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A Phase I Multi-Modelling Approach for Profile Monitoring of Signal 

Data 
 

Abstract: Many industrial processes exhibit multiple in-control signatures, where 

signal data vary over time without affecting the final product quality. They are 

known as ‘multimode processes’. With regard to profile monitoring 

methodologies, the existence of multiple in-control patterns entails the study and 

development of novel monitoring schemes.  We propose a method based on 

coupling curve classification and monitoring that inherits the so-called “multi-

modelling framework”. The goal is to design a monitoring tool that is able to 

automatically adapt the control chart parameters to the current operating mode. The 

proposed approach allows assessing which mode new data belong to before 

applying a control chart to determine if they are actually in control or not. Contrary 

to mainstream multi-modelling techniques, we propose extending the classification 

step to include a novelty detection capability, in order to deal with the possible 

occurrence of in-control operating modes during the design phase that were not 

observed previously. The functional data depth paradigm is proposed to design 

both the curve classification and the novelty detection algorithm. A simulation 

study is presented to demonstrate the performances of the proposed methodology, 

which is compared against benchmark methods. A real case study is presented too, 

which consists of a multimode end-milling process, where different operating 

conditions yield different cutting force profile patterns.  

Keywords: Process Monitoring; Multimode Process; Profile Monitoring; 

Functional Data Classification; Novelty Detection; Functional Data Depth; Quality 

Control; Manufacturing Processes. 

 

1 Introduction 

Traditionally, Statistical Process Control (SPC) relies on the assumption that the 

process has only one in-control (IC) state, which can be described by a single IC pattern 

of monitored variables or signals. In the framework of profile monitoring applications 

(Kang and Albin, 2000; Woodall et al., 2004; Colosimo and Pacella, 2010), such a pattern 
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consists of a spatially or time-ordered waveform known as “profile”. Different authors 

(Colosimo and Pacella, 2010; Jin and Shi 2001; Chang and Yadama, 2010; Grasso et al., 

2014, Chou et al., 2014) showed that the IC shape of the monitored profile might be 

considered as a ‘signature’ of the manufacturing process, whose stability over time is 

related to the quality of the process itself. Nevertheless, many real industrial processes 

exhibit more than one IC state (Zhao et al., 2010; Ge et al., 2013; Xie and Shi, 2012), due 

to the existence of multiple operating conditions (i.e., different sets of working conditions, 

different machine settings after shutdown, different tool copies, etc.). In this case, a single 

profile is not sufficient to fully characterise the process, since the IC state may be 

described in terms of multiple signatures, all of them corresponding to acceptable quality 

parts. This is particularly relevant when profile monitoring techniques are applied to 

signal data, as sensor signals are usually highly affected by changing operating 

conditions. In the presence of multiple IC signatures, the term ‘multimode process’ is 

used (Wen et al., 2015; Ren et al., 2015; He and Xu, 2016; Zhao et al., 2010; Ge et al., 

2013; Xie and Shi, 2012). A multimode process is a process that switches from one IC 

operating mode to a different one, producing a stream of data from different IC 

distributions (or waveforms). SPC of multimode processes in discrete-part manufacturing 

was studied in a recent paper (Grasso et al., 2015), which focused on the comparison of 

nonparametric techniques where quality features of interest are simple variables and not 

profiles. Profile monitoring of multimode processes was recently proposed for geometric 

shape monitoring (Park and Shrivastava, 2014). In that case, the authors used a mixture 

of time-series models to characterise the sequence of geometric observations under in-

control process conditions. Compared to that study, this paper presents a different 

perspective, which tries to combine effectiveness and ease of use. Instead of modelling 

the multimode process dynamics, the so-called ‘multi-modelling’ paradigm (Xie and Shi, 
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2012; Ge and Song, 2009; Zhao et al., 2004) is applied and extended to the profile 

monitoring framework. The multi-modelling approach involves a database of historical 

IC data to design mode-specific control charts, i.e. one distinct chart for each mode. This 

implies a two-step procedure: (i) a classification step, aimed at determining which mode 

new data belong to, among the ones already included in the database, and (ii) the 

application of control charts to determine if the process remained IC over the period of 

time where profile data were collected. However, when an unexpected modification of 

the operating mode occurs under IC conditions (i.e., when a full recording of covariate 

information is not available in advance), the existing methods may not be able to signal 

the change. As a matter of fact, any classification algorithm identifies the mode, among 

the ones included in the database, that better matches the current observations. However, 

if none of the known modes actually represent the current process state, the algorithm is 

forced to yield a match anyway. When this happens during Phase I, a wrong estimation 

of control chart parameters may take place, leading to detrimental effects on process 

monitoring performances. New IC states, which were not observed in the past, may occur 

during the process lifecycle, and different authors (Zhao et al., 2010; Xie and Shi, 2012) 

pointed out the importance of coping with the so-called “new mode development”. 

Nevertheless, the literature still lacks formalized strategies on how to deal with it. 

The aim of this study is to provide the practitioner with a support tool able to: i) 

avoid misclassification errors during the multi-modelling control chart design (a.k.a. 

Phase I), and ii) automatically signal the possible occurrence of novel modes during the 

collection of data that should be representative of IC conditions. Since a classification 

step is not able to deal with new IC states, we propose to couple it with a so-called ‘novelty 

detection’ step (Markou and Singh, 2003; He and Girolami, 2004). Novelty detection 

methods are classification techniques aimed at determining if a set of data belongs to one 
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of the available classes or whether it represents a brand new class. When the current 

observations are classified as a ‘novelty’, a warning is automatically signalled. Then, one 

has to decide whether they represent a new IC mode or whether they are the realisation 

of an out-of-control (OOC) state. Such a decision requires a retrospective investigation, 

aimed at finding the assignable causes for the observed data.  

In order to deal with profile data, we propose the use of the functional data depth 

methodology (Fraiman and Muniz, 2001; Cuevas et al., 2007) for both classification and 

novelty detection. Functional data depth allows the measuring of how internal a profile is 

with respect to a reference set of curves. It represents a generalisation of multivariate 

depth methods (Tukey, 1975) to functional data. One major benefit consists of it being 

suitable to compare profile patterns in different modes without defining a common 

modelling framework.  

The present study contributes to the existing literature by i) extending the multi-

modelling framework to profile monitoring applications, ii) integrating classification an 

novelty detection to cope with new mode development and iii) demonstrating the 

effectiveness of the functional data depth methodology to enhance classification 

performances. A real industrial application in end-milling operations is first presented to 

discuss the method from a practical implementation viewpoint in a real multimode profile 

monitoring problem. A simulation study is then presented to demonstrate the 

performances of the proposed approach and to compare it against other benchmark 

methods for curve classification.  

Section 2 presents the proposed methodology; in Section 3 the real case study in 

end-milling is discussed; Section 4 presents the simulation study and the results of the 

comparison analysis; Section 5 concludes the paper.  
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2 Methodology  

2.1 The multi-modelling framework 

Recent studies devoted to multimode processes in the field of both univariate and 

multivariate control charts mainly focused on two approaches (Zhao et al., 2010; Ge et 

al., 2013), namely the global modelling approach (Lane et al., 2001; Hwang and Han, 

1999) and the multi-modelling approach (Choi et al., 2005; Ge and Son, 2009; Zhao et 

al., 2004). Both the methods assume the availability of a database that characterises the 

natural process behaviour in known operating modes (these methods are also known as 

‘model-library methods’ (Ge et al., 2013)). Nevertheless, they make different uses of the 

information included in the database. The global modelling approach consists of 

designing a single control chart that is globally able to monitor the process in every known 

state: this means that the entire database, without any distinction between different modes, 

is used to design the chart (Grasso et al., 2015). The multi-modelling approach, instead, 

consists of designing one control chart for each IC mode, such that only the information 

related to the IC state that matches the current observations is used for the end-use 

monitoring phase. This study is devoted to the multi-modelling paradigm. The occurrence 

of new IC modes is more likely during Phase I, when data collection in multiple operating 

modes is needed to build an historical database of IC patterns. Thus, this study focuses 

on the multi-modelling control chart design phase.  
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Accordingly to the methods proposed in the literature (Zhao et al., 2010; Xie and 

Shi, 2012; Choi et al., 2005; Ge and Song, 2009; Zhao et al., 2004; Chu et al., 2004; 

Srinivasan et al., 2004; Wang et al., 2012; Zhu and Song, 2012) the Phase I procedure 

can be schematized as shown in Fig. 1 a). Assume that a non-empty database is already 

available at some given point in time. Then, a new process run is performed and signal 

data are collected. A classification step is applied to determine which IC mode they 

belong to, among the ones included in the database. Once a match has been found, the 

new dataset is added to the corresponding historical dataset to update the control chart 

parameters and to determine if the process remains IC in its current operating mode. 

Eventually, the database may be updated by including the new observations from the 

current state (if they are IC), and the new control chart parameters can be saved. However, 

there is no formalized procedure to deal with the occurrence of operating modes that do 

not belong to the available database. As a matter of fact, classification algorithms assume 

that the current observations originate from one of the known modes in the database. In 

the presence of a new IC state the expert is not aware of, a misclassification may lead to 

a wrong estimation of control chart parameters, with detrimental effects in terms of both 

Type I and Type II errors. In order to avoid this limitation and to provide the practitioner 

with a support tool that automatically signals possible novel modes, we propose a more 

general approach, schematised in Fig. 1 b). The classification step is replaced by a 

classification and novelty detection step. When the current observations match a mode 

included in the database, the basic approach shown in Fig. 1 a) is applicable. When the 

current observations are classified as a ‘novelty’, instead, a warning is signalled and one 

has to decide whether these observations represent a new IC mode or whether they are 

the realisation of an out-of-control (OOC) state (i.e., an unnatural pattern). Such a 

decision requires a retrospective investigation, aimed at finding the causes for the 
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observed novelty, which is equivalent to the search for assignable causes in traditional 

SPC schemes. However, in the presence of multimode processes, the decisional process 

includes three possible explanations for the observed alarms: i) the process has not 

changed (i.e., the signal was caused by the natural process variability), ii) the process has 

shifted towards an OOC state, iii) the process has shifted towards a novel IC state. In this 

framework, the practitioner in charge of searching for assignable causes should consider 

any possible change in the operating condition of the system, starting from a visual 

inspection of data patterns*. If the outcome of this investigation is that a new IC mode has 

occurred, the database is updated. A control chart for the current mode can be designed 

and used in a retrospective way to determine if new data are actually IC or not. However, 

the novelty detection step allows the signalling of a pattern variation at the beginning of 

a new data collection, whereas, in traditional SPC, potential OOCs can be signalled only 

after all design data are collected, when the Phase I control chart is applied in a 

retrospective way. This is expected to ease the investigation analysis, because the time 

interval between the occurred event and the signal is shortened. 

During Phase II, the method works in the same way, but the control chart 

parameters are kept fixed. If the new process data are classified in one known mode, the 

corresponding control chart is activated to monitor the process. If the new data are 

classified as a novel mode, a warning is signalled and a search for assignable causes is 

called. 

 

* As an example, during a milling process, possible sources of a process state modification 

include: change in machine tool configuration or calibration, change of environmental conditions, 

modification of part fixturing, changes of material, tools, equipment, cutting parameters, etc. 
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As far as profile monitoring applications are concerned, both the classification 

and the novelty detection step rely on functional data analysis (FDA) (Ramsay, 2006) to 

characterise and compare profile data patterns. The use of a common formalism to solve 

both the steps is expected to increase efficiency and to ease the implementation of the 

overall method. To this aim, we propose the use of the functional data depth technique 

(Fraiman and Muniz, 2001; Cuevas et al., 2007), which is a measure of how internal a 

profile is with respect to a reference set of curves. With regard to multimode processes, 

such a nonparametric approach is expected to provide higher flexibility, as the variety of 

profile shapes imposed by different IC modes may complicate the choice of a common 

modelling framework (see Section 2.2 for further details). The potentials of functional 

data depth for classification purposes were investigated by different authors (Lopes-

Pintado et al., 2010; Li et al., 2012), although its use for novelty detection has not been 

explored thus far. 

The proposed approach relies on two assumptions that are coherent with actual 

industrial applications and shared by most mainstream methods for multimode process 

monitoring. The first assumption is that the process consists of sequential runs: within 

each run, the process remains stable unless an OOC event occurs. This implies that each 

mode is assumed to persist for a period of time†. On the contrary, different runs may 

correspond either to different operating modes or to replicates of the same mode. This 

assumption allows one to apply the classification and novelty detection step only at the 

beginning of a new process run execution. The second assumption is that transitory phases 

between consecutive runs or consecutive operating modes are not monitored, because 

 

† In the presence of quickly and randomly changing modes, the global modelling framework could 

be preferred to the multi-modelling one. 
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their transient nature is not compatible with classical SPC principles (although a few 

authors proposed methods to monitor them as well (Zhao et al., 2010)). 

2.2 Problem formalization 

Let {𝒀1, 𝒀2, … , 𝒀𝑗 , … } be a temporal sequence of sampled profiles originated from 

the process in its current state, such that 𝒀𝑗 = [𝑌𝑗,1, 𝑌𝑗,2, … , 𝑌𝑗,𝑝𝑗
]𝑇 is the 𝑗𝑡ℎ profile of 

sample size 𝑝𝑗, 𝑗 = 1,2, …., which is associated to a complete cycle of an operation. 

Without loss of generality, assume a constant size for all the profiles, i.e., 𝑝1 = ⋯ = 𝑝𝑗 =

⋯ = 𝑝. Each profile, 𝒀𝑗 , can be treated as a sampled realisation of a functional form, i.e., 

a square integrable real valued function 𝑌𝑗(𝑡) ∈ 𝐿2([0, 𝑇]) defined over the time interval 

[0, 𝑇] ⊂ ℝ‡. Then, let 𝑌𝑗
(𝑙)

(𝑡) be the 𝑗𝑡ℎ profile realisation in the current process state 

(either IC or OOC), where the current mode is denoted by the superscript ‘𝑙’. Let 

𝒀𝐼𝐶 = {𝑌1
(ℎ)(𝑡), … , 𝑌𝐽ℎ

(ℎ)(𝑡): ℎ = 1,2, … , 𝐻} be a multimode historical IC database, where 

𝐻 ≥ 0 is the number of known IC modes, each of them consisting of a historical 

collection of 𝐽ℎ IC profiles, ℎ = 1, … , 𝐻. For simplicity of exposition, assume that 𝐽1 =

… = 𝐽𝐻 = 𝐽.  

The proposed approach for multi-modelling control chart design consists of the 

following steps: 

• Step 1: when a new process run is performed, a small number 𝑀 ≥ 1 of preliminary 

observations {𝑌1
(𝑙)(𝑡), … , 𝑌𝑀

(𝑙)
(𝑡)} are acquired and compared with the profile 

patterns included in the database, 𝒀𝐼𝐶 = {𝑌1
(ℎ)(𝑡), … , 𝑌𝐽

(ℎ)(𝑡): ℎ = 1,2, … , 𝐻}, to 

 

‡ In this study we refer to in-process monitoring applications, where profile data are time-ordered 

waveforms extracted from sensor signals; however, the same approach can easily be extended 

to geometric profiles. 
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determine if: (a) the current state matches one of known IC modes or (b) it is a new 

mode (either IC or OOC); this step is referred to as ‘multimode classification and 

novelty detection’; if option (a) is applicable, go to step 2, otherwise step 3 is 

applied; 

• Step 2: profile data in the current mode are collected, say 𝑌1
(𝑙)(𝑡), … , 𝑌𝑁

(𝑙)
(𝑡), where 

𝑁 > 𝑀, and queued to the 𝐽 past profile data available in the database; then, a 

suitable control charting method for profile data is applied to the set of 𝑁 + 𝐽 

realisations: if they are IC, the database is updated by adding the new 𝑁 profiles, 

otherwise an alarm is signalled and a search for assignable causes is started;   

• Step 3: in the presence of a new mode, a retrospective investigation is carried out 

to determine if it is an IC mode or an OOC mode (this step is usually performed in 

industrial quality control and it assumes the availability of an expert that supervises 

the process, though an automatic implementation of this step may be studied in 

future research); if it is an OOC mode, an alarm is signalled and data in the current 

run are not used to update the database, otherwise step 4 is applied; 

• Step 4: profile data in the new IC mode are collected, say 𝑌1
(𝑙)(𝑡), … , 𝑌𝑁

(𝑙)
(𝑡), where 

𝑁 > 𝑀, and a suitable control charting method is applied to determine if the 

process remained IC over the period of time where those data were collected. If no 

OOC state is detected, the new data are used to update the IC database by adding 

the (𝐻 + 1)𝑡ℎ mode.   

Section 2.2 briefly introduces the functional data depth formalism and the rationale 

for its usage, whereas Section 2.3 describes the proposed approach for profile 

classification and novelty detection. In Section 2.4, we finally discuss the control chart 

design and use. 
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2.3 Functional data depth 

The notion of data depth was proposed to generalise order statistics to higher 

dimensions (Tukey, 1975). In multivariate data analysis, it is used to determine the degree 

of centrality of a point within a data cloud, with a particular regard to nonparametric 

problems (the higher the depth, the more internal is the point). Such a notion has been 

extended to the FDA framework (Fraiman and Muniz, 2001; Cuevas et al., 2007; Lopes-

Pintado and Romo, 2007) to measure the centrality of a curve within a set of curves. Such 

a centrality measure can be used as a similarity index without fitting any model to the 

profiles, which is expected to provide great flexibility in this framework. 

Different functional data depth formulations were proposed in the literature. They 

include the Fraiman and Muniz depth (FMD) (Fraiman and Muniz, 2001), the w-modal 

depth (MD) (Cuevas et al., 2007), the Random projection depth (RPD) (Cuevas et al., 

2007) and the Multi-Band Depth (MBD) (Lopes-Pintado and Romo, 2007). The RPD 

formulation works by projecting the functional data and their derivatives along a given 

number of random directions, which increases the computational effort with respect to 

other formulations (Febrero et al., 2008).  Thus, in this study only the FMD, the MD and 

the MBD are considered. The simulation analysis discussed in the following will show 

that the MD technique outperforms the others in terms of profile classification 

performances, and hence it is considered as the baseline formulation.  

Consider a generic square integrable real valued function 𝑌𝑗(𝑡) ∈ 𝐿2([0, 𝑇]) 

defined over the time interval [0, 𝑇] ⊂ ℝ, where 𝑗 = 1,2, …. Then, the MD technique is 

based on computing to what extent a given curve is densely surrounded by the rest of the 

curves, as follows (Cuevas et al., 2007): 
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𝐷𝑗(𝑛) = ∑ 𝐾 (
‖𝑌𝑗(𝑡) − 𝑌𝑘(𝑡)‖

𝑆
)

𝑛

𝑘=1

, 𝑗 = 1,2, … (1) 

where ‖∙‖ is a norm in the functional space, 𝐾(∙): ℝ+ → ℝ+ is a kernel function and 𝑆 is 

the kernel bandwidth. The curve that maximises the data depth is the one most densely 

surrounded by the 𝑛 curves belonging to the dataset. Cuevas et al. (2006) recommended 

using either a 𝐿2 or a 𝐿∞ norm, and a truncated Gaussian kernel: 

𝐾(𝑡) =
2

√2𝜋
exp (−

𝑡2

2
) , 𝑡 > 0 (2) 

with bandwidth 𝑆 = 0.2max{‖𝑌𝑘1(𝑡) − 𝑌𝑘2(𝑡)‖: 𝑘1, 𝑘2 = 1, … , 𝑛}. Febrero et al. (2008) 

highlighted that the MD measure is robust with respect to the choice of the bandwidth 

parameter. The above kernel choices are used in this study, as they were proved effective 

in practice. Future studies may be aimed at investigating in more detail the effect of those 

choices on multimode profile monitoring performances. The FMD and the MBD 

formulations are briefly described in Appendix A. 

The functional data depth methodology allows designing nonparametric 

classifiers for profile data, avoiding the need for a modelling framework that is common 

to every observed mode. Classification methods for functional data are usually extensions 

of their multivariate counterparts, based on the analysis of multivariate vectors of profile 

model coefficients (Ramsay, 2006). However, in multimode process monitoring 

applications, the variety of profile shapes that can be observed might entail the use of 

different modelling frameworks for distinct modes. This reduces the effectiveness of 

parametric classification algorithms. As an example, Zhao et al. (2004) proposed a 

multimode process monitoring approach based on multiple Principal Component 

Analysis (PCA) models that could be extended to profile data. Although the PCA 

represents a common modelling framework, one challenge consists of the fact that 
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different modes may need different numbers of retained principal components to capture 

equivalent percentages of data variability. One possible way to face such a challenge 

consists in classifying the curves by looking at model residuals instead of model 

coefficients (Zhao et al., 2004). However, residual-based classification performances are 

often not fully satisfactory, as will be shown in the rest of the paper.  

Nonparametric classification is therefore a suitable category of methods to deal 

with classification problems in the frame of multimode processes. Among them, data 

depth-based techniques are particularly attractive as they do not need defining a template 

to compare to, contrary to most similarity-based methods. A simulation study to compare 

different classification and novelty detection methods is discussed in Section 3. 

It is worth noting that when the data depth concept started to be taken into account 

for SPC applications a few years ago, criticism involved the high computational costs. 

Nowadays, available technology makes this technique feasible and comparable to other 

multivariate or functional methods. As an example, the CPU time§ to compute the MD 

functional depth of a single profile of size 𝑝 = 100 with respect to 𝑛 = 50 past profiles 

of equal size was about 0.05 𝑠 by using an R implementation of the code.  

2.4 Multimode classification and novelty detection 

Some authors investigated the use of data depth measures for functional data 

classification (Lopes-Pintado and Romo, 2007; Febrero et al., 2008), but the basic 

classification problem does not envisage the possibility that none of the available classes 

match the current sample. Very few studies were devoted to the coupled task of 

classification and novelty detection (sometimes synthetically called ‘multi-class novelty 

 

§ On an Intel® Core™ i7-3740QM CPU @ 2.70 GHz 
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detection’), either in FDA or in classical multivariate analysis applications. In the FDA 

framework, Febrero et al. (2008) treated the novelty detection problem by using the 

functional data depth from an outlier detection perspective. For a review of statistical 

novelty detection methods refer to Markou et al. (2003).  

The proposed approach consists of solving two sequential problems: 

• Problem 1 (classification): identification of the historical IC mode that better 

matches the current observations, among the IC modes included in the 𝒀𝐼𝐶 

database.  

• Problem 2 (novelty detection): assessment, at a given confidence level 𝛼𝑁, of 

whether the current observations originate from that IC mode or whether they 

represent a new mode.  

For the sake of clarity, first assume that 𝑀 = 1: in this case, the classification and 

novelty detection decision is based only on the analysis of the first profile acquired in the 

current process run, i.e., 𝑌1
(𝑙)(𝑡). A data depth-based classification for functional data 

(known as ‘maximum depth approach’) consists of classifying the current observation, 

𝑌1
(𝑙)(𝑡), in the IC mode that maximises the functional depth 𝐷1

𝑙,ℎ(𝐽) (Cuevas et al., 2007), 

i.e., arg max
ℎ

𝐷1
𝑙,ℎ(𝐽). If the MD formulation is used, then: 

𝐷1
𝑙,ℎ(𝐽) = ∑ 𝐾 (

‖𝑌1
(𝑙)(𝑡) − 𝑌𝑘

(ℎ)(𝑡)‖

𝑆
)

𝐽

𝑘=1

 (3) 

That mode, say ℎ = ℎ̂, is then used as a candidate for the next novelty detection 

step. Some authors proposed other depth-based classification schemes: in particular, Li 

et al. (2012) studied a way to enhance the maximum depth approach by using the depth-

versus-depth plot (called ‘DD-plot’), but the high computational cost required to compute 
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cross-mode depth values makes that approach hardly applicable to in-process monitoring 

applications. Thus, the maximum depth approach is considered in this study. 

Once a candidate mode has been identified, denoted by ℎ̂, the first step of the 

novelty detection procedure consists of  estimating the empirical distribution of the 𝐽 

depth measures of IC profiles included in 𝒀𝐼𝐶 = {𝑌1

(ℎ̂)
(𝑡), … , 𝑌𝐽

(ℎ̂)
(𝑡)}. Let �̂�(𝐽) be the 

empirical distribution of the 𝐽 depth measures in the candidate mode ℎ̂. Then, the 

detection of a novelty works by comparing the depth 𝐷1
𝑙,ℎ̂(𝐽) with the (1 − 𝛼𝑁)% 

percentile of that empirical distribution, denoted by �̂�𝛼𝑁
(𝐽). Since 𝐷1

𝑙,ℎ(𝐽) ∈ ℝ+ and lower 

depth values correspond to more external (or dissimilar) profiles, if  

𝐷1
𝑙,ℎ̂(𝐽) < �̂�𝛼𝑁

(𝐽) (4) 

then, the observation is classified as a realisation generated by a new mode (either IC or 

OOC), otherwise the result of the classification step is confirmed (i.e., 𝑙 ≡ ℎ̂). The choice 

of the parameter 𝛼𝑁, where 0 < 𝛼𝑁 < 1 (e.g., 𝛼𝑁 = 0.95) and the subscript ‘𝑁’ stands 

for ‘novelty’, controls the confidence for such a decision. 

Notice that this approach involves estimating the empirical distribution of depth 

values only for the ℎ̂ mode selected after the classification step, which yields 

computational effort-saving against applying the novelty detection step with no previous 

classification.  

It will be shown that better results can be achieved if a number 𝑀 > 1 is used to 

decide on the nature of the current process mode. In this case, the above procedure can 

be iteratively applied to the first 𝑀 profiles acquired in the current process run, i.e., 

{𝑌1
(𝑙)(𝑡), … , 𝑌𝑀

(𝑙)
(𝑡)}. Then, a majority voting approach can be used, either to classify the 

current process mode as a known IC mode or a brand new one. Majority voting simply 
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consists of selecting the alternative that has the majority, for 𝑗 = 1, … , 𝑀. In the presence 

of ties, a random classification can be applied for the current observation; otherwise, a 

warning can be raised and the tie fixed by using a larger number of samples, 𝑀. Majority 

voting is a consolidated procedure in classification problems, and more sophisticated 

methods are available in the literature (Hastie et al., 2009). In this study, the benefits of a 

basic majority voting rule are investigated. The development of a tuned procedure may 

be envisaged in future research. The choice of 𝑀 is the result of a compromise between 

the computational effort for classification and novelty detection on the one hand, and the 

minimisation of the misclassification error on the other hand. 

2.5 Control chart design 

Once the classification and novelty detection step is over, the following 

observations in the current mode, 𝑌𝑀+1
(𝑙) (𝑡), 𝑌𝑀+2

(𝑙) (𝑡), …, are collected and analysed 

together with the former 𝑀 ones. Any control charting scheme suitable to deal with profile 

data (Woodall et al., 2004; Colosimo and Pacella, 2010; Jin and Shi, 2001) can be applied 

to determine if these observations were IC over the period of time where they were 

collected. The choice of the most suitable scheme is problem-dependent and is mainly 

influenced by the nature of the profile pattern. Since a review of profile monitoring 

approaches is beyond the scope of the present paper, the interested reader may refer to 

Noorossana et al. (2012). In any case, it is possible to draw some general considerations 

about the use of profile monitoring control charts in the presence of multimode processes. 

First, the choice of the curve parametrisation approach for control chart design may 

inherit some possible knowledge about the existence of shared characteristics among 

different modes in terms of profile patterns (e.g., a common location of salient shape 

features). In case of cross-mode shared properties, it is advisable to exploit this 

information to define the modelling framework (e.g., a spline regression basis with 
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common knot locations for every mode). On the contrary, when multiple operating modes 

yield considerably different profile patterns, independent and mode-specific models 

might be preferred. Model-free control charts might be chosen too, which need no profile 

modelling step. For a discussion about nonparametric control charts for profile data the 

reader is referred to Noorossana et al. (2012) and Qiu and Zou (2010). However, the 

proposed approach imposes no constraint on the choice of the control charting scheme 

that follows the data classification and novelty detection step. As an example, the use of 

a PCA-based control chart (Colosimo and Pacella, 2007) is exemplified in the end-milling 

case study in Section 3 (and briefly reviewed in Appendix A). 

A further important consideration regards the alignment of profiles in different 

modes. In this study, we assume profiles to be naturally aligned, but in most practical 

applications a registration operation is required. The critical role of curve registration was 

discussed by different authors (Woodall et al., 2004; Colosimo and Pacella, 2007), and 

the importance of properly integrating the registration information into profile monitoring 

schemes was highlighted in Grasso et al. (2016). In multimode processes, the 

misalignment of profiles may have a detrimental effect on both the classification and 

novelty detection results and the following monitoring performances. Some authors 

showed that curve classification and registration operations may be performed in an 

iterative way to enhance the outcome (Sangalli et al., 2010). Future research should be 

aimed at addressing this issue. 

 

3 A real case study in end-milling 

In order to provide practical guidelines on the use of the proposed approach, a real 

case study in end-milling is presented. It consists of three sequential end-milling cuts 

performed on a Ti-6Al-4V part with a rectilinear feed path along the X axis by using a 
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four teeth ATI Stellram porcupine mill (with diameter of 63 𝑚𝑚 and length of 180 𝑚𝑚) 

mounting SDTH 120412EN-422 X500 inserts. The three cuts were performed by using 

the same set of cutting parameters (the ones listed in Table 1), but a tool copy change was 

applied after cut 1, before cut 2 and 3. The two copies of the tool are labelled as ‘copy 1’ 

and ‘copy 2’. Tool copy changes are automatically operated when the duration of the 

process is longer than the tool life, but not necessarily a copy change yields a modification 

of signal data patterns. 

In the first two cuts, the same quality surface finishing on the part was achieved. 

During the third cut a tool breakage occurred, leading to out-of-control cutting 

performances. The first two cuts were used in Phase 1, whereas the third cut was used to 

test the process monitoring performances in Phase II. The machine tool adopted to 

perform the tests was a five-axis machining centre equipped with a 455 𝑁𝑚, 50 𝑘𝑊, 

8000 𝑟𝑝𝑚 head (the experimental set-up is shown in Fig. 2). 

 

PLEASE, INCLUDE TABLE 1 ABOUT HERE 

 

 PLEASE, INCLUDE FIGURE 2 ABOUT HERE 

 

The three components of the cutting force signal were acquired at 2 𝑘𝐻𝑧 by means 

of a Kistler 9255B dynamometer, and the resultant cutting force was used for in-process 

monitoring purposes. The signal was automatically segmented into repeating profiles by 

using a tachometric trigger associated to the angular position of the spindle rotor, such 

that each profile corresponds to a complete spindle revolution. A synchronous re-

sampling procedure was also applied to obtain profiles of equal length, 𝑝 = 264, without 

affecting the relevant frequency content of the signal. 
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Fig. 3 shows the IC cutting force profiles corresponding to cut 1 (left panel) and 

cut 2 (right panel). The number of acquired profiles is  𝐽1 = 20 in cut 1 and 𝐽2 = 30 in 

cut 2. The time domain 𝑡 ∈ (0,1) corresponds to a duration of about 0.24 𝑠. Fig. 3 shows 

that the tool change operation produced a profile pattern modification due to a slight 

variation of the run-out error condition, i.e., the deviation of insert orientation from the 

nominal one. The run-out error is a not fully controllable factor, depending on the kind of 

tool and the industrial practice for tool pre-setting. In this case, the different tool run-out 

condition impacts the height of local peaks in the cutting force profiles, especially the 

second and third largest peaks, associated to the second and third cutter, respectively. 

Fig. 3 shows that, contrary to the traditional assumption in profile monitoring, a 

process may exhibit multiple in-control ‘signatures’, depending on operating conditions 

that may not be fully controllable by the machine operator (i.e., variations of tool run-out 

conditions).   

 

PLEASE, INCLUDE FIGURE 3 ABOUT HERE 

 

As far as Phase I is concerned, the proposed approach works as follows. First, 

profile data in cut 1 were acquired. A profile monitoring control charting scheme is 

needed to determine if the data are IC or not. To this aim, a well-known approach was 

used, i.e., the one based on functional PCA proposed by Colosimo and Pacella (2007), 

briefly reviewed in Appendix A. The number of retained principal components was 

selected by setting a threshold on the overall explained variability (i.e., at 90%) and the 

control limits were estimated accordingly to Colosimo and Pacella (2007). The 

familywise type I error was set at 𝛼 = 0.0027. No violation of the control limits was 

observed (see Fig. 5), and hence the process was assumed to be IC, and the operating 
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mode labelled as Mode A. Then, profile data in cut 2 were acquired. Assume that 𝑀 = 3, 

i.e., the classification and novelty detection steps rely on the first three observations of 

the process run. The functional data depth values of these three profiles with respect to 

Mode A are respectively 𝐷1(𝐽1) = 0.418, 𝐷2(𝐽1) = 0.425 and 𝐷3(𝐽1) = 0.426 (see Fig. 

4). The (1 − 95)% percentile of the empirical distribution of data depth values in Mode 

A is �̂�0.95(𝐽1) = 2.976. The depth of these three profiles with respect to Mode A is lower 

than this value**, which means that a “new mode” warning is signalled. The search for 

assignable causes is then performed. In this specific case, the search should start with the 

visual inspection of acquired profile data, which reveals a local modification of the cutting 

force pattern that is explainable in terms of changed run-out conditions. Thus, any 

symptom of an OOC state being absent, the tool copy change can be pointed out as a 

possible explanation for the observed pattern modification. Because of this, the new 

profile data stream is classified as a novel IC state and labelled as Mode B. A new control 

chart is designed for Mode B data and the process is found to be IC (see Fig. 5). 

 

PLEASE, INSERT FIGURE 4 ABOUT HERE 

 

Assuming that Phase I is over, the profile data acquisition in cut 3 was started and 

Phase II analysis was applied. The functional data depth-based classification was applied 

to the first 𝑀 = 3 profiles in cut 3 with respect to Mode A and Mode B. All the three 

profiles were classified as Mode B, and hence the Mode B control chart parameters were 

selected to monitor the process. Each new observation of the current cut was plotted onto 

 

** Low depth values correspond to more external profiles. 
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the control charts and the result is shown in Fig. 5. The quantities on the Y axis are 

expressed on a logarithmic scale and vertical solid lines separate the design phase (on the 

left) from the use phase (on the right) of the charts. 

 

PLEASE, INSERT FIGURE 5 ABOUT HERE 

 

A sustained shift of the SPE statistic (see Appendix A for its definition) was 

signalled starting from the fifth observation in cut 3. This shift corresponds to a gradual, 

though rapid, departure of cutting force profiles from their IC pattern caused by the tool 

breakage. 

Fig. 6 shows the cutting force patterns in cut 3: the first profiles are stable and 

their shape resembles the one of Fig. 3 (right panel), then the effect of the tool breakage 

becomes more and more severe. Tool breakages and chippings are frequent and difficult 

events to predict in milling processes on hard-to-cut materials like titanium alloys, which 

implies the need for in-process monitoring capabilities. 

 

PLEASE, INCLUDE FIGURE 6 ABOUT HERE 

 

 Now, consider the implementation of the traditional multi-modelling approach. 

Since no novelty detection capability is provided, the profile data in cut 2 are classified 

as Mode A. This means that the control chart design phase consists of a mixture of cut 1 

and cut 2. In this case, profile monitoring control charts were designed by queuing cut 1 

and cut 2 data in a single dataset; the same charts were then used to monitor the profile 

data in cut 3. Fig. 7 shows the control charts obtained by using this traditional approach. 
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Fig. 7 shows that a small mean shift of the SPE statistic (see Appendix A) occurred 

during the design phase, passing from cut 1 to cut 2, although it was not signalled by the 

chart. The normal practice would require a retrospective investigation, possibly by 

designing a more effective chart for small shifts or a change-point detection scheme (Zou 

et al., 2009). This implies two drawbacks: (i) the mode change may be detected only after 

the dataset belonging to the new mode is collected, whereas the proposed approach allows 

the identification of a mode change at the beginning of the new mode realisation, and (ii) 

the design of an additional chart to get an insight of the observed pattern requires 

supplementary efforts.   

 

PLEASE, INSERT FIGURE 7 ABOUT HERE 

 

In terms of fault detection capabilities, the proposed approach (Fig. 5) yields a 

faster signal of the OOC event. The run length is 𝑅𝐿 = 5 in the proposed approach and 

𝑅𝐿 = 9 in the traditional approach. Moreover, the proposed approach is able to signal 

91.4% of cut 3 data as OOC, whereas the traditional approach signals 81.4% of profiles 

as OOC. This result is due to the inflation of control limits in Fig. 7, caused by a missed 

separation of Mode A and Mode B during the design phase. Therefore, a rapid 

identification of a mode change via curve classification and novelty detection is expected 

to provide the practitioner with an automated support tool to keep under control 

manufacturing processes in the presence of changing operating modes. The reduction (or 

even the avoidance) of misclassification errors is expected to enhance the performances 

of the resulting control charts both in terms of Phase I and Phase II errors. A more 
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extended investigation of the performances provided by our proposed approach is 

discussed in the next Section via simulation study and comparative analysis. 

 

4 Simulation study 

The performances of the proposed classification and novelty detection 

methodology are demonstrated by using two different models for the generation of 

multimode patterns. The first scenario is representative of profile data characterised by a 

simple pattern but a considerable within-mode amplitude variability. The second scenario 

is representative of more complicated profile data with local pattern differences between 

different modes. Subsections 4.1 and 4.2 present the simulation study results in these two 

scenarios, respectively. Subsection 4.3 presents a discussion about the effects of either a 

lack of mode classification or a mode misclassification on the type I error performances 

in profile monitoring. 

 

4.1 Scenario 1 

 In scenario 1, a benchmark model inspired by the work of Tang and Muller (2008) 

was used. Synthetic profile data are generated by using a model defined as follows: 

𝑌𝑗(𝑡) = ∑ 𝛽𝑖,𝑗 exp {𝛾𝑖,𝑗(𝑡 + 𝜔𝑖,𝑗)
2

} + 𝜀𝑗(𝑡)5
𝑖=1 , 0 ≤ 𝑡 ≤ 1 and 𝑗 = 1,2, … (5) 

with parameters 𝜷𝑗 = [𝛽1,𝑗, … , 𝛽5,𝑗]~𝑀𝑁[𝝁𝛽 , 𝚺𝛽], 𝜸𝑗 = [𝛾1,𝑗, … , 𝛾5,𝑗]~𝑀𝑁[𝝁𝛾, 𝚺𝛾] and 

𝝎𝑗 = [𝜔1,𝑗, … , 𝜔5,𝑗]~𝑀𝑁[𝝁𝜔 , 𝚺𝜔]. The noise terms 𝜀𝑗(𝑡)~𝑁(0, 𝜎𝜀) is such that 𝜎𝜀 =

0.05. The following parameter settings were used:  

• 𝝁𝛽 = [0.50, −0.50, 0.60,0.60, −0.50], 𝚺𝛽 = 𝑑𝑖𝑎𝑔[(8.8,5.0,6.0,6.0,5.0)𝑒−2] 

• 𝝁𝛾 = [−20, −50, −100, −150, −200], 𝚺𝛾 = 𝑑𝑖𝑎𝑔[2,5,10,15,20] 
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With regard to the parameter 𝝁𝜔, different settings were used to simulate 

multimode patterns, being fixed 𝚺𝜔 = 𝑑𝑖𝑎𝑔[(5.0,4.5,3.0,2.0,1.5)𝑒−2]. 

Two datasets were generated, based on the same model structure (Eq. 5). The first 

is a database which comprises profile data from four different IC modes, denoted by Mode 

A, B, C and D. The second is a testing dataset, which comprises either profile data 

originated from the aforementioned modes or profile data belonging to different modes, 

denoted by Mode E, F, G and H. All the simulated modes share the same generating 

model (Eq. 5), but with different settings of the parameter 𝝁𝜔, as shown in Table 2. The 

multimode profile patterns are depicted in Fig. 8.  

 

PLEASE, INCLUDE TABLE 2 ABOUT HERE 

 

When the testing set includes profile realisations generated from one of the 

historical IC modes (Modes A, B, C and D), the classification capability can be tested. 

When, instead, the testing set includes profile realisations from different modes (Modes 

E, F, G and H), the novelty detection capability can be tested. The results presented 

hereafter refer to a number 𝐽 = 50 of IC profiles in historical modes. Statistically 

equivalent results were achieved for larger values of 𝐽. Because of this, for the sake of 

space, only the results related to the choice 𝐽 = 50 are presented and discussed. 

 

PLEASE, INCLUDE FIGURE 8 ABOUT HERE 

 

Different competitor methods could be considered to evaluate the pros and contras 

of the proposed approach. The competitors considered in this study include: (a) the same 

method based on different data depth formulations, i.e., the FMD and the MBD 
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formulations (see Appendix B), (b) the same method based on similarity index 

maximisation, where the 𝐿2 distance is used instead of the functional depth measure, (c) 

a benchmark classification approach based on the k-Nearest Neighbour (kNN) method 

(Hastie et al., 2009), and (d) a benchmark classification approach based on the Principal 

Component Analysis (PCA) (Zhao et al., 2004). The competitor method (b), denoted by 

‘𝐿2’, consists of classifying the current observations by minimising the 𝐿2 distance with 

respect to the profile data in the IC database, and then by comparing the distance between 

current observations and historical IC profiles with the empirical distribution of the 𝐿2 

distances of historical profiles belonging to the candidate mode for novelty detection. The 

competitor method (c), denoted by ‘kNN’, consists of classifying the current observations 

in the IC mode of their 𝑘 most similar curves, where the 𝐿2 distance is used as a 

dissimilarity index. The novelty detection step works analogously to the 𝐿2 approach. The 

kNN algorithm is known to be a benchmark approach in functional data classification 

(Lopes-Pintado and Romo, 2010), and the choice of the optimum value of parameter 𝑘 is 

based on cross-validation (Wasserman, 2006). The competitor approach (d), denoted by 

‘PCA’, consists of fitting a PCA model in each known IC mode, and then approximating 

the current observations by each of those models: the current observations are 

preliminarily classified in the IC mode that yields the minimum square prediction error 

(SPE). This approach was proposed by Zhao et al. (2004), and is used in this study as a 

benchmark that represents model library-based approaches. Notice that this approach can 

be easily extended to functional data and it allows classifying curves regardless of 

possibly different numbers of PCs required in different modes. However, as no automatic 

procedure for new mode detection was proposed, the novelty detection step was 

implemented by comparing the current SPE with the empirical distribution of SPE values 

in the candidate mode. 
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The classification performances and the novelty detection performances are 

depicted in Fig. 9 and Fig. 10, respectively, where the proposed approach is simply 

denoted by ‘MD’. The misclassification and novelty detection errors were computed by 

evaluating 1000 test runs by randomly generating both IC profiles and testing profiles. 

The results shown in Fig. 9 and Fig. 10 correspond to the choice 𝑀 = 1, i.e., to the use 

of one single profile in the testing set for both classification and novelty detection 

purposes (examples of performances achieved by setting 𝑀 > 1 are discussed below).  

Fig. 9 shows that the best classification performances are provided by the 

benchmark approach based on the kNN technique together with the proposed approach 

based on MD functional depth. The two approaches provide statistically equivalent results 

at 95% confidence level. The other two functional depth formulations, i.e., the FMD and 

the MBD formulations, provide worse results, especially for Mode A, B and D. In this 

frame, the MD approach is believed to outperform other functional data formulations 

thanks to the kernel trick adopted in estimating to what extent a curve is densely 

surrounded by other curves. The FMD is less effective than the MD as it simply consists 

of an integration of univariate depths at each curve location. The MBD performs better 

than the FMD in Scenario 1, thanks to the graph-based depth measure, but it is 

outperformed by the MD in most cases. 

The 𝐿2-based approach provides quite good results, but they are comparable with 

the ones yielded by the proposed MD-based approach and the kNN-based approach only 

for Mode D. With regard to the PCA-based approach, two threshold levels for the 

explained variability were considered to select the number of retained components, i.e., 

80% and 90%, respectively. Fig. 9 shows that this approach performs quite poorly, 

especially for Mode B, and it is particularly sensitive to the number of retained 

components. The reason is that the SPE alone is not a sufficiently reliable statistic for 
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functional data classification purposes. Generally speaking, the misclassification 

performances depend on two factors: i) the dissimilarity between the average patterns in 

two (or more) different modes, and ii) the natural variability of the profile patterns within 

each mode. As an example, mode G was mainly misclassified as Mode B, because of a 

reduced average dissimilarity between these two modes together with large variability in 

Mode G, especially in the central portion of its domain. Mode H, instead, is characterised 

by an average pattern that is quite dissimilar from any other pattern in the dataset. 

Moreover, its natural variability is such that the probability of a misclassification with 

respect to most of the considered methods is low. 

 

PLEASE, INCLUDE FIGURE 9 ABOUT HERE 

 

Fig. 10 shows that the proposed MD-based approach outperforms other 

competitors in detecting novel modes. The 𝐿2-based and the kNN-based methods yield 

similar results as they share the same similarity index, but they provide higher errors than 

the MD-based method at least for Mode E and G. Other functional depth formulations, 

together with the PCA-based approach, provide considerably worse results, leading to 

very limited novelty detection capabilities.  

 

PLEASE, INCLUDE FIGURE 10 ABOUT HERE 

 

Fig. 9 and Fig. 10 show the results when the classification is based on a single 

observation, i.e., the case with 𝑀 = 1. As mentioned before, the use of a larger number 

of profiles, i.e., 𝑀 > 1 may be recommended to achieve better results via majority voting. 

As an example, Fig. 11 (left panel) shows the misclassification error for different values 
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of 𝑀 in the range 𝑀 ∈ [1,15], for Mode A, and Fig. 11 (right panel) shows the novelty 

detection error for the same values of 𝑀, for Mode E. Fig. 11 shows that both the 

misclassification and novelty detection errors may be reduced when a majority voting 

approach is used with 𝑀 > 1. 

 

PLEASE, INCLUDE FIGURE 11 ABOUT HERE 

 

4.2 Scenario 2 

In Scenario 2, the multimode profile patterns were generated by using the 

following model: 

𝑌𝑗(𝑡) = ∑ 𝐴𝑖𝑔𝑖(𝑡; 𝜇𝑖, 𝜎𝑖)
8

𝑖=1
+ 𝜀𝑗(𝑡),   𝑗 = 1: 𝐽, 𝑡 ∈ (𝑎, 𝑏) (6) 

 

where the terms 𝑔𝑖(𝑡; 𝜇𝑖, 𝜎𝑖) are normal probability density functions with parameters 

listed in Table 2, 𝐴𝑖~𝑁𝐼𝐷(10,0.5) is the random amplitude term, and 

𝜀𝑗(𝑡)~𝑁𝐼𝐷(0,0.025). The simulated profiles consist of 𝑛 = 200 equispaced datapoints 

over the interval 𝑡 ∈ (0,1). 

Two datasets were generated in this case as well, based on the same model 

structure (Eq. 6). The first dataset comprises profile data from four different IC modes, 

denoted by Mode A, B, C and D. The second is a testing dataset, which comprises either 

profile data originated from the aforementioned modes or profile data belonging to 

different modes, denoted by Mode E, F, G and H. All the simulated modes share the same 

generating model (Eq. 6), but with different settings of the parameter 𝜇𝑖 and 𝜎𝑖, as shown 

in Table 3. The multimode profile patterns in Scenario 2 are depicted in Fig. 12.  
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PLEASE, INCLUDE TABLE 3 ABOUT HERE 

 

PLEASE, INCLUDE FIGURE 12 ABOUT HERE 

 

The classification performances and the novelty detection performances are 

depicted in Fig. 13 and Fig. 14, respectively. The same simulation settings described in 

subsection 3.1 were also applied to Scenario 2.  

 

PLEASE, INCLUDE FIGURE 13 ABOUT HERE 

 

Fig. 13 shows that the MD, MBD, 𝐿2 and kNN methods yield no misclassification 

error for modes A, B, C and D. The FMD and the PCA-based classification with explained 

variability threshold at 80% yield the worst results, especially in the presence of mode A, 

B and D. However, all the methods provide quite good classification performances, as the 

average misclassification error is always lower than 2%. This is caused by the fact that 

the within-mode amplitude variability in Scenario 2 is lower than the variability in 

Scenario 1, which eases the mode separation even in the presence of local shape 

differences.  

Regarding the novelty detection performances, Fig. 14 confirms that the FMD and 

the PCA methods yield the worst results. The FMD-based approach is not able to identify 

modes E, G and H as novel modes, whereas the PCA-based approach is not able to 

identify modes F, G and H as novel modes. All the other methods yield good novelty 

detection performances, especially the ones based on the MD, the 𝐿2 distance and the 

kNN algorithm.  
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PLEASE, INCLUDE FIGURE 14 ABOUT HERE 

 

These results confirm that the FMD method, which is a simple extension of 

univariate data depth estimation to functional data, may not be a suitable choice for 

multimode classification and novelty detection of profile data. The MBD approach is 

more effective than the FMD in Scenario 2, but the simulation results in Scenario 1 

showed that the MD approach may outperform both the FMD and the MBD. Moreover, 

the SPE statistic used in PCA-based methods is not a sufficiently reliable statistic for 

functional data classification purposes. Generally speaking, the best competitor of our 

proposed approach is represented by the kNN-based algorithm, although the use of the 

MD metric seems to be more effective than the 𝐿2 distance used by the kNN, at least for 

novelty detection purposes. 

 

4.3 Misclassification effect on type I error performances 

In the presence of multimode patterns, the performances of profile monitoring 

control charts may be strongly affected either by a lack of classification capabilities or by 

a misclassification between different IC modes. The objective of the analytical study 

presented here consists of quantifying this effect via Monte Carlo simulations. To this 

aim, the same monitoring scheme used in Section 3 was used, i.e., the one based on 

functional PCA proposed by Colosimo and Pacella (2007), briefly reviewed in Appendix 

A. A number of principal components that globally capture at least 90% of data variability 

were retained in each mode, and the corresponding scores were monitored via a 

Hotelling’s 𝑇2 control chart. The information content captured by the remaining principal 

components was monitored via the SPE statistics. A familywise type I error 𝛼 = 0.01 
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was set and empirical control limits were estimated. The simulation involved 100 runs; 

each run consists of 𝑀 = 1100 profiles for control chart design and 𝑁 = 5000 profiles 

as testing dataset. The 𝑀 profiles were divided into two sets: a set of 𝑀1 = 100 profiles 

was used to estimate the PCA model, and the remaining 𝑀2 = 1000 profiles were used 

to estimate the empirical control limits. Two different cases were tested for both Scenario 

1 and Scenario 2. In the first case, the design phase includes profiles from modes A, B, C 

and D in equal proportions, whereas, in the second case, the design phase consists of one 

single mode ranging from mode A to mode D. In both cases, the testing phase includes 

one single mode, ranging from mode A to mode D. Thus, the first case is representative 

of a control chart design that lacks any multimode classification capability, where Phase 

I includes a mixture of multimode patterns. The second case, instead, is used to study the 

effect of a mode misclassification on control chart performances, i.e., a chart designed by 

using data from one IC mode and then applied to monitor the process in another IC mode. 

In both cases, the control chart performances were characterised in terms of the 

type I error, i.e., in terms of false alarm rates. Table 4 shows the 95% confidence intervals 

for the type I errors for the different cases considered in Scenario 1 and Scenario 2. Table 

4 shows that a lack of multimode classification (i.e., when the design phase consists of a 

mixture of modes) may yield false alarm rates that are lower (e.g., see Mode A in Scenario 

2) or greater (e.g., see Mode B in Scenario 2) than the target one, depending on the mode 

included in the testing set. This means that a mixture of modes may either inflate the 

control limit estimate, with detrimental results in terms of type II errors, or increase the 

false alarm rate. In the presence of a mode misclassification (case 2), instead, the false 

alarm rate is always increased: it can be up to ten times greater than the target type I error. 

Analogous results were achieved both in Scenario 1 and Scenario 2. These results 

highlight that neglecting the multimode nature of profile data in traditional control 
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charting schemes may yield monitoring performances that are considerably far from the 

desired ones. On the other hand, a mode misclassification may strongly inflate the false 

alarm rate, which motivates the need for effective classification and novelty detection 

techniques. 

 

PLEASE, INCLUDE TABLE 4 ABOUT HERE 

 

 

5 Conclusion 

Many industrial processes exhibit multiple operating conditions that yield natural 

transitions between multiple IC states. This represents a violation of common SPC 

assumptions and entails the development of novel monitoring procedures. Recent studies 

devoted to chemical process engineering pointed out the actual industrial relevance of 

multimode processes. This paper presented a methodology to design control charts for 

profile data in the presence of multimode patterns. The study extends the so-called ‘multi-

modelling framework’ that involves two sequential steps, i.e., a classification step and a 

control charting step. The classification step is aimed at determining which mode new 

data belong to in order to apply the following control charting scheme by using only the 

information that is relevant to the current process state. Previous studies devoted to this 

approach lack formalized strategies to deal with the occurrence of new modes, i.e., 

operating modes that were not previously observed. In order to cope with this limitation, 

a generalisation of the classification step is proposed to include a novelty detection 

capability. This allows assessing whether the current observations match one mode 

included in the historical database or whether they should be treated as a new mode. When 

a novel state is detected, a retrospective analysis should be performed to determine if the 
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novel state is IC or not. Analogously to traditional SPC, such an investigation may be 

carried out by the expert who supervises the process, although its automatic 

implementation may be the subject of future studies. Both the classification and the 

novelty detection steps can be based on the functional data depth paradigm, which can be 

applied without the need for a common modelling framework shared by distinct modes. 

The aim is to provide the practitioner with a support tool able to automatically signal 

operating mode changes and to reduce (or even avoid) misclassification errors that could 

affect the process monitoring effectiveness. The occurrence of undetected new modes in 

Phase I is highly critical as it affects the estimation of the control chart parameters in 

different modes. Because of this, a Phase I procedure is proposed, but the multi-modelling 

approach can be extended to Phase II as well. 

The simulation study demonstrated that the proposed depth-based approach 

outperforms most competitor and benchmark techniques for both classification and 

novelty detection. The simulation analysis suggested that a majority voting scheme could 

enhance the classification performances by comparing a number 𝑀 > 1 of first profile 

data from the current process run with the ones in the IC database. The choice of 𝑀 is 

expected to be the result of a compromise between the computational effort required by 

the classification and novelty detection step on the one hand, and the misclassification 

error minimisation on the other. Future studies may further investigate the role played by 

majority voting algorithms, and their impact on overall performances. 

A real case study in end-milling was presented to discuss the proposed approach 

from a practical implementation viewpoint in a real multimode profile monitoring 

problem. The case study showed that the lack of a novelty detection capability may cause 

a wrong mixture of data from different operating modes into a single class, with 

detrimental effects in terms of control chart performances.  
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Eventually, in this study we assumed that the monitored profiles are already 

registered or do not need registration. Such an assumption may hardly be applicable in 

practice (e.g., see Grasso et al., 2016), and hence, a generalisation of the proposed method 

to cope with multimode misaligned profiles may be the subject of a future study. 

 

Abbreviations and nomenclature 

𝐴𝑅𝐿, 𝐴𝑅𝐿0 Average Run Length and IC Average Run Length 

𝐵(∙)  Band defined by a set of functional curves  

CC  Control Chart 

𝐷𝑗
𝑙,ℎ(∙)  Functional data depth of 𝑗𝑡ℎ profile in 𝑙𝑡ℎ mode with respect to profiles in ℎ𝑡ℎ mode 

FDA  Functional Data Analysis 

FMD  Fraiman and Muniz Depth 

𝐺(∙)  Graph of functional curve 

ℎ  Index of known modes in historical dataset, ℎ = 1, … , 𝐻 

ℎ̂  Candidate mode 

IC  In-Control 

𝑗  Profile index, 𝑗 = 1,2, … 

𝐽  Number of profiles in each mode of the 𝒀𝐼𝐶 database 

𝑘  Number of nearest neighbours used in kNN benchmark approach 

𝐾(∙)  Kernel function 

kNN  k-Nearest Neighbour 

𝑙  Mode index, 𝑙 = 1,2, …  

𝐿2  Distance used as dissimilarity index 

𝑀  Duration of warm-up phase 

MBD  Multi-Band Depth 

MD  Modal Depth 

𝑛  Number of historical IC samples 

OOC  Out-of-Control 

𝑝  Length of acquired profiles 
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PCA  Principal Component Analysis 

𝑄  Tuning parameter used in Eq. A3 

RL  Run length 

RPD  Random Projection Depth 

𝑆  Kernel bandwidth 

𝑆𝑛,𝑞(∙)  Proportion of bands 𝐵(∙) determined by 𝑞 different curves containing a given graph 

SPC  Statistical Process Control 

SPE  Square Prediction Error 

𝑡  Time index (𝑡 ∈ [0, 𝑇]) 

𝒀𝑗
(𝑙)

  𝑗𝑡ℎ profile acquired in 𝑙𝑡ℎ mode, 𝑗 = 1,2, … (denoted by 𝑌𝑗
(𝑙)(𝑡) in functional form) 

𝒀𝐼𝐶  Database of multimode IC profile data 

𝛼  Target Type I error 

𝛼𝑁  Confidence level used for new mode detection 

𝜷𝑗, 𝜸𝑗 , 𝝎𝑗 Model parameters used in simulation study (𝜷𝑗~𝑀𝑁[𝝁𝛽 , 𝚺𝛽], 𝜸𝑗  ~𝑀𝑁[𝝁𝛾, 𝚺𝛾],  

𝝎𝑗~𝑀𝑁[𝝁𝜔, 𝚺𝜔]), 𝑗 = 1,2, … 

𝜀𝑗(𝑡)  Noise term used in simulation study, 𝜀𝑗(𝑡)~𝑁(0, 𝜎𝜀), 𝑗 = 1,2, … 

𝜔(∙)  Proportion of time 𝑡 ∈ [0, 𝑇] that a curve belongs to a given band 
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Appendix A – PCA-based profile monitoring: a brief review of the method 

Let 𝐘 = [𝒀1, 𝒀2, … , 𝒀𝐽]𝑇 be a the matrix of sampled profiles originated from the 

process in its current state, such that 𝒀𝑗 = [𝑌𝑗,1, 𝑌𝑗,2, … , 𝑌𝑗,𝑝]𝑇, 𝑗 = 1, … , 𝐽. Let 𝐘1:𝑁 be an 

𝑁 × 𝑝 matrix of 𝑁 < 𝐽 in-control observations to be used to generate the reference PCA 

model (Phase I). The PCA consists of performing a spectral decomposition of the sample 

correlation matrix 𝑺1:𝑀 = (1 (𝑀 − 1))⁄ 𝐘1:𝑁
𝑇 𝐘1:𝑁, i.e. finding the matrices 𝐋 and 𝐔 that 

satisfy the relationship: 

𝐔𝑇𝐒1:𝑁𝐔 = 𝐋 (B1) 
 

where 𝐋 is a diagonal matrix whose diagonal elements are the eigenvalues of 𝐒1:𝑀 (𝜆𝑖; 

𝑖 = 1, … , 𝑝), while 𝐔 is an orthonormal matrix whose 𝑖𝑡ℎ column 𝐮𝑖 is the 𝑖𝑡ℎ eigenvector 

of 𝐒1:𝑁. 

The projection of the 𝑗𝑡ℎ sample onto the 𝐾-dimensional Principal Component 

(PC) orthogonal space is defined as follows: 

 

𝐳𝑗 = 𝐔𝑇(𝒀𝑗 − �̅�) = [𝑧𝑗,1, … , 𝑧𝑗,𝐾]
𝑇

           (𝑗 = 1,2, … , 𝐽) (B2) 
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where �̅� = (1/𝑁) ∑ 𝒀𝑗
𝑁
𝑗=1  is the average profile among the 𝑁 ones used to estimate the 

PCA model. 𝐾 is the maximum number of PCs that can be extracted, i.e. the maximum 

number of non-zero eigenvalues. 𝐾 is upper-bounded by min{𝑝, 𝑁}. 

The relative importance of each PC, i.e. the amount of explained variance, is 

represented by the value of the corresponding eigenvalue. Therefore, the relevant 

information content may be captured by a reduced number of PCs, providing the 

dimensionality reduction at the origin of the PCA popularity. A commonly used approach 

consists of setting a threshold on the amount of variance explained by each PC and retain 

the minimum number of PCs that capture that amount. By retaining the first 𝑚 PCs, each 

sample – i.e. each row of the data matrix may be reconstructed as follows: 

�̂�𝑗(𝑚) = �̅� + ∑ 𝑧𝑗,𝑖𝐮𝑖
𝑚
𝑖=1           (𝑗 = 1,2, … , 𝐽) (B3) 

 

The process monitoring strategy requires the computation of two statistics 

(Colosimo and Pacella, 2007): one is the Hotelling’s 𝑇2 statistics, used to detect possible 

deviations along the directions of the first 𝑚 PCs: 

𝑇𝑗
2(𝑚) = ∑

𝑧𝑗,𝑖
2

𝜆𝑖

𝑚
𝑖=1            (𝑗 = 1,2, … , 𝐽) (B4) 

 

The second is the Sum of Prediction Errors (𝑆𝑃𝐸) statistics, used to detect possible 

deviations in directions orthogonal to the ones associated to the first 𝑚 PCs, given by: 

𝑆𝑃𝐸𝑗(𝑚) = (�̂�𝑗(𝑚) − �̅�)𝑇(�̂�𝑗(𝑚) − �̅�)           (𝑗 = 1,2, … , 𝐽) (B5) 

 

The theoretical Phase II control limit used for T2 chart is:  

𝑈𝐶𝐿𝑇2 = 𝑐𝐹𝛼(𝑚, 𝑁 − 𝑚)                                                                (B6) 
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where 𝛼 is the type I error, whereas 𝐹𝛼(𝑚, 𝑁 − 𝑚) is the (1 − 𝛼)% percentile of the 

Fisher distribution with degrees of freedom 𝑚 and 𝑁 − 𝑚, respectively, and 𝑐 is given 

by: 

𝑐 = [𝑚(𝑁 + 1)(𝑁 − 1) 𝑁(𝑁 − 𝑚)]⁄                                                     (B7) 

 

Regarding the SPE control chart, one possible control limit formulation proposed 

is based on the observation that the following quantity is approximately normally 

distributed with zero mean and unit variance: 

𝑐 =
𝜃1[(𝑄/𝜃1)ℎ0−1−𝜃2ℎ0(ℎ0−1)/𝜃1

2]

√2𝜃2ℎ0
2

                                                                (B8) 

 

where 𝜃𝑖 = ∑ 𝐿𝑗,𝑗
𝑖𝑃

𝑗=𝑚+1 , with 𝑖 = 1,2,3, and ℎ0 = 1 − (2𝜃1𝜃3)/3𝜃2
2. Then, the 

theoretical control limit for the SPE control chart is: 

𝑈𝐶𝐿𝑆𝑃𝐸 = 𝜃1 [
𝑐(𝛼)√2𝜃2ℎ0

2

𝜃1
+ 1 +

𝜃2ℎ0(ℎ0−1)

𝜃1
2 ]

1
ℎ0

                                                       (B9) 

 

where 𝑐(𝛼) is the (1 − 𝛼)% percentile of the normal distribution. 

Eventually, the Bonferroni’s rule for independent events is used to design the 

control limits. In case of departures from the normality assumption of monitored data, 

empirical control limits can be estimated via kernel density estimation of the control 

statistics distributions under IC conditions.  

 

Appendix B – Alternative functional data depth formulations 

The FMD represents a simple generalization of the data depth concept to the FDA 

framework. It consists of computing the univariate depth at any given time point 𝑡 ∈
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[0, 𝑇] and then integrating the local depth measures over the interval [0, 𝑇] ⊂ ℝ (see 

Fraiman and Muniz (2001) for further details). The MBD (Lopes-Pintado and Romo, 

2007) is, instead, a graph based depth measure, where the term “graph” of a function 

𝑌𝑗(𝑡): 𝑡 ∈ [0, 𝑇]} denotes the subset of the plane 𝐺 (𝑌𝑗(𝑡)) = {(𝑡, 𝑌𝑗(𝑡)) : 𝑡 ∈ [0, 𝑇]}.  

A band in ℝ2 delimited by a set of 𝑛 curves 𝑋1(𝑡), 𝑋2(𝑡), … , 𝑋𝑛(𝑡) is defined as 

follows: 

𝐵(𝑋1(𝑡), … , 𝑋𝑛(𝑡)) = {(𝑡, 𝑌): 𝑡 ∈ [0, 𝑇], min
𝑘=1,…,𝑛

𝑋𝑘(𝑡) ≤ 𝑌 ≤ max
𝑘=1,…,𝑛

𝑋𝑘(𝑡) } (A1) 

 

The quantity: 

𝑆𝑛,𝑞 (𝑌𝑗(𝑡)) = (
𝑛
𝑞)

−1

∑ 𝜔 {𝐺 (𝑌𝑗(𝑡)) ⊂ 𝐵(𝑋1(𝑡), … , 𝑋𝑛(𝑡))}

1≤𝑖1≤⋯≤𝑖𝑞≤𝑛

 (A2) 

 

where 𝑞 ≥ 2, expresses the proportion of bands 𝐵(𝑋1(𝑡), … , 𝑋𝑛(𝑡)) determined by 𝑞 

different curves containing the graph of 𝑌𝑗(𝑡), where 𝜔(∙) is the proportion of time 𝑡 ∈

[0, 𝑇] that 𝑌𝑗(𝑡) is included into the band. Then, the MBD of 𝑌𝑗(𝑡) can be computed as 

follows: 

𝐷𝑗(𝑛, 𝑄) = ∑ 𝑆𝑛,𝑞 (𝑌𝑗(𝑡))

𝑄

𝑞=2

, 𝑄 ≥ 2, 𝑗 = 1,2, … (A3) 

 

Where 𝑄 is a tuning parameter. Lopez-Pintado and Romo (2007) showed that the 

depth measure is robust with respect to the choice of 𝑄, and the use of any value 𝑄 ≥ 2 

does not change the ranking among curves.  
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Table 1 - Cutting parameters corresponding to different end-milling modes (the spindle 

speed was always 253 rpm) 

Cut 
order 

Mode 
𝐴𝑧 - Feed rate 

(mm/z) 

𝐷𝑟  - Radial 
depth of cut 

(mm) 

𝐷𝑎  - Axial depth 
of cut (mm) 

Tool copy 

1 A 0.2 40 8 1 

2 B 0.2 40 8 2 
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Table 2 – Mean vector 𝝁𝜔 used to generate different profile patterns in different modes 

 Mode 𝝁𝜔 

Historical IC 
modes (database) 

A [−0.50, −0.45, −0.30,0.70, −0.45] 

B [−0.50, −0.20, −0.30,0.70, −0.45] 

C [−0.50, −0.45, −0.55,0.70, −0.45] 

D [−0.50, −0.45, −0.30,0.70, −0.20] 

New modes  

E [−0.50, −0.75, −0.30,0.70, −0.45] 

F [−0.50, −0.45, −0.10,0.70, −0.45] 

G [−0.50, −0.45, −0.30,0.70, −0.75] 

H [−0.30, −0.45, −0.30,0.70, −0.45] 
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Table 3 - Model parameters for multimode pattern generation in Scenario 2 

Mode 𝜇𝑖  𝜎𝑖  

A {25 35 40 45 60 100 150 180} {6 3 4 2 3 20 10 3} 
B {25 35 40 45 60 100 150 180} {9 6 7 5 3 20 10 3} 
C {25 35 40 45 60 100 150 180} {6 3 4 2 3 25 15 8} 
D {25 35 40 45 60 100 150 180} {8 5 6 4 5 22 12 5} 
E {25 30 40 45 65 100 150 180} {6 3 4 2 3 20 10 3} 
F {25 35 40 45 60 90 160 180} {6 3 4 2 3 20 10 3} 
G {25 35 40 45 60 100 145 185} {6 3 4 2 3 20 12.5 5.5} 
H {25 40 40 50 60 100 150 180} {6 8 4 7 3 20 10 3} 
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Table 4 - 95% confidence intervals of type I errors in Scenario 1 and Scenario 2 

 
Modes in design 

phase 

Mode in testing phase (Scenario 1) 

A B C D 

1 A,B,C,D (0.013 0.017) (0.007 0.009) (0.012 0.015) (0.007 0.009) 

2 

A (0,010 0,011) (0,106 0,116) (0,096 0,108) (0,095 0,106) 

B (0,091 0,103) (0,010 0,011) (0,095 0,107) (0,089 0,101) 

C (0,097 0,108) (0,096 0,107) (0,009 0,012) (0,091 0,103) 

D (0,092 0,105) (0,089 0,101) (0,090 0,100) (0,008 0,010) 

 
Modes in design 

phase 

Mode in testing phase (Scenario 2) 

A B C D 

1 A,B,C,D (0,019 0,024) (0,001 0,003) (0,007 0,010) (0,011 0,014) 

2 

A (0,010 0,011) (0,096 0,107) (0,102 0,112) (0,093 0,103) 

B (0,090 0,101) (0,009 0,012) (0,091 0,102) (0,100 0,113) 

C (0,091 0,102) (0,091 0,101) (0,010 0,011) (0,094 0,107) 

D (0,094 0,107) (0,101 0,113) (0,095 0,106) (0,010 0,010) 
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Figure captions 

Fig. 1 – Scheme of the basic multi-modelling approach (a) and scheme of the generalized 

multi-modelling method proposed in this study (b)  

Fig. 2 – Experimental set-up for cutting force signal acquisition in end-milling on a Ti-

6Al-4V part 

Fig. 3 – IC cutting force profile patterns (grey) acquired in end-milling cut 1 (a.k.a. Mode 

A) (left panel) and cut 2 (a.k.a. Mode B) (right panel); each profile consists of 𝑝 = 264 

data-points; cross-section average profiles are depicted with black thick lines 

Fig. 4 – Superimposition of Mode A profile data (solid grey curves) and the first three 

curves in cut 2 (Mode B) (red-dashed, blue-dotted and green-dot-dashed curves); the 

black thick line represents the cross-section average profile in Mode A 

Fig. 5 – 𝑇2 and SPE control charts for the proposed approach; the vertical solid line 

separates the design phase (on the left) from the use phase (on the right) 

Fig. 6 – Cutting force profile patterns (grey) acquired in cut 3; each profile consists of 

𝑝 = 264 data-points; cross-section average profiles are depicted with black thick lines 

Fig. 7 – 𝑇2 and SPE control charts for the traditional approach; the vertical solid line 

separates the design phase (on the left) from the use phase (on the right) 

Fig. 8 – Simulated profile patterns in different modes (Scenario 1): 100 profile 

realizations in each mode (grey curves) and cross-section average profiles (black thick 

lines) 

Fig. 9 – 95% confidence intervals of misclassification errors in Scenario 1 for the 

proposed approach (MD) and competitor methods (𝐽 = 50, 𝑀 = 1) 

Fig. 10 – 95% confidence intervals of novelty detection errors in Scenario 1 for the 

proposed approach (MD) and competitor methods (𝐽 = 50, 𝑀 = 1) 
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Fig. 11 – Misclassification error in mode A, Scenario 1 (left panel) and novelty detection 

error in mode E, Scenario 1 (right panel) for the MD-based approach and the KNN-based 

approach, for different values of parameter 𝑀 (𝐽 = 50) 

Fig. 12 – Simulated profile patterns in different modes (Scenario 2): 100 profile 

realizations in each mode (grey curves) and cross-section average profiles (black thick 

lines) 

Fig. 13 – 95% confidence intervals of misclassification errors in Scenario 2 for the 

proposed approach (MD) and competitor methods (𝐽 = 50, 𝑀 = 1) 

Fig. 14 – 95% confidence intervals of novelty detection errors in Scenario 2 for the 

proposed approach (MD) and competitor methods (𝐽 = 50, 𝑀 = 1) 
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