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Abstract Home Health Care is one of the recent service systems where hu-
man resource planning has a great importance. The assignment of patients to
care givers is a relevant issue that the Home Health Care service provider must
address before generating the daily routes. The assignment decision is typically
made without knowing the visiting sequence, which creates some uncertain-
ties and disparities regarding the effective workload of care givers. However,
taking into account travel times in the care giver workload while solving the
assignment problem is not straightforward, because travel times can also be
affected by clinical conditions of patients and their homes.

Providing good travel time estimates that would be used in the assign-
ment decision is the specific topic this paper focuses on. In particular, we
propose a data-driven method to estimate the travel times of care givers in
the assignment problem when their routes are not available yet. The method,
based on the Kernel Regression technique, uses the travel times observed from
previous periods to estimate the time necessary for visiting a set of patients
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2 Semih Yalçındağ et al.

located in specific geographical locations. The main advantage offered by this
technique is the empirical modelling of the travel routes generated by care
givers. Numerical results based on realistic problem instances indicate that
the proposed estimation method performs better than the Average Value and
k-Nearest Neighbor search methods and can be successfully used in a two–
stage approach that first assigns patients to care givers and then defines their
routes.

Keywords Home health care · Resource assignment · Kernel regression

1 Introduction

With the ever increasing cost of operations and various constraints coming
from customers or service operators, the service industry is faced with the
tough challenge of offering better service quality while keeping costs as low
as possible. This issue is even more important for mobile services [10,19] that
involve the traveling of service operators among customer sites and eventually,
the realization of on-site activities. Indeed, home delivery, equipment (appli-
ance, elevator, etc.) installation and repair services [18,32] are typical examples
of such services that include the transportation of goods and personnel (com-
petencies) spending some time at customers’ places. For those services, issues
regarding the planning process need to be supported by innovative decision
making models. The planning process of interest developed in this paper is
deciding which operator is in charge of which customers, i.e. the assignment
problem.

Home Health Care (HHC) is an example of such mobile services that has
known a fast recent growth in the health care sector, representing an alterna-
tive to the conventional hospitalization in developed countries [36,41]. Indeed,
HHC providers deliver medical, paramedical and social services to patients in
their homes. Among decisions related to HHC resources planning are issues
such as the dimensioning of materials and equipments, the determination of
the required number of care givers, the partitioning of the territory served by
the HHC provider into districts, the resource allocation to the districts, the
assignment of care givers to patient visits and the specification of routing plans
for each care giver [6].

The heterogeneity of HHC services and territories where they operate gen-
erated different operations management approaches; we refer to [36] for a de-
scription of several planning levels and processes adopted in current practice.
Hence, in practice, once the patient is admitted to the HHC service, according
to his/her therapeutic project, the resource assignment problem determines
which care givers (operators) will provide care for which patients. Daily routes
are then defined for each care giver, which specify the sequence in which pa-
tients are visited. Within this context, integrating routing considerations while
assigning patients to care givers (without explicitly solving the assignment and
routing problems at the same time) is a challenging research question.
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Title Suppressed Due to Excessive Length 3

Main factors to consider in the assignment problem are the visiting times,
the travelling times and the professional skills required to deliver the service
to a specific patient. Nevertheless, other characteristics than the geographical
locations of patients would have an impact on the assignment of patients.
Examples of such characteristics can stem from features related to patient care
requirements (i.e., their care profile) or the geographical aspects of the territory
where the HHC provider operates. For instance, the visit of a patient requiring
a blood test would most probably be done early in the morning, although it
could be optimal to visit him/her at the end of the day if only geographical
coordinates are considered. Thus, this would have an impact on the assignment
decision that has to be held. Other features such as the information regarding
the availability, for a given day, of patient family members that help care givers
is another motivating feature that the HHC provider has to take into account
while deciding for the assignments.

In summary, these characteristics, that are referred in this paper as patient
attributes, have an impact on decision making at assignment level because they
may force care givers to realize longer routes, thus increasing their effective
assigned workload. Therefore, considering at assignment level the care giver
travel times as the result of a travel time minimization problem (that considers
only geographical locations) would likely lead to non optimal decisions. In
practice, the HHC planner would assign a patient to a different care giver than
the one to whom (s)he would be assigned when only the geographical criterion
based on Euclidean traveling times are used. Such features can be captured
by the available historical data that would give information regarding the
choices made in previous routes accomplished by a given care giver. A data–
driven approach would then enable to estimate (future) travel times based
on care giver’s specific past behaviors. These estimations could be used to
obtain higher quality assignments. The development of a data–driven travel
time estimation method for supporting decision making at assignment level is
the objective of this paper.

More specifically, we propose Kernel Regression as a travel time estimation
method for capturing the features that mostly impacted the choices of care
giver routes in the previous periods. In order to demonstrate the effectiveness
of the method, the solution of the assignment problem is used to generate the
route of each care giver in a two–stage approach as in many HHC organizations.
Then, the performance of the two–stage approach using the Kernel Regression
method is compared to the one generated by a simultaneous approach in which
assignment and routing problems are jointly solved. The comparison is based
on a simplified setting of a HHC planning problem, in which some sources
of complexities such as time windows, synchronization constraints and care
givers’ capacities are not taken into consideration. This simplified experimen-
tal setting enables to focus on the accuracy and effectiveness of the Kernel
Regression method rather than on the comprehensiveness of constraints that
may be considered in HHC assignment and routing problems.
As patient attributes, only the geographical location is considered in the nu-
merical experiments. The main reason is to test the validity of the approach in

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



4 Semih Yalçındağ et al.

the most unfavorable situation for the Kernel Regression method when only
travel time minimization matters and the simultaneous approach is theoreti-
cally the most appropriate one.

The results, based on realistic problem instances, show that the proposed
estimation method performs better than existing ones (i.e., the Average Value
(AV) and k-Nearest Neighbor (kNN) search methods) and can be successfully
adopted in the assignment problem. Another merit of the proposed method is
that it enables to solve the assignment problem by integrating features related
to the routing problem. This paves the way to develop approximate two–stage
approach methods for solving large scale instances of HHC assignment and
routing problems.

The paper is organized as follows. Section 2 provides a literature review on
the HHC planning problem. Section 3 describes the proposed travel time esti-
mation method. Section 4 presents the models of the planning approaches used
in the comparison whereas section 5 provides the numerical results. Finally,
section 6 presents concluding remarks and some future research directions.

2 Literature review

Existing research contributions on HHC can be split into two parts. The first
category of papers concerns works that focus on the assignment problem as
part of a two–stage planning process (assignment and routing stages), whereas
the second category of papers represents works related to the simultaneous
approach. Since the present paper focusses on the assignment problem, this
section gives more details on the first category of papers.

Within this first category of papers, Hertz and Lahrichi [25] propose two
different mixed integer programming models for assigning care givers to pa-
tients. The objective of both models is to balance nurses’ workloads by mini-
mizing a weighted sum of the visit load (based on the weight of each visit), the
case load (due to the number of patients assigned) and the travel load (related
to the distances traveled) while respecting constraints related to maximum
acceptable loads and continuity of care. The travel load is calculated on the
basis of the average distance of the patient location from the district where
care giver works. Since the estimate does not consider sequencing, it should be
accurate for small districts. Borsani et al.[12] propose assignment and schedul-
ing models where the output of the assignment model is incorporated as the
input to the scheduling model. In this work, the assignment process is held
to ensure workload balance among care givers while respecting continuity of
care, qualification requirements and geographical coherence constraints. Travel
times are constant and independent from the sequence.

An extended modeling framework related to the assignment problem of the
HHC services was developed by Lanzarone et al. [30], where authors provide
different assignment models to balance care givers’ workloads by considering
several peculiarities of HHC services, such as care givers’ skills, the geograph-
ical locations of patients and care givers, and the stochastic patient requests.
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Travel times are modeled as in [12]. The same problem with stochastic de-
mand is then tackled in the works of Lanzarone and Matta [29,31] who pro-
pose simple policies to assign patients to care givers instead of mathematical
programming. Carello and Lanzarone [14] develop a cardinality–constrained
robust assignment model where their aim is to exploit the potentialities of a
mathematical programming formulation and to evaluate the capability of such
model in reducing the costs related to nurses’ overtimes. Also in this case, the
travel time for reaching homes is the same for all patients and care givers.
Lastly, Koeleman et al. [28] represent the HHC system as a Markov chain and
they develop admittance policies for patients with the use of a trunk reser-
vation heuristic to control the system by considering a general visiting time
containing a travel load that does not consider routes.

We note that a common characteristic of assignment related papers are the
need of balancing the workload among care givers. Indeed, this problem is ex-
tremely important to have equal working conditions in the same organization.

The second category of papers focuses on the simultaneous assignment and
routing problems. The recent work of Hulshof et al. [27] proposes a taxonomic
review on planning–related decisions in health care services, including HHC.
Papers presented in this review consider the exact distances among patients’
homes to calculate the care giver workloads, but this makes the problem signif-
icantly more complex. Since this paper is focused on the assignment problem,
we only present the list the of these references [2,4,5,7–9,13,15,16,20,21,26,
33–35,39,42,46].

Furthermore, we note that in these works either heuristic methods (e.g.,
Genetic Algorithm, Tabu Search, etc.) are adopted, or small instance sets are
used to solve the developed models [39,40]. Large scale problems have not
been solved with exact methods yet.

In conclusion, the current literature on HHC services does not consider
patient attributes to estimate travel times when the assignment problem is
solved. Contrary to existing works, in this paper, we propose a data driven ap-
proach to consider such attributes. More specifically, factors related to patients
geographical locations such as traffic conditions to reach them, the accessibil-
ity of patients homes, etc. are integrated into a Kernel Regression method
to estimate care givers (effective) travel times while solving the assignment
model.

3 Data-driven travel time estimation method

The travel time of a care giver in the assignment problem may be affected by
several patient related features (attributes) such as the care profile of patients
(i.e., pathology, type and intensity of care), the temporal constraints (i.e.,
availability of the family member that is present for help) and the geograph-
ical locations of patients. In this work, we focus solely on features that are
related to the geographical locations of patients, but the approach proposed
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6 Semih Yalçındağ et al.

for estimating travel time is generic enough to consider other types of patient
attributes (with the ones available in the considered historical data).

We use historical information to integrate routing related considerations
in the assignment problem by estimating care givers’ past travel times based
on patients’ geographical locations. Indeed, there are several factors related to
patients’ geographical locations that have an impact on the travel time of care
givers. Examples of such factors are related to daily traffic conditions (i.e.,
dense or calm), personal preferences of care givers and/or difficulties related
to the access to patients’ homes.
To illustrate this, consider a real example of a care giver tour which has to
visit 7 different patients (identified as A-F) in a particular day. The care giver
considers several geographical and physical aspects while planning his/her
route. For example, due to high traffic density, (S)he chooses to visit patient A
at the end of the working day. Similarly, due to the absence of an elevator, (S)he
chooses to visit patient D at the beginning of the working day since (S)he feels
more energetic. Thus, according to such personal preferences, (s)he executes a
route that is not optimal from a total travel time minimization perspective. For
the given case, if (S)he wanted to obtain her route as the optimal one, according
to the travel distance (time) minimization, (S)he would need to travel 16.2 km
with the following sequence Center-A-B-C-D-E-F-Center. However, since (S)he
considers some other features, the observed executed tour length turns out to
be 20 km with the sequence of Center-D-C-E-F-B-A-Center. Thus, it can be
concluded that in practice planners may not take into account only the criteria
on travel distances but also other features while planning visits.

3.1 Selection of the technique

We propose a non-parametric method to estimate travel times from real data
observations because of their distribution-free property and the asymptotic
convergence of some estimators. Specifically, Kernel Regression (KR) is used
to estimate the travel time functions.

KR is a non-parametric regression technique that does not require a pre-
determined form, as the predictor is built with the information derived from
existing data [47]. KR exploits correlations existing among observations by
assuming a radial basis function explaining the data. In our context, since
HHC patients have unique characteristics depending on their features (i.e.,
geographical location, care profile, etc.), KR seems to be proper to estimate
the travel time to visit a set of patients. Indeed, such data-driven approach
is important for HHC services since historical observations would enable to
capture what really happenes in the system in terms of executed planning de-
cisions. For instance, for some reason, if a patient has been visited in the first
order of the visiting sequence for a certain period of time then it is likely to
observe similar behaviors for the following periods as well. Thus, the KR tech-
nique would enable to integrate this situation when estimating travel times by
assigning a certain weight to that patient for that specific sequence based on
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the information coming from historical observations. In particular, as far as
the management of new patients, KR approach is quite flexible in managing
any type of patient independent of his/her status (new or not) in the system.
Even if the patient is new in the system, he/she can be located in a place which
is close to one of the previously cared patients (available in the historical data)
via weights that are assigned by KR. Hence, travel times can be estimated in
a more realistic way via the use of KR.

To our knowledge, although such data–driven approaches and the KR tech-
nique have been used for problems such as inventory control, call center staffing
and dynamic assortment optimization [45], they have not been applied to the
HHC setting yet.

There are some advantages to use this technique in HHC services. First,
this method uses past data to infer the travel time related to a set of patients
having specific attributes. Since the method needs several samples to build its
estimators, HHC service fits quite well because it is a periodic and repetitive
service type. Thus, a particular patient can be observed several times in the
past data and the Kernel estimator gains significance by time. Another ad-
vantage is related to districting, which is a priori step involved in the HHC
planning problem before the assignment is tackled. The districting process
consists of partitioning a territory into smaller areas [6] and such considera-
tion is beneficial for KR to be able to perform with high accuracy even using
a lower number of historical information.

The use of Kernel or other regression techniques for larger areas would
require a more important volume of historical data not available in practice.
Hence, the proposed method is an efficient way to estimate travel times for
small regions without requiring large volume of historical information.

3.2 Proposed method

This section describes the method developed for estimating care giver travel
times.

Given the set of patients P = {1, . . . , P} a care giver must visit in a
route, we want to estimate the route travel time using past observations. Let
x = {xi, i = 2(p− 1) + l, p ∈ P; l = 1, 2} be a 2P -dimension vector containing
the geographical locations of the patients in the set P.

Let SP = {1, . . . , S} represent the set containing the historical data used
for building estimates. SP is thus the set of all the routes (or sequences)
of length P , i.e. all routes that required P patients to be visited. Let also
y0 = {y0s , s ∈ SP } denote the travel time of the care giver related to each of
the S routes, whereas x0 = {x0

si, i = 2(p− 1) + l, s ∈ SP ; p ∈ P; l = 1, 2} is an
S × 2P array denoting the geographical locations of all the patients visited in
the history.

The KR technique estimates the expectation of the outcome Y conditional
on the random variable variable X, E(Y |X). The main reason for using KR is
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8 Semih Yalçındağ et al.

the scarcity of restrictions on the functional relationship between X and the
outcome Y . This relationship can be formulated as follows:

Y = τ(X) + ε

where τ is an unknown function, and ε is the error term, which is independent
and identically distributed with mean 0 and variance σ2(X).

We consider the case of Multivariate Kernel Regression method because
our response variable Y depends on a vector of exogenous variables X. Thus,
we aim to estimate the following conditional expectation:

E(Y |X) = E(Y |x1, ..., x2P ) = τ(x),

where x is the point to be evaluated, i.e. patients in the set P.

To estimate the unknown function, we use the Nadaraya-Watson estimator
[47]:

τ̂(x) =

∑
s∈SP

K(
x0
s−x
h )y0s∑

s∈SP
K(

x0
s−x
h )

, (1)

where K(.) is a 2P dimensional kernel function, h is the bandwidth vector and
x0
s = (x0

s1, . . . , x
0
s,2P ) contains the geographical locations for each of the P

patients in the route s. In the Nadaraya-Watson approach, the function τ is
estimated with a locally weighted average by using the Kernel as a weighting
function. The selection of the bandwidth value is relevant, as it affects the
predictor’s smoothness. Several methods are available in the literature to se-
lect a value for h and we use the optimal bandwidth technique suggested by
Bowman and Azzalini [11].

The Kernel function, K(zs), is chosen as the widely applied Gaussian Ker-
nel,

K(zs) =
∏
i∈I

1√
2π

e−z2
si , (2)

where zsi = (
x0
si−xi

hi
) and I = {1, . . . , 2P}.

To obtain more accurate estimates using the KR technique, we considered
the uniformization of the input data to be used in the KR function. The same
patient can occupy different positions (i.e., the rank in the input matrix) in
different routes. Thus, if we do not uniformize the input data, the KR function
might not recognize that these (multiple) patients refer to the same single pa-
tient and may spend unnecessary time providing a better estimate by building
a structure across all dimensions (as the double of the number of patients). To
avoid this computation, we use a simple ordering technique for the input data
that rearranges the patients order according to their geographical locations.
This technique sorts the patients by a function of their location coordinates:
xi1 + axi2 (i ∈ P and a is a positive integer).
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3.3 Implementation procedure

Historical data values (x0,y0) are used to build the estimator τ̂(x). Hence,
given a set of patients to visit in a day represented by x, we can use the ex-
pression in (1) to estimate the time that the care giver needs to reach patients’
homes.

Algorithm 1
procedure Travel time estimation
Step 1 Initialization:

P ← number of patients
S ← number of routes with P patients
h← h0, a← a0

Step 2 Uniformization of historical data:
for s = 1, . . . , S do

for p = 1, . . . , P do
<Calculate OVsp = x0

s,2(p−1)+1
+ ax0

s,2(p−1)+2
>

<Sort patients in descending order of OVsp>

Step 3 Uniformization of actual patients:
for p = 1, . . . , P do

<Calculate OVp = x2(p−1)+1 + ax2(p−1)+2>

<Sort patients in descending order of OVp>

Step 4 Calculation of weights:
for s = 1, . . . , S do

<Calculate ws = K(
x0
s−x

h
) using equation (2)>

<Calculate τ̂ =
∑S

s=1 wsy
0
s∑S

s=1 ws
>

Algorithm 1 represents the implementation procedure of the KR technique.
Initially, some parameters are configured: P is set equal to the number of
patients in the route under consideration, the coefficient a and the bandwidth
h values are calculated after analysis of historical data or are estimated based
on experience. The next step (step 2) is to rearrange the order of patients in
each historical route by applying uniformization (step 2). The same is done on
the patients of the route under consideration (step 3). Step 4 establishes the
weight ws for each sequence and use them in combination with the observed
travel times y0s for calculating the estimate τ̂ .

The procedure can be customized by using only the historical sequences
related to a specific care giver. Notice that τ̂ depends on the number of patients
in the routes, thus an estimator has to be built for each route length observed,
e.g. routes involving 5 patients, 6 patients and so on.

Assessing the performance of the proposed method is not easy mainly be-
cause of two reasons. The first reason is related to the effectiveness of the
method. Indeed, it is more important to quantify at which degree the method
contributes to produce better assignments, rather than assessing its accuracy
in estimating the travel times related to some sets of patients. The second rea-
son is related to the problem of judging the quality of an assignment. To do

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



10 Semih Yalçındağ et al.

this, we build optimal routings after having solved the assignment problem.
In this way, we can finally evaluate if the proposed method used at assign-
ment level can bring benefits in terms of effective (i.e., after routing) workload
balancing and total travel times. This assessment is the objective in the next
two sections. Section 4 describes the models used in the assessment of the
effectiveness of the proposed method, whereas section 5 reports the numerical
results.

4 Planning approaches

In this section, we describe the models used to assess the effectiveness of the
proposed KR method. Hence, the Kernel estimator is used in a two–stage
approach, which sequentially solves the assignment and routing problems. Re-
sults of the two–stage approach are compared with those obtained from a
simultaneous approach, which is theoretically the most accurate one to solve
assignment and routing (see also Figure 1). The purpose is to demonstrate
that the use of the proposed method leads to results as good as the simulta-
neous approach. We voluntarily consider a simple HHC setting that operates
with the assumptions described below. These assumptions are valid for both
the two–stage and simultaneous approaches.

4.1 Problem definition

This section describes the specific assignment and routing problems by defin-
ing the assumptions and the objective function used in the two–stage and
simultaneous approaches.

Patients in the set A = {1, . . . , N} have to be assigned to care givers and
a route plan for each care giver has to be designed. Each patient i ∈ A is
assumed to have a deterministic demand λi (expressed as a service time),
which denotes the total amount of care volume (e.g., expressed in minutes)
the patient requires on a single day. At the HHC service provider we worked
with, this parameter is often considered a standard value and, without loss of
generality, has the same value for homogeneous patients: Note that the last
assumption is not strictly necessary for the models we develop in this paper.
Each visit requires only one care giver and does not have precise time windows
to be respected. Synchronous visits are not considered. Finally, each patient
is visited once a day.

We consider a single category of care givers in the set B = {1, . . . , |B|} and
assume that all care givers have identical skills. In practice, HHC operators
are often divided into several districts (i.e., groups) based on their main skills
and the geographical areas they serve. Since we are interested in assignment
and routing decisions, we assume that the districts have been defined earlier.

Each care giver k ∈ B, is assumed to have a capacity ak corresponding to
the maximum amount of time that (s)he works according to his (her) contract.
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We also assume that, beyond this capacity, care givers can handle an excess
load, i.e. overtime is allowed for care givers, although possible overtime costs
are not explicitly integrated into the models. A patient can be assigned to only
one care giver in the set of existing care givers.

HHC providers using the two–stage approach often solve the assignment
problem over a larger horizon than the routing problem, e.g. assignments are
done for a whole week while routes are defined for each day. If a simultane-
ous approach is followed, the problem is solved over smaller horizons, often
on a single day. While comparing the two approaches, in order to have iden-
tical planning periods, we consider a planning period of one day for both
approaches.

Fig. 1 Two-Stage Approach vs. Simultaneous Approach

The objective is to balance the utilization rates of each care giver (de-
fined as the ratio between the actual workload of the care giver and his (her)
capacity) and to minimize the total traveling times of care givers. Workload
balancing is important to ensure that the workload dispersion across all care
givers is as equal as possible. Minimizing the total travel time is also important
for employing care givers more efficiently (i.e., to serve all patients and/or to
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perform other coordination activities in the common HHC center when care
givers do not perform visits) and to reduce the corresponding traveling cost.

4.2 Two–stage approach

The assignment problem is formulated as follows:

min Z = h+ γ
∑
k∈B

yk (3)

s.t.
∑
k∈B

xik = 1 ∀i ∈ A (4)

yk = τ̂k ∀k ∈ B (5)

wk =
∑
i∈A

λixik + yk ∀k ∈ B (6)

h ≥ wk

ak
∀k ∈ B (7)

xik ∈ {0, 1} ∀i ∈ A, ∀k ∈ B (8)

wk, yk ≥ 0 ∀k ∈ B (9)

Decision variable xik equals 1 if patient i is assigned to care giver k and
0 otherwise. wk is a continuous variable used to calculate the workload of
care giver k. yk denotes the travel time of care giver k, and γ is a penalty
parameter used to balance the tradeoff between the total travel time and
workload balancing. The auxiliary variable h is used to estimate the maximum
utilization rate among all care givers.

Equation (4) implies that any patient must be assigned to only one care
giver. Equation (5) assigns to yk the estimation of the travel time. This es-
timation is done with Algorithm 1. It is worthwhile to point out that τ̂k is
a function of the set of patients assigned to care giver k, thus in general
τ̂k = f(x1k, . . . , xNk). Equation (6) defines the workload of each care giver k.
Inequality (7) expresses the maximum utilization rate h, which is minimized
in the objective function (3) together with the penalized sum of travel times.

At the routing level, a TSP model is used to create each care giver’s route
for a single day. Hence, with patient lists obtained from the assignment step,
|B| independent TSP models are solved, and each care giver’s visiting sequence
is determined. In other words, the assignment model’s output is incorporated
into the routing problem, and the routes of |B| care givers are obtained by
solving a set of |B| TSP models. We use a classical TSP model [38] with travel
time minimization objective where deterministic travel times are obtained as
Euclidean distances.
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4.3 Simultaneous approach

As described before, the simultaneous approach is used to make the assign-
ment and routing decisions at the same time. It should be noted that, the
routing part of the HHC problem is actually a VRP with HHC related con-
straints, and we do not intend to have a significant contribution to the VRP
literature. Rather, we use this problem as a benchmark to be able to analyze
the performance of the two–stage approach using the proposed Kernel estima-
tor. The only adaptation that is done here is the objective function. Hence,
we formulate the simultaneous approach as a VRP with the objective function
that balances the trade-off between workload balancing and total travel time
minimization.

Note that in the basic VRP, capacity restriction of care givers are imposed
as hard constraint. However, in this work we used a variant of VRP model in
which the capacity constraints are not considered. Such a model is named as
mTSP [3]. For simplicity, we name this model as VRP throughout this work
and it is presented as follows:

min Z = h+ γ
∑
i∈A

∑
j∈A

tij
∑
k∈B

xijk (10)

s.t.
∑
i∈A

∑
k∈B

xijk = 1 ∀j ∈ A (11)

∑
i∈A

xipk =
∑
j∈A

xpjk ∀p ∈ A, ∀k ∈ B (12)

∑
j∈A

x1jk = 1 ∀k ∈ B (13)

ui − uj + 1 ≤ N + 1(1−
∑
k∈B

xijk) ∀i, j ∈ A, i �= j �= 1 (14)

wk =
∑
i∈A

∑
j∈A

xijktij +
∑
i∈A

∑
j∈A

xijkλj ∀k ∈ B (15)

h ≥ wk

ak
∀k ∈ B (16)

xijk ∈ {0, 1} ∀i, j ∈ A, ∀k ∈ B (17)

wk ≥ 0 ∀k ∈ B (18)

Different than the previously presented formulation, here the decision vari-
able xik is modified as xijk in order to identify the visiting sequences of patients
and takes the value 1 if care giver k visits the patient j immediately after pa-
tient i and 0 otherwise. In particular, the continuous decision variable ui is
used to indicate the sequence in which patient i is visited (i �= 1) and tij
is used as the traveling time between patient i and j (i.e., calculated as the
Euclidean distances).

Equation (11) states that each patient should be visited exactly once. Equa-
tion (12) is the flow conservation constraints, which ensures that once a care
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giver visits the patient, then he must also depart from this patient. Equation
(13) ensures that each care giver serves exactly once and Equation (14) is the
sub-tour elimination constraint. The total workload of each care giver k is
defined by the Equation (15). Inequality (16) calculates the maximum utiliza-
tion rate h, which is minimized in the objective function (10) together with
the penalized total travel time of care givers.

4.4 Solution approach used

In this work, we use a solution method based on Genetic Algorithm (GA) to
solve models presented in sections 4.2 and 4.3 especially with large instances.
GAs are coded in Matlab R2014b and run on a 2.2GHz processor.
Although it is possible to use CPLEX for both the two–stage and simultaneous
approaches, due to the computational complexity encountered in the simulta-
neous approach especially for large instances, GA is preferred to be able to
obtain results in a reasonable time.
More specifically, there are two main reasons why we choose to implement GA
for the two–stage approach with KR. The first one is that the KR function
used in the assignment problem is not unique, but there is one function for
each care giver and for each possible group size of assignable patients. Im-
plementing this in a GA method is much easier rather than in mathematical
programming . The second reason is the non-linear property of the Kernel
function.

Description of the GA used: GA is initialized with the randomly generated
population (chromosome) matrix. Then, for each chromosome, the fitness val-
ues (the objective function value) are obtained. A predetermined number of
chromosomes are then randomly selected, and two individual with minimum
fitness values are selected. With the chosen chromosomes, basic GA opera-
tions are performed (mutation and crossover) to populate the next generation
(i.e., children). The procedure is repeated for several iterations until the exit
condition (maximum number of iterations) is satisfied .

How to call the travel time function: With respect to the KR estimation,
because the regression function is fitted to calculate directly the travel time of
a care giver, the incorporation of this estimation in the assignment problem
is complex. As mentioned before, GA is adopted to be able to cope with such
complexities. Indeed, it is not difficult to embed the KR function into this
heuristic approach since, at each iteration of the GA, the assignment list of
patients is known for each care giver. Thus, direct computation of travel times
for each care giver can be completed using the generated KR function (each
care giver has its own set of KR functions, one for each number of assignable
patients). Then, the algorithm can proceed for the next step where the fitness
value is obtained.

More details related to the GAs (including some accuracy analysis) are
given in Appendix A.1, A.2 and A.3 respectively.
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5 Numerical Results

In this section, we present results of the comparison between the two–stage
approach using KR estimator and the simultaneous approach. First, we present
the details of the available data and the generation of instances. Then, we
analyze small problem instances and extend the analysis to medium as well as
large size problems. Furthermore, the two–stage approach is executed with two
other estimation methods existing in the literature to numerically quantify the
added value of using the Kernel estimator instead of others. Lastly, a sensitivity
analysis is carried out.

5.1 Available data and instance generation

Two groups of data sets are used to conduct the experiments in this work. The
first one is real data that is provided by an Italian HHC provider whereas the
second one is the benchmark data that is used in the VRP literature [23,17].

GA is used to be able to solve the realistic instances (i.e., 150 patients and
15 care givers). Since such heuristic approach does not guarantee optimality
and it is also not possible to solve such instances with the CPLEX solver,
smaller instances (up to 25 patients and 8 care givers) are also generated
to compare the two-stage approach with the simultaneous approach under
the light of optimality. For this case, benchmark data files that are available
from the VRP literature are used to generate other instances to analyze the
performance with different problem settings (i.e., a higher number of cities and
larger distances between them). More details on these data sets are provided
in the following subsections.

5.1.1 Data available from real case

Instances used in the experiments pertaining Group A are obtained from the
analysis of a real case from which we collected the type and number of patients
that have received service in the analyzed period (six days), the number of
visits and the days of execution per each patient, the standard service time
per visit (45 minutes) and the city in which each patient is located. From this
data, it is observed that the area served by the HHC provider is composed
of closely located 7 main cities (due to priori districting process) where each
patient is living in (see Table 1 for distances between cities). Although the
patient’s detailed address is not available, we know that patients are closely
located to each other within the cities.

5.1.2 Generation of real instances

Since data available from the real case does not include the address and the
visiting sequences of patients, we have randomly generated patient locations
and have optimally calculated the travel time for reaching them.
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16 Semih Yalçındağ et al.

Table 1 Distances among cities for real data (in km)

1 2 3 4 5 6 7

1 0 3.3 5.5 5.3 8.0 7.5 5.5
2 0 4.6 5.8 9.8 9.1 7.3
3 0 2.3 6.6 5.9 4.7
4 0 4.4 3.6 2.5
5 0 0.7 2.6
6 0 2.0
7 0

Patients, and the cities where they live, are generated according to the prob-
abilities reported on Table 2. Then, the exact location of each patient is ran-
domly sampled in the selected cities (using the cities’ geographical coordinates)
from a normal distribution with mean and standard deviation equal to 1 and
0.5 km, respectively (see Figure 2).
The minimum care giver travel time is calculated by solving a travel sales-
man problem (TSP). This travel time is considered in the experiment as the
historical value on which the Kernel estimator will be built.

The procedure is repeated as the number of samples we want to gener-
ate. At the end of the generation process, the historical data set contains the
locations x0 and the travel times y0 for each observed sample. Algorithm 2
explains in detail the data generation procedure.

Algorithm 2
procedure Generation of historical data

S ← number of samples
P ← number of patients in a route
for s = 1, . . . , S do

for p = 1, . . . , P do
<Randomly sample the city from discrete distribution on Table 2>

for l = 1, 2 do
<Randomly sample zl from distribution N(1, 0.5)>
<Calculate x0

s,2(p−1)+l
= xcity,l + zl>

<Calculate y0s solving a TSP problem>

5.1.3 Data available from the VRP literature and instance generation

The data sets that are extracted from the VRP literature1 and considered in
this work are as follows [23,17]: E16-3m, E16-5m, E21-4m, E23-5s and E26-8m
where the first two digits indicate the number of customers (patients) and the
digit after “-” is used to identify the number of care givers. For simplicity, we
refer to these instances as B.1-B.5 in the upcoming sections.

1 http : //www.or.deis.unibo.it/research pages/ORinstances/V RPLIB/Simmetric CV RP.zip
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Fig. 2 Map of cities and patient locations in instance 1. Circles represent the area where,
according to distribution N(1, 0.5), 95% of the patients are randomly generated

Table 2 Location and probabilities of cities for real data

City xcity,1 xcity,2 Probability

1 49.21 42.32 0.1544
2 51.63 40.01 0.1611
3 48.16 36.92 0.1544
4 46.14 38.02 0.2819
5 41.90 39.05 0.0604
6 42.60 38.79 0.1007
7 44.36 39.75 0.0872

These instances include the number of customers (patients), the number
of care givers, customer locations and demand information. Note that, since
a variant of VRP is adopted in our research (i.e., mTSP), and a trade-off
objective is used instead of a travel time minimization criterion, solutions
provided in the literature with these data sets are not comparable with the
ones that are presented in this numerical analysis.

Different than the real case data, here the number of available points in the
corresponding data set (i.e., 16 for E16-3m or 26 for E26-8m) are considered
as the number of main cities (instead of having 7 cities as in section 5.1.2).
In addition to that, the distances between these cities are also larger than
the real data (see Table 1) where the maximum distance difference between
these cities are approximately 21.68 km for E16-3m and E16-5m, 62.94 km for
E021-4m, 85.63 km for E26-8m, and 145.17 km for E23-5s.

Historical data is generated with a similar process as it is done for the
real case (see section 5.1.2). Similar to the real case, it is also assumed that
the locations of patients are close to each other and to the city center they
belong to. The only difference is that patients, and cities where they live, are
generated with equal probabilities instead of the ones shown in Table 2. The
rest of the generation process is applied as is it is explained in section 5.1.2.
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5.2 Test on small size instances

In this part, results are presented with the use of small instances with 15 to 25
patients (plus the HHC center) and 3 to 8 care givers. Since the instances are
small, CPLEX Solver is able to provide optimal solutions for the simultaneous
approach which represents the benchmark solution for analyzing the two-stage
approach with KR method. Thus, in Table 3 optimal solutions of the simul-
taneous approach (denoted as Simultaneous(CPLEX)) are compared with the
ones of the two-stage approach that are obtained with the use of the proposed
GA. In addition to these solutions, results of the simultaneous approach that
are obtained with GA (Simultaneous(GA)) are also presented to be able to
analyze the performance of the GA. More performance analysis on the GAs is
presented in Appendix A.3.

The dimensions (i.e., number of patients and care givers) of Group B in-
stances are already explained in Section 5.1.3. This information is used to
generate Group A (i.e., Instances A.1-A.5) instances of Table 3 where dimen-
sions of each instance belonging to this group is the same as the one of Group
B according to the number following the letter (i.e., Instance A.3 has the same
dimensions of Instance B.3 etc).

In Table 3, the total travel time obtained in the two–stage approach (cal-
culated over all care givers) with the KR method is shown by T(KR), and the
workload balance value between the maximally and minimally utilized care
givers is shown by B(KR). Similarly, the total travel time in the simultane-
ous approach is denoted by T(V RP ), and the balancing value is denoted by
B(V RP ). Because models are solved to balance the trade–off between care
giver workload balancing and care givers’ total travel times, the correspond-
ing value is denoted as Z(.), which equals h(.) + γT (.) where h(.) corresponds
to the maximum care giver utilization level.

The presented T(KR) values are obtained by solving several (as the num-
ber of care givers) independent TSP models, with the outputs obtained from
the assignment stage and summing the result of each TSP model across all
care givers. T(V RP ) values are directly calculated from the corresponding
simultaneous model as the sum of each care giver’s route time.

For the cases where we use GA, all results (i.e., T(.) and B(.) values) are
obtained as the average values from replications of the algorithms, and cor-
responding Z(.) values are calculated based on a 95% confidence interval. To
keep the computational effort of the experiments low, we executed 10 indepen-
dent replications. In obtaining the results, the size of the GA population is set
equal to 100, the number of the GA iterations is set to 1000, the probability
of crossover (pc) is set to 0.9 and the probability of mutation (pm) is set equal
to 0.1. Furthermore, the Kernel method estimates travel times using a history
with length S = 100. Since the historical data used in the experiments con-
sider only travel time considerations, all care givers have the same behavior.
Thus, the same Kernel function is used independently from the care giver. All
these settings are used for the entire numerical analysis.
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Table 3 Results with small instances and γ = 1/500

Instance
Two-Stage KR Simultaneous(GA) Simultaneous(CPLEX)

T(KR) B(KR) ZKR T(V RP ) B(V RP ) ZV RP T(V RP ) B(V RP ) ZV RP

A.1 37.59 0.021 0.581 ± 0.0000 37.59 0.021 0.581 ± 0.0000 37.59 0.021 0.581
A.2 68.71 0.022 0.742 ± 0.0007 68.57 0.023 0.742 ± 0.0001 68.55 0.022 0.742
A.3 55.44 0.013 0.647 ± 0.0011 54.84 0.013 0.646 ± 0.0006 54.64 0.013 0.646
A.4 68.23 0.016 0.573 ± 0.0041 63.62 0.018 0.563 ± 0.0000 63.62 0.018 0.563
A.5 99.43 0.019 0.535 ± 0.0016 98.61 0.019 0.533 ± 0.0003 98.32 0.019 0.533

B.1 284.92 0.067 1.308± 0.0298 261.14 0.057 1.250 ± 0.0050 260.22 0.061 1.249
B.2 332.43 0.053 1.435± 0.0235 322.22 0.055 1.402 ± 0.0058 320.85 0.059 1.399
B.3 383.41 0.042 1.503± 0.0465 354.43 0.045 1.426 ± 0.0107 352.27 0.049 1.420
B.4 678.20 0.177 2.068± 0.0534 626.62 0.157 1.932 ± 0.0096 613.55 0.160 1.906
B.5 605.28 0.122 1.981± 0.0394 582.58 0.134 1.917 ± 0.0172 573.63 0.149 1.896

As Table 3 shows, results obtained by the two-stage method are close to
the optimal results of the simultaneous approach (see Simultaneous(CPLEX)).
The differences are approximately 2% (average of 5 instances) and 7.6% for
the Group A and Group B instances respectively when total travel time values
(T (.)) are considered. Thus, the two-stage method provides better quality
solutions for the real case (Group A) where a more limited number of closely
located cities is considered. However, a difference of 7.6% is not very high and
can be reduced by increasing the length of the history (S) as it will be shown
in the sensitivity analysis section.

Another observation concerns the performance of the GA. As it can be
seen, results of the simultaneous approach that are obtained with the GA are
almost equal to the optimal ones. For both groups of instances, the differences
for the total travel time are less than or equal to 1% on average.

In the following sections, results are provided with the medium and large
instances of real data (Group A) to analyze the behavior of the two-stage
approach with KR method. Due to complexity issues, GA is used to perform
these experiments.

5.3 Test on medium and large size instances

The first part of results presented in Table 4 are obtained with 5 different
medium size instances (i.e., Instances A.6-A.10) with 56 patients and 7 care
givers. Whereas in the second part, the results are reported with five differ-
ent large size instances (i.e., Instances A.11-A.15) that are composed of 150
patients and 15 care givers. For both cases the first instances are taken from
real data (i.e. A.6 and A.11) whereas 8 additional instances are generated.

As Table 4 indicates, results obtained by the two–stage method with medium
size instances are close to the results of the simultaneous approach. The dif-
ferences are approximately 6.9% (i.e., average of 5 instances) for the total
travel time. These differences are acceptable but still need to be improved by
increasing the length of the historical information.

We also executed these experiments without uniformizing data as in Al-
gorithm 1. Hence, the gap without using data uniformization was 23.05% for
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the total travel time, this proves the need of data rearrangement before the
predictor is calculated.

Table 4 Results with medium and large instances and γ = 1/1000

Instance
Two-Stage KR Simultaneous (GA)

T(KR) B(KR) ZKR T(V RP ) B(V RP ) ZV RP

A.6 70.86 0.020 0.851 ± 0.0031 66.05 0.022 0.845 ± 0.0014
A.7 81.50 0.017 0.865 ± 0.0058 77.83 0.010 0.857 ± 0.0026
A.8 79.07 0.018 0.862 ± 0.0044 74.52 0.014 0.854 ± 0.0016
A.9 73.13 0.024 0.857 ± 0.0052 66.17 0.021 0.845 ± 0.0016
A.10 72.19 0.022 0.853 ± 0.0035 68.20 0.025 0.848 ± 0.0018

A.11 214.52 0.028 1.192 ± 0.0090 181.57 0.029 1.157 ± 0.0064
A.12 206.95 0.026 1.184 ± 0.0098 165.34 0.027 1.138 ± 0.0065
A.13 207.51 0.026 1.183 ± 0.0105 166.90 0.029 1.140 ± 0.0085
A.14 207.71 0.022 1.183 ± 0.0105 162.87 0.026 1.134 ± 0.0049
A.15 209.35 0.025 1.185 ± 0.0075 171.35 0.028 1.144 ± 0.0079

For larger instances, although the difference between the objective function
values of the two–stage approach and the simultaneous approach are compa-
rable (approximately 3.75%), the difference between the total travel times are
quite larger (approximately 23.47%). In section 5.5, this will be improved by
increasing the number of historical data.

5.4 Comparison with other estimators

To be able to analyze the performance of the proposed KR estimator, we
compare the results of two–stage method with KR technique with two other
methods. The first method is the simple Average Value (AV) approach and
the other one is another regression method based on k-Nearest Neighbor(kNN)
search.

In the AV approach, the estimation of the travel time required to visit a
particular patient is calculated as the average travel time to reach him (her)
from all other patients [48].

In the kNN method only the local neighborhood is used to obtain the
prediction for each care giver based on past observations. This estimator is
presented with the same notation provided for KR in section 3.2 as follows:

τ̂k(x) =
1

m

∑
∀s:x0

s∈Mm(x)

y0s (19)

where Mm(x) ⊂ M is the neighborhood of x defined as the m closest points
x0
s in the history set. Closest points are identified according to the Euclidean

distances identified in R
2P (i.e. d(x,x0

s ) = ‖x− x0
s‖) with the following order

statistics 0 ≤ d1 ≤ d2 ≤ . . . ≤ dm ≤ . . . ≤ dS ; the m closest ones are defined
as the nearest neighborhood of x, where the parameter m is selected with the
method presented in the work of Gyorfi [24].
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These two other travel time estimation methods are used in expression (5)
of the assignment model formulated in section 4.1. Results are presented in
Table 5 with the medium and large instance sets. Similar to previous tables,
care givers’ total travel time obtained in the two–stage approach with the AV
and kNN methods are shown by T(AV ) and T(kNN), respectively, and the
workload balance value between the maximally and minimally utilized care
givers is shown by B(AV ) and B(kNN), respectively. These results have to be
compared with those in Tables 4.

Table 5 Results with with medium and large instances, γ = 1/1000 with different travel
time estimators

Instance
Two-Stage AV Two-Stage kNN

T(AV ) B(AV ) ZAV T(kNN) B(kNN) ZkNN

A.6 143.88 0.017 0.943 73.89 0.027 0.857 ± 0.0078
A.7 157.67 0.006 0.958 87.40 0.013 0.870 ± 0.0186
A.8 158.24 0.003 0.956 82.83 0.018 0.867 ± 0.0089
A.9 118.97 0.030 0.920 82.91 0.022 0.867 ± 0.0164
A.10 120.23 0.029 0.920 80.04 0.021 0.863 ± 0.0071

A.11 335.73 0.012 1.324 215.56 0.034 1.199 ± 0.0320
A.12 321.61 0.015 1.310 216.16 0.030 1.198 ± 0.0251
A.13 329.28 0.011 1.317 214.10 0.029 1.193 ± 0.0267
A.14 326.21 0.011 1.313 208.41 0.025 1.184 ± 0.0165
A.15 321.90 0.012 1.309 221.02 0.026 1.199 ± 0.0155

As it can be seen from the table, the KR method outperforms both the
AV and kNN methods for medium and large instances. Although, results of
KR and kNN methods seem closer for large instances, the solution times for
the kNN are very long (1-3 hours) with respect to the KR method (from 2-4
minutes). In particular, it can also be observed that results with data–driven
approaches (i.e KR and kNN) are performing much more better than the AV
approach.

Note that the results of the the two–stage approach with the AV technique
are obtained with the ILOG Cplex 12.3 solver, whereas the results correspond-
ing to the kNN technique are obtained with GA as we do for the KR method.

5.5 Sensitivity analysis

Results obtained from increasing the number of historical data (for S = 100
and S = 1000) for all the instances are presented in Table 6. As the number of
historical data increases, the performance of the two–stage approach with KR
technique significantly increases. For instance, with the small instances the
differences are decreased to 0.81% for the Group A and 2.70% for the Group
B instances. In particular, it is also observed that the differences with medium
and large instances are decreased to 2.89% and 3.08% respectively.

When the solutions of these tables are compared with the solutions of the
simultaneous approach, we can conclude that with enough number of historical
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Table 6 Results with with different sample size of history (from 100 to 1000)

Instance γ S
Two-Stage KR

T(KR) B(KR) ZKR

A.1

1/500

100 37.59 0.021 0.581 ± 0.0000
1000 37.59 0.021 0.581 ± 0.0000

A.2
100 68.71 0.022 0.742 ± 0.0007
1000 68.61 0.022 0.742 ± 0.0001

A.3
100 55.44 0.013 0.647 ± 0.0011
1000 55.16 0.013 0.647 ± 0.0011

A.4
100 68.23 0.016 0.573 ± 0.0041
1000 65.16 0.019 0.566 ± 0.0030

A.5
100 99.43 0.019 0.535 ± 0.0016
1000 98.90 0.019 0.534 ± 0.0008

B.1
100 284.92 0.067 1.308 ± 0.0298
1000 270.39 0.049 1.266 ± 0.0290

B.2
100 332.43 0.053 1.435 ± 0.0235
1000 320.75 0.067 1.401 ± 0.0041

B.3
100 383.41 0.042 1.503 ± 0.0465
1000 366.55 0.031 1.456 ± 0.0073

B.4
100 678.20 0.177 2.068 ± 0.0534
1000 630.34 0.153 1.939 ± 0.0128

B.5
100 605.28 0.122 1.981 ± 0.0394
1000 589.59 0.119 1.931 ± 0.0380

A.6

1/1000

100 70.86 0.020 0.851 ± 0.0031
1000 68.16 0.023 0.848 ± 0.0035

A.7
100 81.50 0.017 0.865 ± 0.0058
1000 79.35 0.015 0.860 ± 0.0061

A.8
100 79.07 0.018 0.862 ± 0.0044
1000 76.79 0.017 0.859 ± 0.0041

A.9
100 73.13 0.024 0.857 ± 0.0052
1000 68.70 0.025 0.852 ± 0.0040

A.10
100 72.19 0.022 0.853 ± 0.0035
1000 69.84 0.027 0.852 ± 0.0043

A.11
100 214.52 0.028 1.192 ± 0.0090
1000 176.15 0.026 1.149 ± 0.0043

A.12
100 206.95 0.026 1.184 ± 0.0098
1000 166.46 0.028 1.140 ± 0.0094

A.13
100 207.51 0.026 1.183 ± 0.0105
1000 172.44 0.029 1.146 ± 0.0075

A.14
100 207.71 0.022 1.183 ± 0.0105
1000 173.01 0.026 1.147 ± 0.0065

A.15
100 209.35 0.025 1.185 ± 0.0075
1000 175.07 0.028 1.148 ± 0.0102

points, the two-stage approach with KR method presents similar solutions in
comparison to the simultaneous approach even for large instances. Note also
that S = 1000 is not unrealistic, since a care giver usually works 250 days per
year.

Results obtained from increasing the number of patients are presented
(while keeping the same number of care givers 7) in Table 7. As it can be seen,
the performance of the KR function starts to decrease in terms of total travel
time. This is due to the increase of dimensionality of the Kernel function’s
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argument. For example, in the instances with N = 105, from 8 to 15 patients
are assigned to care givers and the estimator loses in accuracy.

Table 7 Results with different number of patients per care giver based on instance A.6

N
Two-Stage AV Two-Stage KR Simultaneous (GA)

T(AV ) B(AV ) ZAV T(KR) B(KR) ZKR T(V RP ) B(V RP ) ZV RP

56 143.88 0.017 0.943 68.16 0.023 0.848 ± 0.0035 66.05 0.022 0.845 ± 0.0014
70 154.61 0.008 1.143 74.98 0.021 1.046 ± 0.0048 69.49 0.023 1.037 ± 0.0023
105 155.02 0.018 1.611 107.29 0.016 1.553 ± 0.0088 87.27 0.021 1.529 ± 0.0060

Lastly, for simplicity, only two different penalty values are used while ob-
taining the provided results of this section, γ = 1/500 for small and γ = 1/1000
for medium and large instances. To be able to show that the two–stage ap-
proach using KR estimation is also consistent with other penalty values, we
plot Figure 3 using data from the first medium instance (see Instance A.6).
With this figure, we show the trade-off between the workload balancing and to-
tal travel times of care givers for decreasing values of the penalty term; results
refer to the assignment phase of the two-stage process. As expected, it appears
that when we decrease the penalty value, the effect of the total travel time
decreases while better workload balancing is ensured. Thus, the KR predictor
seems to correctly guide the assignment problem in different situations.

Fig. 3 The trade-off between the workload balancing and the total travel time minimization
for the assignment phase of the two-stage model
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6 Conclusion

In this work, we have proposed a Kernel regression method to estimate travel
times in the HHC assignment problem using the historical routing information
of care givers. We have analyzed the performance of the proposed estimator
and showed the improvements achieved in comparison with the AV and data-
driven kNN regression techniques. Then, we have compared the performance of
the two–stage and simultaneous approaches. We have found that the two–stage
approach with KR method provides results similar to those of the simultaneous
approach.

The use of the KR technique is promising for HHC organizations where
the number of patients and care givers can be significant and the assignment
and routing problems have different time scales, e.g. care givers’ assignment
lists are gathered weekly, and routes are defined daily.

Furthermore, because the solutions of the two–stage approach are compara-
ble with the simultaneous approach, this process seems to be a promising tool
for approximately solving the HHC VRP. However, this approach should be
tested on further experiments and more realistic planning settings including
time windows constraints, synchronization of visits and limited care givers’
availability. Indeed, this work is limited to a basic application of the HHC
services where we do not consider care giver capacities or different qualifica-
tions. Thus, one important extension will be to consider multiple planning
horizons with different care giver skills and capacities to be able to analyze
this approach in more realistic situations.

Another relevant extension of this work would be the consideration of other
HHC features since the actual paper focuses on the geographical locations of
patients that actually might not be the only criteria for defining care givers’
visits. Indeed, other features such as patients’ care profiles (i.e., corresponding
pathology), special service requests (i.e., requests for clinical tests) and tem-
poral constraints (i.e., requests for visits at specific times) would impact the
real care giver behaviors and therefore the associated travel times.

Lastly, this work can also be extended by considering differently structured
historical data that is not gathered by solving multiple TSPs but instead
obtained via different methods (i.e., using nearest neighborhood search etc.)
or directly from real world data.
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A Details for the Genetic Algorithms

GA is an adaptive search procedure applied to a set of solutions that uses the properties from
population genetics (i.e., crossover and mutation) to guide the search. At each iteration, GA
discards some solutions (poor ones) and generate new ones based on superior members of
the current set of solutions. Evaluation of the solutions (e.g., poor or good) is based on a
problem specific function that is named as fitness function. The general representation of the
GA is presented in the Algorithm 3 below and problem specific components are explained
in the following parts according to the adopted GAs.

Algorithm 3 Genetic Algorithm
1. Generate an initial population
2. Evaluate the chromosomes with the fitness function
3. Perform selection operation with tournament system
4. Perform crossover and mutation and check feasibility
5. Repeat step 2,3 and 4 until the stopping criterion is met

A.1 GA for the Assignment Problem with KR Approach

Each solution in GA is represented as a chromosome with two parts as the size of number of
patients and care givers (N+|B|). The first part of each chromosome contains the information
for the care giver–patient match which is represented by a permutation of integers from 1 to
N . On the other hand, the second part is used to show the number of patients that each care
giver needs to provide the service for and consists of |B| non-negative integers. For example,
Figure 4 illustrates the matching between 3 care givers and 9 patients. According to this
figure, the first care giver is responsible to visit 4 locations (patients) of the chromosome
patient 1, patient 4, patient 5 and patient 9, Then, the second one would visit the next 2
locations (i.e., patient 3 and patient 7) and the the last one would visit the 3 remaining
locations (i.e., patient 2, patient 6 and patient 8).

Fig. 4 Chromosome representation for the assignment problem with KR approach

The fitness function is the objective function of the assignment model given in the
Equation (3), which is trying to balance the trade–off between care giver workload balancing
and their total travel times. Since the fitness function is calculated for the assignment
problem, the order of the patients in the chromosome that are matched with the care givers
is not necessarily important. This is because travel time values are estimated with the use
of the KR approach (or any other estimation method) by only using the patient IDs.

Selection process involves in choosing the chromosomes that would serve as parents for
the next population generation. The tournament system [37] is used in which q chromosomes
are randomly selected from the population. Then, two chromosomes with the minimum
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fitness function values are selected among these q individuals to be used as the two parents.
This process is performed several times to populate the next generation.

Once the patents are selected a crossover operation is performed with a certain prob-
ability (pc). First the chromosome is splitted into two parts according to the patient and
care giver information. Then, with the part related to the patient information, the order
crossover operation is performed to populate two children chromosomes (offsprings). Within
this procedure, two cut points are randomly chosen from parent and parts between these
cut points are mapped into two offsprings chromosomes. From the second cut point in one
parent, the remaining genes are filled in the order that they appear in the other parent.
After the order crossover operation, second part of the parent chromosomes is swaped and
copied into the offsprings as well (see Figure 5 for an example of the crossover operation).

Fig. 5 Crossover Operation

Once the crossover operation is finalized, the mutation operation is held for the offspring
chromosomes with a probability of pm. The mutated chromosomes are obtained by randomly
choosing two points between 1 and N and simply changing their places from the first part
of where the patient information are stored. No mutation operation is performed for the
second part of the chromosome.

Since the population matrix is generated according to the constraint where each patient
can only be assigned to single care giver, feasibility is always ensured throughout the whole
procedure.

It is also important to note that elitist selection process is also considered where the
best chromosome in a generation is carried over the next one without any change.

A.2 GA for the TSP

Since TSP only deals with the visiting sequences of a single care giver, in the GA the
chromosome represents the visiting sequence of the corresponding care giver. Thus, the
chromosome represented in Figure 4 can also be used for this algorithm by only considering
the first part which corresponds to the patient information.

The fitness function is the objective function of the TSP model which is trying to
minimize the total travel time of the care giver. It is important to note that, for the fitness
calculation, the order of patients must be considered as the they appear in any chromosome.

The population selection, crossover, mutation and elitism operations are the same as
the previously described GA (see section A.1).

Since the population matrix is generated according to the constraint where each patient
can be visited only once, feasibility is always ensured through out the whole procedure.
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A.3 GA for the VRP

The chromosome representation of the VRP is the same as the one provided for the first
GA (see section A.1).

The fitness function is the objective function of the VRP given in the Equation (10),
which is trying to balance the trade-off between care giver workload balancing and their total
travel times. As in the previous algorithm, the order of the patients must be considered as
they are in any chromosome.

The population selection, crossover, mutation, elitism and feasibility operations are the
same as the previously described GA (see section A.1).

We provide details about the performance of the implemented GA for the VRP. Remind
that the VRP model that is used in this paper is the modified variant of the mTSP problem
where instead of only minimizing the total travel time of care givers, we try to balance the
trade-off between care giver workload balancing and their total travel times. To be able
to analyze the performance of the GA, we only provide results based on total travel time
minimization which is the basic model that is present in the literature. To do so, in addition
to the h and γ terms of the objective function (Equation (10)) of the corresponding model,
we also eliminate the constraints for the workload balancing (Equations (15) and (16)).

Table 8 shows the objective function values minimized by the implemented GA and the
method used as benchmark [44]. All the results are obtained with same group of instances
used in section 5. The first group (Instance B.1-B.5) corresponds to the first set of small
problem instances with 15 to 25 patients (and a health care center) and 3 to 8 care givers.
These ones are obtained from the benchmark instances that are used in the VRP literature
([23,17]). The second set of small problem instances (Instance A.1-A.5) are as the same
size of Group S.1 and generated from real data as described in section 5. The third and
last group of instances are also generated from real data and the difference lays on the
dimensions. Hence, the third group corresponds to the medium sized instances (Instances
A.6-A.10) where each instance have 56 patients and 7 care givers (and a health care center).
The last group (Instances A.11-A.15) corresponds to the larger problem instances that have
150 patients and 15 care givers (and a health care center). Here the solutions are obtained
with the same procedure as provided in the numerical result section.

Table 8 Accuracy analysis of the GA for VRP

Instance CPLEX UHGS GA Average error %
B.1 250.04 - 250.64 ± 0.68 0.24
B.2 285.27 - 288.27 ± 1.48 0.75
B.3 294.43 - 296.36 ± 3.14 0.66
B.4 601.67 - 601.96 ± 0.51 0.05
B.5 476.04 - 480.29 ± 3.57 0.80
A.1 24.54 - 24.54 ± 0.00 0.00
A.2 51.81 - 51.81 ± 0.00 0.00
A.3 36.12 - 36.43 ± 0.38 0.84
A.4 36.85 - 37.02 ± 0.19 0.48
A.5 70.93 - 71.86 ± 0.46 1.32
A.6 - 37.03 37.19 ± 0.11 0.56
A.7 - 44.05 44.26 ± 0.21 0.48
A.8 - 37.41 37.59 ± 0.29 0.49
A.9 - 36.92 37.00 ± 0.13 0.20
A.10 - 38.42 38.58 ± 0.07 0.44
A.11 - 53.84 54.77 ± 0.20 1.73
A.12 - 54.36 54.61 ± 0.20 0.47
A.13 - 54.11 54.54 ± 0.35 0.78
A.14 - 54.30 54.50 ± 0.20 0.37
A.15 - 55.14 55.44 ± 0.36 0.55
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The solutions provided by the GA for the instances A.6 to A.15 are compared with the
Unified Hybrid Generic Search method (UHGS) presented in the paper of Vidal et al. [44].
On the other hand, solution of the GA for both group of small sized instance (Instances
B.1-B.5 and A.1-A.5) are directly compared with the ones that are executed by the ILOG
CPLEX solver. It is observed that the maximum average error for all the groups of instances
is less than 1.73%.
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