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ABSTRACT This paper presents a robust and efficient technique for performing repeated power flow
simulations of power networks. The method relies on a vector-based formulation of the power balance
equations combined with a complex-array operation Newton solver. It is shown how the method is suitable
for advanced simulations of power grids, such as probabilistic analyses, where a large number of scenarios
have to be explored in reasonable simulation times. Applications to benchmark single phase networks as
well as to unbalanced three phase grids are provided.
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I. INTRODUCTION
Due to the rapid evolution of power transmission/distribution
networks within the context of smart grids there is today a
renewed interest in developing numerically efficient tech-
niques for power flow simulations. Such an interest is moti-
vated in part by some peculiar features shared by smart
power grids, such as the high penetration of renewable
sources [1], the deployment of many smart meters and net-
work reconfiguration possibility [2], [3], the support of new
types of services (e.g. the integration of electrical vehicles)
as well as the envisaged active role of consumers as power
demand/provide actors [4]. A reliable and robust approach to
smart grids design should account for the highly uncertain
nature and variability of loads and power sources that can
be described only statistically [5]–[7]. This implies repeating
a huge amount of power flow analyses while considering
the many potential scenarios and network configurations
in reasonable simulation times. Other elements of novelty
are connected with the evolution of the grid from tradi-
tional topologies to more general ones and the presence of
distributed power generation. Some power flow techniques
which rely on iterative relaxation solvers are tailored to spe-
cific network topologies (e.g. perfectly radial topology) and
can exhibit poor convergence or even diverge when applied
to general meshed topologies and or in the presence of many
voltage-constraining generators [8]–[11]. For such reasons,
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in this paper we will investigate the power flow prob-
lem in connection with the robust and generally applicable
Newton-Raphson (NR) solver [12], [13].

A promising approach to satisfy the growing demand for
simulation efficiency is that of taking advantage of the cur-
rent tendency to integrate multi-core processors and enable
parallel computing. This can be achieved by exploiting some
high-performance computing languages that support array
programming, i.e. the application of operations to an entire set
of values stored in arrays. Known languages allowing array
operation are Fortran 90, Matlab, Perl Data Language, and
Python. Most of these programs support operations directly
on complex numbers.

In the Sec. II of this paper, we review the most common
ways to formulate the power flow problem in connection
with NR solver. Due to the non-analyticity of the complex
conjugate operator (appearing in the complex power expres-
sion), the common practice is that of splitting complex power
balance at node terminals into its real and imaginary parts.
In this way, the calculations of partial derivatives form-
ing the Jacobian matrix are carried out in the field of real
numbers via non-elementary operations. The relatively com-
plicated expressions of Jacobian elements along with their
being developed in the field of real numbers do not allow
direct implementation within software languages supporting
complex-array-operations. In order to overcome such a lim-
itation, in this paper we present a novel simulation method
which is applicable to both single phase networks and three
phase unbalanced grids as described in Sec. III. The method,
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which is outlined in Sec. IV, relies on a vector-based represen-
tations of the power flow equations and on an original way to
implement complex numbers multiplication. Thanks to these
premises, we are able to derive an efficient way for calcu-
lating the elements of the Jacobian matrix via elementary
operations completely developed in the complex numbers
field. Unprecedented numerical efficiency can be achieved by
implementing Jacobian elements calculations via array oper-
ations extended to a large set of grid nodes. The novelmethod,
which is referred to as Complex-Array-operation Newton
(CAN) solver, is suitable for those advanced simulations
requiring a large number of repeated power flow analyses,
as described in Sec. V. Finally, in Sec. VI, the efficiency
and robustness of the CAN solver is illustrated by exploring
its applications to the power flow analysis of single phase
networks as well as to probabilistic simulations of unbalanced
three phase grids.

II. POWER FLOW METHODS BASED ON NR SOLVER
For a power network composed of N nodes, the steady-state
power flow problem consists in calculating the node voltage
(complex) values producing the wanted power flow at the
network terminals.Mathematically, the problem is commonly
formulated by a set of nonlinear equations of the type:

fk ( EV) = V∗k Ik − S∗k = 0 (1)

for k = 1, . . . ,N , where Vk , Ik are voltage and current
phasors at node k , vector EV = [V1, . . . ,VN ] collects all
voltages, while Sk = Pk + jQk denotes complex power at
node k with Pk and Qk being the active and reactive power,
respectively. In addition to that, node currents are related to
node voltages by means of

Ik =
N∑
n=1

Ykn Vn (2)

where Ykn are the entries of the node admittance matrix and
N the number of nodes of the network.
Solution of (1) and (2) can be achieved either with iterative

methods (e.g. Jacobi, Gauss-Seidel) or with Newton-Raphson
(NR) based direct method. In what follows, we focus on NR
method due to its robustness and applicability to any grid
topology.

In practice, there are two main approaches to power flow
formulation that differ for the way node voltages are repre-
sented. In the first formulation, voltages are described in polar
coordinates Vk = |Vk |ejδk by their module |Vk | and phase δk .
In this case, by denoting with Ykn = |Ykn|ejθkn the admittance
elements, power flow equations (1) and (2) are transformed
into the following set of 2× N real equations

|Vk |
N∑
n=1

|Ykn||Vn| cos(δk − δn − θkn)− Pk = 0

|Vk |
N∑
n=1

|Ykn||Vn| sin(δk − δn − θkn)− Qk = 0 (3)

The application of NR solver to polar coordinates problem (3)
can exhibit some limitations. A first issue is connected with
a potential lack of efficiency due to the repeated calls of
implicit trigonometric functions. To cope with this issue,
in some cases further mathematical developments are imple-
mented that express partial derivatives of problem (3) in
cartesian form rather than polar one [14]. Second, and more
importantly, it has been shown that NR solver applied to polar
coordinates (3) can exhibit convergence troubles or it can con-
verge to non-physical ill-conditioned solutions that contain
low voltages values [8]. For such reasons, polar formulation is
commonly limited to the power flow analysis of single-phase
circuit representing balanced transmission networks.

In the second approach, voltages are described in cartesian
coordinatesVk = V R

k + jV
I
k by their real and imaginary parts.

In this case, by denoting with Ykn = Gkn + jBkn the node
admittance elements, power flow equations (1) and (2) are
transformed into:

V R
k

N∑
n=1

(GknV R
n − BknV

I
n )

+V I
k

N∑
n=1

(BknV R
n + GknV

I
n )− Pk = 0

−V I
k

N∑
n=1

(GknV R
n − BknV

I
n )

+V R
k

N∑
n=1

(BknV R
n + GknV

I
n )+ Qk = 0. (4)

The solution of cartesian formulation (4) by means of NR
method exhibits a certain degree of robustness and for this
reason it is frequently adopted in the power flow analysis
of three-phase circuits modeling unbalanced transmission
grids. However, the relatively complicated expressions of
partial derivatives of (4) versus V R

k and V I
k , as needed for

Jacobian matrix formation, along with their being developed
in the real number field do not allow the exploitation of
the complex-array-operation capabilities supported by some
advanced software languages.

III. POWER GRIDS DESCRIPTION
The simulation method that we investigate in this paper is
intended for the power flow analysis of both single-phase
networks modeling power transmission systems and three-
phase networks modeling unbalanced distribution grids. For
a power grid made of Nb bar-buses, the number of nodes,
and related voltages, are N = Nb in the case of single-
phase networks and N = 3× Nb for three-phase nets. Node-
interconnection elements, such as grid lines, transformers and
phase shifters, are represented by means of their primitive
admittance matrix. As an example, Fig. 1 shows the lumped
π circuit commonly adopted for modeling single-phase grid
lines.
The model is determined by the series impedance Zs

and shunt susceptance B. The primitive admittance matrix
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FIGURE 1. The π model of a single phase line.

associated to the circuit in Fig. 1 is the 2× 2 complex matrix
relating voltages to currents as follows:[

I1
I2

]
=

[
1/Zs + jB/2 −1/Zs
−1/Zs 1/Zs + jB/2

] [
V1
V2

]
(5)

The π model can be extended to three-phase lines as shown
in Fig. 2. For notation compactness, the phase voltages and
currents are collected into the vectors EV1 = [Va

1,V
b
1,V

c
1]
T ,

EV2 = [Va
2,V

b
2,V

c
2]
T and EI1 = [Ia1,V

b
1, I

c
1]
T , EI2 =

[Ia2, I
b
2, I

c
2]
T , respectively. For the three-phase line, the 6 × 6

primitive admittance matrix is such that:[
EI1
EI2

]
=

[
Z−1abc + jBabc/2 −Z−1abc

−Z−1abc Z−1abc + jBabc/2

][
EV1
EV2

]
(6)

where Zabc now denotes the 3× 3 symmetric line impedance
matrix:

Zabc =

 Za Zab Zac
Zab Zb Zbc
Zac Zbc Zc

 . (7)

FIGURE 2. The three-phase π lines model.

Impedance matrix accounts for the series impedance of each
phase line and for mutual coupling among them. Similarly,
Babc now denotes the 3× 3 shunt susceptance matrix.
Power specification at the terminal nodes are given by

loads and generators. Commonly, power flow simulation sup-
ports two types of nodes referred to as PQ and PV. In PQ
nodes, power flow equations are formulated as in (1) and (2)
with the active and reactive power values Pk , Qk given as
an input. Such values are determined by all of the loads
connected to the node k . PV nodes, instead, are commonly
used to model power generators. In PV nodes, the values of
active powerPk and voltagemodule |Vk | are given as an input.

For PV nodes power flow equation (1) should be modified as
we will show in the next Section.

IV. POWER FLOW BASED ON CAN SOLVER
The simulation method that we propose relies on carte-
sian coordinates representation of electrical quantities and
power balance equations that are solved via Newton-Raphson
method implemented via complex-array-operations. In order
to derive themethod, we start by adopting a vector representa-
tion of the complex quantities. More specifically, we use the
symbol vect(·) to denote the operator that for any complex
number or function A ∈ C, given as an input, provides the
2× 1 output vector

Ā = vect(A) =

[
AR

AI

]
(8)

collecting its real and imaginary parts AR = Re{A} and
AI = Im{A}, respectively. Furthermore, we represent the
multiplication of complex numbers by means of a matrix-
vector operation. Given the complex numbers A = AR+ jAI ,
B = BR + jBI , the vector form C̄ of the product C = AB
results:

C̄ = vect(C) =

[
CR

C I

]
=

[
AR −AI

AI AR

]
·

[
BR

BI

]
(9)

In view of (9), we now reformulate the power flow equations
for PQ and PV nodes.

A. PQ NODES
For PQ nodes the power flow equations (1), (2) are trans-
formed into the following vector form

f̄k =

[
V R
k V I

k

−V I
k V R

k

]
·

[
IRk

I IK

]
+

[
−Pk

Qk

]
=

[
0

0

]
(10)

and [
IRk

I Ik

]
=

N∑
n=1

[
Gkn −Bkn

Bkn GRkn

]
·

[
V R
n

V I
n

]
, (11)

respectively.
In order to apply NR solver, the partial derivatives of

(10) and (11) versus V R
k and V I

k should be calculated. These
derivatives form the Jacobian matrix. We first concentrate on
the off-diagonal terms of Jacobian. The partial derivatives of
vector function f̄k (i.e. imposing power balance at node kth)
with respect to the real and imaginary parts of voltage at node
n 6= k result:

∂ f̄k
∂V R

n
=

[
V R
k V I

k

−V I
k V R

k

]
·

[
Gkn

Bkn

]
(12)

and

∂ f̄k
∂V I

n
=

[
V R
k V I

k

−V I
k V R

k

]
·

[
−Bkn

Gkn

]
, (13)

respectively.
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Using (9), it is easily recognized that:

∂ f̄k
∂V R

n
= vect(V∗k Ykn) (14)

and

∂ f̄k
∂V I

n
= vect(V∗k jYkn). (15)

This means that the off-diagonal elements of the Jacobian
matrix can be calculated via multiplications of voltage pha-
sors and admittances in the complex domain followed by
some vector elements reordering. A similar result holds also
for the diagonal terms of the Jacobian matrix. In fact, the par-
tial derivatives of vector function f̄k , with respect to the real
and imaginary parts of the voltage at the same node are:

∂ f̄k
∂V R

k

=

[
1 0

0 1

]
·

[
IRk

I Ik

]
+

[
V R
k V I

k

−V I
k V R

k

]
·

[
Gkn

Bkn

]
(16)

and

∂ f̄k
∂V I

k

=

[
0 1

−1 0

]
·

[
IRk

I Ik

]
+

[
V R
k V I

k

−V I
k V R

k

]
·

[
−Bkn

Gkn

]
(17)

In view of (9), they can be calculated as:

∂ f̄k
∂V R

k

= vect
(
Ik + V∗k Ykk

)
(18)

and

∂ f̄k
∂V I

k

= vect(−jIk + V∗k jYkk ). (19)

As a conclusion, the calculation of the diagonal elements of
Jacobian relies on the same voltage phasors-by-admittances
multiplications as for the off-diagonal elements followed by
the addition of node currents and further vector elements
reordering.

Due to the relatively simple form of expressions (14)
(15) (18) (19), their calculations can be easily implemented
as array operations extended to all of the PQ type nodes.
Consider, for instance, the task of calculating the complex
multiplications V∗k Ykn in (14) for all of the NPQ ≤ N nodes
of type PQ. To this aim, the indices of PQ type nodes can be
collected into the vector index

Ek = [i1, i2, . . . , iNPQ ]. (20)

Hence, if EV is the column vector of the N complex volt-
age phasors, using the standard Matlab notation, we have
that EV(Ek) denotes the vector collecting the subset of voltage
phasors at the PQ nodes. As a preliminary elaboration, such
voltages are complex conjugated and reordered as the diago-
nal elements of the following diagonal matrix

DEk = diag(conj( EV(Ek))) (21)

In Matlab notation, we have that Y(Ek, :) denotes the NPQ×N
complex submatrix formed by the NPQ rows of node admit-
tance matrix Y selected by vector index Ek . In view of that,
we conclude that the following single array-based operation

DEk · Y(Ek, :) (22)

provides the NPQ × N partial derivatives V∗k Ykn appearing
in (14) for all of the PQ nodes versus all of the nodes of the
grid. In a similar way,

jDEk · Y(Ek, :) (23)

supplies the NPQ × N partial derivatives V∗k jYkn appearing
in (15).

B. PV NODES
For the kth node of PV type, the power flow equations are
modified as follows:

Re(V∗k Ik )− Pk = 0

|Vk |
2
− V 2

m = 0 (24)

where Vm is the constrained voltage module. In vector form,
equations (24) are rewritten as:

f̄k =

[
V R
k V I

k

0 0

]
·

[
IRk

I IK

]
+

[
−Pk

−V 2
m

]

+

[
0 0

V R
k V I

k

]
·

[
V R
k

V I
K

]
=

[
0

0

]
(25)

along with (11) for currents. The off-diagonal elements of the
Jacobian are

∂ f̄k
∂V R

n
=

[
V R
k V I

k

0 0

]
·

[
Gkn

Bkn

]
(26)

and

∂ f̄k
∂V I

n
=

[
V R
k V I

k

0 0

]
·

[
−Bkn

Gkn

]
. (27)

Using (9), we find:

∂ f̄k
∂V R

n
=

[
Re(V∗k Ykn)

0

]
(28)

and

∂ f̄k
∂V I

n
=

[
Re(V∗k jYkn)

0

]
(29)

With a similar reasoning, the diagonal terms of the Jacobian
matrix result:

∂ f̄k
∂V R

k

=

[
Re(Ik + V∗k Ykk )

2V R
k

]
(30)

and

∂ f̄k
∂V I

k

=

[
Re(−jIk + V∗k jYkk )

2V I
k

]
(31)
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We conclude that also for PV nodes, the Jacobian matrix
formation is dominated by complex multiplications V∗k Ykn
followed by numerically inexpensive vector reordering. Such
multiplications can be implemented as a single array opera-
tion extended to all of the PV type nodes.

V. APPLICATIONS OF CAN METHOD
The robustness of NR solver (when applied to cartesian coor-
dinates formulation) joined with the numerical efficiency of
complex-array operations make the proposed CAN method
suitable for those advanced simulations requiring a huge
number of repeated power flow analyses. In what follows,
we illustrate the application of CAN method to Probabilistic
Power Flow (PPF) simulation. PPF simulations in modern
power grids are often required since some parameters in the
grids are affected by uncertainty [15], [16]. Such uncertainty
is accounted for by a set of l random variables ξr that for
notational compactness can be collected into a vector Eξ =
[ξ1, ξ2, . . . , ξl]. Mathematically, each ξr is a random variable
described by the joint Probability Density Function (PDF)
ρr (ξ1, . . . , ξl) [17]. In practice, uncertainty parameters in a
smart grid may be the values assumed at a given time or time
window of some generated or absorbed powers at the grid
terminations. For instance, the active (or reactive) power
generated (or absorbed) at node kth in the grid can take the
form

Pk = P0k + ξk SkP
0
k , (32)

where P0k is the nominally expected power while ξkSk P0k is
the random fluctuation determined by a normalized random
variable ξk scaling power fraction Sk P0k . In this case, due to
the uncertainty in power generation, each observable variable
describing the electrical state of the network, e.g. the mag-
nitude of a node voltage V = |Vn|, can be thought of as a
random variable that depends on the uncertainties vector, i.e.
V (Eξ ) = |Vn(Eξ )|. The target of PPF is the determination of the
PDF of the observable variable V and/or the evaluation of its
mean value and interval of variability.

The most general and robust approach to PPF problem
is that based on Monte Carlo (MC) method. In fact, even
if approximate numerically more efficient methods exist to
speed up the PPF analysis, such techniques always require
validation via comparisons to MC.

UsingMCmethod, the statistical description of the observ-
able variable V (Eξ ) is achieved by generating a very large
number Nmc of uncertainty vectors Eξ1, Eξ2, . . . , EξNmc accord-
ing to the joint probability distribution of variables in Eξ .
For each realization Eξn of the statistical variables, the real-
ization of the iobservable quantity V (Eξn), is determined by
running one deterministic power flow simulation. As the
number Nmc of evaluations grows, at limit tending to infinity,
the distribution of the values V (Eξn) tends to the PDF of V .
However, due to the slow 1/

√
Nmc convergence rate of MC

method, the number of repeated simulations actually needed
to obtain an accurate approximation of the PDF can be quite
large making probabilistic analysis very time consuming.

To address such an issue, we explore the implementation of
MC method in connection with the proposed numerically
efficient CAN solver implemented in the array-operation
supporting language Matlab. The main steps of MC imple-
mentation are highlighted in Algorithm1. One salient feature
of the implementation is that the generation of random sam-
ples and power flow simulations are developed in the same
mathematical framework. In this way, time expensive calls to
general purpose simulation codes are avoided. Furthermore,
the formation of the grid primitives (e.g. the node admittance
matrix) is done only once thus achieving great numerical
efficiency.

Algorithm 1 Steps of Monte Carlo Simulation
Array-operation framework:
Form power flow primitives (e.g. node admittance
matrix)
Generate Nmc samples Eξn according to Joint PDF
For each Eξn do
Calculate termination powersPk ,Qk and load into power
flow equations

⇓

Power Flow Simulation:
Run CAN solver
Produce Output Results

⇓

Determine V (Eξn)
EndFor
Using Nmc simulated V (Eξn), estimate PDF, mean value,
variance

In order to further speed up the PPF analysis, we also
consider combining the CAN solver with a MC acceleration
technique based on Polynomial Chaos (gPC) expansions.
The idea behind this method is that of approximating the
deterministic relationship V (Eξ ) = |Vn(Eξ )| with an order-β
truncated series of the type [18]

V (Eξ ) ≈
Nb∑
i=1

ci Hi(Eξ ) (33)

and use a limited set of simulations to estimate coefficients ci.
In (33), in fact Hi(Eξ ) are Nb known multi-variate polynomial
functions, whose expressions depend on the form of Eξ joint
PDF, while ci are the unknown coefficients to be determined.
An efficient way to calculate ci is through a collocation-based
method [19]. In its basic implementation, the method implies
selecting Ns = Nb testing points Eξn, for n = 1, . . . ,Ns
where the values of the desired observable variable V n

=

V (Eξn) are calculated running Ns deterministic Power Flow
simulations. The coefficients ci are deduced by enforcing
the series expansion (33) to fit exactly (i.e., the polynomials
interpolate the samples) the values V n at theNs testing points.
Using collocation method, for a given truncation order β

and number of parameters l, the number of required
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simulations is [19]

Ns =
(β + l)!
β! l!

. (34)

Once the coefficients ci have been computed, the gPC
expansion (33) provides a surrogate model of the V (Eξ ) multi-
dimensional dependence. Such a model can be exploited
within the MC framework (in place of running many Power
Flow analyses) to deduce the detailed PDF of the observable
quantity V (Eξ ) its mean value and standard deviation. For
medium-size problems (e.g. with a number of statistical
parameters < 50) and low truncation order β ≤ 3, the
gPC-based method can introduce a significant speed up com-
pared to standard MCmethod. In this paper, we implemented
the gPC method and use the CAN solver for simulating the
testing points.

VI. NUMERICAL EXAMPLES
A. SINGLE PHASE GRID
In the first example we compare the CAN solver with the
reference Newton-Raphson (NR) method implemented in the
MatPower tool. This latter adopts a power flow problem
formulation where node voltages are represented in polar
coordinates.

To this aim we run some of the single-phase power
flow cases, i.e. case69, case118, case145. case300, and
case1354pegase, provided as a benchmark within the
MatPower software suite. In both MatPower NR and CAN
solvers, the unknown voltages Vk = |Vk |ejδk are initialized
with module and phase values that are sufficiently close to
those of the final solution. Such initial values, which are avail-
able in the benchmark files, are determined via preliminary
DC analyses or through an iterative solver used as initializer.
As a result, for all of the considered cases, NR and CAN
solvers converge in a few iterations (e.g. of the order of
four or five). Table 1 reports the simulation times (including
loading the equations and solving them) taken by MatPower
NR and CAN to perform a single power flow analysis for
the considered single phase cases. It is seen how CAN solver
generally outperforms MatPower NR due to the exploitation
of the inherent array-operation capability of Matlab tool.

TABLE 1. Simulation times [s].

Then, in order to verify the robustness of the two methods
considered, we focus on the case145 (this case refers to a
meshed network with many PV nodes), and repeat the power
flow analysis starting from generic random initializations of
the NR method. More specifically, from the close-to-solution
module values |Vk | provided along with the benchmark files,
we generate different initial guess as follows

|Vk |init = |Vk | ± A u (35)

where A is the percentage perturbation amplitude and u
is a random variable uniformly distributed in the interval
[−1, 1]. One hundred sets of initial values are generated in
this way and for each set the power flow analysis is repeated.
Table 2 reports the number of successful power flow analyses
achieved with MatPower NR and CANmethods. We see how
increasing the randomization degree A of the initial guess, the
number of successfulMatPower analyses, formulated in polar
coordinates, reduces significantly. By contrast, CAN method
formulated in cartesian coordinates is more robust, in fact it
preserves a one-hundred percent successful rate. It is worth
observing how unsuccessful analyses are those where the
nonlinear solver either diverges or converges to non-physical
ill-conditioned solutions that contain low voltages values. As
an example, in Fig. 3, it is shown (thick blue line) the voltage
module values that are the physically-correct solution for the
case145 power flow. In the same figure, it is reported one
randomly generated initialization (yellow square marker),
corresponding to A = 0.10, along with the associated non-
physical solution (red triangular marker) obtained by running
MatPower NR solver with such an initialization.

TABLE 2. Number of successful simulations.

FIGURE 3. Node voltage modules for the case145 grid: (thick blue line)
physically correct solution; (yellow square marker) initialization;
(red triangular marker) non-physical solution provided by MatPower NR.

B. THREE-PHASE GRID
In this subsection, we focus on the IEEE 118 bus test case
provided within the file case118.m of the MatPower suite.
First, this single-phase test grid is extended to a balanced
three-phase network, referred to as balanced 118bus grid, by
replicating the single-phase loads and generators at the three
nodes of each bus. Three-phase lines are modeled with the π
circuit reported in Fig. 2 where the impedance matrix Zabc
in (7) is derived from the single phase impedance Zs. In fact,
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the diagonal terms are selected such thatZa = Zb = Zc = Zs
while coupling terms are Zab = Zac = Zbc = α Zs with
α = 0.5. Such a selection corresponds to a realistic line
configuration with a significant coupling among them.

Second, from the balanced grid, an unbalanced three-phase
case (referred to as unbalanced 118bus grid) is derived by
perturbing a subset of eleven power generators. Table 3 lists
such generators showing the bus number at which they are
connected, the nominal active power they generate and the
module of the node voltage they impose (PV nodes). These
nominal active power values Pk are kept fixed at the nodes of
Phase-B and Phase-C lines while they are perturbed at the
nodes of Phase-A in order to create unbalance among the
lines. The aim is that of exploring the effects that fluctuations
in power generation PAk at Phase-A line can have on the
voltage nodes of the three phase lines. As a preliminary result,
we first perform a deterministic simulation where perturbed
powers at Phase-A nodes are increased by a 20% factor as
follows

PAk = Pk (1+ S) (36)

where Pk are reported in Table 3 and S = 0.2. With these
parameters, we simulate the three-phase balanced 118bus
grid and the unbalanced one and compare results.

TABLE 3. Unbalanced generators.

Fig. 4 shows the computed voltage magnitudes at the
118 × 3 = 354 nodes in the balanced and unbalanced grids.
Fig. 5 reports a detail of such voltage magnitudes for a subset
of nodes and, in particular, for the three nodes (ordered in
Phase A, B and C) at bus 42 and 44. Nodes at Bus 42 are
of PV type and thus their voltage magnitudes remain fixed
at the regulated values (|Vk | = 0.985 V) in both balanced
and unbalanced grids. By contrast, nodes at Bus 44 are of
PQ type and thus their voltages are free to vary. In particular,
for the assumed increase of generated powers, the Bus 44
Phase-A node voltage grows while Phase B and C voltages
reduce. We checked the correctness of these results via com-
parisons with MatPower simulations (for the balanced grid)
and with OpenDSS simulator (for the unbalanced grid). The
differences among the (per unit) voltage values provided by
the CAN solver compared to those obtained with MatPower
and/or OpenDSSare are always < 10−3.

Second, we perform a PPF analysis where the generated
active power at Phase-A nodes of the eleven buses listed

FIGURE 4. Voltage magnitudes: (blue thick line) in the balanced
three-phase 118bus grid; (red square marker) in the unbalanced
118bus grid.

FIGURE 5. Detail of the node voltage magnitudes at Bus 42 and 44 for:
(blue thick line) the balanced and (red square marker) unbalance
118bus grid.

in Table 3 are perturbed as follows:

PAk = Pk (1+ S ξk ) (37)

where ξk are independent and Normally distributed random
variables (with zero mean and unitary variance) modeling
uncertainty in power generation.

Probabilistic analysis is first performed in accordance to
the steps described in Algorithm1 by running 10, 000 MC
simulations with the proposed CAN solver within the Matlab
framework. The MC+CAN overall simulation time is about
290 s on a i7 Quadcore computer. The same MC simulation
performed calling from the Matlab workspace the general
purpose OpenDSS simulator takes about 840 s thus resulting
about three times slower.

Finally, as a further check, we repeat the PPF analysis by
exploiting the acceleration technique based on generalized
polynomial chaos (gPC) method and CAN solver. In our
example, we have l = 11 random variables and we adopt
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expansion order β = 3. For this example, the number of
testing points, i.e. the number of required power flow simula-
tions, of the gPCmethod is 364. The speed up factor achieved
by gPC method over MC method is about 27×.
Fig. 6 shows the PDFs of the voltage at Bus 44, Phase-A

(i.e. node 130) calculated with the MC method and with the
accelerated gPC method are reported in Fig. 6: it is seen
how they match with great accuracy thus confirming the
reliability of the gPC method. After its validation, the gPC
method combined with CAN solver is further exploited for
numerically efficient explorations of other relevant quantities
in the unbalanced grid. Fig. 7, for instance, shows and com-
pare the calculated PDFs for voltages of Phase A B and C at
Bus 44. We can observe how Phase-A node voltage (i.e. the
same phase line with generation power random fluctuations)
is the one with the greatest variability, while Phase-B node
voltage exhibits a much narrower variability interval. We also
observe how Phase-B voltage is not Gaussian distributed due

FIGURE 6. PDF of voltage at Bus 44 Phase A calculated with: (bar
histogram) MC method; (red square marker) gPC method.

FIGURE 7. PDFs of voltages at Bus 44: (blue square marker) Phase A;
(read triangle marker) Phase B (this PDF is divided by 10 for scale
reasons); (green circle marker) Phase C.

FIGURE 8. PDFs of voltages at Bus 21: (blue square marker) Phase A;
(read triangle marker) Phase B (this PDF is divided by 3 for scale
reasons); (green circle marker) Phase C.

to the nonlinearity of power flowproblem.As a final example,
in Fig. 8 we show and compare the PDFs of the Phase A, B
and C voltages in another PQ-type Bus, i.e. Bus 21 in the
grid. Interestingly at Bus 21, Phase-C node voltage exhibits
a variability interval that is greater than that of Phase-A
voltage. This result, that we further checked with reference
MC simulations, is due to the complex interaction between
delivered and absorbed powers in the unbalanced 118bus
grid and to phase lines coupling. Such an example highlights
how electrical variables variability in an unbalanced grid can
hardly be predicted a priori and how accurate probabilistic
simulations are indispensable.

VII. CONCLUSION
In this paper, we have described and original vector-based
formulation of the power flow equations in a power grid. Such
a formulation allows the implementation of the robust and
general NR solver by means of elementary array operations
developed in the complex numbers field. An efficient version
of the method, referred to as CAN method, has been imple-
mented in the Matlab language by exploiting its complex-
array operation capability. We have described how the CAN
method can be exploited in probabilistic simulations in con-
nection to standard MC method as well as with acceleration
techniques based on generalized polynomial chaos expan-
sions. The efficiency and robustness of the novel simulation
technique have been checked via comparisons with standard
simulations tools, i.e. MatPower and OpenDSS, in the anal-
ysis of benchmark single-phase network as well as in unbal-
anced three-phase grids with uncertain power generators.
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