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Abstract

We consider a linear system affected by an additive stochastic disturbance and address the design of a finite horizon control policy that is
optimal according to some cost criterion and accounts also for probabilistic constraints on both the input and state variables. The resulting
policy can be implemented over a receding horizon according to the model predictive control strategy. Such a possibility, however, is
hampered by the fact that a feasibility issue may arise when recomputing the policy. Infeasibility indeed can occur if the disturbance has
unbounded support and the state is required to remain in a bounded set. In this paper, we propose a solution to this issue that is based
on the introduction of a constraint relaxation that becomes effective only when the original problem turns out to be unfeasible. This is
obtained via a cascade of two probabilistically-constrained optimization problems where, in the first one, performance is neglected and
the policy is designed to fully recover feasibility or –if this is not possible– to determine the minimum level of relaxation which is needed
to recover feasibility; in the second step, such a minimum relaxation level is imposed while optimally (re-)tuning the control policy
parameters. Both problems are solved through a computationally tractable scenario-based scheme using a finite number of disturbance
realizations and providing an approximate solution that satisfies with high confidence the original probabilistic constraints of the cascade.
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1 Problem formulation

This paper deals with the problem of designing a finite-
horizon optimal control policy for a discrete-time stochastic
linear system subject to constraints on both the state and the
input. Specifically, we consider the system

xt+1 = Axt +But +Bwwt , (1)

where xt ∈ Rn is the state, ut ∈ Rm is the control input and
wt ∈ Rnw is an additive stochastic disturbance. Matrices A,
B, and Bw have appropriate dimensions so as to make (1)
consistent. The probability distribution of wt is assumed to
be known and it may have an unbounded support. Without
loss of generality, we assume that nw ≤ n and Bw is full
column rank. The state is accessible, i.e., at every t a noise-
free measurement of xt becomes available.
The following disturbance feedback parametrization for the
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control input is adopted:

ut =

{
γ0, t = 0
γt +∑

t−1
τ=0 θt,τ wτ , t > 0

(2)

where γt ∈ Rm represent open-loop terms, while θt,τ ∈
Rm×nw are the disturbance feedback gains. Note that the
stochastic disturbance wτ , τ = 0, . . . , t−1, appearing in (2)
to determine the input at time t > 0 can be recovered from
the measurements of the state xτ , τ = 0, . . . , t, according to

wτ = B†
w(xτ+1−Axτ −Buτ), (3)

where B†
w denotes the pseudo-inverse of Bw. This expression

reveals that the disturbance feedback control policy in (2) is
in fact a state feedback control policy. Parametrization (2)
was first proposed in [24], where it was shown that the family
of policies in (2) is indeed equivalent to the family of affine
state feedback policies ut = γ̃t +∑

t
τ=0 θ̃t,τ xτ . 1 To be precise,

for every choice of γ̃t , θ̃t,τ there exists a parametrization
γt ,θt,τ in (2) returning the same control action, and viceversa.

1 By setting θ̃t,τ = 0, τ 6= t, and θ̃t,t =K, this expression simplifies
to ut = Kxt + γ̃t , which can then be represented via (2), thanks to
the equivalence result in [24].
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The great advantage of (2) is that, differently from other
parameterizations, the input ut and the state xt are affine
functions of the design parameters γt and θt,τ , which yields
clear computational benefits and allows one to tune the state
feedback gain. This is not so for other parameterizations and
indeed, in the literature where the policy ut = Kxt + ct is
adopted, it is often the case that the gain K is fixed to an
a-priori chosen value to recover linearity, [15].

Remark 1 (feedforward compensator) Note that, if the
disturbance were directly measured, we would be address-
ing the design of a feedforward disturbance compensator.
In such a setting, ut in (2) could depend also on wt and the
results in the paper would still apply with minor modifica-
tions. �

The objective is to design the parameters γt and θt,τ in (2) so
as to minimize a cost function over a finite time horizon of
length M, while accounting for constraints on the input and
state variables. This problem may arise per-se in some ap-
plications (for instance, the positioning of the end-effector
of an industrial robot equipped with a robot re-initialization
device), but its significance mainly lies in the fact that it oc-
curs in Model Predictive Control (MPC), where the problem
is repeatedly solved over a receding horizon, [29,9,35,27].
In our formulation, we admit as cost any strictly convex
function J of the parameters γt and θt,τ over the horizon
0,1, . . . ,M−1. Plainly, the most common situation is when
J is defined as a function of the input and the state. A typical
choice is the average quadratic cost

J = E

[
M

∑
t=1

xT
t Qxt +

M−1

∑
t=0

uT
t Rut

]
, (4)

where Q and R are symmetric and positive semi-definite ma-
trices, and E denotes expectation with respect to the (known)
distribution of the disturbance. In this case, a sufficient con-
dition for strict convexity to hold is that matrices R and
E[wwT ] are positive definite, see [21].
As for the input and state constraints, we assume that they
are expressed as

f (u0, . . . ,uM−1)≤ 0 ∧ g(x1, . . . ,xM,u0, . . . ,uM−1)≤ 0 (5)

where∧ stands for “and”, f :RmM→Rpu and g :R(n+m)M→
Rpy are continuous convex vector-valued functions, and the
inequalities are meant component-wise. For example, a typ-
ical requirement is that the norms of the input and of some
output variable are kept within an admissible range for each
t in the time horizon. Note that g allows for joint state and
input constraints and the constraints expressed by f could be
incorporated in g. To ease further explanations, we however
keep the constraints that depend on the input only separate
from the others.
It should be noted that constraints (5) cannot be directly im-
posed since they miss to specify how to account for the pres-
ence of the stochastic disturbance affecting both the state

and the input variables. Robustly enforcing the state con-
straint for every and each disturbance realization is impos-
sible when the state is constrained within a bounded set and
the disturbance has unbounded support. As a matter of fact,
the stochastic disturbance wt enters additively the system
dynamics, and, since the input ut depends on the disturbance
up to time t−1 at most, the dependence of xt+1 on wt can-
not be canceled. We then assume that constraints are en-
forced probabilistically, namely, constraints (5) are required
to hold with a certain (usually high) probability 1−ε , where
ε ∈ (0,1) is a user-chosen parameter:

P{ f (u0, . . . ,uM−1)≤ 0 ∧g(x1, . . . ,xM,u0, . . . ,uM−1)≤ 0}
≥ 1− ε. (6)

This probabilistic formulation of constraints is the most nat-
ural for many problems of interest and has become com-
mon in the recent literature on constrained stochastic con-
trol, [3,31,33,34,4,18,15,22,23,28].
Altogether, the optimal design problem we are considering
is as follows:

min
γi,θi, j

J subject to (6). (7)

Note that a probabilistic constraint P{ f (u0, . . . ,uM−1) ≤
0} ≥ 1 − ε , where g is not present, is always feasi-
ble, because, if needed, the disturbance feedback gains
θt,τ ∈ Rm×nw in (2) can be set to zero, which makes ut
deterministic. On the contrary, a feasibility issue arises in
(7) precisely because of the presence of the requirement on
g(x1, . . . ,xM,u0, . . . ,uM−1). Since the additive disturbance
wt has possibly unbounded support and given the limitation
imposed by the system dynamics and by the constraints on
the input variable, it may then be that, depending on the
system initialization x0, no choice of γt ,θt,τ exists such that
g(x1, . . . ,xM,u0, . . . ,uM−1)≤ 0 is attained with the required
probabilistic level. Just to give some intuition, this is typi-
cally the case when the state is constrained within a bounded
set and x0 is close to the boundary: the values of w0 that
make x1 exit the constraint set can have a probability larger
than 1− ε , irrespectively of the value chosen for u0 within
the assigned actuation limits. The feasibility issue gets
worse for large values of M. For instance, when the noise is
Gaussian and Bw is the identity matrix, no matter how u is
chosen, the state will exit any fixed bounded set with prob-
ability 1 as the time horizon length grows unbounded, [26].
The feasibility problem here discussed is severe because
in many cases the designer has no direct control on the
system initialization, which is indeed determined by exoge-
nous causes. For example, in an MPC scheme where the
optimization problem (7) is continuously repeated at every
time step over a receding horizon, the system initialization
for a given time horizon is determined by the solutions at
previous steps. Since constraints are only probabilistically
enforced, it may well be that at previous steps the state is
driven to a value preventing feasibility at the current itera-
tion.
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The objective of this paper is that of addressing the feasi-
bility issue illustrated above. To this purpose we introduce
a suitable relaxation of problem (7), which is inspired
by constraint softening in deterministic optimization and
is conceived so as to adhere to the intent of the original
problem formulation (7) as much as possible. Precisely,
whenever the original constraint (6) is feasible, the orig-
inal problem is maintained, while, otherwise, a new de-
cision problem is formulated by relaxing the condition
g(x1, . . . ,xM,u0, . . . ,uM−1) ≤ 0 only for those components
of the vector inequality that need to be relaxed to get feasi-
bility. Constraint relaxation is set to a minimal level needed
to recover feasibility so as to avoid penalizing excessively
performance. In particular, no relaxation is introduced if the
problem is feasible.
This reformulation leads to a cascade of two optimization
problems with probabilistic constraints, which, admittedly,
can be very difficult to solve in general, since problems
involving probabilistic constraints can be NP-hard. The
second contribution of this paper is that of introducing
a resolution scheme based on randomization in order to
enhance computational tractability. Specifically, we resort
to the so-called scenario approach, [5,6,11,14], a recently
introduced randomized method that can be used to pro-
vide approximate solutions to problems with probabilistic
constraints establishing a precise link between the origi-
nal problem and its approximation. In this paper, such a
link is extended to the scenario solution to the cascade of
problems discussed above, which is a non-standard setup
not fully covered by the available literature (see [30] for a
contribution on cascading optimization in a different setup).

1.1 Literature review

In [15,17] stochastic uncertainty with bounded support is
tackled by means of suitable probabilistic tubes, whereas in
[28] constraint tightening is adopted to enforce recursive fea-
sibility in MPC, always under the assumption of a bounded
disturbance. In the case of systems affected by stochas-
tic disturbance with unbounded support, control problems
in presence of state constraints have been addressed in
[2,25,3,31,33,34,4,18]. In [2,33,34], state constraints are
dealt with by means of a penalization term accounting for
the state constraint violation so as to ensure feasibility. In
[25,31,4,18], an analytic convex relaxation of probabilis-
tic constraints is proposed, whereas in [3] the problem is
reformulated considering a bounded disturbance obtained
by suitably cutting the tails of the disturbance distribution.
In all these approaches, the disturbance is assumed to be a
sequence of i.i.d. (independent and identically distributed)
random variables. Many of them also assume that the dis-
turbance has a Gaussian distribution, [2,25,3,31,4,18]. This
paper addresses the unbounded disturbance case and differs
from the mentioned approaches in that no independence
and Gaussianity assumptions are made.
A main feature of our method is that a randomized ap-
proach is adopted to recover tractability. Other randomized
approaches to constrained stochastic control for system (1)

have been also proposed in [7,36,8] but under the assump-
tion that the noise has bounded support, whereas in [32]
only input constraints are considered, and in [37,40] recur-
sive feasibility is assumed.
Our previous contributions [19,21] address the same set-up
as in this paper but they recover feasibility by either adding
a term penalizing state constraint violation to the cost or in-
troducing a certain pre-defined admissible deterioration of
the system performance while relaxing the state constraints.
Choosing the appropriate weight of the penalization term or
degree of performance deterioration requires some tuning
effort. Also, it might be the case that constraint relaxation
is introduced even if the randomized problem is feasible,
[19,21], which is not the case in our method.
A preliminary version of this paper has been presented as
a conference contribution in [20], where the effectiveness
of the proposed randomized solution to the feasibility issue
was shown via a numerical case study only. The current
submission provides revised and new discussions and a
theoretical analysis with formal proof of our main technical
achievement.

1.2 Structure of the paper

The rest of the paper is organized as follows. Some com-
pact notation is introduced in Section 2. In Section 3, we
formally introduce the problem relaxation, while the pro-
posed algorithmic resolution scheme based on the scenario
approach is described in Section 4. In this section, the theo-
retical properties of the obtained solution are also discussed
and a formal proof of these properties is reported. A numer-
ical example is given in Section 5, while some concluding
remarks are drawn in Section 6.

2 Compact notation

In order to ease the notation we define:

x =


x1

x2
...

xM

 u =


u0

u1
...

uM−1

 w =


w0

w1
...

wM−1

 F =


A

A2

...

AM



G =


B 0n×m · · · 0n×m

AB B
. . .

...
...

. . .
. . . 0n×m

AM−1B · · · AB B

 H =


Bw 0n×nw · · · 0n×nw

ABw Bw
. . .

...
...

. . .
. . . 0n×nw

AM−1Bw · · · ABw Bw

 ,

so that the state vector can be calculated as:

x = Fx0 +Gu+Hw. (8)
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Similarly, the disturbance feedback policy (2) can be rewrit-
ten in the following compact form

u = Γ+Θw, (9)

where we let

Γ =


γ0

γ1
...

γM−1

Θ =


0m×nw 0m×nw · · · 0m×nw

θ1,0 0m×nw

. . .
...

...
. . .

. . . 0m×nw

θM−1,0 · · · θM−1,M−2 0m×nw

 .

By substituting the expression of the input in (9) into (8),
the affine dependence of x on the design parameters Γ and
Θ becomes clear:

x = Fx0 +GΓ+(GΘ+H)w

Eventually, the nonzero components of Γ and Θ are collected
in the vector of optimization variables λ , so that the follow-
ing notations can be adopted: u = uλ (w), x = xλ (w), and
J = J(λ ), which point out the dependence of input, state,
and cost on the optimization vector λ and the disturbance
realization w. The constraints in (6) then become

P{ f (uλ (w))≤ 0 ∧ g(xλ (w),uλ (w))≤ 0} ≥ 1− ε.

3 Problem relaxation to ensure feasibility

In order to recover feasibility, we introduce a relaxation of
the condition g(xλ (w),uλ (w))≤ 0 by substituting its right-
hand side with h∈Rpy , h being a new optimization variable.
By doing this, the constraint involving state variables turns
out to be always feasible, since it is enough to take the vari-
able h large enough. On the other hand, large values for h are
clearly not desired since the bigger h the larger the deviation
from the original constraint. To stick to the original prob-
lem formulation as much as possible h should be minimized
component-wise. On the other hand, one should account for
the minimization of the cost function J(λ ), which represents
the system performance. This recalls the constraint soften-
ing approach adopted in deterministic optimization to cope
with constraint infeasibility. In classical constraint soften-
ing, a penalized cost function is minimized to compromise
between constraint softening and performance optimization.
Here, in order to drive the system as close as possible to the
feasibility condition, we first compute the minimum value
for the parameter h to make the relaxed constraint feasi-
ble, without accounting for performance, and optimize per-
formance only afterwards, while enforcing the relaxed con-
strained with the computed minimum value for h.
More precisely, the following cascade of optimization pro-
grams (two-step approach) is proposed, where L(h) is an

user-chosen strictly convex function of h that is also positive
definite at h = 0 (i.e., L(h)> 0, h 6= 0 and L(0) = 0):

min
λ ,h≥0

L(h) subject to: (10)

P{ f (uλ (w))≤ 0 ∧ g(xλ (w),uλ (w))≤ h} ≥ 1− ε,

min
λ

J(λ ) subject to: (11)

P{ f (uλ (w))≤ 0∧g(xλ (w),uλ (w))≤ ho} ≥ 1− ε,

where ho is the optimal value for h obtained in (10). The
optimal value for λ obtained from (11) is denoted by λ o.
Problem (10) in the first step aims at determining the small-
est value of h, according to the cost L(h), that ensures the
feasibility of the probabilistic constraint

P{ f (uλ (w))≤ 0 ∧ g(xλ (w),uλ (w))≤ h} ≥ 1− ε.

A possible choice for the cost function L(h) is e.g.
L(h) = hT T h, which allows to assign a different impor-
tance to each component of h by properly choosing the
positive definite matrix T . Note that since the cost func-
tion L(h) does not depend on λ , it may happen that the
optimal cost L(ho) is attained for multiple λ values, each
of them leading to a possibly different value of J(λ ). The
second step optimization problem (11) then exploits this
degree of freedom to minimize the performance cost. To
this purpose, J(λ ) is minimized while the relaxed con-
straint P{ f (uλ (w))≤ 0∧g(xλ (w),uλ (w))≤ ho} ≥ 1− ε

is enforced. Since the bound on the state condition
g(xλ (w),uλ (w)) is fixed to ho as computed in the previous
step, problem (11) does not suffer from any feasibility issue.
The cascade of problems is conceived so that, when the
probabilistic constraint in (7) is infeasible, the control ac-
tion is basically designed according to (10) so as to recover
feasibility (minimization of L(h)). In this case, (11) pro-
vides just a refinement of the solution. The requirement
h ≥ 0 in (10) ensures that the constraint relaxation in (11),
component by component, cannot become tighter than the
original constraint in (7), and, for those components not re-
quiring any relaxation, (11) pursues the goal of minimizing
J(λ ) as in (7). In particular, whenever (7) is already fea-
sible, program (10) simply returns ho = 0 and the original
problem (7) is recovered in (11).

Remark 2 Another relaxation approach, which is quite
popular in optimization and which was studied in [19,21],
consists in introducing the same relaxation adopted here
by adding the optimization variable h, but solving a single
optimization problem with J(λ )+µL(h) as cost function to
be minimized:

min
λ ,h≥0

J(λ )+µL(h) subject to: (12)

P{ f (uλ (w))≤ 0 ∧ g(xλ (w),uλ (w))≤ h} ≥ 1− ε,

The drawbacks of this approach are that an appropriate tun-
ing of the penalization parameter µ > 0 is necessary to get
the desired compromise between constraint relaxation and
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performance, see [19,21]. This tuning may be impractical
and difficult to achieve, and it may happen that some re-
laxation is introduced even when it is not needed. A further
more detailed discussion on these aspects is presented in
Remark 3, in the light of some technical results, and in Sec-
tion 5, where the approach of this paper is compared to that
of [19,21] in a numerical example.

Overall, the cascade of problems (10) and (11) returns a so-
lution given by the pair (λ o,ho), where λ o determines the
control action to be implemented and ho is the probabilis-
tically guaranteed bound for the state constraint. Note that
the value ho computed in the first step optimization problem
can be inspected to evaluate the mismatch with respect to
the original state constraint.

4 Scenario-based resolution scheme

Problems (10) and (11) are, in general, hard to solve because
of the presence of a probabilistic constraint. Hence, we pro-
pose to tackle them by means of a sample-based scheme,
which is in the vein of the so-called scenario approach,
[5,6,11,14]. The proposed scheme allows to recover com-
putational tractability at the price of introducing some ap-
proximation. However, by exploiting the scenario approach
theory, which is here extended to the cascade of problems
(10) and (11), precise probabilistic guarantees on the feasi-
bility of the achieved solution are also provided.
The idea of the scenario approach is to consider N distur-
bance realizations of length M:

w(k) =
[
w(k)

0 w(k)
1 . . . w(k)

M−1

]
, k = 1, . . . ,N,

each one extracted according to the disturbance probability
distribution. Then, the probabilistic constraint in (10) and
(11) are replaced by N non-probabilistic constraints, one for
each disturbance realizations. More precisely, we have the
following cascade of problems that can be seen as a sample-
based counterpart of the cascade of problems (10) and (11):

min
λ ,h≥0

L(h) subject to: (13)

f (uλ (w(k)))≤ 0, k = 1, . . . ,N,

g(xλ (w(k))),uλ (w(k)))≤ h, k = 1, . . . ,N,

min
λ

J(λ ) subject to: (14)

f (uλ (w(k)))≤ 0, k = 1, . . . ,N,

g(xλ (w(k))),uλ (w(k)))≤ h?, k = 1, . . . ,N,

where h? is the optimal value of h obtained in (13). The op-
timal value for λ obtained from (14) is denote by λ ?.
Problems (13) and (14) are convex and have a finite num-
ber of constraints; hence, they can be efficiently solved by
means of standard solvers. Note that as the constraints are
convex and the cost function L(h) is strictly convex with re-
spect to its argument, problem (13) uniquely determines the

value of h?; similarly, thanks to the strict convexity of J(λ ),
the solution to problem (14) is unique. 2

The same interpretation we had for the cascade of problems
(10) and (11) in Section 3 applies to the cascade of prob-
lems (13) and (14): indeed, the solution of the latter cascade
defined by the pair (λ ?,h?) is the empirical counterpart of
the solution of the former. It is worth noticing that, as the
pair (λ ?,h?) is feasible and optimal for (13), the second step
optimization problem (14) can be regarded as a tie break
rule by means of which the solution that minimizes the cost
J(λ ) is chosen among the possible multiple solutions in λ

of the first step optimization problem (13).

We are now interested in studying the feasibility of the
obtained scenario-based solution for the probabilistic con-
straint

P{ f (uλ (w))≤ 0∧g(xλ (w),uλ (w))≤ h} ≥ 1− ε, (15)

so as to provide a connection between (λ ?,h?) and the orig-
inal cascade of problems (10) and (11).

This question pertains to the theory of the scenario approach,
which provides in a number of different setups guarantees on
the feasibility of the scenario solution for the original prob-
abilistic constraint as long as N is suitably chosen, see e.g.
[6,11,12,10,16,13]. The tightest result is that of [11] which,
however, does not directly apply to the cascade of problems
(13) and (14). The results on cascading optimization in [30]
apply to this context but the resulting bound on N is conser-
vative. Theorem 1 provides an extension of the result in [11]
to the current framework, under the following assumption.

Assumption 1 The set of admissible control actions
{(u0, . . . ,uM−1) : f (u0, . . . ,uM−1) ≤ 0} has nonempty inte-
rior. �

Note that Assumption 1 simply requires that the con-
straint f (u0, . . . ,uM−1) ≤ 0 imposed by the user on the
admissible control actions is not too restrictive. An f not
satisfying Assumption 1 is for instance f (u0, . . . ,uM−1) =
‖u0‖2 + ‖u1‖2 + · · · ,‖uM−1‖2, in which case imposing
f (u0, . . . ,uM−1) ≤ 0 leads to the quite contrived situation
where u0 = 0, u1 = 0, . . . , uM−1 = 0 is the only admissible
control action. More generally, not satisfying Assumption
1 corresponds to a reduction of the degrees of freedom
through which we have to accomplish the control task. It is
then clear that, unless we are dealing with an over-actuated
system, choosing an f not satisfying Assumption 1 would
be too restrictive for any sensible control problem. Because
of this, Assumption 1 can be regarded as very mild.

Theorem 1 Fix a value for the confidence parameter β

within (0,1). If the number of extracted disturbance realiza-

2 If J(·) and L(·) are both quadratic and the constraints are
quadratic or linear, then the optimization problems (13) and (14)
are both quadratic programs and can be solved efficiently.
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tions N is chosen so as to satisfy

d−1

∑
i=0

(
N
i

)
ε

i(1− ε)N−i ≤ β , (16)

where d is the dimensionality of (λ ,h), then it holds with
confidence at least 1−β that

P{ f (uλ ?(w))≤ 0 ∧ g(xλ ?(w),uλ ?(w))≤ h?} ≥ 1− ε,

where (λ ?,h?) is the solution to the cascade of problems
(13) and (14).

Theorem 1 states that with high confidence 1− β the so-
lution (λ ?,h?) obtained by solving the scenario cascade of
problems (13) and (14) is feasible for the original probabilis-
tic constraint (15) in (10) and (11). Note that the presence of
the confidence parameter β is intrinsic and is related to fact
that the obtained solution depends on the random extraction
w(1), . . . ,w(N): β is needed to account for the possibility that
a not representative enough sample w(1), . . . ,w(N) is seen.
However exploiting the results in [1] it can be shown that
the number of required samples N according to (16) scales
logarithmically with 1/β . Hence β can be chosen to be very
small such as 10−5 or 10−7 without affecting N too much, so
that the fact that the achieved solution (λ ?,h?) satisfies the
probabilistic constraint (15) in (10) and (11) can be taken
for granted.
Note that N has to be chosen so as to satisfy the inequal-
ity (16) for the result in Theorem 1 to hold. In practice,
N should be set equal to the lowest value compatible with
(16) in order to avoid conservativeness of the solution to the
cascade of problems (13) and (14). Alternatively, one could
opt for the scenario solution with constraint removal in [12].
The results of Theorem 1 should then be extended to the
cascade of scenario problems with constraint removal. This
is not straightforward and requires further investigations.

Proof of Theorem 1: For a given (λ ,h), define the violation
probability of (λ ,h) as

V (λ ,h) := P
{

f (uλ (w))> 0 ∨ g(xλ (w),uλ (w))> h
}

= 1−P
{

f (uλ (w))≤ 0 ∧ g(xλ (w),uλ (w))≤ h
}
,

where ∨ stands for “or”. Then, Theorem 1 amounts to show-
ing that

PN{V (λ ?,h?)> ε} ≤ β , (17)

where PN is the product probability underlying the indepen-
dent extraction of the sample w(1), . . . ,w(N) based on which
the solution (λ ?,h?) is computed.

Consider the following auxiliary scenario programs

min
λ ,h≥0

L(h)+
1
n

J(λ ) subject to: (18)

f (uλ (w(k)))≤ 0, k = 1 . . .N,

g(xλ (w(k)),uλ (w(k)))≤ h, k = 1 . . .N,

for n = 1,2, . . ., and denote by (λ ?
n ,h

?
n) its optimal solution,

which exists and is unique, since: i. the cost function L(h)+
1
n J(λ ) has compact level sets for every n ≥ 1 thanks to
its strict convexity; ii. the optimization feasibility domain
defined by the constraints in (18) is close and nonempty.
The following two properties hold:

1. For every n≥ 1, it holds that

PN{V (λ ?
n ,h

?
n)> ε} ≤ β . (19)

2. For every multisample w(1), . . . ,w(N), the solution to (18)
converges to the solution to (13) and (14), namely,

(λ ?
n ,h

?
n)→ (λ ?,h?) as n→ ∞. (20)

Formal proofs of (19) and (20) are given in Appendix A and
Appendix B.

Remark 3 The auxiliary problem (18) can be interpreted
as the sample-based counterpart of the problem (12) con-
sidered in [19,21], with µ = n. Property (20) shows that
the solution of the cascade of problems (13) and (14) under
consideration in this paper can be retrieved in the limit from
(18), and we will take advantage of this important theoreti-
cal result next to derive the probabilistic guarantee (17). On
the other hand, it is important to stress that in no way this
allows one to conclude that the cascade of problems (13)
and (14) is of no use because one can simply take (18) with n
large enough to practically retrieve the solution of (13) and
(14). The reason is twofold: i. how large n must be chosen
depends significantly on the problem at hand and finding the
proper value may require multiple trials and be demanding
as compared to the one-shot resolution of the cascade of
problems (13) and (14); ii. more importantly, when n is too
large, (18) may turn out to be ill-conditioned for a numerical
resolution. Indeed, for large values of n, numerical solvers
tends to ignore the presence of J(λ ) and the cost J of the re-
turned solution can then be very different from the cost J of
the solution of (13) and (14). These aspects are exemplified
next in Section 5 by means of a numerical example.

We now capitalize on (19) and (20) to show that (17) holds.
To this purpose, start by fixing a sample w(1), . . . ,w(N) such
that V (λ ?,h?)> ε , which, we recall, means that

P
{

f (u(w,λ ?))> 0 ∨ g(x(w,λ ?),u(w,λ ?))> h?
}
> ε.
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By continuity of f and g, this implies that

P
{

f (u(w,λ ))> 0 ∨ g(x(w,λ ),u(w,λ ))> h
}
> ε,

for all (λ ,h) : ‖(λ ,h)− (λ ?,h?)‖ ≤ r for a radius r small
enough, and, since (λ ?

n ,h
?
n) → (λ ?,h?) so that ‖(λ ,h)−

(λ ?,h?)‖ ≤ r for all n bigger than a suitable n̄, we can con-
clude that

V (λ ?
n ,h

?
n)> ε, (21)

for n > n̄. If we now let w(1), . . . ,w(N) vary and we con-
sider the indicator function I{w(1),...,w(N): V (λ ?

n ,h?n)>ε}, then (21)
yields

I{V (λ ?,h?)>ε} · I{V (λ ?
n ,h?n)>ε} −−−→n→∞

I{V (λ ?,h?)>ε},

for all possible realizations of w(1), . . . ,w(N). Note that

lim
n→∞

PN{V (λ ?
n ,h

?
n)> ε}

= lim
n→∞

∫
I{V (λ ?

n ,h?n)>ε}PN{dw(1), . . . ,dw(N)}

≥ lim
n→∞

∫
I{V (λ ?,h?)>ε} · I{V (λ ?

n ,h?n)>ε}PN{dw(1), . . . ,dw(N)},

where the last step holds because we are restricting the do-
main of integration. By the Lebesgue dominated conver-
gence theorem ([39, §5.9]), we have

lim
n→∞

∫
I{V (λ ?,h?)>ε} · I{V (λ ?

n ,h?n)>ε}PN{dw(1), . . . ,dw(N)}

=
∫

I{V (λ ?,h?)>ε}PN{dw(1), . . . ,dw(N)},

which finally leads to

lim
n→∞

PN{V (λ ?
n ,h

?
n)> ε} ≥ PN{V (λ ?,h?)> ε}.

Since PN{V (λ ?
n ,h

?
n)> ε}≤ β , ∀n, relation (17) is proven. �

5 Numerical Example

In this section we apply the proposed approach to a numer-
ical example inspired by [18].
We consider the mechanical system composed by 4
masses and 4 springs shown in Fig. 1. Masses and
stiffness coefficients of springs are all equal to 1. The
state x = [d1, d2, d3, d4, ḋ1, ḋ2, ḋ3, ḋ4]

T is formed
by the displacements of masses with respect to nom-
inal positions and their derivatives; the initial state is
x0 = [0, 3, 0, −3, 0, 0, 0, 0]T . The control input
u = [u1, u2, u3]

T is instead formed by the forces acting on
the masses depicted in Fig. 1. The control action is kept
constant over the sampling period [t, t + Ts), with Ts = 1

 

Fig. 1. Scheme of the mechanical system.

s, and we work with the resulting discretized system. A
stochastic additive disturbance affecting both the displace-
ment and the speed of the fourth mass is supposed to be
also present. This results in a system as in (1), with matrices
A and B as obtained from discretization, Bw = [B1

w B2
w],

B1
w = [0 0 0 1 0 0 0 0]T , B2

w = [0 0 0 0 0 0 0 1]T , and
w∼WGN(0, I2).
The control horizon is M = 5 and the goal is to keep the
spring deformations within a safe range by using the small-
est possible control action. To this purpose, we consider the
cost function J = ‖γ‖2 + ‖Θ‖2

F , where ‖ · ‖F denotes the
Frobenius norm, and the state constraint∥∥∥∥∥∥∥∥∥∥∥

x1,t

x2,t − x1,t

x3,t − x2,t

x4,t − x3,t

∥∥∥∥∥∥∥∥∥∥∥
∞

≤ 3, t = 1, . . . ,M. (22)

To deal with the presence of the disturbance w, the con-
straint is enforced in probability with ε = 0.05.
Following the approach of Section 3, the optimization vari-
ables hi, i = 1, . . . ,M, are introduced so as to ensure the
feasibility of the probabilistic constraint. We set β = 10−6

resulting in N = 2447 according to (16). Eventually, the cas-
cade of problems (13)-(14) is solved with L(h) = hT h.
In our numerical experiment imposing the original state
constraint (22) over the seen scenarios led to infeasibility;
indeed, solving problem (13) gave h?1 = 0.53, h?2 = 0.21,
h?3 = 0.38, h?4 = 0.18, while h?5 = 0. Notably, the approach
succeeds in recognizing that no relaxation is necessary for
the constraint at t = 5. The cost J(λ ?) achieved after solving
problem (14) was 56.03. Some Monte-Carlo simulations re-
vealed that the probabilistic constraint (15) was satisfied by
the solution (λ ?,h?) as it is expected given Theorem 1 (the
probability of violation turned out to be 0.02). Interestingly
enough, though the probabilistic satisfaction of the original
constraint (22) could not be guaranteed, it turned out that the
probability of violation of the original state constraint (22)
was 0.056, which is just slightly above the desired level 0.05.
This is so because the proposed approach implements just
the minimum extent of constraint relaxation that is needed
to recover feasibility.
We now compare the approach of this paper with that of
[19,21], by considering a sample-based counterpart of prob-
lem (12) (see Remarks 2 and 3). To this aim, Table 1 re-
ports the obtained cost function J(λ ?), the values of h?i ,
i = 1, . . . ,M, as well as the empirical probability of violation
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of the original state constraint (22) for the cascade approach
of this paper and for the approach of [19,21] for various val-
ues of µ . As it appears, the cascade approach of this paper

Table 1
The cascade approach of this paper vs. the approach of [19,21].

Approach J h1 h2 h3 h4 h5 V̂

cascade 56.03 0.53 0.21 0.38 0.18 0.0 0.055

µ = 100 51.07 0.53 0.22 0.40 0.18 0.08 0.078

µ = 10 16.95 1.01 0.70 0.55 0.28 0.25 0.079

µ = 1 4.88 1.57 1.15 0.89 0.54 0.48 0.133

µ = 0.1 1.14 1.81 2.09 2.47 0.99 1.53 0.442

obtains the smallest relaxations and the best probability of
violation of the original constraint. At the same time, the
cost J keeps moderate enough thanks to the minimization in
(14). As µ increases the results of the approach of [19,21]
tend to those of the cascade approach and, in principle, the
two approaches are equivalent when µ → ∞ (see again Re-
mark 3). However, it is worth noticing that, in line with the
observation made in Remark 3, for too large values of µ

we were not able to retrieve the solution of the cascade ap-
proach, since too little importance was given to J(λ ) and the
numerical solver returned solutions with the same h∗ as the
cascade approach, but with a very big J(λ ?) (in our simula-
tions, this was 526.32). This shows that obtaining a proper
tradeoff between J(λ ) and L(h) by selecting µ is in general
difficult, and, anyway, it requires trials and errors.

6 Conclusion

In this paper, we have described a sample-based method for
finite horizon constrained control of a linear system affected
by a possibly unbounded additive disturbance and we have
formally proved that it guarantees probabilistic constraint
feasibility. Infeasibility is a relevant issue that can hamper
the applicability of MPC strategies. The achievements of
this paper then permit one to assemble a recursively feasi-
ble MPC scheme where a relaxed optimization problem is
solved over a receding horizon. Differently from alterative
solutions, relaxation has been suitably designed so as to have
a limited impact on control performance.
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A Proof of (19)

By adding a slack variable v∈R, problem (18) can be rewrit-
ten in epigraphic form as:

min
λ ,h≥0,v

v subject to: (A.1)

f (uλ (w(k)))≤ 0, k = 1 . . .N,

g(xλ (w(k)),uλ (w(k)))≤ h, k = 1 . . .N,

L(h)+
1
n

J(λ )≤ v.

The solution to problem (A.1) is still unique, and the as-
sumptions of Theorem 2.4 in [11] are satisfied thanks to
Assumption 1. An application of this theorem gives

PN{V (λ ?
n ,h

?
n)> ε} ≤

d

∑
i=0

(
N
i

)
ε

i(1− ε)N−i,

where we have d in place of d−1 because in (A.1) the num-
ber of optimization variables has been augmented by 1 and
is equal to d+1. On the other hand, since the slack variable
v does not enter the expression defining it, the constraint

{λ ,h,v : f (uλ (w))≤ 0 ∧ g(xλ (w),uλ (w))≤ h}

is, irrespective of w, a cylindroid infinitely extended along
the v direction. This entails that the family (with respect
to the variability of w) of constraints above has a so-called
support rank equal to d, according to Definition 3.6 of [38]
(see also [41]). The conclusion that

PN{V (λ ?
n ,h

?
n)> ε} ≤

d−1

∑
i=0

(
N
i

)
ε

i(1− ε)N−i

then follows by invoking the observation made in [38] that
Theorem 2.4 of [11] still applies by replacing the opti-
mization domain dimensionality with the support rank (see
Lemma 3.8). �

B Proof of (20)

To show that (λ ?
n ,h

?
n)→ (λ ?,h?) as n→∞, consider the sets

Hn =
{
(λ ,h) : (λ ,h) is feasible for (18) and

L(h)+
1
n

J(λ )≤ L(h?)+
1
n

J(λ ?)
}
,

for n = 1,2, . . .. In words, n by n, Hn is the set of all feasible
points for (18) that also belong to the smallest level set of
the cost function of (18) containing the solution (λ ?,h?) of
(13) and (14). Note that, while the level set changes with n,
the feasibility domain of (18) remains the same for all n and
it coincides with the feasibility domain of (13). This entails
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Fig. B.1. The sets Hn’s in a simple case (h,λ ∈ R, L(h) = h2,
J(λ ) = 3λ 2).

that (λ ?,h?) belongs to Hn for all n, showing also that Hn
is nonempty. Moreover, n by n, we have that

(λ ?
n ,h

?
n) ∈Hn, (B.1)

because (λ ?
n ,h

?
n) is feasible for (18), and, being also optimal,

its cost value must be better than that of (λ ?,h?), which is
the second condition defining Hn.
A fundamental property of the family of sets Hn is that

H1 ⊇H2 ⊇ ·· · ⊇Hn ⊇Hn+1 ⊇ ·· · , (B.2)

as pictorially depicted in Fig. B.1. To show (B.2), suppose
that a (λ̄ , h̄) belongs to Hn+1. From

L(h̄)+
1

n+1
J(λ̄ )≤ L(h?)+

1
n+1

J(λ ?)

it follows that J(λ̄ ) ≤ (n + 1)(L(h?) − L(h̄)) + J(λ ?).
Whence,

L(h̄)+
1
n

J(λ̄ )≤ L(h̄)+
n+1

n
(L(h?)−L(h̄))+

1
n

J(λ ?)

= L(h?)+
1
n
(L(h?)−L(h̄))+

1
n

J(λ ?)

≤ L(h?)+
1
n

J(λ ?),

where the last inequality follows because L(h?)−L(h̄)≤ 0
being L(h?) the lowest among feasible points by the defini-
tion of h?. This shows that (λ̄ , h̄) ∈Hn too, that is, (B.2)
holds.
From (B.1) and (B.2), we have that (λ ?

n ,h
?
n) ∈H1, ∀n. Set

H1 is compact, being the intersection of the feasibility do-
main of (13), which is close, with a level set of L(h)+ 1

n J(λ ),
which is compact thanks to the assumptions of strict of con-
vexity of L and J. It then follows that the sequence (λ ?

n ,h
?
n)

have limit points, which are feasible for (13). For simplic-
ity, assume that there is just one, say (λ ?

∞,h
?
∞), so that the

sequence (λ ?
n ,h

?
n) is convergent to (λ ?

∞,h
?
∞). If not, simply

repeat the argument that follows to each limit point and the
corresponding convergent subsequence.
From (B.1) and the definition of Hn, we have that

L(h?n)≤ L(h?)+
1
n
[J(λ ?)− J(λ ?

n )] ,

which in turn implies that

L(h?∞) = lim
n→∞

L(h?n)≤ L(h?)+ lim
n→∞

1
n
[J(λ ?)− J(λ ?

n )] = L(h?).

Yet, being L(h?) minimal, it cannot be that a strict inequal-
ity holds, so that eventually L(h?∞) = L(h?). If h?∞ 6= h?, then
( 1

2 λ ?+ 1
2 λ ?

∞,
1
2 h?+ 1

2 h?∞) would be feasible for (13) thanks
to the convexity of the feasible domain, while the strict con-
vexity of L(h) would give

L
(

1
2

h?+
1
2

h?∞

)
<

1
2

L(h?)+
1
2

L(h?∞) = L(h?),

so contradicting the minimality of L(h?). Hence, h?∞ = h?.

From (λ ?
n ,h

?
n) ∈H1, we have that J(λ ?

n )≤ L(h?)−L(h?n)+
J(λ ?) which, taking the limit, gives

J(λ ?
∞)≤ lim

n→∞
L(h?)−L(h?n)+ J(λ ?) = J(λ ?).

Plainly, it must be that J(λ ?
∞) = J(λ ?), for, otherwise, being

λ ?
∞ feasible for (14), J(λ ?

∞) < J(λ ?) would contradict the
minimality of J(λ ?). Moreover, if λ ?

∞ 6= λ ?, then 1
2 λ ? +

1
2 λ ?

∞ would be feasible for (14), and, because of the strict
convexity of J(λ ) we would have

J(
1
2

λ
?+

1
2

λ
?
∞)<

1
2

J(λ ?)+
1
2

J(λ ?
∞) = J(λ ?),

contradicting again the minimality of J(λ ?). Hence, λ ?
∞ =

λ ?, and this concludes the proof of Property 2. �
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