t) = −
∫ t

0

ũr(t
′)
∂n0

∂r
dt′ (6)

which can be inserted in the background equation (4)

∂

∂t
n0 =

∫ t

0

〈ũr(t)ũr(t
′)〉∂

2n0

∂r2
dt′ + S, (7)

here

C(t, t′) = 〈ũr(t)ũr(t
′)〉 (8)

is the auto correlation function of the radial velocity. Linear correlation can be represented

by C(t, t′) = C(t− t′). Therefore, transport depends on the auto-correlation function

∂

∂t
n0 =

∂2n0

∂r2

∫ t

0

C(t− t′)dt′ + S. (9)

The first term on the r.h.s. can be identified as the transport term

∂

∂r
Γ =

∂2n0

∂r2

∫ t

0

C(t− t′)dt′. (10)

Short- and long-time correlations

A different type of correlation function leads to a different transport phenomenology. In

the case of short time correlation represented by the delta correlation function

C(t− t′) = Dlδ(t− t′)

6



Eq. (9) reduces to
∂

∂t
n0 = Dl

∂2n0

∂r2
+ S (11)

which recovers the diffusion equation.

In the case of long-time correlations with C(t) = C0 being constant Eq. (9) is

∂

∂t
n0 = C0

∂2n0

∂r2

∫ t

0

dt′ + S. (12)

Differentiating with respect to t provides a wave equation

∂2

∂t2
n0 = C0

∂2n0

∂r2
(13)

with the coefficient [C0] = m2/s2. We assumed the sources and sinks being constant in time,

otherwise ∂S/∂t has to be added. This equation describes super-diffusion. As a hyperbolic

equation it can describe nonlocal effects.

Telegraph equation

The auto-correlation function of the fluctuations in the SOL can be well fitted by an

exponentially decaying function as shown for example in TCV [28], JET [29] and COMPASS

[30]. The exponential correlation function is given by

C(t) = C0 exp(−|t|/τ) (14)

which inserted into (9) yields

∂

∂t
n0 =

∫ t

0

C0 exp(−|t− t′|/τ)∂
2n0

∂r2
dt′ + S (15)

Differentiating this equation with respect to t yields

∂2

∂t2
n0 = −1

τ

∫ t

0

C0 exp(−|t− t′|/τ)∂
2n0

∂r2
dt′ + C0

∂2n0

∂r2
(16)

where it is assumed that the background ∂2n0

∂r2
and the sources and sinks S are rather constant

within the time τ . The second term on the r.h.s. comes from the upper boundary of the

integral (Leibniz integral rule) C0 exp(−|t− t|/τ)∂2n0

∂r2
d
dt
t. Eliminating the integral in (15) by

substituting
∫ t

0

C0 exp(−|t− t′|/τ)∂
2n0

∂r2
dt′ = −τ

∂2

∂t2
n0 + τC0

∂2n0

∂r2
. (17)
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yields
∂

∂t
n0 + τ

∂2

∂t2
n0 = τC0

∂2n0

∂r2
+ S (18)

which is the telegraph equation. The telegraph equation has been used before to study

nonlocal heat transport in the core of fusion plasmas [31–33] and zonal flow propagation [34].

With respect to heat transport the telegraph equation is also called Cattaneo equation. If

sources and sinks depend on time a term τ ∂S
∂t

have to be added to Eq. (18). As no significant

effects of neutrals on the blob dynamics is expected [35], this term will be neglected in the

following.

Compared to the diffusion equation (11), the term τ ∂2

∂t2
n0 corresponds physically to the

response time of the flux to the gradient. In the case of diffusion the transport is directly

related to the gradient Γ = −D ∂n0

∂r
, which corresponds to an infinitely rapid response. By

introducing a finite response time Γ = −D ∂n0

∂r
− τ ∂Γ

∂t
the density evolution is given by

∂n0

∂t
= −∂Γ

∂r
= D

∂2n0

∂r2
+ τ

∂

∂r

∂Γ

∂t
. (19)

From ∂n0

∂t
= −∂Γ

∂r
follows ∂

∂r
∂Γ
∂t

= ∂2n0

∂t2
which can be substituted for the last term in Eq. (19)

to recover Eq. (18).

The telegraph equation shows different behavior on different time scales [36]. On long

time scales (t ≫ τ) the telegraph equation (18) reduces to the diffusion equation. The

effective diffusion coefficient is Dtele = τC0. The correlation coefficient is C0 = ũ2
r (see

Eq. (8)). On short time scales (t ≪ τ) the telegraph equation shows wave-like behavior. It

can describe nonlocal transport. The telegraph equation (18) can be also written as

∂2

∂t2
n0 +

1

τ

∂

∂t
n0 = C0

∂2n0

∂r2
. (20)

Compared to the wave equation (13) the propagation velocity is
√
C0 = ũr, which is the

typical radial velocity of the fluctuations.

Illustration of the dynamics of the telegraph equation

One dimensional simulations of the telegraph equations have been carried out in simplified

geometry with a finite difference upwind scheme to illustrate its dynamics. Von Neumann

boundary conditions have been used, where the boundary conditions have been optimized

to reduce the effects of the boundary on the main domain. The parameters have been
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adapted to typical mid-SOL conditions (Te = 15 eV, L‖ = 20 m, deuterium ions) in the

sheath dissipative regime of blob propagation. An auto-correlation time of τ = 20 µs with

a blob velocity of ub = 250 m/s have been used, corresponding to an analytical gradient

fall-off length of λn = 3.1 cm. To mimic the intermittency of the SOL transport, the

source of a Gaussian shape in radial direction and in time at the separatrix is randomly

activated with an exponentially distributed waiting time distribution. The simulation result

is shown in Fig. 2. This is similar to the stochastic framework developed in Refs. [37, 38]. In

Ref. [37] one point in space is described by an uncorrelated train of pulses. These pulses are

ejected in time following a Poisson process with an exponential distribution of amplitudes.

The model [37] captures the non-Gaussian features of the probability distribution function

well. In Ref. [38] the spatial profile in the SOL is related to the dynamics of filaments

based on a statistical description of filamentary motion. We make the same distinction

between background and profile as done in Ref. [38]. The background is the environment

the fluctuations propagate in, which is not the same as the profile. The profile is given by

the time average of the thermodynamic quantity (in this case the density), consisting of

the combined background and average of the filaments. The pulses ballistically propagate

through the domain. The propagation velocity is exactly the predefined radial blob velocity

(Fig. 3). During propagation the pulses decay in time due the parallel drainage of the blobs.

Here, there is basically no background, the resulting profile is essentially composed only of

the filaments.

FIG. 2: Density evolution (in 1019 m−3) simulated the telegraph equation. The source is stochas-

ticity activated leading to pulses propagating ballistically through the domain.

The time averaged profile of the simulation is shown in Fig. 4. Even though the dynamics

is nonlocal and ballistic, therefore not diffusive at all, the resulting gradient fall-off length
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FIG. 3: Temporal magnification of pulse propagation as shown in Fig. 2. The pulse propagation

is constant across the radius and thus can be directly restructured.

of the profile (not the background) agrees very well with the analytically calculated one

λn =
√

DL‖/cs with the effective diffusion coefficient of D = τu2
b . Therefore it captures the

ratio of the time scales of the perpendicular and parallel dynamics quite well.

FIG. 4: Time averaged profile (shown in blue solid) and gradient scale length (shown in orange

solid) of the simulation results. The time averaged profile agrees with the analytical solution

(shown by the dashed red line) using an effective diffusion coefficient.

10



EFFECTIVE FILAMENT DIFFUSION COEFFICIENT FOR THE SOL

Order of magnitude estimate

In the telegraph-type transport model, the effective diffusion coefficient on the large time

scale results from a correlated random walk. The underlying microscopic mechanism is based

on super-diffusive, ballistically propagating structures with a typical radial velocity appear-

ing on a short typical time scale. Such a picture is consistent with the SOL observation.

It also provides a reasonable order of magnitude estimate. Typical radial velocities in the

SOL are in the order of 102–103 m/s, typical correlation times in the order of 10 µs. This

corresponds to typical SOL diffusion coefficients in the order of 0.1–10 m2/s which are also in

the typical range used in transport codes. In general the radial velocity and auto-correlation

time estimated by the auto-correlation of the radial velocity fluctuations should be used. A

decomposition in filaments and turbulence without filaments should not be done. However,

it can be assumed that the filaments will determine the auto-correlation function. In such

a case approximating the typical radial velocity by the filament velocity ũr ≈ ub and the

typical time scale by τ ≈ δb/ub seem reasonable approximations. This results in an effective

diffusion coefficient of Dtele = ubδb. In the typical sheath connected regime appearing in

attached conditions the blob velocity is predicted to decrease with the blob size ub ∼ δ−2
b

[7], hence Dtele ∼ δ−1
b . As the temperature does radially not change much in the SOL the

typical blob size δb does not change much either, the typical effective diffusion coefficient

is around Dtele = 1 m2/s for typical blobs of about δb = 1 cm with a radial velocity of

ub = 100 m/s. In the inertial regime ub ∼
√
δb hence Dtele ∼ δ

3/2
b . Here we observed blobs

with sizes up to δb = 8 cm with velocities up to vb = 800 m/s (not at the same time) and

corresponding effective diffusion coefficients up to Dtele ≈ 50 m2/s. Therefore, filamentary

transport, interpreted as the stationary limit given by an effective diffusion coefficient of

Dtele = u2
bτ , can account for the factor of 20 observed in density ramp-up experiments.

Example for transport code simulations

Next an example of an application is shown. ASDEX Upgrade conditions are simulated

using the code SOLPS-ITER [12]. The procedure is similar to the one published in Ref. [39].

Two cases are considered, one at low density and one with the characteristic density shoulder

11



at elevated density. In SOLPS-ITER the diffusion coefficient D has to be set manually. This

has been done for a first guess. The simulation provides the particle transport ΓSOLPS =

D(dn/dr)SOLPS and the profile (dn/dr)SOLPS, which may differ from the experimental profile.

To match the simulated and experimental profile an iterative scheme has been applied. For

the next step i + 1 the diffusion coefficient at every radial location has been set to Di+1 =

− ΓSOLPS,i

(dn/dr)exp
. The procedure required only a few steps until it converges to the experimental

profile. These are shown in Fig. 5. The corresponding particle diffusion coefficients D are

around the order of one m2/s in the case of low density, where D increases from 0.4 m2/s

to above one m2/s across the SOL (Fig. 5a). At elevated densities the particle diffusion

coefficient is much higher, in particular around the density shoulder it approaches D = 40

m2/s (Fig. 5b). In the low density case the auto correlation times τ have been measured

between 10 and 50 µs, which would correspond to blob velocities vb =
√

D/τ between 100

and 200 m/s. In the high density case the auto correlation time scatters between 50 and 250

µs corresponding to blob velocities between 400 and 900 m/s. These values are in reasonable

agreement with the ones reported in literature [19].

SUMMARY AND CONCLUSION

Due to plasma filaments or blobs the transport in the scrape-off layer of tokamaks is not

diffusive. It is intermittent, showing a strongly non-Gaussian distribution. It can also not be

parametrized (even locally) by diffusion and convection [41]. Turbulent transport is non-local

[10], which means the transport is not a function of the local quantities at a given position

but depends on the quantities at a different radial position. Transport codes approximating

turbulent transport via effective diffusion or convection intrinsically can not treat turbulent

transport self-consistently. But transport codes include the complex magnetic geometry,

neutral and impurity physics, radiation from excited states, wall recombination or even

atomic and molecular chemistry. Codes treating the turbulence self-consistently usually do

not treat these effects very well. Codes like GRILLIX [42] are currently in development

to close this gap. Another possibility is to extend transport codes by reduced models of

turbulent transport [43, 44]. For the time being effects of complex magnetic geometry,

neutral and impurity physics are of fundamental importance for divertor physics and can

only be studied by transport codes. The present contribution should guide the treatment of
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FIG. 5: Density profiles (blue solid lines) simulated by means of SOLPS-ITER of a low (a) and

high density (b) case measured in ASDEX Upgrade. The experimental data points shown by the

red triangles are obtained from the integrated data analysis IDA [40]. The simulated diffusion

coefficients are shown by the black dashed line.

turbulent transport in the current implementation of such transport codes.

If SOL turbulence must be described by a diffusion coefficient, what would be the best

way to describe it? Here, it is proposed to use the typical velocity ub and correlation time τ

of the plasma filaments in the scrape-off layer to estimate the effective diffusion coefficient

D = u2
bτ . These quantities are often directly available from the experiment and be used

as an input in the transport code. This effective diffusion coefficient is the diffusive limit

of ballistic transport modeled by the telegraph equation, describing a correlated random

walk with exponential correlation function (also a feature of SOL transport). The effective

diffusion coefficient is based on the auto-correlation function and therefore it is an intrinsic

statistical quantity. The transport corresponds to the averaged filamentary transport. It
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is only valid for time scales much larger than the auto-correlation time, therefore it can be

used for stationary solutions of the transport code, but not to study the impact of individual

filaments. Using the typical blob velocity ub and size δb to define a characteristic time δb/ub

and using these to determine a characteristic blob diffusion coefficient

D = δ2b/τ = δ2b/(δb/ub) = ubδb = u2
b(δb/ub) = u2

bτ (21)

provides the same result if the auto correlation time is equal to this characteristic time

τ = δb/ub (blob correspondence principle).

Most of the important physical effects are now hidden in these characteristic quantities

(ub, τ, δb), which can be deduced from theoretical models [7, 8, 45] or directly from experi-

mental measurements [46, 47]. Blob velocity and auto-correlation time change strongly with

the divertor conditions [17, 19]. The models [7, 8, 45] or measurements [46, 47] describe

the blob dynamics at the outboard midplane, which is expected to have the strongest con-

tribution to the blob induced perpendicular transport. A higher degree of sophistication is

possible. The blob dynamics strongly depends on the magnetic curvature [7, 8, 45], which

varies with the ballooning (roughly the poloidal) angle. The influence of the varying mag-

netic geometry with the ballooning angle on the blob dynamics has been investigated in

Ref. [48]. Simulations of the filament motion in realistic tokamak geometry can be found in

Ref. [49]. The impact of the X-point on the blob dynamics has been studied in Ref. [50].

Therefore, the models can provide the characteristic quantities (ub, τ, δb) and therefore also

the corresponding diffusion coefficient D = u2
bτ even on the full 2D or 3D grid.
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