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A multihead weigher machine is a computer-controlled machine used to fill a package
with small products or parts with a given target weight. The initial setup can have a
dramatic effect on the machine performance and it is still an open problem in industry.
After the formalization of this problem and its main variables, we tackled it with different
optimization techniques. Figure 1.

Abstract

A multihead weigher machine (MWM) is a computer-controlled machine used
to fill a package with small products or parts with a given target weight. MWMs
are widespread in the food and non-food industries due to their high performance
in terms of variety of products to be packed, high throughput, and quality of the
packaged items. Despite the popularity of these machines, studies aimed at how to
setup their settings are lacking. In industrial practice, operators currently use ad-
hoc rules to setup a MWM, but the initial settings can have a dramatic effect on the
machine performance. The aim of this paper is to formalize the setup problem and
its main variables. Then an optimization technique is proposed to solve the problem.

Keywords: Combinatorial weighing machine, Optimization, Simulation, Cost reduction.
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C0 (ecent) fixed cost in a fixed time period.

CS (ecent/pkg) sorting cost per “non conforming” package.

CU (ecent/g) cost of the raw material.

CT,u (ecent/pkg) production cost per “conforming” package.

E(W |W ≥ T ) (g/package) expected weight value of the “conforming” packages.

H number of the machine hoppers.

M maximum capacity of a hopper.

nC number of “conforming” packages in a fixed time period.

p probability that a package has a weight equal or greater than the target weight.

P number of packages produced in a fixed time period.

T (g) target weight of a package.

W (g/pkg) amount of product inside a package. It is modeled as a random variable with
an unknown distribution.

WC (g/pkg) amount of product inside a “conforming” package. WC = (W |W ≥ T )

WCi (g/pkg) amount of product inside the ith “conforming” package.

Wj (g/pkg) amount of the product inside the jth hopper. It is modeled as a normal
random variable with mean µj and variance σ2

j

1 Introduction

The rapid development of the packaging industry has motivated the manufacturers of
packaging machines to propose new versatile, productive and highly automated solutions.
Among the solutions oriented to the packaging of small discrete items, the multihead
weigher machine has increasingly been used due to its high speed, accuracy and reliability.
A multihead weigher machine (hereafter a MWM, sometimes called a combinatorial weigh-
ing machine) is a computer-controlled machine used to fill a package with small products
or parts at a given target weight.

Since its first appearance in the marketplace in the seventies, MWMs have been con-
tinuously improved to meet the ever-changing market requirements and consumer tastes.
Today, this machine has a wide range of applications in food industry for dried foods such
as pasta, pet foods, coffee, cereals, a wide variety of candies, or even fresh foods such as
vegetables, poultry pieces, etc. Its applications cover also the packaging of non-food items,
for instance, packages of paper clips and other small office items are filled using this kind
of machines. Among the multihead weigher manufacturers, the one with the world leading
position has about 31,000 MWMs installed all over the world. Despite its worldwide spread
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and the high number of manufacturers, there are few scientific studies aimed at studying its
characteristics and most of the literature is mainly technical or commercial (e.g. patents,
machine brochures, etc.).

A MWM is mainly composed of a system of feeders, a set of H pool hoppers, a set of
H weight hoppers and a discharge chute to the packaging machine as depicted in Figure 1.
The product is continuously fed via a central dispersion feeder (usually a vibrating cone)
and H radial feeders (vibrating channels) to the pool hoppers. The role of the pool hoppers
is to stabilize the product before dropping it into the weight hoppers. At the startup of a
new lot, the operator has to set the product flow rate for each radial feeder and, since the
radial feeders are independent, the software allows the operator to choose a different flow
rate for each of them. This setting may change depending on the type of product to be
packed and the target weight of the package. Each weight hopper is equipped with a load
cell that weighs the product and transmits the information to a computer. The computer
then selects a subset of hoppers whose total weight is equal to or greater than the target
weight T (i.e., the weight value labeled on the package). Then, the computer opens the
selected hoppers releasing the product through the discharge chute into the downstream
packaging machine. For customer protection, the law requires that the weight of each
package must be no less than the target weight. Consequently, a package filled with a
quantity of product below the target weight is defined “non conforming” and cannot be
sold in the market.

The machine works in a cyclic way with a quite short fixed cycle time. For instance,
some machines are able to produce about ninety packages per minute. There are more com-
plicated machines offered in the market than the ones previously described. For instance,
a double-layered machine has a further set of “booster” hoppers (usually located below
the weight hoppers) which increase the number of possible hopper combinations among
which the computer algorithm can select the best one to open. Moreover, a more complex
operation strategy can be implemented. For instance, for perishable food items, when a
specific hopper remains closed for a certain number of cycles, the system can release it
into a trash box or can force it to belong to the next hopper combination to open in order
to avoid excessive waiting time and spoilage. In this paper, we focus the analysis on a
single-layer MWM (Figure 1).

Summing up, MWM is a complex machine which needs a setup strategy and a suitable
operation software. The control software works in real time and its goal is to select the
best hopper subset to open in order to achieve the package target weight, according to the
product, the cycle time constraint and the objective function. This problem is equivalent
to the well-known knapsack problem [1]. In the literature, different knapsack problem for-
mulations have been proposed: most of them utilize linear objective function(s) and linear
constraints [2, 3, 4, 5]. Karuno et al. [2] proposed to use dynamic programming because
their interest is to speed up the selection phase of the best hopper subset. Among many
scientific studies focused on different weighing machines, Silvestrini at al. [6] proposed an
algorithm to check if a component is missed in a package, this could be helpful when the
MWM is used to multiproduct packages.

In this paper we want to tackle the setup strategy which is still an open problem. The
setup problem of a MWM requires the determination of the optimal flow rate of each ra-
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dial feeder. Currently, the setup procedures adopted in industrial practice mainly rely on
the operator’s skill and experience during a trial-and-error manual setup which does not
guarantee the best performance. To the best of our knowledge, the setup problem has not
been addressed in the scientific literature apart from some preliminary results discussed in
[5] and [7].

The rest of the paper is organized as follows. In section 2 the definition of the setup
problem and its main variables together with the expression of the economic objective func-
tion are presented. In section 3, an analysis of the Solution Space is presented. According
to the characterization of the Solution Space, section 4 presents different algorithms to
tackle the setup problem. In section 5, the results of the optimization are shown and an
optimization method is proposed. The paper ends with recommendations and directions
for further research.

2 Problem Definition

The weight of the raw material inside the jth weight hopper, that is the product of the
radial feeder flow rate and the cycle time, changes at each machine cycle due to random
fluctuation. By analyzing real data [5], it has been observed that this weight is a realization
of the random variable Wj, normally distributed with mean µj (µj > 0) and variance
σ2
j . Moreover, it has been observed that the standard deviation σj depends on the mean

quantity µj according to the following linear relation:

σj = αµj (1)

where α (0 < α < 1) is an experimental constant depending on the product to be packed.
This relation was also pointed out by [8].

A machine setup consists of specifying the values of µj, j = 1, ..., H and, as a conse-
quence, σ2

j , j = 1, ..., H for a given package target weight T . Once the machine is set,
the MWM starts to pack bags of product, solving a knapsack algorithm per bag. This
setting has to be done each time the type of raw material (product) changes or when a
different target weight T is required. An improper selection of the machine setup affects
the machine efficiency in terms of “non conforming” rate, material cost, scrap or rework
cost and possible losses due to the deviation of the product performance from customer’s
and/or producer’s target. Thus, the initial setting of the machine is a very important
decision affecting the general economic performance. Our goal is to propose a standard
procedure to determine the best machine setup µ

opt = (µ1, µ2, ..., µH) for a specific machine
and product according to a suitable economic objective function as explained in the next
section.

2.1 The economic objective function

As previously outlined, an improper machine setup turns into a lack of machine efficiency.
In fact, setting the machine to have the mean of the package weight at a very low level
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reduces the production cost but increases the rejection cost due to more “non conforming”
packages. On the other hand, setting the machine to a very high level reduces the rejection
cost but increases the material cost.

In the economic objective function the quantity and the quality of the packages filled
must be jointly considered to evaluate the costs. The quantity can be expressed by the
throughput (number of packages per time unit). The quality is expressed by the number
of “non conforming” packages. These packages are usually broken and the raw material
reutilized. Sometimes a package cannot be reworked but has to be scrapped, for instance
when perishable products are handled.

To approach this problem we propose an objective function that is easier to understand
by the MWM users: the expected value of the production cost per “conforming” package in
a fixed time period. The idea is to allocate the total production cost only to the packages
that are sold (nC). Let P be the number of packages filled in a fixed time period, let C0

be the fixed cost incurred in the time period, such as depreciation cost, energy cost and
packaging material cost, let CU be the raw material cost per gram and let CS be the sorting
cost to take care of each “non conforming” package. If a package can be reworked, this cost
term takes into consideration that the operator has to open the package and to tip out the
content into the dispersion feeder. Otherwise, if a package has to be scrapped, this cost
item considers the time used by the operator to take care of it. In the following we will
assume that a “non conforming” package can always be reworkable, then the production
cost per “conforming” package (CT,u) is formulated as follows:

CT,u =
C0

nC

+ CS

(P − nC)

nC

+ CU

∑nC

i=1 WCi

nC

(2)

where:

• nC is the number of “conforming” package filled in the time interval modeled as
binomial density function;

• WC = (W |W ≥ T ) is the random variable that characterized the amount of product
filled in each “conforming” package;

• WCi is the realization of the random variable WC at the ith “conforming” package.

Let’s set: ∑nC

i=1 WCi

nC

= WC· (3)

Since
E[WC·] = E [W |W ≥ T ] (4)

the expected value of the production cost per “conforming” package is expressed as follows:

E[CT,u] = C0E

[
1

nC

]
+ CS PE

[
1

nC

]
− CS + CUE [W |W ≥ T ] (5)

5



It is easy to find that as the number of packages filled in a fixed time period increases, the
following approximation is true:

E

[
1

nC

]
≈

1

P · p

where p = Pr (W ≥ T ).
Since p and E [W |W ≥ T ] depend on the setting parameters µ, the optimal setup could

be found solving the following optimization problem:

minimize:
µ∈S

E[CT,u] =
C0

P · p
+ CS

1− p

p
+ CUE [W |W ≥ T ] (6)

where:

S is the Solution Space

p = Pr (W ≥ T ) (7)

W is an unknown probability function whose parameters depend on (µ, T, α) (8)

Analyzing (6), the first two terms are always minimized by maximizing p. To increase p,
a package can be filled with an amount of product greater than T , but as a consequence
the third term of (6) gets bigger as the “give away” product increases.

The optimization of the problem (6) maximizes the probability to produce conforming
packaging with a weight as close as possible to T . In this way the producer is protected
against the possibility to produce “big packs” (i.e. packages with a weight very larger than
T ) because they would be very expensive. As a matter of fact, the value of the economic
objective function gets bigger and bigger as the package weight increases.

Unfortunately, an analytical approach to address the optimization problem is unfeasible
because the distribution of W is unknown and the relationships (7) and (8) are unknown.
Thus, a simulator of the machine has been built and a Monte Carlo procedure is used to
evaluate the production cost for each machine setup (see App. A).

3 Solution Space

The Solution Space is a discrete space depending on the resolution of the load cells. In order
to solve the optimization problem, we decided to approximate this space in two different
ways: firstly with a grid characterized by a regular step and secondly with a continuous
space to cope with the characteristics of some optimization algorithms.

Let S be the Solution Space and let us approximate it with an ordered grid of H-
dimensional space where H is the number of hoppers. The number of solutions, that is
the cardinality NS of S, depends on the grid dimension. If we suppose that each hopper
weight may assume a discrete value in the interval I = [a, b] and let L be the number of
discretization levels depending on the step used to discretize the interval I, then

NS(full) = HL (9)

It is clear that as the hopper number or the level number increases, the number of solutions
increases very rapidly.
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If we approximate S with a continuous space, the number of solution can be expressed
by the volume of this space. Let us suppose that each hopper has a maximum capacity
M , then the volume of S is defined by:

V ol(full) =

∫ M

0

∫ M

0

· · ·

∫ M

0

dw1dw2 . . . dwH = MH (10)

The volume of S gets bigger and bigger increasing the number of hoppers or using hoppers
with an increased maximum capacity.

Luckily, an interesting symmetry property can reduce the cardinality/the volume of the
Solution Space. As a matter of fact, the MWM does not give preference to any hopper
over the others, and each hopper can be set in exactly the same way as the others. In other
words, a solution µ = (µ1, µ2, ..., µH) is invariant to any permutation σ(·) of the hopper
indices (µσ(1), µσ(2), ..., µσ(H)) in terms of any objective function. This characteristic is
useful since the Solution Space can be reduced considering only the vectors µ such that:

µ1 ≥ µ2 ≥ ... ≥ µH (11)

Hence, reducing the grid Solution Space according to (11), the number of solutions is
now:

NS(red) =
(L+H − 1)!

H!(L− 1)!
(12)

The comparison between the two Solution Space cardinality for H = 8 by increasing
the number of levels L is presented in Figure 2. It shows the drastically reduction of the
space cardinality thanks to the use of (11).

Also approximating S with a continuous space, the symmetry property allows for a
reduced Solution Space volume as follows:

V ol(red) =

∫ M

0

∫ w1

0

· · ·

∫ wH−1

0

dw1dw2 . . . dwH =
MH

H!
(13)

In particular, V ol(red) is always smaller than V ol(full) and the difference between the two
volumes (V ol(full) − V ol(red)) gets bigger as H increases.

4 Optimization procedures

As described in Section 2 the optimization problem depends on the unknown probability
distribution W . To estimate the W distribution and its main moments a simulator of the
MWM has been developed (see App. A). The simulator estimates the W distribution for
each (µ, T, α).

In order to find the optimal solution µ
opt of the problem (6), a suitable optimization

technique is required. In our case the standard optimization techniques requiring the
knowledge of the function or the possibility to numerically compute it cannot be used
(i.e. [9] for standard methods). We would rather need some technique able to cope with
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the stochastic nature of the problem and with the characteristics of the Solution Space
(continuous or discrete). The proposed general optimization scheme is in Figure 3. Given
T , α and the desired number of simulations (noSims), at iteration k, for a certain µk the
simulator gives the Wk distribution and, as a consequence, the objective function value.
Then the optimizer decides either to stop the routine thus obtaining the optimal µopt or
to go to the next step (k+ 1). Details about the implemented algorithms in the optimizer
are in Sections 4.1 and 4.2.

4.1 Continuous Optimization

Gradient-based methods. In the continuous S domain, two gradient-based method-
ologies are selected to tackle the stochastic optimization problem: Simulation Perturba-
tion Stochastic Approximation (SPSA) [10, 11, 12] and Response Surface Methodology
(RSM)[13, 14, 15, 16] (see App. B). SPSA is proposed due to its high potential efficiency
given that it requires only two measurements of the objective function (i.e., two Monte
Carlo simulations) for estimating the gradient in each iteration . Instead, RSM is pro-
posed because its estimate of the gradient is more accurate.

In the simulation-optimization routine (Figure 3), at each kth iteration of the algorithm
the optimizer varies the mean weights µj trying to minimize the Cost value estimated by
the simulation module. The two modules work iteratively until a predefined stopping
condition is met. Let η1 and η2 be some small positive numbers, kmax be the maximum
number of iterations in each optimizer search, and L(µk) be the objective function value
evaluated using the setup µk. Each optimizer search is stopped when one of the following
three criteria is satisfied:

1. k ≥ kmax

2. | µk − µk+1 |≤ η1

3. |L(µk)−L(µk+1)|

L(µk)
≤ η2

Since the Cost function is plainly not convex in µ, the simulation-optimization proce-
dure is performed from a set of m initial points µl, l = 1, ...,m. In particular, to enhance
the routine performance, each initial point needs to be different from the others. For this
purpose, a sequence of initial points is generated satisfying the symmetry property of S
according to (11). To ensure that an initial point implies a high probability of packing a
conforming package, the following constraint is used [7]:

Prob (W ≤ T ) ≤ ǫ

that is roughly approximated by:

Φ


T −

∑H

j=1 µj

α
√∑H

j=i µ
2
j


 ≤ ǫ (14)
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Empirically, the number of initial points m is picked according to the following relation:

n = (k × nk)×m (15)

where k is the average number of iterations of the algorithm per each search and it is
estimated thanks to a previous empirical analysis, nk is the number of objective function
evaluation at each kth iteration, n is the overall number of objective function evaluations
(see Section 5). The simulation-optimization routine returns the solution among the m
searches which has the lowest Cost value.

Continuous Random Sampling Algorithm (RC). The RC is a “foolproof” algorithm
that randomly samples n independent points, where each point is a machine setup µ,
from the continuous S domain subject to the constraints (11) and (14). The n points
are evaluated by the machine simulator and the algorithm stores the solution with the
minimum cost value. This heuristic algorithm is introduced to compare its performance
with the performances of structured algorithms.

4.2 Discrete Optimization

Discrete Random Sampling Algorithm (RD). The RD algorithm randomly samples
n independent points from the discrete S domain. Then, each machine setup is evaluated
by the simulator and the best solution found is taken. Each point has to fulfill the con-
straints (11) and (14). This is a very easy and intuitive algorithm as the RC algorithm. It is
introduced to understand if the domain nature can affect the performance of the algorithm.

“Brute Force” algorithm. In the discrete S domain, the Brute Force algorithm (BF)
requires the construction of an H-dimensional ordered grid characterized by a predefined
regular step. Each point (i.e. a machine setup) that does not satisfy the constraints (11)
and (14) is deleted from the grid.

Let M be the maximum capacity of each hopper, let H be the number of hoppers,
then the maximum capacity of the machine is expressed by the product H ·M . The ratio
between the actual capacity of a machine (

∑H

j=1 µj) and the maximum capacity is called
K Ratio.

K Ratio =

∑H

j=1 µj

H ·M
(16)

Empirically, it was observed that the machine setups characterized by small values of
objective function lie within a narrow K Ratio range. This property is added to further
reduce the grid dimension.

Since we want to compare the algorithm using the same number of objective function
evaluations, n points are sampled from the grid. Then, the n machine setups are evaluated
by the simulator and the one with the minimum value of objective function is picked up
as the best one.
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5 Results

We consider a single-layer MWM with 8 hoppers. The product to be packed is a kind of
dried pasta, it is always reworkable and from previous empirical analysis the constant α is
equal to 0.123 [5]. The target weight T is fixed at 500. The specific parameters used in (6)
are reported in Table 1 (see [5] for more details).

We compare the performance of gradient-based algorithms (SPSA and RSM), the Brute
Force algorithm (BF) and the random sampling algorithms (RC and RD) using the same
number of objective function evaluations (15), that is selected as a proxy of the computa-
tional effort.

To determine the value of n, the algorithm SPSA is picked as “base algorithm”. Ac-
cording to its tuning (see App. C), the optimal number of initial points is m = 500 and
the number of iterations k before ending are 17.89. Moreover SPSA requires only two mea-
surements of the objective function (i.e. nk = 2) to estimate the gradient in each iteration,
then n turns out to be equal to 17890. This implies that the BF, RD and RC algorithms
have to sample 17890 points. Instead RSM needs a certain number of initial points. From
previous simulations, we estimated that RSM with H = 8 performs an average of 1280
experiments (k× nk) before ending (see App. B). Given n = 17890 and according to (15),
the number of initial points is equal to 14.

As indicators of performances we selected the median and the standard deviation of
the expected production cost, that are widely used to measure the central tendency and
the variability. These indicators are estimated over 50 simulated replications. In each
replication, each algorithm stores the best solution and the results are shown in Figure 4.
We can notice that the nature of the domain (continuous or discrete) does not affect the
algorithm performances. The BF has a smaller value of median than the RSM one, that
instead is characterized by a smaller value of standard deviation. The RSM and the RD
seems to have the same performances. The same remark can be done for the RD and RC
algorithms. The SPSA has a standard deviation not different from that of the BF and RC
algorithms, but its median value is the worst.

Then we decrease the value of n to observe its impact on the algorithm performance.
In particular, n is set equal to 7090 (that corresponds to m = 200 for SPSA and m = 5
for RSM) and 2583 (that corresponds to m = 75 for SPSA and m = 2 for RSM). Each
algorithm is replicated 50 times to compare the relative performance and the best E[C]
value is stored at each replicate.

Figure 5 presents the results of the analysis in terms of median and standard deviation
of the expected cost of each algorithm for different n values. As easily predictable, the
increasing of n causes the values of both indicators to diminish. In fact, a greater number
of evaluated machine setups allows for an improvement of the algorithm performance.

We can surmise that the performance of BF and RSM algorithms become more and
more comparable as n decreases. The performance difference between the two random
sampling algorithms (RD and RC) remains irrelevant by varying n and their performance
are always worse than the BF and RSM ones. Instead, SPSA has always the worst perfor-
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mance regardless the number of objective function evaluations. According to this results,
for the next analysis we do not consider SPSA anymore.

In order to generalize these results, the MWM parameters are changed and the perfor-
mance of the methods in terms of cost value are presented in Figure 6. In particular, the
parameters are changed according to H = [5, 8], α = [0.1, 0.3] and T = [250g, 500g].

Consistent with [7], Figure 6 shows that a greater number of hoppers causes the cost
value of a package to decrease. This drop becomes more significant as the target weight
increases. To increase the target weight means to pack a greater amount of product, con-
sequently a package of 500g costs more than a package of 250g, as viewable in the graph.
Moreover, the graph, along with a proper statistical analysis, confirms that the performance
of the BF and RSM algorithms are equivalent and always better than the performance of
the random algorithms.

In summary, the nature of the Solution Space does not affect the performance of the
algorithms. The BF and RSM have similar performance, but RSM is a more structured
algorithm and consequently it is more time and space efficient. For these reasons, we
suggest RSM as optimizer.

5.1 Case study

The idea is to compare the optimal solution obtained from the RSM algorithm with a
“rule of thumb” currently used in the industrial practice. Easily this heuristic rule sets all
the hoppers with the same mean weight, that is equal to the target weight divided by the
number of hoppers (i.e. µj = T/H). Thus, we expect that all the hoppers are selected in
the combination to open at each machine cycle.

Let us consider a MWM with 8 hopper and the target value T fixed at 500, the
heuristic rule suggests as optimal setup µ

opt = (62.5, 62.5, 62.5, 62.5, 62.5, 62.5, 62.5, 62.5).
Instead, the RSM algorithm, according to the parameters presented in Table 1, gets
µ

opt = (221.2, 219.2, 193.1, 68.6, 33.1, 26.8, 13.8, 11.0) as the optimal setup. Then, 3000
replicates of the simulations (noSims) at the optimal setups are run to estimate the ex-
pected value of the production cost per “conforming” package and the standard deviation
of this cost. The results are reported in Table 2.

According to Table 2, the RSM optimal solution assures an expected cost and a stan-
dard deviation smaller than the heuristic rule. In order to better understand the results,
let us suppose that the MWM produces 60 packages per minute, and suppose that the
firm works two 8-hour shifts, 300 days per year. The solution T/8 involves a cost equal
to 3519936 e/(year-machine), instead the RSM setup involves a cost equal to 2745792
e/(year-machine). Thus the use of the RSM allows the firm to save 774144 e/(year-
machine), a saving of about 22%, and this saving rises as the number of packages per
minute increases.

11



6 Conclusions and further research

In this paper, the setup problem of a MWM has been studied. The setup problem requires
the determination of the optimal flow rate of each radial feeder. We decided to tackle this
problem by finding the optimal mean product quantity to deliver into the pool hoppers
at each cycle in order to minimize the expected production cost value per “conforming”
package in a fixed time period. The setup affects the machine performance and has to be
done each time the characteristics of the packaging (product, target weight, etc.) change.
In industrial practice, operators currently use their skill and experience to setup the ma-
chine and the scientific literature is inadequate. The wide distribution and availability of
MWM worldwide and the impact that an improper machine setup can have in the machine
efficiency and speed underline the importance of the problem.

Thanks to the definition of the setup problem and its main variables together with
the expression of the objective function to minimize, the problem to find out the opti-
mal setup of a MWM has been formalized. The Solution Space of the problem has been
characterized. Its deep analysis allows us to discover an interesting symmetry property to
reduce its dimension and, consequently, to tackle the setup problem faster. According to
the characterization of the Solution Space, five algorithms have been considered: gradi-
ent based algorithms (SPSA and RSM), a “Brute Force” (BF) algorithm and two random
sampling algorithms (RC and RD). Their performance in terms of median and standard
deviation of the expected cost have been compared using the same number of objective
function evaluations, which is used as a proxy of the computational effort. The nature of
the Solution Space does not affect the algorithm performance. The BF and RSM perfor-
mance appear to be very similar, the same conclusion can be drawn for the two random
sampling algorithms but their performance are always worse than the BF and RSM ones.
These conclusions have been generalized changing the MWM main parameters. Instead,
the SPSA has always the worst performance. The RSM is more efficient in terms of space
and time than the BF, thus we suggest to use RSM to setup the MWM. Lastly, the optimal
solution found with the RSM algorithm is compared with an heuristic rule currently used
in industrial practice. The expected cost of the RSM solution and its standard deviation
are lower than the industrial solution allowing a firm to save money as much as the number
of packages per minute increases. A structured approach to setup the machine is the best
way to increase the performance of a firm.

However we think that further research is necessary to generalize the results found. Pos-
sible topics are to increase the complexity of the machine (machine with multiple products
and multiple hopper layers, vibrating cone model, etc.); to add a time constraint due to
the cycle time, that implies the use of a smarter algorithm to tackle the knapsack problem;
to use other optimization methods to solve the setup problem. In regard to the simulation
of the item flow in the vibrating channels, when the size of a single item is large and few
items are needed to form a package the approximation of the random variable weight with
a normal distribution may no longer be valid, and furthermore approximation in (1) may
not be justified.
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Appendix A. The simulator.

In this section, the simulator that mimics the behavior of a MWM is presented. As de-
picted in Figure 7, given a minimum target weight T , the α = σj/µj parameter, a desired
maximum number of simulations (noSims) and a vector of hopper mean weights µ, the
simulator solves a specific knapsack problem and estimates via Monte Carlo methods the
distribution of the package weight W . Based on this information, the objective function is
evaluated.

In this paper, we consider a MWM with 8 hoppers, the target weight T is fixed at 500,
α is set equal to 0.123 and noSims is fixed at 3000.

In literature, different Knapsack Problem formulations have been proposed: a linear
objective function [2, 3] or an absolute value objective function [4] both with linear con-
straints on the package weight, or an absolute objective function with some rules to choose
the combination of hoppers to open [5]. This paper assumes that the machine has a built-in
algorithm that solves for each package the deterministic knapsack-problem that follows:

objective: minimize
H∑

j=1

wjxj (17)

subject to:
H∑

j=1

wjxj ≥ T (18)

xj ∈ {0, 1} j = 1, 2, ..., H (19)

where

xj =

{
1, if the hopper j is chosen;
0, otherwise.

(20)

and (19) expresses the binary constraint of this variable. The objective (17), together with
(18), aims at attaining the total weight of a package as close to the target weight T as
possible.

Because the knapsack algorithm implemented in real machines has proprietary details
which are not available, we tackle this problem with an enumerative algorithm.
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Appendix B. Response Surface Methodology.

Usually, classic Response Surface Methodology (RSM) consists in two phases. In the first
phase the objective function is locally approximated by a first-order polynomial.

y = β0 +
H∑

j=1

βjxj + ǫ (21)

where y is the response variable, (x1..xH) are the coded input variable, β0 and βj are
respectively the constant and the linear coefficient that are estimated from the data.

When the first order model is adequate a line search algorithm is applied to find a new
region of interest. The line search is ended when there is no further improvement in the
response along the line. At that point, a new experiment is performed and a first-order
model is fitted and a new line search phase is started. The procedure is repeated until the
first-order polynomial model is not adequate (i.e. if a significant lack-of-fit is present). At
that time the RSM moves to the second phase and additional experiments are conducted
to obtain a more precise estimate of the response function. In this phase the objective
function is approximated by a second-order polynomial (22) and a canonical analysis is
used to find the optimum point, if it exists.

y = β0 +
H∑

j=1

βjxj +
H∑

j=1

βjjx
2
j +

H∑

j=1

∑

i>j

βjixjxi + ǫ (22)

Although there are many designs to choose from, a fractional two-level factorial design
of resolution-V augmented by three center points is used because of the large number of
parameters (H = 8). This design allows for a reduction of the experiment number (from
128 experiments of the full factorial design to 64 experiments) without losing any benefits.
In fact, this design is orthogonal, gives unbiased estimators of the regression coefficients of
a first-order model and it was easily augmented to derive a second-order design (a CCD -
Central Composite Design) in the second phase.

According to [16, 15], the steepest descent direction is given by −∇ŷ. To define the step
size, the most important factor is chosen by determining i such that i = argmaxj=1,...,H |bj|.

Then, the step size in the coded variables is set equal to ∆j =
−bj
|bi|

, j = 1, ..., H. In the

original units, the step size corresponds to ∆j × Rj/2, where Rj/2 = µj × λ is the half of
the range of values over which we will vary factor j and λ is fixed equal to 0.2 according
to a previous experimental campaign. Regarding the stopping rule, despite the possible
drawbacks, the 2-in-a-row rule is picked for its simplicity of implementation.

To define the number of initial points m (each one is the central point of the first
fractional factorial design), according to (15) we need the average number of iterations of
the algorithm and the number of objective function evaluation at each algorithm iteration.
Unfortunately, it is impossible to define exactly the value of nk because at each step of the
algorithm nk is not a constant differently from the SPSA. As a matter of fact, in first phase
64 experiments are performed to estimate the improvement direction; along the line search
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2 experiments at each step are done to test the stopping rule; in the second phase only the
experiments on the axial points are performed. Accordingly, a deep experimental campaign
was performed and from it, we estimated that RSM with H = 8 performs an average of
1280 experiments (k×nk) before ending. Then, if the overall number of objective function
evaluations n is defined, the number of initial points is picked according to (15).

Appendix C. Number of initial points of SPSA.

The goal is to define the optimal number of initial points for the Simulation-Optimization
routine using SPSA as optimizer. Table 3 presents the routine parameters that have been
used to perform the analysis. Moreover, twelve values of m are considered [25, 50, 75, 100,
150, 200, 300, 400, 500, 600, 700, 800] and each condition is replicated 50 times. Each
search is stopped when one of the stopping criteria (Section 4.1) is met and the minimum
cost value is stored.

Figure 8 presents the individual value plot of the results. The graph suggests that as
the number of initial points increases, as the routine is able to reach solutions characterized
by a lower Cost value. The analysis of the data shows that a number of initial points equal
to 500 is not statistically different from 800 and the dispersion around the mean is not
too high. Thus, 500 initial points are the optimal setup for the simulation-optimization
routine when SPSA is used as optimizer.

Summing up, letm be equal to 500 and estimating that SPSA has about 17.89 iterations
(k) before ending, it has been estimated that the number of objective function evaluations is
17890 per each replicate (at each iteration, SPSA performs two evaluations of the objective
functions nk).

Figures and Tables.

H 8 T 500 (g) α 0.123
C0 2534 (ecent) CU 0.03 (ecent/g) CS 3.2 (ecent)

Table 1: The parameters of the optimization problem.

Method µ
opt

E[C] sd[C]
T/8 (62.5, 62.5, 62.5, 62.5, 62.5, 62.5, 62.5, 62.5) 20.37 0.1557
RSM (221.2, 219.2, 193.1, 68.6, 33.1, 26.8, 13.8, 11.0) 15.89 0.0010

Table 2: Case study.
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Figure 1: A single-layered multihead weigher machine.
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Figure 2: The cardinality plot: NS(full) versus NS(red) with H = 8

Figure 3: Simulation Optimization Routine
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Figure 4: Scatterplot of the performance of the different optimization methods considering n = 17890.
The median of the E[C], obtained thanks to the 50 replicates, is plotted on the x-axis. Instead, on the
y-axis, the value of the standard deviation of E[C] is plotted for each optimization method.

Figure 5: Scatterplot of the performance of the different optimization methods. The median of the E[C],
obtained thanks to the 50 replicates, is plotted on the x-axis. Instead, on the y-axis, the value of the
standard deviation of E[C] is plotted for each optimization method.
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Figure 6: The performance of each optimization method for different MWM parameters.

Figure 7: How the machine simulator works [7].

H 8 T 500 (g) α 0.123
C0 2534 (ecent) CU 0.03 (ecent/g) CS 3.2 (ecent)

noSims 3000 αSpall 0.602 γ 0.101
kmax 100 η1 1 η2 0.001

Table 3: The routine parameters used to tune the number of initial points.
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Figure 8: The individual value plot of the expected cost for different number of initial points. The red
symbols are the medians.
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