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A genetic algorithm for the hybrid flow shop scheduling with unrelated

machines and machine eligibility
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This paper presents a genetic algorithm to solve the hybrid flow shop scheduling problem to minimize the
total tardiness. Practical assumptions as unrelated machines and machine eligibility are considered. The
proposed algorithm incorporates a new decoding method developed for total tardiness objective, which
is able to obtain tight schedule meanwhile guarantee the influence of the chromosome on the schedule.
The proposed algorithm has been calibrated with a full factorial design of experiment, and compared to
several calibrated state-of-art algorithms on 450 instances with different size and correlation patterns of
operation processing time. The results validate the effectiveness of the proposed algorithm.

Keywords: Scheduling; Hybrid flow shop; Genetic algorithm.

1. Introduction

Flow shops are manufacturing environments in which a set of jobs are to be processed in a series of
stages. Hybrid flow shop (HFS) is a generalization of flow shop where a stage can have two or more
parallel machines (Pinedo, 2012). This duplication of machines can introduce flexibility, increase
capacities and avoid bottleneck if some operations are more time-consuming. Thus, the HFS is a
more common production system and it is applied in many industrial fields such as the electronics,
paper, textile, pharmaceutical, and sheet metal industry.

The scheduling problem in HFS is a decision-making process which concerns how to allocate
available production resources to tasks over given time periods, aiming at optimizing one or more
objectives, such as makespan and due-date related performance. Such problem is not easy to solve.
The two-stage HFS problem is already NP-hard on minimizing the makespan (Gupta, 1988), multi-
stage HFS scheduling problems with additional system assumptions are NP-hard in strong sense.
Though difficult, the HFS scheduling problem still attracts many attentions due to its strong
engineering background and practical relevance to industry. Recent and comprehensive reviews on
the HFS scheduling problems are available in Ruiz and Vázquez-Rodŕıguez (2010) and Ribas et al.
(2010).

In this paper, we are interested in HFS with unrelated parallel machines and machine eligibility
constraints. More specifically, unrelated machine assumption indicates that the parallel machines
in a stage are not identical but could be different in terms of processing speed or manufacturing
technologies applied; machine eligibility constraint indicates that not all machines in a stage are
able to process any job visiting the stage due to certain limitations. These two characteristics are
of great importance in modern industry, but less considered by the literature (Ruiz and Vázquez-
Rodŕıguez, 2010). In Figure 1 it is shown an example of 4-stage HFS in sheet metal manufacturing
environment with unrelated machines and machine eligibility constraint. The system is composed
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Figure 1. An example of hybrid flow shop with unrelated machines and machine eligibility constraint

of 4 stages: blanking, bending, welding and assembling. Metal sheets enter the blanking stage as
raw material and are cut in the laser cutting machine or punching machine into 2D parts. Then,
they are delivered to the bending stage to be bent into specific 3D parts, after which welding and
assembling process are performed to obtain the final products. In the blanking stage, cutting with
the punching machine is usually faster but it can handle only jobs of simple shapes; laser cutting
machine is able to cut complex shapes but not adaptable for all materials. In the bending stage,
machines are unrelated because of different toolsets, work range, etc. All these realistic features
render a HFS model with identical parallel machines not adaptable here.

On the other hand, most HFS studies focus on problems with throughput related measures, such
as minimizing makespan or mean flow time (Choi et al., 2005; Ruiz and Vázquez-Rodŕıguez, 2010).
However, in practical cases throughput may not be the most important objective. In manufacturing
environments such as make-to-order, a late order implies a penalty in the form of loss of goodwill
and the magnitude of the penalty depends on the importance of the order and the tardiness of the
delivery (Pinedo, 2012). Clearly, in such circumstance managing the on-time delivery of the orders
has more importance than simply improving the throughput of the system. As a matter of fact,
optimizing due-date related metrics in schedules such as number of tardy orders, total tardiness
and maximum lateness is quite important for the manufacturing companies.

To contribute to the gap between scheduling literature and practical applications, in this paper
we consider the scheduling problem in a HFS with unrelated machines and machine eligibility
constraints, and the objective is to minimize the total tardiness. A genetic algorithm (GA) with
efficient and innovative components is proposed to solve the problem. The rest of this paper is
organized as follows: Section 2 briefly describes the problem and gives a standard notation for the
problem. Section 3 provides a literature review. Then, the GA components and the proposed GA
procedure are described in Section 4. In section 5 numerical experiments are used to calibrate the
GA procedure, and a comparison between the proposed GA and the best-performing algorithms
in the literature is reported. Section 6 provides conclusion and discuss future research works.
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2. Problem description

There are n jobs to be processed at m production stages sequentially from stage 1 to stage m. The
i-th stage consists of mi unrelated machines Mi1,Mi2, . . . ,Mimi

, and for at least one stage mi > 1.
Each job j consists of a sequence operations Oij , i = 1, 2, . . . ,m. The execution of Oij requires one
machine out of an eligible machine set Eij at stage i. pilj is the processing time of Oij on machine
Mil, and Cij is the completion time of Oij . Any job, say j, has a release date rj = 0 and a nonzero
due date dj . The objective is to minimize the total job tardiness

∑
Tj , which is calculated by:

∑
Tj =

n∑
j=1

max{Cmj − dj , 0} (1)

Followings are other assumptions we use:

• Machines are reliable and no machine failures can happen
• Buffers of machines have unlimited capacities
• Each machine can process only one job at a time, and each job can be processed on only one

machine at a time
• Transportation times of job between machines are neglected
• Machine setup times are considered as sequence-independent and included in the processing

time.

The scheduling problem can be denoted using a triplet α|β|γ notation derived from Vignier et
al. (1999) and Ruiz and Rodriguez (2010). In this notation, α defines the shop configuration, β
describes the constraints and assumptions and γ indicates the objective function. Consequently,
the described scheduling problem is denoted as:

FHm, ((RM (k))mk=1)|Mj |
∑

Tj

Here, FHm indicates a HFS with m stages; (RM (k))mk=1 represents that each stage consists of
multiple unrelated machines; Mj represents machine eligibility;

∑
Tj indicates the total tardiness

objective.

3. Literature review

The literature review can be divided into three parts. First, we review different methods solving
HFS scheduling problems with a focus on genetic algorithm. Second, we review papers tackling
HFS problems with due-date related objectives. Last, research considering unrelated machines
assumption and machine eligibility constraint is reviewed.

Methods for HFS scheduling problem. In literature, methods for HFS scheduling problem can
be categorized as exact and heuristic. Exact methods, including mathematical programming and
branch & bound, solve the problem to optimality. However, due to the lack of efficient lower bounds,
branch & bound approach is limited to simple shop configurations; also, exact methods require long
time for solving large instances. Both facts limit the industrial application of exact methods. A
practical idea is to search for quasi-optimal solution in a reasonable time. For this reason, the trend
of solving HFS scheduling problems with heuristic, especially metaheuristic, is increasing.

In the past decade, genetic algorithm (GA) has gained the widest applications. Xiao et al.(2000)
applied a basic GA to minimize makespan in a basic m-stage HFS. Afterwards, research efforts
were made to improve the GA building blocks (like representation, crossover and mutation) to
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enhance the performance on dedicated HFS problems. Kurz and Askin (2004) implemented a
different representation, named random keys representation, in the proposed GA. Urlings and Ruiz
(2010) compared the performances of GAs when different representation schemes are used. They
showed that compact, indirect representations outperformed verbose representations. Oĝuz and
Ercan (2005) proposed a new crossover operator in GA and showed the superiority over state-of-
art crossover operators. Engin et al. (2011) implemented a new mutation operation able to make
use of critical job information to obtain high quality neighborhoods. In some studies, like Tavakkoli
et al.(2009) and Chamnanlor et al. (2015), different search techniques are incorporated into the
GA framework to improve the algorithm performance.

Besides GA, various types of metaheuristics were proposed for HFS. These include well-known
algorithms like simulated annealing (Naderi et al., 2009), tabu search (Wang and Tang, 2009),
particle swarm optimization (Liao et al., 2012), ant colony system (Ying and Lin, 2006), immune
evolutionary algorithm (Zandieh et al., 2006), iterated greedy algorithm (Urlings et al., 2010),
artificial bee colony (Cui and Gu, 2015; Li et al., 2016). In recent years, there emerges a trend
to apply new metaheuristics like water flow-like algorithm (Pargar and Zandieh, 2012), firefly
algorithm (Marichelvam et al., 2014a), cuckoo search algorithm (Marichelvam et al., 2014b) to
solve HFS problems. Indeed, different metaheuristics represent different search patterns in the
solution space. However, due to the existence of the No-Free Lunch (NFL) Theorem (Wolpert and
Macready, 1997), it is more important on how to make use of problem structure information to
improve the search procedure than just applying new general purpose optimization methods to
HFS problems.

HFS problems with due-date related objective. Compared to the abundant researches on
makespan, due-date related objective receives less attention. Dispatching rules are heuristics pri-
oritizing the job based on static or dynamic information. Due to their simplicity and robustness,
dispatching rules were widely applied in early practice and preferred when tackling large size prob-
lems. As early as in Paul (1979), several ad-hoc dispatching rules were implemented for minimizing
the average tardiness and number of tardy jobs for a two-stage HFS in glass container industry.
The shortest processing time based rule was shown to be the most efficient. Adler et al.(1993)
developed a scheduling system based on dispatching rules for supporting paper bag factories. Hun-
sucker and Shan (1992) compared six simple dispatching rules in a HFS with identical machines,
and concluded the superiority of the first-in-first-out rule for the mean tardiness criterion. Voß
and Witt (2007) considered a large size scheduling problem in a German steel manufacturer, and
proposed dispatching rules to minimize the weighted tardiness.

Heuristics with higher complexities were proposed as well, these organize a deterministic and
structural path to construct a schedule, which are known as constructive heuristic. Botta (2000)
developed six heuristics for minimizing maximum lateness in a HFS with job precedence constraints
and time lags. Lee et al. (2004) proposed a heuristic for minimizing total tardiness in m-stage HFS
with identical machines. The algorithm constructs the schedule for a bottleneck workstation first,
based on which the schedule of other workstations is constructed. Later, by extending the famous
NEH approach (Nawaz et al., 1983), Choi et al. (2005) proposed several heuristics for minimizing
total tardiness in a HFS with reentrant lots. Chen and Chen (2009) considered a HFS with unrelated
machines and a bottleneck stage, they proposed two bottleneck-based heuristics with three machine
selection rules to minimize total tardiness.

Metaheuristics are proposed to get better solution than deterministic heuristics by randomizing
the search routine. Jungwattanakit et al. (2009) implemented and compared several methods in-
cluding dispatching rule, constructive heuristic and metaheuristics for minimizing the weighted sum
of makespan and number of tardy jobs in a HFS with unrelated machines. They showed that, first,
metaheuristics generally outperform constructive heuristics, which outperform dispatching rules;
second, longest processing time (LPT), NEH and simulated annealing (SA) are the best methods
in their categories for the tested cases. The efficiency of SA is shown also in Naderi et al. (2009).
The authors proposed a SA for HFS with sequence-dependent setup and transportation times to
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minimize total completion time and total tardiness, respectively. Two neighborhood structures as
well as a simple local search were implemented in the proposed SA. The proposed SA was reported
to be superior to several algorithms including the aforementioned GA in Kurz and Askin (2004)
and the immune evolutionary algorithm in Zandieh et al (2006). On the other hand, Li et al.
(2015) proposed a GA to address the HFS scheduling problem with batch processing machines to
minimize makespan and total weighted tardiness, respectively. Unlike conventional approach, the
proposed GA searches for the best combination of dispatching rules used for schedule construction.
The proposed approach was compared to the CPLEX solver on small cases and showed better
performance under limited computational time (6 hours), but a sound comparison to state-of-art
algorithms was not provided. Another metaheuristic, named Iterated greedy algorithm (IG), has
been successful applied to many different scheduling problems like permutation flow shop (Ruiz
and Stützle, 2007) and unrelated parallel machines (Fanjul-Peyro and Ruiz, 2010). Recently, Pan
et al. (2017) proposed four IG-based methods to minimize a convex combination of job tardiness
and earliness and obtained state-of-art results.

Unrelated machines and Machine eligibility. Actually, in most of the works tackling realistic
problems, unrelated machines and machine eligibility constraint are always taken into consider-
ation. These are like the container handling systems in Chen et al. (2007), the cardboard boxes
production system in Alfieri (2009) and the printed circuit-board assembly lines in Yaurima et al.
(2009). However, from a large perspective of HFS research, the assumption of unrelated machines
is considered in merely 11 % of the more than 200 papers reviewed in Ruiz and Vázquez-Rodŕıguez
(2010).

The scheduling problem in unrelated parallel machines environment, which could be considered
as a special case of HFS with only one stage, is already very hard. Generally, the unrelated parallel
machine scheduling problems can be decomposed into a partitioning or machine selection problem
and a transportation or scheduling sub-problem on each machine. To give an example, we refer to
a recent research of Şen and Bülbül (2015), in which the problem was solved by an approximation
approach using preemptive relaxation and Benders decomposition. While in many HFS studies,
the partitioning and scheduling sub-problem are tackled in a less exact but simpler way, with
mainly two methodologies: (i) The partitioning problem is solved by certain machine selection
rule, while the decision variables of the scheduling sub-problem are optimized in a higher level
search technique. For example, in Ruiz and Maroto (2006), the earliest finishing time rule is used
to assign jobs to machines and the job sequence on machine is derived from a job permutation
which is encoded and searched in the proposed GA. Similar strategy was adopted in Yaurima et al.
(2009) and Rashidi et al.(2010). (ii) The decision variables of both the partitioning and scheduling
problems are encoded and optimized in search technique, as in Chen et al. (2007).

In summary, to the best of our knowledge, the problem considered in this paper is seldom tackled
by GA in the literature.

4. Genetic algorithm

We proposed a genetic algorithm to solve the problem defined in Section 2. Genetic algorithm
(Holland, 1992) is a well-known search technique used for combinatorial optimization problems.
The genetic algorithm mimics the genetic evolution procedure which results in strong individuals
adaptive to the environment. It works with a set of encoded solutions to the problem, called
population. Each solution is represented by a string of genes, called a chromosome. The evaluated
objective value of a solution is named the fitness. To evolve, the current population generate the
offspring through some genetic operators. First, a selection mechanism picks some chromosomes
from the current population to be the parents. The basic idea is that stronger chromosome, i.e., with
better fitness, should be selected with higher probability to propagate their genes. Then, parents
generate the offspring via a crossover process, in which the genes of two parents are exchanged and
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Table 1. A summary of encoding & decoding methods used in related papers

Literature Encoding method Decoding method Machine selection rule Objective

Oguz and Ercan, 2005 job permutation list scheduling first available machine Cmax

Rashidi, 2010 random key representation list scheduling earliest finishing machine Cmax and Tmax

Pan et al, 2017 job permutation list scheduling first available machine
∑
wj(Tj + Ej)

Ruiz and Maroto, 2006 job permutation permutation scheduling earliest finishing machine Cmax

Naderi, 2009 random key representation permutation scheduling earliest finishing machine
∑
Cj ,

∑
Tj

inherited by the offspring. After, a mutation operator may occur to introduce genetic variations into
the offspring. Finally, the current population is replaced by the offspring with certain generational
scheme. The evolution continues generation by generation, until a stopping criteria is met.

4.1. Encoding and decoding

4.1.1. Common methods

Encoding is to represent a schedule by a string of decision variables, or saying, chromosome. A
schedule, from the most general perspective, can be defined by setting the start and finish times
for each operation on the machine to which it is assigned. This allows an infinite solution space
in making a schedule. Since we are optimizing regular objectives like makespan and tardiness, all
operations are expected to be started as early as possible. This makes the schedule a semi-active
schedule (Pinedo, 2012), in which no operation can be completed earlier without changing the
processing order on any of the machines. In such schedules, the decision variables are reduced to
the machine assignment decision of each operation, and the sequence of operations on each machine,

with a solution cardinality of
∏m
i=1

(n+mi−1)!
(mi−1)! (Urlings et al., 2010). Obviously, a direct encoding

scheme involving such large solution space may render an inefficient searching procedure. Actually,
Urlings and Ruiz (2010) studied the GA with different encoding schemes and demonstrated that the
more detailed the encoding, the worse the results. Indeed, indirect encoding employing surrogate
heuristics in the decoding procedures for completing the solution is usually much efficient than a
direct encoding. For this reason, most of the researches use the following indirect encoding scheme:
a solution is encoded as a job permutation π = {1, 2, . . . , n}.

Decoding is to derive a schedule from the encoded chromosome. It is notable that the encoding
scheme described above does not contain all required decision variables for constructing a HFS
schedule. These missing variables, e.g, machine selection decisions, are actually determined by some
heuristics during the decoding procedure, for this reason, decoding method acts an important role
for the solution quality. List scheduling (LS) is a decoding method adopted in many researches (as
shown in Table 1), it applies as follows: (1) In the first stage, create a job list L1 = π, then pick
out jobs from L1 sequentially and schedule them as early as possible on the machine selected by a
machine assignment rule, eg., the first available machine. (2) in the remaining stages, the procedure
is the same as stage 1 except that Li(i > 1) is created by sorting the jobs non-decreasingly by
their completion time in the precedent stage i − 1, in other words, the jobs are scheduled by the
First-come-first-served (FCFS) rule. Another widely used decoding method is the Permutation
scheduling (PS), as adopted in Ruiz and Maroto (2006). PS is similar to LS except that the job
lists in each remaining stage are equal to π as well, i.e., Li = π,∀i. Table 1 summarizes the decoding
methods used in related papers.

Though widely applied, both LS and PS have drawbacks. In scheduling, one may want to handle
hot jobs, which are the urgent orders from important clients and should be finished as soon as
possible. When constructing the schedule with LS, the only way to handle the hot jobs is to
arrange them in the head (left part) of the chromosome so that they can get scheduled earlier. Yet
this is only for stage 1 but makes no guarantees for the subsequent stages where jobs are queued
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Table 2. A simple 2-stage scheduling problem

Stage 1 Stage 2
Job Eligible machines Processing time Eligible machines Processing time Due-date

1 {M11,M12} {2, 2} {M21} {4} 9
2 {M11,M12} {2, 2} {M21} {3} 12
3 {M11,M12} {5, 5} {M21} {2} 8

by the FCFS rule. Indeed, with the propagation characteristic of LS, one can hardly control the
schedule property by manipulating the chromosome, which leads to, from the small aspects, the
difficulty to handle urgent jobs, and from a larger perspective, the loss of opportunities to reach
some promising zones in the solution space. Such we call the controllability problem. In contrast,
with PS we have no such problem because we schedule the jobs in each stage by the same sequence
π. Yet, this leads to another problem: unnecessary machine idleness. More specifically, when the
sequence that jobs exiting from the stage i− 1 is different from π, to schedule the jobs at the stage
i by sequence π we have to delay the starting time of some jobs, which may lead to unnecessary
machine idleness. Indeed, ignoring the dynamic properties during the schedule construction results
in less tightness of the schedule. This we call the tightness problem.

To show controllability and tightness problem, a simple 2-stage problem is given as example in
Table 2. We first obtain a solution (chromosome) = {3, 1, 2} using the Earliest due date heuristic,
which is known for its simplicity and effectiveness for due-date related problem. This algorithm
sorts the jobs non-decreasingly by their due-dates. Then, we decode this solution with different
decoding methods. The case of LS is shown in Figure 2(a). Due to different job finishing times in
stage 1, the job processing sequence changes to {1, 2, 3} in the second stage. The priority given to
the urgent job 3 is lost, and for this reason job 3 is late. The case of PS is shown in Figure 2(b).
To schedule in stage 2 by the sequence π, the starting time of job 1 and job 2 are delayed, and
machine M21 remains unnecessarily idle in the time period of [2,5], which results in the tardiness
of job 1 and job 2, as well as a large makespan.

4.1.2. Proposed method

In this section we propose a decoding method for total tardiness objective. To mitigate the control-
lability and tightness problem, first, the proposed decoding method builds the job sequence in each
stage respecting to the chromosome information and meanwhile, the decoding method avoids the
introduction of unnecessary machine idleness for a tight schedule. The proposed decoding method
is implemented as follows.

A solution is represented by a job permutation as π = {1, 2, . . . , n}. The decoding method is
based on simulation. For each iteration g we have a system clock tg. An operation finishing event is
denoted by E = {t,Mil}, in which t is the operation finishing time on Mil. A list L is used to store
all operation finishing events. Each job j has a priority value derived from π, as ρj = {j′ : π(j′) = j}.
Each machine Mil has an infinite buffer Bil, a variable ail indicating the next machine available
time, i.e., the time machine turns from busy to idle (if the machine is idle at tg then ail = tg), and
a binary variable bil indicating the machine is busy (1) or idle (0). For better explanation, three
functions are defined below, each of them is composed of several basic operators. These functions
will be called iteratively in the decoding procedure.

• Job assign(j, i) → Mil∗ : Assign job j to the buffer of Mil∗ in stage i. Mil∗ is the eligible
machine selected by the least expected workload rule. In mathematical form that is, Bil∗ :=
Bil∗ + {j}, where

l∗ = argminl∈Eij
{
∑
j′∈Bil

pilj′ + pilj + (ail − tg)},
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(a) List-scheduling

(b) Permutation scheduling

(c) Dynamic scheduling

Figure 2. Schedules constructed by different decoding methods using the same chromosome given by EDD heuristic. Notations:

Tavg, Lmax and MS are the average tardiness, maximum lateness and makespan of the schedule, respectively.

the first term is a summation of processing time of the jobs already waiting in the machine
buffer before assigning job j, second term is the processing time of the assigned job, and third
term is the remaining time before the machine becomes available.
• Machine seize(Mil)→ [j∗, Cij∗ ]: Machine Mil seizes the job j∗ from the buffer to process. j∗

is selected according to priority. That is, Bil := Bil − {j∗}, where

j∗ = argminj∈Bil
{ρj}.

Record the expected completion time of job j∗ as Cij∗ := tg + pilj∗ , and update ail := Cij∗ ,
bil := 1.
• Machine release(Mil) → j: machine Mil releases the job j under processing and returns to

idle state. That is, bil := 0 and ail := tg.

The pseudo codes of the decoding method is as in Algorithm 1. The main characteristics of
the proposed decoding method can be summarized as: 1, whenever a job becomes available for
being processed, assign it to the machine buffer according to a machine selection rule; 2, whenever
a machine becomes available for processing a job, process a job in its buffer selected by their
priorities. Moreover, the adopted machine selection rule takes into consideration not only the factor
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Algorithm 1 Proposed decoding method

1: Input: chromosome π;
2: Output: Ttot
3: Set g := 1, tg := 0, Bil := ∅, ∀i, l, L := ∅; Initialize ρj := {j′ : π(j′) = j},∀j;
4: for k = 1 : n do
5: perform Job assign(π(k), 1)→M1l∗ ;
6: if b1l∗ = 0 then
7: perform Machine seize(M1l∗)→ [j∗, C1j∗ ]; create and add E = {C1j∗ ,M1l∗} to L ;

8: while not all jobs are completed do
9: Find in L the event E ∗ = {t,Mil} with the earliest occur time, ties are broken by selecting

the event whose job has the highest priority. Set the clock tg := t and remove E ∗ from L ;
10: perform Machine release(Mil)→ j;
11: if i < m then
12: perform Job assign(j, i+ 1)→Mi+1,l∗ ;
13: if bi+1,l∗ = 0 then
14: perform Machine seize(Mi+1,l∗)→ [j, Ci+1,j ]; add E = {Ci+1,j ,Mi+1,l∗} to L ;

15: if Bil 6= ∅ then
16: perform Machine seize(Mil)→ [j∗, Cij∗ ]; add E = {Cij∗ ,Mil} to L ;

17: g := g + 1;

18: Calculate Ttot with Eq.(1);

of unrelated machines but also the dynamic status of the eligible machines, aiming at balancing the
machine workload meanwhile obtaining a small upper bound for the finishing time of the assigned
job.

On one hand, the proposed decoding method allows the chromosome influencing the job sequence
in every stage. On the other hand, unnecessary machines idleness is prevented thanks to the
machine seize mechanism. In a word, the proposed method has better controllability than LS, and
better tightness than PS. However, it should be noted that the time complexity of the proposed
decoding method is higher than LS and PS. Given the problem size parameters n, m and h which
represent the number of jobs, number of stages and maximum number of parallel machines in
a stage respectively, the time complexity of PS, LS and the proposed decoding algorithm are
O(mnh), O(mn(log(n)+h)) and O(mn(n+h)), respectively. Featured by its dynamic construction
procedure, the proposed decoding method is named as dynamic scheduling (DS).

We apply the DS to decode the EDD solution for the simple 2-stage problem described in Table 2.
As shown in Figure 2(c), the idle period [2,5] of machine M21 is avoided, meanwhile job 3 precedes
job 2 in stage 2 due to a higher priority indicated by the chromosome. No job is tardy in this case,
and a tighter schedule is obtained.

4.2. Initial population

Initial population plays an important role in the solution quality of the GA. In many studies, the
NEH algorithm (Nawaz et al,1983) is used to generate initial solution. However, when using NEH to
handle total tardiness, selection difficulties arise as the sub-schedules are giving identical objective
values (Choi et al., 2005). Furthermore, the computation efforts increases rapidly as the number
of jobs. Therefore, it is not always sure allocating computational resource to the NEH approach is
worthy.

For simplicity, we avoid NEH but use two simple heuristics. The initial population is constructed
by Psize individuals as Pop = {π1, π2, . . . , πPsize}. All individuals are randomly generated except
π1 and π2 are by earliest due-date heuristic (EDD) and minimal slack heuristic, i.e., sorting the
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jobs in ascending order of their due-dates and slacks, respectively;

4.3. Selection, crossover and mutation

The aim of selection procedure is to select from the population a set of parents for generating the
offsprings. This set is also known as the mating pool. Two most used selection schemes in GA
are the roulette wheel selection (Oguz and Ercan, 2005), and the tournament selection (Ruiz and
Maroto, 2006). These two selection procedure will be tested in the calibration section and the best
one will be chosen.

The goal of crossover is to obtain better chromosomes by exchanging information contained
in two parents. Many crossover operators were proposed for permutation encoded chromosomes.
According to result of Ruiz and Maroto (2006), the Similar Block 2-Point Order Crossover (SB2OX)
and the conventional Partial Mapped Crossover (PMX ,Goldberg and Lingle, 1985) are efficient for
permutation solution space. The one-point order crossover (OPX, Michalewicz, 1996) and two-point
order crossover (TPX, Michalewicz, 1996) are also widely used. Another promising operator is the
order-based crossover (OBX, Yaurima et al., 2009), by homogeneously sampling order information
from both parents, this operator compromises between the exploitation and exploration abilities.
More specifically, it is based on a randomly generated binary mask of the same length of the
chromosome. When the values of the mask are equal to one, the corresponding genes in parent1

(parent2) are copied to child1 (child2) by maintaining their same position. After, the lacking genes
in child1 (child2) are filled with those in parent2 (parent1) by maintaining their relative orders.

Mutation introduces genetic variability into the population to increase the diversity of popula-
tion and to avoid early convergence to local optimum. Common mutation operators used for job
permutations are:

• insert : A randomly selected job is picked out and inserted to another randomly selected
position.
• interchange: Two randomly selected positions are chosen and the corresponding jobs are

interchanged.
• swap: It is a specific case of interchange, where two consecutive positions are selected and

the jobs are swapped

The effects of different crossover and mutation operators will be tested later.

4.4. Local search

Local search procedures are widely used in genetic algorithms as well as in other metaheuristics to
improve solutions. We implement a simple local search based on the insert operator as follows:

• Step1: Import the current solution π. Set maximum evaluation number Neval, and initialize
the evaluation counter neval := 0;
• Step2: Generate a new solution with the insert operator: π′ = insert{π}. If the new solution

is better, replace π with π′.
• Step3: Update the evaluation count neval = neval+1. If neval ≥ Neval, terminate the procedure

and output the current solution π; otherwise go back to Step2.

The local search procedure will be used to improve the best solution in the population. It will
be triggered once in every Gl generations. Neval values the computational resource allocated to
the local search. Generally, the longer the job permutation, the greater it should be. Thus we set
Neval = intls ∗ n where n is the number of jobs and intls is named the intensity factor of local
search.
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4.5. Restart

A restart procedure is used to avoid premature convergence in the population and search for further
improvements. The restart procedure is based on the one used in Ruiz et al (2006), we add a new
mutation operator to increase the gene diversity of the new population. At each generation the
best objective function of the population is stored. When the best objective value has remained
not improved for Gr consecutive generations, the restart procedure is triggered:

• Step1: Sort the Psize chromosomes in the population in ascend order of their objective values.
• Step2: Skip the first 20% chromosomes, i.e., chromosome 1, 2, . . . , d0.2 · Psizee.
• Step3: The remaining 80% of chromosomes are discarded and re-generated in the following

way:
◦ The chromosomes d0.2 ·Psizee+ 1, . . . , d0.4 ·Psizee are generated by copying a randomly

chosen chromosome from the first 20% chromosome. This copied chromosome is mutated
once with the insert operator.
◦ The chromosomes d0.4 ·Psizee+ 1, . . . , d0.6 ·Psizee are generated by copying a randomly

chosen chromosome from the first 20% chromosomes. This copied chromosome is mutat-
ed with a new operator as follows. Randomly select half of genes from the chromosome,
then, re-arrange these genes randomly while keeping unchanged the position and order
of those genes which are not selected. For example, given a chromosome {3, 4, 6, 2, 1, 5},
let the selected genes be {4, 6, 1}, re-arrange them and we have a new order {6, 1, 4}, so
the chromosome mutated becomes {3, 6, 1, 2, 4, 5}.

◦ The remaining d0.6 · Psizee+ 1, . . . , Psize chromosomes are generated randomly.

4.6. Termination criteria

The termination criteria applied for the proposed GA approach is the maximum CPU time. When
the specified CPU time have elapsed, the GA stops.

4.7. The GA procedure

With the components described before, the GA procedure is applied in steps:

• Step1: Set GA parameters: population size Psize, crossover probability pc, mutation prob-
ability pm, local search frequency Gl, local search intensity factor intls, no-improvement
generations for triggering restart procedure Gr.
• Step2: Create an initial population Pop with Psize chromosomes.
• Step3: Decode each chromosome in the population and evaluate the objective function value.
• Step4: Create a mating pool with Psize chromosomes using the selection procedure.
• Step5: Reproduction. Set i := 1. While i < Psize do:

◦ Select two parents πi, πi+1 in the mating pool. Generate a random variable rand in [0, 1],
if rand < pc: generate two children with [child1, child2] = CrossoverFunction(πi, πi+1);
otherwise let child1 = πi and child2 = πi+1.
◦ Generate rand in [0, 1], if rand < pm: let child1 = MutationFunction(child1). Repeat

the same procedure for child2.
◦ Decode and evaluate child1 and child2.
◦ Let πworst be the chromosome which has the worst fitness value in Pop. If child1 has

better fitness value than πworst, and child1 is not included in Pop, replace πworst with
child1. Repeat the same procedure for child2.
◦ Update i := i+ 2.

• Step6: Check local search condition. If the condition is met, trigger the local search procedure
to improve the best solution in the population Pop.
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• Step7: Check restart condition. If the condition is met, perform the restart procedure. Eval-
uate the new constructed population.
• Step8: Check termination condition. If the condition is met, end the procedure and output

the best solution in the population; otherwise go back to step 4.

5. Numerical results

5.1. Test instance

Since no benchmark problems are found in the literature for the problem considered in this paper,
to calibrate the proposed algorithm and to compare its performance to some state-of-art algorithms,
we generate the test instance as follows.

An instance is defined by 3 parameters as P = {n,m, I}. n and m indicate the number of jobs
and number of stage, respectively. I indicates the pattern used for generating operation processing
times. The common pattern is to generate the processing time for each operation independently
using a uniform distribution. However, this does not fit for the practical situation where correlations
may exist between the operation processing times. We consider two types of correlations: machine-
based and job-based. On one hand, the machine characteristics and conditions may have impact on
the job processing time, hence jobs visiting the same machine may have certain level of correlation
in their processing times. On the other hand, processing time of operations of the same job could
be correlated due to some common attributes like size of the order, quality requirements. As
shown in Semeraro (1983), in cases of different machine-based and job-based correlation levels, the
performance ranking of scheduling heuristics could be different. For a sound comparison, we define 5
different patterns. When I = 1, no correlation is involved. The processing time of each operation is
given as DU(1, 99), where DU(x, y) returns a randomly integer in range [x, y]; when I = 2 or I = 3,
machine-based correlation is involved. Here, pilj = cmac · p∗il + (1− cmac) ·DU(1, 99), ∀i, j, l ∈ Eij ,
where p∗il ∈ [1 99] is the machine-based processing time common for all jobs processed on machine
Mil, and cmac is the machine-based correlation factor set as 0.25 and 0.75 in these two cases,
respectively; when I = 4 or I = 5, job-based correlation is involved. Here, pilj = cjob · p∗j + (1 −
cjob) ·DU(1, 99), ∀i, j, l ∈ Eij , where p∗j ∈ [1 99] is the job-based processing time common for all
operations of job j, and cjob is the machine-based correlation factor set as 0.25 and 0.75 in these
two cases, respectively.

For any instance, the job release dates are set to 0, and the due dates are generated using the
method of Choi et al.(2005). Given two parameters TF and DR called tardiness factor and due
date range respectively, the due date is calculated by: DU(P (1−TF −DR/2), P (1−TF +DR/2)),
where P is a lower bound on the makespan calculated by

P =

m∑
i=1

{min
j
{
i−1∑
k=1

min
l∈Ekj

pklj}+ (1/mi)

n∑
j=1

min
l∈Eij

pilj + min
j
{

m∑
k=i+1

min
l∈Ekj

pklj}}/m.

We set TF = 0.1, DR = 0.8 for a proper simulation of real situations. In each stage the number of
parallel machines is DU(2, 4). For each job, not all but at least one machine in a stage is eligible
to process it. The probability that a machine is not eligible to process a job is set as 20%.

5.2. Algorithm Calibration

It is well recognized that the components and parameter values significantly affect the algorithm
performance. In this section we aim at calibrating the components and parameters of the proposed
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algorithm. The algorithm involves in total 9 parameters to be calibrated, which are listed below
with their levels:

• Selection: two levels (Tournament selection, Roulette wheel selection)
• Crossover: five levels (OBX, PMX, SB2OX, OPX, TPX)
• Mutation: three levels (Insert, Interchange, Swap)
• Population size (Psize): four levels (30, 70, 110, 150)
• Crossover probability (pc): three levels (0.8, 0.95 and 1)
• Mutation probability (pm): three levels (0.00, 0.03 and 0.05)
• Restart (Gr): three levels (30, 50 and ∞)
• Local search frequency (Gl): three levels (5, 10 and ∞)
• Local search intensity factor (intls): two levels (1 and 5)

To simplify the calibration experiment we separate it into two phases: first, we calibrate and
select the best components (selection, crossover, mutation) for the GA; then, the rest of parameters
are calibrated.

5.2.1. Calibration phase 1: GA components

With a full factorial experimental design,the three factors of GA components results in 2∗5∗3 = 30
algorithms. Each algorithm is evaluated by fixing other GA parameters as follows. We set pc = 0.95,
pm = 0.05 to guarantee the triggering of crossover and mutation operators, a moderate Psize = 50
is used; since we are focusing on the performance of genetic operators here, the restart and local
search are not applied by imposing Gr = ∞ and Gl = ∞. Each algorithm is tested with a small
set of 48 instances created by the method of section 5.1 with parameters as follows. I = 1, and
the number of jobs and machines are chosen randomly from the sets n ∈ {15, 30, 45, 60, 75} and
m ∈ {4, 8, 12}, respectively.

The termination criterion is the maximum elapsed CPU time t = 10000+τ×n2×(m/2) ms, where
τ = 5. It is composed by a basic term plus another term increasing with the problem size for a better
search of the enlarged solution space. Each algorithm is evaluated by 5 independent replications on
each test instance. To compare different algorithms, the common measure for makespan criteria is
the relative percentage increase (RPI), as in Pan and Ruiz (2012). Yet for tardiness criteria, RPI
is no longer adaptable because it may provide a division by zero when the schedule has no tardy
jobs (Naderi et al., 2009). For this reason we use the relative deviation index (RDI) as the response
variable, which is defined as follow:

RDI =
Algsol −Minsol
Maxsol −Minsol

· 100

where Algsol is the objective value of the current algorithm on the given instance, Maxsol and
Minsol are the worst and best objective value obtained by any of the algorithms in the comparison,
respectively. Specially, in the case that the Maxsol and Minsol are equal to each other, the RDI will
be 0 for all the algorithms. The experiments are implemented in Matlab 2016a on a PC with Intel
XEON E5-2699 v4 CPU (22 cores, 2.2 GHZ) and 256 GB of RAM. To increase algorithm running
speed, all decoding methods (which accounts for more than 90% of algorithm running time) are
converted to C++ codes and called in Matlab environment.

The results of calibration experiments are analyzed by ANOVA. The ANOVA table in Figure 3
shows that all GA components have significant effects on the performance with significance level
0.05. According to the F-values, crossover and mutation are much influential than the selection
scheme, which can be seen in the main effect plot in Figure 4(a) as well. The interactions between
the GA components are less important due to a much smaller F-value. To select the best levels, we
use Tukey test on each factor with a familywise significant level equal to 0.05. As in Figure 4(b),
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Figure 3. ANOVA table of the calibration of GA components. In the model we include the test instance as a factor to reduce

the noise and to increase the R-sq value. The normality assumption is accepted with a Anderson-Darling test of 0.01 significant

level.

(a) Main effect plot (b) Tukey test table. Means that do not share a letter

are significantly different.

Figure 4. Calibration results for the GA components

RouletteWheel and OBX are statistically better than the other levels in their group; for mutation,
Insert and Interchange are not statistically different but both outperform Swap. As a consequence,
we choose RouletteWheel, OBX and Insert as the GA components.

5.2.2. Calibration phase 2: GA parameters

The factors of Psize, pc, pm, Gr, Gl and intls result in a total of 4 × 3 × 3 × 3 × 3 × 2 = 648
different configurations for the proposed GA. The same approach in phase 1 is used to calibrate
these parameters.

As shown in the ANOVA table (Figure 5), all GA parameters have significant effects. Although
the normality assumption of ANOVA is violated (Figure 6(b)), which may due to the large amount
of data or the effect of RDI measure, the F-test is still considered robust. Among the GA parameters,
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Figure 5. ANOVA table of the calibration of GA parameters. The normality assumption is rejected by a Anderson-darling
test of 0.01 significant level.

Psize, pc and pm are the three most influential factors according to the F-values. This is also seen in
the main effect plot (Figure 6(a)). Some significant interactions between factors are observed. To
analyze the most important ones, we focus on those with F-values larger than 50 (only Psize ∗Gl
satisfies this condition) and report the interaction plot in Figure 6(c). As shown, the interaction
effect between Psize and Gl is obvious at Psize = 30 whilst becomes negligible when we select more
promising levels of Psize such as Psize = 110.

As shown in Figure 6(a), the optimum value of Psize is obtained at 110. Indeed, increasing Psize
introduces more diversity in the population which benefits the evolution, yet trade-off exits between
the population size and number of generations when the computational budget is bounded, this
explains the “bath-curve”. In terms of crossover and mutation, higher pc yields better performance,
while the application of mutation deteriorates the performance.

The effects of restart and local search are less obvious. Removing both of them from the GA
framework does not seem to deteriorate the performance too much. However, keeping the restart as
a diversification mechanism and the local search as a intensification mechanism maintains the po-
tential effectiveness of the algorithm to handle larger or more complex instances beyond the calibra-
tion. This is shown in the extra experiments where we compared the versions of GA with/without
restart and local search. The main effect plot suggests a moderate restart and local search frequency,
as well as a low local search intensity.
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(a) Main effect plot (b) Standardized residual plot of the Anderson-Darling test
for Normality

(c) Interaction plot between Psize and Gl

(d) Tukey test table. Means that do not share a letter are significantly different.

Figure 6. Calibration results for the GA parameters

The previous qualitative analysis yields the following candidate levels: Psize = 110, pc = 1,
pm = 0, Gr = 30, Gl = 10 and intls = 1. To provide quantitative supports, we use Tukey test
on each factor with familywise significant level equal to 0.05 (Figure 6(d)). As shown, for any
factor, the candidate level is significantly better than the other levels. It should be noted that
applying Tukey test requires normality assumption. In our case, although the normality test fails,
the violation is not too much severe as seen in Figure 6(b). For this reason, the results of Tukey
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Table 3. Calibrated factors of the state-of-art algorithms

Algorithm Parameters

GA Ruiz Psize = 20 Pc = 0.5 Pm = 0.02 Gr = 25
SA Naderi∗ C = 150 D = 30 E = 10
ABC Cui MR = 0.8 CR = 0.2 IT = 3 d = 3
GA Li ps = 48 pc = 0.9 pm = 0.18

∗In SA Naderi, factor C represents number of temperatures between
the initial and final temperature; D represents number of neighborhood
search in each temperature; E represents the initial temperature

test are not exact but still make sense to certain extent. In summary, we set Psize = 110, pc = 1,
pm = 0, Gr = 30, Gl = 10 and intls = 1.

5.3. Performance comparison

5.3.1. Adaptation and calibration of state-of-art algorithms

After calibration, the performance of the proposed GA algorithm is to be verified by comparing
it to some state-of-the-art algorithms. However, as we have seen in section 3, no algorithms are
found for the considered problem and thus direct comparison cannot be carried out. To overcome
this difficulty, we have first selected several novel algorithms for HFS scheduling problem, then we
have applied some adaptations on the algorithms for using them on the considered problems.

Five state-of-art algorithms are selected, including one deterministic heuristic NEH EDD (Ruiz
et al., 2008); two efficient metaheuristics, i.e., GA by Ruiz and Maroto (2006), denoted as GA Ruiz,
and SA by Naderi et al.(2009), denoted as SA Naderi; and two recent proposed metaheuristics, i.e.,
ABC by Cui et al. (2015), denoted as ABC Cui, and GA by Li et al.(2015), denoted as GA Li. The
adaptations are as follows. First, GA Ruiz and ABC Cui were proposed for makespan objective,
we modify their objective function to total tardiness. Then, NEH EDD was proposed for standard
flowshop, we modify it to be adoptable to hybrid flow shop by replacing its decoding method with
the one used in GA Ruiz, i.e., PS. For this reason, the algorithm is actually NEH EDD(PS). Besides,
in the decoding method used in ABC Cui, jobs are assigned to the first-available machine that can
process them. Yet according to Ruiz et al.(2006), this rule is not efficient in the environment where
unrelated machines exist. For a fair comparison, we modified the machine selection rule of ABC Cui
by applying the one used in GA Ruiz and SA Naderi, i.e., jobs are assigned to the machine which
is expected to finish them at the earliest time. At last, the random key representation adopted in
SA Naderi was found not adaptable when machine eligibility constraint exists, we replace it with
the common job-based representation.

To decide the parameters for these state-of-art algorithms, we perform the calibration procedure
used in section 5.2 for each of them except NEH EDD which is parameter free. More specifically,
for each algorithm we generate a full factorial DOE using the factors and levels taken from its
original paper, then we evaluate each configuration of the algorithm with the same instance set
used for calibrating GA Yu. Note that we calibrate only the factors with numerical levels, whilst
the settings of factor indicating the algorithm components are set as in the original paper, such
as the factors related to the selection of crossover operator and encoding method. The calibrated
factors of each algorithm are reported in Table 3.

5.3.2. Comparison with state-of-art algorithms

The performance of the algorithms are compared on 5 groups of instances created using the method
of section 5.1. Each instance group corresponds to a different value of I, i.e., in group 1 I = 1, group
2 I = 2 and so on. In each group, instances are generated using all combinations of n ∈ {20, 50, 100}
and m ∈ {5, 10, 20}. For each combination of n and m, 10 instances are generated. So in a group
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there are 3 · 3 · 10 = 90 instances, and in total 90 · 5 = 450 instances are created. Each algorithm
runs 5 replications on each instance. For fair comparison, all algorithms stop after a CPU time
of t = 10000 + τ × n2 × (m/2) ms, where τ is set as 10, except the deterministic algorithm
NEH EDD(PS).

The comparison results on each instance group can be seen in Tables 4-8. Besides the 5 state-
of-art algorithms we include several variants of GA Yu, which will be introduced and discussed
in the next section. Each cell in the table contains a mean value and a standard deviation (in
the parenthesis) of the RDI value. Note that the mean value is the average of the 5 replicates for
each one of the 10 instances on each n ×m combination, so 50 values are averaged at each cell,
and the standard deviation is calculated using these 50 values. Underlined value is the minimum
value among GA Yu and the 5 state-of-art algorithms, while bold value is the minimum value of
all 9 algorithms. Given that RDI reveals only the relative rank of the algorithms, we provide also
the results of RPI in Table 9-13, where RPI = Algsol−Minsol

Minsol
· 100. We remove all instances where

Minsol = 0 (only found in one instance), and cap the RPI values at 1000 to avoid outliers.
Table 4 shows that when no correlation exists among the operation processing time, GA Yu pro-

vides the best result in all n×m combinations cases. Moreover, GA Yu has the minimum averaged
standard deviation of RDI, this shows the stability of the GA Yu performance. As for the other
algorithms, SA Naderi is shown to be the second best algorithm, followed by ABC Cui,GA Ruiz
which have similar averaged RDI, whereas the rankings of these three algorithms deviate with
the problem size. Since GA Ruiz and SA Naderi both use NEH EDD for initialization, it is of
no surprise that they outperform NEH EDD, yet the difference between them decreases with the
increase of problem size. The results of GA Li are consistently worse in almost all cases. Indeed,
GA Li is implemented without any efficient initialization scheme. Moreover, the strategy of this
algorithm is to find out the best combination of heuristics to construct a schedule rather than the
detail decision variables in the schedule. Such strategy shows no advantages in the cases at hand,
but could be more efficient for larger problem with hundreds or thousands of jobs.

From Tables 5-8 it can be seen that, with the presence of different type and extent of correlation
effects, the proposed GA Yu is still the best algorithm in all cases. In contrast, GA Li performs the
worst in almost all cases. As in Figure 7, the performance of GA Yu and GA Li are quite stable
regardless of the correlation patterns. For other algorithms, their performances fluctuate but their
rankings maintain. It is noticed that gap of averaged RDI between GA Yu and the second best
state-of-art algorithm SA Naderi is more than 30 when I = 5. This gap seems large but may
only due to the effect of RDI. As seen in Table 13, the gap between averaged RPI of GA Yu and
SA Naderi is only 12.33.

Not only the correlation pattern, problem size is also an influential factor of the algorithm per-
formance. As shown in Figure 8 and 9, the performance of ABC Cui deteriorates as number of jobs
n increases whereas NEH EDD has the opposite trend. The performance of other algorithms are
less affected by n. On the other hand, as the number of stages increases, ABC Cui and NEH EDD
gives relatively better performance. In summary, GA Yu has stable performance in terms of both
n and m.

Table 4. Performance comparision results on instance group 1 (I= 1, random): mean and standard deviation of the RDI

indicator
Instance SA Naderi GA Ruiz ABC Cui NEH EDD GA Li GA Yu GA Yu(PS) GA Yu(LS) GA Yu(INEH)

20x5 23.49 (12.19) 43.21 (22.52) 17.26 (10.03) 86.84 (17.79) 70.47 (22.69) 8.54 (7.79) 16.34 (11.51) 10.31 (7) 9.08 (7.16)
20x10 29.94 (8.41) 45.73 (15.39) 23.36 (13.24) 71.08 (21.55) 74.03 (19.27) 7.09 (5.8) 21.9 (7.12) 12.81 (10.43) 8.65 (7.4)
20x20 50.52 (13.89) 57.53 (16.47) 19.62 (9.56) 78.93 (20.88) 78.91 (15.89) 11.25 (6.91) 41.92 (13.84) 15.36 (7.55) 9.53 (6.55)
50x5 27.43 (7.04) 37.02 (13.08) 48.58 (12.4) 63.41 (13.38) 83.43 (16.37) 8.37 (5.8) 13.58 (6.26) 15.71 (7.98) 10.74 (7.05)
50x10 30.72 (6.17) 34.76 (6.22) 36.8 (7.55) 41.95 (5.37) 81.2 (14.82) 6.74 (5.54) 17.73 (6.36) 12.32 (5.95) 6.84 (4.98)
50x20 39.31 (6.38) 39.82 (6.92) 37.26 (6.5) 47.3 (7.92) 85.88 (12.85) 7.02 (5) 26.78 (8.62) 9.52 (5.64) 7.67 (6.03)
100x5 14.36 (8.71) 24.45 (11.04) 46.91 (21.27) 36.37 (15.14) 72.61 (18.88) 10.05 (5.68) 7.31 (4.67) 10.9 (7.66) 8.77 (6.39)
100x10 25.36 (7.32) 32.08 (10.64) 39.63 (9.44) 40.05 (13.68) 85.47 (11.93) 7.39 (5.24) 11.92 (6.11) 9.46 (6.85) 7.08 (4.83)
100x20 27.79 (5.16) 28.18 (6.99) 37.49 (5.36) 30.61 (6.77) 86.36 (10.32) 6.22 (4.62) 16.77 (5.88) 9.62 (4.57) 6.96 (4.98)

Average 29.88 (8.36) 38.09 (12.14) 34.1 (10.59) 55.17 (13.61) 79.82 (15.89) 8.07 (5.82) 19.36 (7.82) 11.78 (7.07) 8.37 (6.15)
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Table 5. Performance comparision results on instance group 2 (I= 2, Machine-based correlation 0.25): mean and standard

deviation of the RDI indicator
Instance SA Naderi GA Ruiz ABC Cui NEH EDD GA Li GA Yu GA Yu(PS) GA Yu(LS) GA Yu(INEH)

20x5 18.03 (7.46) 37.13 (11.38) 25.48 (12.29) 65.43 (22.94) 72.92 (21.64) 8.44 (7.49) 11.08 (8.59) 19.41 (14.73) 11.35 (9.55)
20x10 23.87 (8.76) 35.48 (19.17) 24.02 (10.36) 64.2 (21.38) 76.9 (16.8) 10.64 (8.26) 13.43 (8.99) 15.15 (11.29) 9.17 (7.3)
20x20 28.8 (12.81) 42.56 (12.37) 17.47 (5.91) 59.27 (14.47) 85.19 (12.41) 7.47 (4.72) 19.05 (12.82) 11.25 (5.97) 7.3 (5.36)
50x5 26.45 (12.06) 42.85 (18.94) 44.64 (18.15) 68.12 (21.86) 80.8 (16.52) 9.6 (5.78) 10.94 (10.63) 12.89 (9.34) 12.15 (9.43)
50x10 32.07 (6.64) 37.36 (8.09) 36.98 (8.89) 46.09 (12.01) 84.28 (12.71) 8.03 (6.07) 17.33 (9.56) 11.12 (8.28) 8.08 (5.59)
50x20 33.43 (5.79) 38.28 (7.02) 34.92 (5.74) 44.46 (8.55) 84.9 (11.15) 6.51 (4.31) 20.92 (6.33) 7.82 (5.1) 8.1 (5.84)
100x5 24.63 (13.24) 35.77 (16.98) 55.69 (23.72) 67.05 (26.75) 79.64 (18.24) 12.78 (8.17) 10.42 (8) 12.47 (8.1) 10.01 (6.71)
100x10 33.06 (11.63) 40.37 (11.41) 52.14 (8.07) 48.96 (11.35) 88.34 (10.01) 8.21 (6.39) 11.12 (8) 11.12 (6.27) 9.75 (6.11)
100x20 31.42 (4.53) 34.47 (7.8) 38.35 (7.56) 37.08 (7.02) 89.38 (8.63) 6.04 (4.45) 19.08 (5.97) 7.98 (4.93) 8.64 (4.52)

Average 27.97 (9.21) 38.25 (12.57) 36.63 (11.19) 55.63 (16.26) 82.48 (14.23) 8.64 (6.18) 14.82 (8.77) 12.13 (8.22) 9.39 (6.71)

Table 6. Performance comparision results on instances group 3 (I= 3, Machine-based correlation 0.75): mean and standard
deviation of the RDI indicator

Instance SA Naderi GA Ruiz ABC Cui NEH EDD GA Li GA Yu GA Yu(PS) GA Yu(LS) GA Yu(INEH)

20x5 19.25 (10.76) 32 (16.3) 24.23 (15.02) 74.48 (26.19) 66.04 (26.84) 13.98 (13.63) 7.4 (6.48) 17.33 (15.8) 14.31 (11.75)
20x10 20.31 (11.93) 38.04 (15) 23.61 (11.01) 74.47 (19.02) 77.8 (15.13) 10.23 (7.31) 14.61 (12.37) 13.67 (7.04) 9.4 (6.37)
20x20 22.66 (10.49) 36 (16.06) 17.81 (8.25) 58.54 (18.93) 83.15 (15.6) 7.49 (6.01) 16.76 (11.17) 10.32 (4.9) 7.09 (4.91)
50x5 46.22 (18.12) 50.08 (14.82) 51.94 (15.71) 82.17 (15.44) 84.03 (15.45) 16.27 (9.22) 18.87 (12.06) 18.78 (10.35) 15.2 (8.88)
50x10 26.83 (11.86) 47.02 (10.32) 40.87 (11.96) 62.65 (16.93) 79.81 (13.67) 8.02 (5.99) 14.2 (8.19) 10.59 (6.68) 7.53 (5.39)
50x20 25.23 (6) 38.92 (11.39) 27.98 (6.69) 45.96 (13.94) 81.97 (12.53) 5.63 (4.17) 17.07 (7.22) 8.14 (5.43) 7.91 (6.88)
100x5 35.81 (15.4) 52.73 (15.51) 52.33 (11.2) 84.38 (17.8) 77.95 (16.87) 23.88 (16.19) 24.02 (16.23) 19.9 (14.05) 22.38 (14.35)
100x10 32.57 (9.04) 56.46 (14.64) 51.59 (13) 75.49 (16.51) 85.36 (11.14) 15.33 (8.89) 18.27 (8.14) 16.02 (10.16) 12.76 (7.62)
100x20 31.18 (13.86) 51.55 (19.03) 39.15 (10.61) 62.76 (19.68) 86.45 (10.72) 11.94 (8.51) 21.75 (13.77) 11.92 (9.01) 11.55 (9.26)

Average 28.9 (11.94) 44.76 (14.79) 36.61 (11.49) 68.99 (18.27) 80.28 (15.33) 12.53 (8.88) 16.99 (10.63) 14.07 (9.27) 12.01 (8.38)

Table 7. Performance comparision results on instance group 4 (I= 4, Job-based correlation 0.25): mean and standard
deviation of the RDI indicator

Instance SA Naderi GA Ruiz ABC Cui NEH EDD GA Li GA Yu GA Yu(PS) GA Yu(LS) GA Yu(INEH)

20x5 17.26 (7.26) 38.32 (13.71) 22.25 (11.47) 80.62 (20.86) 71.65 (16.55) 10.99 (8.71) 13.36 (7.62) 16.84 (9.88) 8.82 (7.87)
20x10 38.73 (11.45) 45.15 (18.77) 18.17 (8.33) 71.64 (24.93) 81.39 (13.67) 9.85 (6.76) 31.4 (10.42) 14.15 (7.05) 10.6 (6.8)
20x20 39.19 (11.23) 42.51 (13.64) 19.76 (9.95) 65.11 (15.1) 79.72 (16.02) 8.64 (5.16) 32.06 (12.7) 10.16 (5.97) 8.03 (4.76)
50x5 27.92 (12.11) 38.94 (16.51) 43.4 (16.97) 67.59 (14.28) 83.01 (14.74) 10.53 (6.33) 10.11 (7.17) 12.61 (7.49) 8.81 (6.14)
50x10 36.41 (9.44) 44.81 (11.35) 40.06 (8.68) 57.54 (12.27) 83.71 (14.24) 7.69 (4.89) 17.87 (8.07) 11.3 (5.79) 7.53 (5.89)
50x20 35.85 (7.14) 39.51 (8.24) 35.28 (5.84) 47.44 (11.78) 84.44 (12.84) 6.63 (4.53) 23.24 (6.95) 8.52 (4.51) 7.75 (4.97)
100x5 24.61 (9.85) 27.3 (9.56) 45.68 (21.61) 48.54 (19.88) 79.48 (16.07) 8.65 (7.34) 7.6(6.32) 10.93 (8.56) 8.78 (6.77)
100x10 35.13 (11.71) 43.5 (12.72) 57.4 (11.91) 51.97 (10.06) 85.88 (11.01) 10(5.72) 12.21 (6.63) 11.24 (6.96) 9(7)
100x20 36.46 (4.61) 41.28 (4.34) 44.79 (7.02) 44.29 (3.83) 91.09 (9.27) 7.71 (5.25) 20.04 (5.13) 12 (6.1) 9.62 (5.83)

Average 32.4 (9.42) 40.15 (12.09) 36.31 (11.31) 59.42 (14.78) 82.26 (13.82) 8.97 (6.08) 18.65 (7.89) 11.97 (6.92) 8.77 (6.23)

Table 8. Performance comparision results on instance group 5 (I = 5, Job-based correlation 0.75): mean and standard

deviation of the RDI indicator
Instance SA Naderi GA Ruiz ABC Cui NEH EDD GA Li GA Yu GA Yu(PS) GA Yu(LS) GA Yu(INEH)

20x5 25.72 (11.25) 40.67 (15.49) 13.08 (9.49) 91.3 (14.41) 65.74 (20.79) 7.95 (5.62) 18.36 (9.85) 8.1 (6.49) 8.99 (7.04)
20x10 24.72 (10.93) 32.01 (15.62) 18.26 (11.06) 90.6 (17.43) 65.47 (23.5) 6.89 (5.79) 14.77 (11.99) 6.67 (5.85) 8.02 (7.6)
20x20 32.36 (13.82) 32.45 (14.9) 15.65 (7.49) 62.42 (20.77) 76.73 (17.89) 7.08 (5.56) 24.09 (13.21) 6.66 (4.75) 6.34 (4.74)
50x5 37.84 (11.34) 45.49 (20.52) 41.17 (12.81) 75.34 (21.6) 81.42 (16.99) 7.97 (5.62) 13.85 (6.68) 7.61 (6.38) 8.85 (6.06)
50x10 41.91 (9.27) 58.11 (18.58) 43.72 (11.75) 98.01 (4.54) 76.77 (15.81) 9.51 (5.55) 19.63 (7.27) 9.45 (5.05) 7.15(5.02)
50x20 49.15 (10.9) 47.36 (12.47) 54.29 (10.55) 75.86 (14.89) 84.86 (11.3) 9.48 (5.46) 20.26 (9.89) 8.65 (5.17) 7.63 (6.1)
100x5 42.04 (19.21) 44 (20.28) 64.79 (20.02) 72.56 (22.12) 83.36 (12.59) 15.39 (9.22) 15.44 (10.52) 14.03 (9.99) 11.35 (6.42)
100x10 48.84 (12.96) 61.29 (17.14) 48.78 (9.77) 80.09 (18.18) 79.75 (17.37) 8.38 (5.27) 19.76 (7.82) 8.36 (5.79) 7.53 (5.22)
100x20 49.71 (3.62) 57.34 (14.15) 61.35 (13.15) 74.1 (15.98) 91.96 (6.64) 7.96(4.52) 23.74 (6.57) 7.69 (6.26) 7.7 (5.71)

Average 39.14 (11.48) 46.52 (16.57) 40.12 (11.79) 80.03 (16.66) 78.45 (15.88) 8.96 (5.85) 18.88 (9.31) 8.58 (6.19) 8.17 (5.99)

To provide statistical evidence for the conclusion of the comparison, we have performed a full-
factorial ANOVA where I,n,m, instance and the type of algorithm are considered as factors. Yet,
the normality assumption fails with a p-value < 0.005. For this reason, nonparametric methods are
used as follows. The goal is to test whether GA Yu is the best algorithm in comparison with the five
state-of-art algorithms in each combination of n×m of each instance group. Given the RDI values
of algorithms obtained in certain n×m combinations and correlation pattern, pairwise comparison
is performed between GA Yu and another algorithm, denoted as Alg, with the following hypothesis:
H0 : µRDI(GA YU) = µRDI(Alg) and H1 : µRDI(GA YU) < µRDI(Alg), where µ stands for the true mean.
Considering the non-normality of the RDI values, non-parametric method Mann-Whitney U test
is used. If the obtained p-value is lower than the significance level, then H0 is rejected and one
can conclude GA Yu is better then Alg in the case. Since we need to test if GA Yu is better than
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Table 9. Performance comparision results on instance group 1 (I= 1, random): mean and standard deviation of the RPI indicator

Instance SA Naderi GA Ruiz ABC Cui NEH EDD GA Li GA Yu GA Yu(PS) GA Yu(LS) GA Yu(INEH)

20x5 9 (4.35) 17.18 (10.47) 8.04 (5.99) 38.42 (21.23) 29.66 (14.3) 4.12 (4.49) 6.49 (5.05) 4.64 (3.99) 4.11 (3.83)
20x10 9.04 (3.28) 13.57 (5.01) 6.75 (3.58) 21.04 (7.44) 22.5 (8.36) 2.12 (1.75) 6.64 (2.63) 3.71 (2.93) 2.6 (2.36)
20x20 12.01 (2.92) 13.65 (3.41) 4.68 (2.26) 18.75 (4.35) 19.13 (5.06) 2.73 (1.67) 10.03 (3.26) 3.67 (1.76) 2.29 (1.57)
50x5 39.58 (24.29) 56.06 (41.13) 64.51 (27.33) 87.82 (44.48) 119.76 (78.25) 12.38 (10.93) 18.9 (11.8) 20.96 (12.19) 14 (10.99)
50x10 28.14 (9.76) 32.06 (12.48) 33.34 (11) 38.31 (13.23) 73.78 (24.23) 6.35 (6.15) 16.34 (7.81) 11.44 (6.85) 6.11 (5.18)
50x20 21.37 (4.13) 21.88 (5.54) 20.21 (3.9) 25.83 (5.71) 46.62 (8.53) 3.81 (2.7) 14.54 (4.87) 5.21 (3.07) 4.12 (3.24)
100x5 31.54 (32.33) 39.97 (33.1) 61.21 (32.97) 53.79 (33.89) 144.95 (159.61) 13.63 (11.86) 14.61 (17.48) 12.88 (9.73) 11.89 (11.79)
100x10 23.89 (10.72) 28.8 (9.83) 37.04 (14.49) 35.2 (9.49) 78.72 (23.43) 6.96 (5.77) 10.94 (6.77) 9.09 (7.49) 6.68 (5.51)
100x20 23.75 (4.54) 24.01 (5.83) 32.07 (5.22) 26.13 (5.7) 74.35 (13.73) 5.4 (4.3) 14.35 (5.27) 8.07 (3.73) 5.96 (4.14)

Average 22.04 (10.7) 27.46 (14.09) 29.76 (11.86) 38.37 (16.17) 67.72 (37.28) 6.39 (5.51) 12.54 (7.22) 8.85 (5.75) 6.42 (5.4)

Table 10. Performance comparision results on instance group 2 (I= 2, Machine-based correlation 0.25): mean and standard deviation
of the RPI indicator

Instance SA Naderi GA Ruiz ABC Cui NEH EDD GA Li GA Yu GA Yu(PS) GA Yu(LS) GA Yu(INEH)

20x5 10.07 (5.82) 19.83 (9.96) 13.48 (7.01) 33.32 (12.87) 38.89 (20.29) 4.14 (3.61) 6.22 (5.49) 9.64 (7.21) 5.81 (4.82)
20x10 8.44 (3.8) 12.35 (7.14) 8.43 (4.24) 21.85 (7.31) 27.33 (9.67) 3.59 (2.89) 4.78 (3.3) 5.23 (4.16) 3.14 (2.57)
20x20 8.46 (4.22) 12.79 (5.32) 5.01 (1.62) 17.62 (6.19) 25.18 (6.2) 2.25 (1.68) 5.66 (4.16) 3.22 (1.58) 2.18 (1.74)
50x5 24.26 (18.02) 36.49 (25.13) 39.27 (30.66) 58.55 (35.96) 70.24 (38.55) 8.69 (7.44) 9.1 (8.83) 11.1 (9.69) 10.96 (13.53)
50x10 25.23 (8.2) 28.62 (6.42) 29.24 (11.13) 34.99 (7.52) 66.45 (20.28) 6.36 (5.02) 14.24 (10.25) 8.95 (7.55) 6.51 (5.01)
50x20 20.07 (3.99) 22.96 (4.98) 21.26 (5.26) 26.68 (6.14) 51.41 (10.58) 3.96 (2.79) 12.57 (3.98) 4.87 (3.29) 4.91 (3.86)
100x5 74.72 (168.37) 76.35 (155.62) 89.05 (148.95) 105.85 (182.57) 150.39 (287.64) 23.93 (49.34) 21.37 (46.72) 24.16 (48.28) 17.14 (35.06)
100x10 31.57 (19.22) 37.57 (20.65) 46.38 (19.3) 45.23 (24.06) 78.3 (29.91) 7.13 (5.61) 10.13 (8.55) 9.81 (6.89) 8.26 (6.2)
100x20 26.52 (7.57) 28.57 (7.33) 31.62 (6.35) 30.79 (7.16) 75.22 (18.12) 5.09 (4.35) 16.35 (7.04) 6.65 (4.39) 7.08 (3.81)

Average 25.48 (26.58) 30.61 (26.95) 31.53 (26.06) 41.65 (32.2) 64.82 (49.03) 7.24 (9.19) 11.16 (10.92) 9.29 (10.34) 7.33 (8.51)

Table 11. Performance comparision results on instances group 3 (I= 3, Machine-based correlation 0.75): mean and standard

deviation of the RPI indicator
Instance SA Naderi GA Ruiz ABC Cui NEH EDD GA Li GA Yu GA Yu(PS) GA Yu(LS) GA Yu(INEH)

20x5 5.45 (3.74) 8.44 (4.06) 7.14 (5.41) 20.33 (8.07) 18.61 (9.71) 4.38 (4.75) 1.98 (1.88) 5.53 (5.9) 4.36 (4.33)
20x10 5.1 (4.03) 8.55 (4.39) 5.29 (3.18) 16.48 (6.01) 17.55 (6.68) 2.26 (1.83) 3.5 (3.48) 3.2 (2.28) 2.14 (1.69)
20x20 4.88 (3.09) 7.68 (4.89) 3.53 (1.41) 12 (5.13) 17.6 (5.88) 1.37 (0.92) 3.71 (3.18) 2.08 (0.99) 1.39 (0.94)
50x5 19.96 (14.05) 21.58 (14.33) 21.38 (12.31) 33.52 (17.69) 34.72 (18.36) 6.68 (4.93) 7.91 (6.93) 8.04 (6.46) 6.09 (4.77)
50x10 12.21 (9.83) 17.18 (8.85) 14.05 (6.08) 21.81 (9.82) 30.85 (18.33) 2.85 (2.73) 5.99 (5.23) 3.58 (2.77) 2.72 (2.26)
50x20 8.52 (2.34) 12.7 (2.48) 9.27 (1.91) 15.04 (3.36) 27.92 (7.46) 1.82 (1.27) 5.82 (2.59) 2.76 (1.96) 2.69 (2.38)
100x5 9.35 (5.76) 14.11 (11.09) 14.48 (10.71) 23.27 (17.91) 21.66 (16.66) 6.74 (7.57) 6.61 (7.91) 6.01 (7.63) 6.19 (7.83)
100x10 8.65 (5.36) 13.47 (4.9) 12.89 (6.11) 18.9 (9.02) 22.39 (12.44) 3.66 (2.32) 4.61 (3.3) 3.86 (2.94) 3.43 (2.89)
100x20 7.16 (4.14) 11.14 (4.42) 8.43 (2.33) 13.52 (4.44) 20 (8.89) 2.42 (1.49) 5.13 (4) 2.47 (1.7) 2.34 (1.55)

Average 9.03 (5.82) 12.76 (6.6) 10.72 (5.49) 19.43 (9.05) 23.48 (11.6) 3.58 (3.09) 5.03 (4.28) 4.17 (3.63) 3.48 (3.18)

Table 12. Performance comparision results on instance group 4 (I= 4, Job-based correlation 0.25): mean and standard deviation of the

RPI indicator
Instance SA Naderi GA Ruiz ABC Cui NEH EDD GA Li GA Yu GA Yu(PS) GA Yu(LS) GA Yu(INEH)

20x5 8.07 (4.3) 17.39 (7.02) 10.18 (5.89) 39.42 (21.12) 34.1 (13.66) 4.52 (3.26) 6.62 (4.64) 7.23 (3.79) 3.84 (3.28)
20x10 10.22 (3.39) 11.43 (4.13) 5.16 (2.82) 18.88 (7.13) 22.59 (8.97) 2.77 (2.19) 8.17 (2.68) 3.89 (2.38) 2.94 (2.1)
20x20 7.84 (2.55) 8.47 (3.16) 3.78 (1.69) 13.03 (3.85) 15.79 (4.12) 1.69 (1) 6.46 (2.7) 1.96 (1.06) 1.56 (0.91)
50x5 39.81 (35.15) 44.63 (30.15) 58.44 (48.31) 77.78 (44.74) 99.81 (63.82) 14.44 (14.23) 13.14 (15.09) 17.54 (17.64) 10.44 (10.78)
50x10 25.74 (7.05) 31.79 (8.96) 28.3 (6.73) 40.59 (9.39) 59.3 (12.78) 5.39 (3.39) 12.84 (6.3) 8.01 (4.15) 5.36 (4.41)
50x20 16.02 (2.54) 17.64 (3.16) 16.05 (3.62) 20.92 (3.13) 38.61 (9.24) 3.01 (2.14) 10.33 (2.64) 3.94 (2.12) 3.52 (2.44)
100x5 150.43 (305.24) 131.94 (259.44) 167.79 (293.58) 169.09 (298.65) 221.19 (288.92) 37.21 (79.5) 49.9 (112.47) 51.95 (101.93) 45.76 (100.5)
100x10 36.58 (19.84) 44.01 (20.85) 53.88 (16.95) 51.15 (20.62) 83.79 (31.82) 10.02 (7.43) 11.95 (8.25) 10.93 (8.53) 8.55 (7.87)
100x20 28.29 (6.44) 31.73 (5.56) 34.32 (6.52) 34.02 (5.43) 70.3 (13.8) 6.09 (4.51) 15.57 (4.87) 9.19 (4.69) 7.57 (5.21)

Average 35.89 (42.94) 37.67 (38.05) 41.99 (42.9) 51.65 (46.01) 71.72 (49.68) 9.46 (13.07) 15 (17.74) 12.74 (16.25) 9.95 (15.28)

all other 5 algorithms, this is actually a multiple testing problem. To control the familywise error,
the Holm’s familywise p-value (Holm, 1978), denoted as ξ, is calculated. If ξ is smaller than the
significance level (set as 0.05), we can conclude that GA Yu is the best algorithm in the case. We
have calculated the ξ value in the cases of all n×m combinations of each instance group, as shown
in Table 14. As we found, GA Yu is statistically better than all the other 5 algorithms in all tested
cases.

5.3.3. Comparison with variants of the proposed algorithm

In GA Yu, the proposed DS decoding method is the main contribution. To study its effectiveness,
one idea is to see how the algorithm performs without it but with other existing approaches.
Meanwhile, as discussed before, the NEH approach is used as initialization technique in many other
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Table 13. Performance comparision results on instance group 5 (I = 5, Job-based correlation 0.75): mean and standard

deviation of the RPI indicator
Instance SA Naderi GA Ruiz ABC Cui NEH EDD GA Li GA Yu GA Yu(PS) GA Yu(LS) GA Yu(INEH)

20x5 6.1 (2.72) 9.68 (3.87) 3.01 (1.98) 22.12 (6.43) 15.3 (4.57) 1.85 (1.27) 4.37 (2.44) 1.9 (1.58) 2.11 (1.54)
20x10 3.06 (1.17) 4.04 (1.81) 2.28 (1.19) 13.58 (7.85) 8.27 (1.96) 0.88 (0.68) 1.84 (1.24) 0.88 (0.71) 0.99 (0.85)
20x20 1.93 (0.88) 1.95 (1.02) 0.97 (0.55) 3.68 (1.35) 4.66 (1.53) 0.42 (0.34) 1.42 (0.83) 0.39 (0.27) 0.38 (0.31)
50x5 29.32 (13.36) 35.53 (18.86) 32.12 (14.29) 57.98 (23.83) 59.72 (17.01) 6.43 (5.21) 10.86 (6.51) 6.22 (6.01) 7.05 (5.25)
50x10 16.42 (5.85) 22.27 (7.45) 17.16 (7.03) 38.93 (11.69) 29.38 (7.39) 3.77 (2.62) 7.76 (3.55) 3.74 (2.3) 2.95 (2.37)
50x20 7.13 (1.44) 6.89 (1.74) 7.97 (1.81) 11.03 (2.05) 12.41 (1.98) 1.36 (0.76) 2.91 (1.34) 1.29 (0.81) 1.1 (0.86)
100x5 32.46 (25.93) 33.72 (22.84) 46.11 (23.1) 54.01 (31.22) 57.81 (27.63) 11.78 (10.06) 11.77 (11.3) 10.1 (10.59) 8.23 (6.7)
100x10 34.14 (11.46) 42.31 (12.96) 33.79 (8.91) 55.34 (14.77) 55.11 (13.9) 5.96 (4.08) 13.91 (6.32) 5.99 (4.61) 5.18 (3.74)
100x20 15.32 (2.66) 17.75 (5.25) 18.84 (4.47) 22.87 (6.61) 28.42 (5.33) 2.44 (1.47) 7.3 (2.43) 2.4 (2.03) 2.34 (1.78)

Average 16.21 (7.27) 19.35 (8.42) 18.03 (7.04) 31.06 (11.76) 30.12 (9.03) 3.88 (2.94) 6.9 (4) 3.66 (3.21) 3.37 (2.6)

Figure 7. Algorithm comparison on instances with different operation processing correlation pattern. Each point in the figure

represents the averaged RDI values of the algorithm over 450 experiments for the given I (3 number of jobs · 3 number of
stages · 10 instances · 5 replicates = 450 experiments)

Table 14. Holm’s familywise p-value ξ calculated for each case with the

assumption that GA Yu is better than all the state-of-art algorithms
under comparison with time factor τ = 10

I

n x m 1 2 3 4 5

20x5 7.79E-06 1.74E-08 3.40E-03 1.11E-04 1.29E-04
20x10 8.36E-12 2.36E-09 7.59E-06 7.33E-07 2.20E-10
20x20 3.48E-06 1.40E-12 2.30E-10 6.39E-10 8.94E-12
50x5 7.97E-17 2.33E-13 2.38E-14 1.26E-13 3.13E-17
50x10 1.68E-17 1.68E-17 1.26E-13 1.69E-17 1.41E-17
50x20 1.68E-17 1.69E-17 1.69E-17 1.68E-17 1.73E-17
100x5 4.72E-03 1.19E-06 8.25E-05 6.91E-12 1.20E-08
100x10 1.13E-16 9.68E-16 1.34E-12 5.30E-15 1.40E-17
100x20 2.01E-17 1.70E-17 4.72E-12 1.68E-17 1.69E-17

researches. It is therefore interesting to study if GA Yu can perform better with NEH approach.
To this end, several variations of GA Yu created as follows:

(1) GA Yu(PS): Replacing the DS decoding method in GA Yu with the PS used by GA Ruiz
(2) GA Yu(LS): Replace the DS decoding method in GA Yu with the LS used by ABC Cui
(3) GA Yu(INEH EDD): Add the solution given by an improved version NEH EDD(DS) to

the initial population. We improve the NEH EDD to tackle the selection difficulties of sub-
schedules as following: we use the total lateness as a secondary criterion to choose the sub-
schedules when they have identical total tardiness.
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Figure 8. Algorithm comparison on instances with different number of jobs. Each point in the figure represents the averaged

RDI values of the algorithm over 750 experiments for the given n (3 number of stages · 5 correlation patterns · 10 instances ·
5 replicates = 750 experiments)

Figure 9. Algorithm comparison on instances with different number of stages. Each point in the figure represents the averaged

RDI values of the algorithm over 750 experiments for the given m (3 number of jobs · 5 correlation patterns · 10 instances · 5

replicates = 750 experiments)

All these variants of GA Yu use the same parameters and termination condition as GA Yu.
It can be seen from Table 9-13 that:(1) when using different decoding methods, the performance

of GA Yu are different. Generally, the proposed DS leads to the best performance, followed by
LS, and the worst one is PS. However, there are cases where LS outperforms the other two (see
Table 13) when high job-based correlation exists; (2) when using the improved NEH EDD to
generate initial solution, the performance of GA Yu deteriorates in many cases; while in the cases
of improvement, the increment of is not so significant. Indeed, given fixed computational resources,
when the converging speed of GA Yu is fast enough, allocating computational resource to the
NEH EDD approach could be of no advantage and sometimes of disadvantage.

In Figure 10-12 are plot the averaged RPI values of the GA Yu with different decodings in
various cases of I, n,m, respectively. Some observations are as follows:
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Figure 10. Comparison between GA Yu and its decoding variants on instances with different operation processing correlation

pattern (RPI)

• Figure 10 shows the advantage of DS over PS are less in the case of machine-based correlation
processing times (I=3). The explanation could be as below. The advantage of DS comes from
the elimination of unnecessary machine idleness. Such idleness is introduced in PS when a
high-prioritized job j arrives at the stage, say i, later than a low-prioritized job k, which
we call the ”Overturn” phenomenon. Overturn happens when job j and k are assigned to
different machines in stage i−1, and the processing time of j is much longer than that of k. If
machine-based correlation exists, generally, the higher this correlation, the less the difference
between the processing time of j and k on the same machines. Also, under a greedy machine
assignment rule, jobs have higher probability to be assigned to the same machine which offers
a low processing time basis for all the jobs. As a consequence, the occurring of Overturn is
reduced, and hence PS may introduce less unnecessary idleness and get closer performance
to DS.
• Figure 10 shows the LS outperforms DS as high job-based correlation exists. Note that the

advantage of DS over LS derives from a better controllability by re-sequencing the jobs
waiting in the machine buffers using chromosome information. For this phenomenon one
speculation is that due to the job-based correlation feature, the LS is able to obtain as high
as controllability with DS even without the re-sequencing mechanism, and due to a lower time
complexity which allows GA to have more evaluations on the chromosomes, LS outperforms
DS. Yet this requires future studies.
• Figure 12 shows that DS and LS are more efficient comparing to PS when the number of

stages is large. Indeed, when PS is used to construct the schedule, machine idleness are
introduced during the coupling of job sequence between any pair of consecutive stages, and
consequently, the longer the shop is, the more machine idleness are introduced, and the more
inefficient PS is.

5.3.4. Comparison with different computing budget

It is well-known that the performance of metaheuristics are related to the computing budget. In
Figure 13 are reported the total tardiness values obtained by different algorithms on two specific
instances as the computing budget increases. Denote tneh as the computation time of NEH EDD
uses for a case. For the algorithms which use NEH EDD in the initialization phase, before tneh,
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Figure 11. Comparison between GA Yu and its decoding variants on instances with different number of jobs (RPI)

Figure 12. Comparison between GA Yu and its decoding variants on instances with different number of stages (RPI)

the total tardiness is null. As shown, in the small case, GA Yu starts at a higher value than those
using NEH EDD for initialization, but converges quite fast and exceeds the other algorithms before
τ = 2; whilst in the large case, GA Yu is able to converge to a better result than the NEH EDD
in a time shorter than tneh.

In Table 15 and 16 are reported the RPI values of comparisons on group I = 1 with time factor
τ = 2 and τ = 5, respectively. In both cases, GA Yu is the best on average. It is observed that as
the computing budget increases, the gap between GA Yu and the state-of-art algorithms becomes
larger, which implies GA Yu converges faster. To show this trend better, in Figure 14 is plotted
the averaged RPI values of all algorithms on group 1 instances, calculated by gathering all data
with τ = 1, 2, . . . , 10.
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(a) Small case (b) Large case

Figure 13. Convergence curve comparison. In horizontal axis: the time factor τ is used to represent the CPU time consumed

by the algorithms, where tCPU = τ ×n2× (m/2) ms. In vertical axis: the total tardiness value is an average from 5 replications

obtained by the algorithm at the given CPU time

Table 15. Performance comparision results on instance group 1 (I= 1, random): mean and standard deviation of the RPI

indicator (time factor τ = 2)

Instance SA Naderi GA Ruiz ABC Cui NEH EDD GA Li GA Yu GA Yu(PS) GA Yu(LS) GA Yu(INEH)

20x5 9.99 (5.63) 17.5 (10.69) 10.92 (7.54) 37.79 (21.29) 32.67 (15.48) 4.14 (4.68) 6.64 (4.91) 4.31 (4.16) 4.03 (3.82)
20x10 10.31 (3.71) 14.39 (4.36) 8.38 (3.64) 20.21 (7.3) 28.17 (9.09) 2.33 (1.64) 7.58 (2.91) 3.58 (2.86) 2.74 (2.17)
20x20 11.19 (2.73) 12.85 (2.86) 5.42 (2.6) 16.3 (3.52) 24.29 (7.35) 2.57 (2.06) 11.37 (3.49) 3.56 (2.28) 3.1 (1.94)
50x5 16.39 (12.26) 32.64 (20.9) 41.72 (12.7) 45 (19.65) 96.52 (60.17) 10.73 (7.66) 20.45 (11.32) 16.46 (6.92) 13.44 (7.73)
50x10 9.58 (9.75) 11.88 (10.45) 20.46 (9.8) 14.15 (11.1) 58.43 (17.4) 6.22 (4.88) 16.58 (9.39) 7.66 (6.59) 6.67 (6.08)
50x20 10.96 (3.04) 10.91 (3.16) 15.1 (3.57) 12.3 (3.36) 47.18 (8.69) 4.18 (2.42) 16.35 (3.82) 4.03 (2.61) 5.45 (3.2)
100x5 11.93 (10.73) 18.91 (14.86) 42.39 (11.16) 23.34 (14.35) 114.09 (99.92) 18.72 (9.06) 19.95 (11.53) 15.21 (9.26) 18.41 (11.98)
100x10 8.41 (5.81) 11.79 (8.7) 22.29 (8.16) 13.58 (8.82) 61.46 (11.38) 6.05 (4.05) 13.01 (5.45) 5.89 (4.06) 10.71 (5.66)
100x20 7.42 (3.64) 7.53 (3.9) 18.94 (3.88) 8.03 (3.91) 59.54 (8.99) 3.53 (2.51) 14.97 (4.25) 3.74 (2.42) 7.52 (3.42)

Average 10.69 (6.37) 15.38 (8.88) 20.62 (7.01) 21.19 (10.37) 58.04 (26.5) 6.5 (4.33) 14.1 (6.34) 7.16 (4.57) 8.01 (5.11)

Table 16. Performance comparision results on instance group 1 (I= 1, random): mean and standard deviation of the RPI

indicator (time factor τ = 5)

Instance SA Naderi GA Ruiz ABC Cui NEH EDD GA Li GA Yu GA Yu(PS) GA Yu(LS) GA Yu(INEH)

20x5 9.72 (5.51) 17.31 (10.79) 9.68 (7.48) 38.08 (21.39) 31.62 (15.18) 4.04 (4.42) 6.49 (5.01) 4.46 (4.2) 3.92 (3.75)
20x10 9.85 (3.58) 14.02 (4.29) 7.35 (3.66) 20.68 (7.26) 25.33 (9) 2.19 (1.69) 7.04 (2.99) 3.51 (2.89) 2.54 (2.42)
20x20 12.23 (2.89) 13.68 (3.23) 5.47 (2.66) 18.02 (4.25) 21.43 (6.04) 2.56 (1.7) 10.2 (3.2) 3.46 (1.86) 2.48 (1.83)
50x5 26.68 (16.84) 42.71 (31.06) 51.32 (19.04) 63.8 (30.73) 107.67 (75.8) 7.85 (7.41) 15.8 (10.36) 16.61 (8.6) 10.76 (7.37)
50x10 19.73 (8.13) 23.41 (12.28) 27.98 (9.99) 27.54 (13.15) 66.53 (20.58) 6.26 (4.85) 15.57 (8.2) 10.37 (6.91) 6.9 (4.9)
50x20 17.17 (4.27) 17.57 (5.85) 18.36 (4.82) 20.28 (5.62) 46.72 (7.84) 4.94 (3.36) 15.2 (5.13) 4.05 (3.14) 5.23 (2.4)
100x5 20.81 (19.68) 30.56 (26.74) 53.11 (20.26) 38.65 (25.81) 123.24 (124.67) 15.31 (9.09) 16.35 (12.49) 12.76 (8.76) 14.2 (7.17)
100x10 16.06 (6.33) 20.83 (7.59) 31 (11.19) 24.59 (7.51) 69.68 (16.21) 5.71 (3.87) 11.49 (5.64) 6.79 (4.28) 6.14 (4.6)
100x20 15.18 (2.77) 15.22 (3.53) 25.76 (3.81) 16.48 (3.54) 65.93 (11) 3.58 (2.18) 12.9 (4.69) 4.19 (2.7) 4.7 (2.78)

Average 16.38 (7.78) 21.7 (11.71) 25.56 (9.21) 29.79 (13.25) 62.02 (31.81) 5.83 (4.29) 12.34 (6.41) 7.36 (4.82) 6.32 (4.14)

6. Conclusion

In this study we have proposed a genetic algorithm to solve the hybrid flow shop scheduling prob-
lem with unrelated machines and machine eligibility constraint to minimize the total tardiness.
The main contribution of this research is a new decoding method aiming at improving the schedule
construction procedure from a given job permutation. More specifically, by analyzing two wide-
ly used decoding methods, permutation scheduling and list scheduling, we discover disadvantages
when they are applied to due-date related objective. Then, we propose the dynamic scheduling
which uses a machine seize mechanism to avoid tightness problem and job re-sequencing strategy
in machine buffers to mitigate the controllability problem. The proposed decoding method is in-
corporated into a genetic algorithm. The proposed GA has been calibrated and compared to five
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Figure 14. Comparison of the averaged RPI values on group 1 instances with different time factor τ

calibrated state-of-art algorithms on a set of 450 instances with different problem size and opera-
tion processing time correlation patterns. The computational results show that the proposed GA
outperforms the state-of-art algorithms in almost all the cases. Finally, we have verified the supe-
riority of the proposed decoding method by comparing the performance of the genetic algorithm
when coupled with different decoding methods. Also, we have shown that the use of NEH EDD
approach as initialization would not benefit the proposed GA on the cases at hand.

The proposed GA can be extended to solve hybrid flow shop scheduling problem with more
realistic assumptions such as sequence-dependent setups, job release date, finite intermediate buffer
capacity, and to handle multi-objective problems.
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Ruiz R, Stützle T. A simple and effective iterated greedy algorithm for the permutation flowshop scheduling

27



problem. European Journal of Operational Research, 2007, 177(3): 2033-2049.
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Vignier A, Billaut J C, Proust C. Les problèmes d’ordonnancement de type flow-shop hybride: état de l’art.
RAIRO-Operations Research, 1999, 33(2): 117-183.

Wang X, Tang L. A tabu search heuristic for the hybrid flowshop scheduling with finite intermediate buffers.
Computers & Operations Research, 2009, 36(3): 907-918.

Wolpert D H, Macready W G. No free lunch theorems for optimization. IEEE transactions on evolutionary
computation, 1997, 1(1): 67-82.

Xiao W, Hao P, Zhang S, et al. Hybrid flow shop scheduling using genetic algorithms. Intelligent Control
and Automation, 2000. Proceedings of the 3rd World Congress on. IEEE, 2000, 1: 537-541.

Yaurima V, Burtseva L, Tchernykh A. Hybrid flowshop with unrelated machines, sequence-dependent setup
time, availability constraints and limited buffers. Computers & Industrial Engineering, 2009, 56(4): 1452-
1463.

Ying K C, Lin S W. Multiprocessor task scheduling in multistage hybrid flow-shops: an ant colony system
approach. International Journal of Production Research, 2006, 44(16): 3161-3177.

Zandieh M, Ghomi S M T F, Husseini S M M. An immune algorithm approach to hybrid flow shops scheduling
with sequence-dependent setup times. Applied Mathematics and Computation, 2006, 180(1): 111-127.

28


	00Frontespizio DMEC - Open Acces - Author’s Accepted Manuscript_V00
	HFS_COR_3rd

