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A variational model for 3D Tolerance Analysis with manufacturing 
signature and operating conditions 

Abstract 
Purpose of this paper The variational model is one of the methods 

proposed in literature for tolerance analysis but it 

cannot deal with form tolerances and assembly 

conditions that may influence the functional 

requirements of mechanical assemblies. 

Design/methodology/approach This work shows how to manage the actual surfaces 

generated by the manufacturing process and the 

operating conditions inside the variational model 

that has been modified to integrate the 

manufacturing signature left on the surfaces of the 

parts and the operating conditions that arise during 

an actual assembly, such as gravity and friction. 

Moreover, a geometrical model was developed to 

numerically simulate what happens in a real 

assembly process and to give a reference value. 

Findings The new variational model was applied to a 3D case 

study. The obtained results were compared to those 

due to the geometrical model and to those of the 

variational model to validate the new model and to 

show the improvements.  

Research limitations/implications The proposed approach may be extended to other 

models of literature. Its limit is that it is able to deal 

with a sphere-plane contact. 



Practical implications Tolerance analysis is a valid tool to foresee 

geometric interferences among the components of 

an assembly before getting the physical assembly. It 

involves a decrease of the manufacturing costs. 

Social implications  

What is original/value of paper The main contributions are the insertion of a 

systematic pattern characterizing the features 

manufactured by a process, the assembly operating 

conditions, and the development of a geometrical 

model to reproduce what happens in a real assembly 

process. 

 

Keywords: 3D tolerance analysis, manufacturing signature, friction, gravity 

1. Introduction 

Tolerance analysis supports design and manufacturing of any product. To standardize the products and 

the proper functioning of the assembly, it is important to assign dimensional and geometric tolerances to 

assembly components. Lower costs per assembly and higher probability of fit result by a right allocation 

of tolerances among the different parts of an assembly, since the number of rejected parts and the amount 

of rework required on components is reduced. 

Following an assembly sequence, dimensions and tolerances of assembly components combine, to 

generate the tolerance stack-up functions. To solve a tolerance stack-up function means to combine the 

nominal values and the tolerance ranges assigned to the single assembly components in order to obtain 

the average value and the tolerance range of a product function. Literature presents many approaches for 

tolerance analysis of rigid assemblies (Chen et al., 2014, Polini, 2011), but they neglect form deviations, 

since they reduce geometric deviations to translational and rotational part feature defects (Ameta et al., 

2011, Bo et al., 2013, Polini, 2012). Moreover, none of them is so general to be univocally accepted.  



Further papers take into account form deviations, such as Samper et al. modelled form deviations of 

planar features by a modal description that depends on the approximation of form deviations by eigen-

shapes (Samper et al., 2009). This approximation is overcome with the approaches of (Paetzold et al., 

2007, Stoll et al., 2010), which are based on surface registration techniques. 

All these methods cannot simulate the assembly behaviour of variant parts based on their point cloud 

representation, but point clouds are commonly obtained by manufacturing and measurement applications. 

Therefore, to have CAT tools that deal with point clouds is highly desirable to connect design, 

manufacturing and inspection. A skin model framework has been developed for the tolerance analysis 

(Anwer et al., 2014, Schleich et al., 2014), based on a representation of non-ideal workpieces that employ 

point clouds. Another work uses Legendre-Fourier polynomials to model cylindricity error into a 

Jacobian-Torsor model for tolerance analysis (Weihua and Zhenqiang, 2013). 

In a previous work, the authors developed a geometric approach to take into account form deviation, 

together with those due to location and orientation, satisfying the Geometric Product Specification 

standards (Moroni and Polini, 2003). 

The present paper shows two approaches to introduce point cloud schemes in a computer-aided tolerance 

analysis of rigid assemblies. The main contributions to the state of the art are two. The first can be found 

in the idea of inserting a point cloud scheme, representing a systematic pattern characterizing all the 

features manufactured by a process, and the assembly operating conditions, such as gravity and friction, 

inside a model for 3D tolerance analysis. It extends the preliminary considerations reported in (Corrado et 

al., 2016), by considering all the assembly conditions of the reference case study. A larger series of 

applications strengthen the effectiveness of the proposed model. 

The second main contribution is the development of a geometrical model, reproducing what happens in a 

real assembly process, in order to have a reference to validate the proposed approach. 

The considered 3D model for tolerance analysis is a variational one; this model was introduced and 

developed in (Boyer and Stewart, 1991, Gupta and Turner, 1993, Martino and Gabriele, 1989). It uses a 

parametric  mathematical model to represent the variability of an assembly, due to tolerances and 



assembly constraints. It takes ideal surfaces into account, so the contact points among profiles belonging 

to coupled parts are generally considered uncorrelated.  

Moreover, there is a growing interest in considering working conditions and operating windows in CAT 

(Anselmetti et al., 2010, Armillotta and Semeraro, 2013), so the variational model was modified to take 

the point cloud representation of the components,  into account, the friction, and the gravity that occur 

during assembly. The new variational model was applied to a 3D case study, by investigating all the 

possible assembly conditions. To validate the proposed variational model, a pure geometrical model was 

used as reference tool for comparison. Then, the obtained results were compared to the results from a pure 

variational model without signature in order to show the improvement over the state of the art. 

The paper is organized as follow: in Sec. 2,  how the new variational model adopts a point cloud logic in 

order to represent form deviation is shown. In Sec. 3, the operating conditions of assembly are introduced 

in the new variational model. In Sec. 4, a numerical validation by using a geometrical simulation model is 

presented in detail. Finally, in Sec. 5, the results are compared and discussed. 

2. A point cloud variational model 

This work starts by the variational model in (Marziale and Polini, 2010). The case study of this work is 

made up an assembly of three parts, as shown in Figure 1, in order to explain the new model. The 

assembly is constituted by a hollow box, that is considered nominal, and two spheres, that are affected by 

a dimensional and a geometrical tolerances. The target is the gap g between the upper sphere and the top 

side of the box; it depends on the tolerances applied to each component. 

The point cloud representation of each sphere is a set of 235,822 evenly distributed points i.e. the points 

are angularly separated by 0.45°. The size of the set is adequate to accurately simulate the assembling 

process without slowing down  the simulation excessively. Each point of the sphere has the following 

error model: 

i R r d   P O   (1) 

where Pi is a generic point of the circular profile, O is the centre of the circle, R is the nominal value of 

the radius of the sphere (equal to 20 mm), r is the average deviation from the nominal radius due to the 



dimensional tolerance (equal to ± 0.0145 mm) of each sphere, and d is the deviation  due to the 

manufacturing signature that should remain inside the form tolerance (equal to 0.0145 mm) applied to the 

spheres. 

The r parameter has a Gaussian density function with mean value equal to zero and standard deviation 

equal to one sixth of the dimensional tolerance range. 

A Simultaneous Autoregressive Model SAR (Cressie, 2015) represents the manufacturing signature left 

on the sphere by the process. This model allows to simulate phenomena that are spatially correlated in 

more than one dimension, whereas traditional time series models, like the ARMAX model adopted in the 

2D case (Ascione et al., 2010), can represent correlation along a single direction only. It models the 

spatial structure of the lattice defined by the triangulation of the points on the surface of the sphere at their 

nominal coordinates to generate a spatially correlated set of deviations from the perfect sphericity. The 

first order model SAR(1) was considered, since it is simple and suitable to simulate deviations on a finite 

number of points. 

SAR(1) model simulates the deviations from perfect sphericity d as : 

  1 d I G ε   (2) 

d is a vector containing the deviations (one element per point), I is the identity matrix and  2~ ,N ε 0 I  

is a white noise, whose  is equal to 0.0024 mm, and G W . is a correlation coefficient: higher 

values of denote a higher degree of spatial correlation among nearby points. In this paper, its value is set 

equal to 0.9. W is a neighbourhood matrix defined on the triangulation of the points on the surface of the 

sphere, whose elements 
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in which ijD is the Cartesian distance between the Pi and the Pj  points of the sphere, and ijI is an indicator 

variable, which denotes whether points i and j are neighbours, that is 



1, if  point  and  belong to a same triangle  
0, otherwiseij

i j
I 
 


  (4) 

An example of a sphere having deviations simulated according to (4) is shown in Figure 2. 

Three configurations of the two spheres have been simulated, as shown in Figure 3, that are all the 

possible arrangements to insert randomly two spheres in the box. Configurations 1 and 3 consider the 

spheres in contact with one of the sides of the box, as shown in Figure 4 and Figure 6; considerations 

valid for configuration 1 are valid for configuration 3 as well. Differently, in configuration 2 the spheres 

are aligned along one of the four diagonals of the box, as shown in Figure 5.  

The new variational model is shown in Figure 7. The first step simulates two spheres by means of eq. (1) 

to obtain two clouds of 235,822 points, whose centre of gravity has been calculated by the arithmetic 

mean of all the points coordinates. A datum reference frame (DRF) Xi-Yi-Zi with i=1...8 has been 

assigned to each surface of the box and to the centres of gravity of the two clouds (see Figure 8), while an 

absolute X-Y-Z reference system has been placed at the intersection among the left, the back and the 

bottom sides of the box, as shown in Figure 8. 

Figure 9 shows an assembly graph with three spherical slider joints between the box and the first sphere 

SPH1 at points A, B and C, one spherical joint between sphere SPH1 and sphere SPH2 at point D, two 

spherical slider joints between sphere SPH2 and the box at points F and E, and the gap to estimate g 

(Corrado et al., 2016). 

The equations of the geometric features in the global DRF of the assembly are evaluated by means of the 

following equations: 

S1:  01 01 01 01 01
25 25 0z x z x yr X Y r Z r r t        (5) 

S2:   02 02 02 02 02
40 25 50 0z x z x yX r Y r Z r r t         (6) 

S3:   03 03 03 03 01
25 25 80 0z x z x yr X Y r Z r r t         (7) 

S4:  04 0404 04 0425 40 0z x x z yX r Y r Z r r t        (8) 

S5:  05 0505 05 0540 25 0z x x z yr X r Y Z r r t        (9) 



S6:  06 0606 06 0625 40 50 0z x x z yr X r Y Z r r t         (10) 

SPH1:      2 2 2
12 12 12 12 1 1 1X YX X O Y Y O R r d         (11) 

SPH2:      2 2 2
13 13 13 13 2 2 2X YX X O Y Y O R r d         (12) 

where 𝑟  and 𝑟  are the rotation parameters of the generic feature Si around the x and z axes of their DRF 

in Figure 8, 𝑡  is the translation parameter of the generic feature Si along y-axis of its DRF, r1 and r2 are 

the model parameter, due to the dimensional tolerances, applied to the first and the second sphere 

respectively, d1 and d2 are the model parameters, due to the form tolerance, applied to the first and the 

second sphere respectively, ΔX12, ΔY12 and ΔZ12 are the assembly parameters of the first sphere, ΔX13, 

ΔY13 and ΔZ13 are the assembly parameters of the second sphere in the box. The parameters 𝑟 , 𝑟  and 𝑡  

of the features of the box are equal to zero, since the box has been considered free of any dimensional or 

geometric deviation. 

According with the assembly graph, the functional requirement g must be measured between the feature 

S3 of the box and the G point of the second sphere SPH2. The equation of S3 in the global DRF of the 

assembly is known by eq. (7), and the equation of SPH2 in the global DRF of the assembly is known by 

eq. (12), but its assembly parameters are unknown. Therefore, to determine the assembly parameters,  

firstly studying the assembly between the box and the first sphere is necessary , and then the assembly 

between the obtained sub-assembly and the second sphere. 

Three spherical slider constrains allow the assembly of the sphere SPH1 with the features S1, S4 and S5 of 

the box:  

SPH1-S1:          01 12 12 01 12 01 01 01 120 20 20 25 25 20 0z x z x y Ar X Y r Z r r t r d                 (13) 

SPH1-S4:          12 04 12 04 12 04 04 04 120 20 20 25 40 20 0z x x z y BX r Y r Z r r t r d                 (14) 

SPH1-S5:          05 12 05 12 12 05 05 05 120 20 20 40 25 20 0z x x z y Cr X r Y Z r r t r d                 (15) 

Solving equations (13)÷(15) allows to calculate the assembly parameters of the first sphere in the box: 

12 1 1 20BX R d r      (16) 



12 1 1 20AY R d r      (17) 

12 1 1 20cZ R d r      (18) 

where di are the model parameters due to the form tolerance applied to the contact points of the spheres 

(where i = A, B, C, D, E, F and G with A, B, C, E and F are the contact points between the spheres and 

the box as shown in Figure 3).  

The second sphere SPH2 is assembled with the sub-assembly constituted by the box and SPH1 through 

two spherical slider constrain joints, between SPH2 and S2 and between SPH2 and S5, and a spherical-

spherical constrain joint between SPH2 and SPH1. The solution of the three constrain equations allows to 

calculate the assembly parameters of the second sphere on the sub-assembly constituted by the box and 

SPH1.  

The functional requirement g between SPH2 and S3 can be analytically evaluated by means of the formula 

for the calculation of the oriented distance between a plane and a sphere, that is: 

2 2( )x x y y z z Gg n c n c n c R r d       (19) 

where nx, ny, nz are the coefficients of the equation of the plane and cx, cy and cz are the coordinates of the 

center of the sphere. The equations related to the three configurations and their solutions are reported in 

Appendix 1. 

3. A point cloud variational model with operating conditions 

Once generated, the two spheres were randomly rotated and they were assembled in the box, as described 

in the previous paragraph. Therefore, if the general position of each sphere is stable by considering the 

condition of balance among the applied forces was evaluated,  that the applied forces are required to pass 

through the same point. The weight force is applied in the centre of gravity of the clouds (G1 and G2 in 

Figure 10a), the reactions are applied to the points of contact and they are directed to the centre of gravity 

of the sphere. The angles among these reactions and the normal vectors to the surfaces are β1, β2, β3, β4, 

β5, β6, as shown in Figure 10b. Those six angles should have a value smaller than the static friction limit 

angle in order to have a stable position of the sphere; for steel components they should be smaller than 2°. 

Otherwise, the sphere rotates until the values become smaller. 



Then, the coordinates of the contact points among the components are identified and the corresponding 

form deviations are substituted in the equations (16)÷(18) for all configurations, in the equations 

(23)÷(25) for configuration 1, in the equations (30)÷(32) for configuration 2 and in the equations 

(37)÷(39) for configuration 3 respectively. 

4. Numerical validation 

To validate the new point cloud variational model with operating conditions, a pure geometrical approach 

has been developed too. Two spheres were simulated by means of eq. (1) to obtain two clouds of 235,822 

points, which centre of gravity was calculated by the arithmetic mean of all the points coordinates. An 

absolute X-Y-Z reference system was placed as shown in Figure 8. The points of contact of the first 

sphere with the bottom (S1), left (S4) and back (S5) sides of the box (A, B, C respectively in Figure 3) 

were  identified as the more external points along the x, z and y axes and was brought into contact with 

the box in the identified points of contact. The points of contact of the second sphere with the sides of the 

box, for example with the right (S2) and back (S5) sides of the box (F and E in Figure 3) were defined as 

the more external points along the direction x and z axes . 

The point of contact between the two spheres were identified by identifying the area surrounding the 

nominal point of contact, i.e. the point on which the spheres would touch if they were perfect, on each 

sphere since there the probability of contact is maximum. All couples of faced points in this area were 

identified, as those points having the same X and Z coordinates on the two contact zones. In particular,  

the couple of points that have the same X and at the minimum distance along the Z-axis for the 

configuration 1 were searched, the couple of points that have the same Z and at the minimum distance 

along the X-axis for the configuration 3. Finally, the couple of points nearest to the barycentre of two 

zones surrounding the nominal point of contact for the configuration 2. If the algorithm does not find a 

solution, the method increases the number of points around the nominal point of contact and the searching 

is repeated. 

The points at minimum distance (called dmin in Figure 10a) were chosen as three points of contact 

between the two spheres. Therefore, all the points of the second sphere are shifted by the minimum 



distance along Y-axis to bring the second sphere into contact with the first sphere just inserted in the box, 

as shown in Figure 10b. 

Once assembled, the stability of the general position of each sphere was verified, as discussed in the 

paragraph 3. The distance between the upper side of the box and the point of the second sphere 

characterized by the maximum y coordinate was calculated as the value of the gap g. 

5. Results comparison and discussion 

10,000 runs were implemented in Monte Carlo simulation. Figure 11, Figure12 and Figure 13 show the 

results of the estimated gap g for the two models (model 1 is the variational model of the literature, model 

2 is the new point cloud variational model with operating conditions) referring to the geometrical model 

(the reference model) in the three configurations. They detail the nominal value of the gap g (equal to 

2.5834 mm for configuration 2 and equal to 1.2702 mm for the configuration 1 and 3), the range of ± 3 

around the mean value of the gap g, as estimated by the Monte Carlo simulations, and the tolerance range 

due to the worst case approach (classical approach in tolerance analysis). The two models give a 

distribution of the gap g completely contained inside the worst-case tolerance range. 

Table 1 shows the results of the Anderson-Darling test to evaluate the normality of the obtained result 

distributions together with mean, standard deviation, Skewness and Kurtosis. 

Model 1 (i.e. variational model of the literature) overestimates slightly the mean value of the g gap. It 

underestimates the standard deviation ( 1 mod

mod

ref

ref

 



, where modref is the standard deviation of the 

geometrical model) from about 6% to 23% depending on configuration. In fact, model 1 does not 

consider the correlation among the points of the spheres. 

Model 2 (i.e. new point cloud variational model with operating conditions) is very close to the 

geometrical model in terms of both mean value and standard deviation.  

To verify the homogeneity of variances, the Levene test was used for comparing the two models with the 

reference model in all three configuration of assembly, as shown in Figure 14. This test highlights the 

standard deviation of model 1 that is significantly different from that of geometrical model (the reference 



model), as well as the standard deviation of the model 2. 

The simulation times of model 2 is comparable with that of geometrical model (~110,000 s), but it is 

significantly higher than that of model 1 (few seconds). Therefore, model 1 is a good choice in terms of 

simulation time, if  possible to accept an underestimation of gap g. Model 2 instead has a general 

structure that may be easily applicable to any kind of assemblies by requiring a short computational time, 

at the same time guaranteeing a good agreement with the reference geometrical model. The geometrical 

model requires to redo the modelling again, when the considered assembly changes; therefore, it cannot 

be easily implement in CAT software. 

6. Conclusions 

This work presents a new point-clouds variational model that takes into account both the manufacturing 

signature of the part surfaces and the operating conditions, such as gravity and friction that set in the 

assembly cycle. 

The new variation model better reproduces the actual assembling of the machined spheres into a box, in 

presence of weight and friction forces, than the variational model of the literature. This aspect is 

evidenced by the mean value and the standard deviation of the new model that are not statistically 

different from those due to the reference model. The variational model of the literature seems to 

underestimate the tolerance range of the gap g of more than 6%, but it employs a simulation time of a few 

seconds. 

The drawback of these models that involve the manufacturing signature and the operating conditions is 

the simulation times that must be reduced. It is currently matter of further study by evaluating the number 

of points needed to represent the skin model and the geometrical reasons to identify the contact points. 

The application of the new variational model to further different case studies is in progress, as well as an 

experimental activity to validate the calculation and analysis. 
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Appendix 1 

Configuration 1 

The three constrain equations of the second sphere SPH2 on the sub-assembly constituted by the box and 

SPH1 are: 

SPH2-S2:        13 02 13 02 13 02 2 2 02 0230 58.73 20 50 40 25 0z x z F x yX r Y r Z r R r d r t                  (20) 

SPH2-S5:        05 13 05 13 13 05 2 2 05 0530 58.73 20 50 40 25 0z x x E z yr X r Y Z r R r d r t                  (21) 

SPH2-SPH1:        2 2 2 2
13 12 13 12 13 12 1 2 1 2 1 210 38.73 0D DX X Y Y Z Z R R r r d d                  (22) 

The solution of equations (19)÷(21) allows to calculate the assembly parameters of the second sphere on 

the sub-assembly constituted by the box and SPH1: 

13 2 220 FX d r R      (23) 



 

13 1 1 1 2 1 2 1 2 1 1 1 1

1 2 2 1 2 2 1 1 1 2 2 1 2 2 1 2 1 1 1 1 2 1

1 2 2 2 1 12 1 12 1 2

100 20 60 40 40 60 100 20 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2

A B C E F B C D

D D D D D B C D D

D D

Y R d r R R d d d d r r R R R d R d R d
R d R d R d R r R r R r R r d d d r d r d r d r
d r d r R z R X rr d

                

            

               
    

12 12 1 12 1 12

2 2 0.52 2 2 2 2 2 2 2
1 2 1 2 1 2 12 12

2 2 2 2

1700 5873/100
B C

B C D D

X d Z r Z r X

R R d d d d r r Z X

         

             

 (24) 

13 2 2 20EZ R d r      (25) 

The functional requirement g between SPH2 and S3 can be analytically evaluated by means of the formula 

(19). By substituting the model parameters of the plane and the sphere, it is possible to obtain the 

following equation: 

13 2 21.27 20 Gg Y R r d       (26) 

Configuration 2 

In this case the three constrain equations are: 

SPH2-S2:        13 02 13 02 13 02 02 2 2 0230 57.42 30 50 40 25 0z x y z F xX r Y r Z t r R r d r                  (27) 

SPH2-S6:        06 13 06 13 13 06 2 2 05 0630 57.42 30 40 25 0z x x E z yr X r Y Z r R r d r t                 (28) 

SPH2-SPH1:        2 2 2 2
13 12 13 12 13 12 1 2 1 2 1 210 37.42 10 0D DX X Y Y Z Z R R r r d d                  (29) 

Solving equations (27)÷(29) allows to define the assembly parameters of the second sphere on the sub-



assembly constituted by the box and SPH1: 

13 2 220 FX d r R      (30) 



 

13 1 1 1 2 1 2 1 2 1 1 1 1

1 2 2 1 2 2 1 1 1 2 2 1 2 2 1 2 1 1 1 1 2 1
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(31) 

13 2 2 20EZ R d r      (32) 

The functional requirement g between SPH2 and S3 can be analytically evaluated by means of the formula 

for the calculation of the minimum oriented distance between a plane and a sphere, whereas the model 

parameters of the plane and the sphere are inserted in the equation: 

13 2 22.58 20 Gg Y R r d       (33) 

Configuration 3 

The three constrain equations are: 

SPH2-S4:        13 04 13 04 13 04 2 2 04 0420 58.73 30 40 25 0z x z F x yX r Y r Z r R r d r t                 (34) 

SPH2-S6:        06 13 06 13 13 06 2 2 06 0620 58.73 30 40 25 0z x x E z yr X r Y Z r R r d r t                 (35) 

SPH2-SPH1:        2 2 2 2
13 12 13 12 13 12 1 2 1 2 1 238.73 10 0D DX X Y Y Z Z R R r r d d                  (36) 

The solution of equations (34)÷(36) allows the calculation of the assembly parameters of the second 

sphere on the sub-assembly constituted by the box and SPH1: 

13 2 220 FX d r R      (37) 
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 (38) 

13 2 2 20EZ R d r      (39) 

The functional requirement g between SPH2 and S3 may be evaluated by means of the analytical equation: 

13 2 21.27 20 Gg Y R r d       (40) 
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Figure 11 - Results of configuration 1 
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Figure 14 - Levene's test results: a) Configuration 1, b) Configuration 2, c) Configuration 3 
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Figure 3 - Case study: The three considered configurations of the case study 

  



 

Figure 4 - Configuration 1 

  



 

Figure 5 - Configuration 2 

  



 

Figure 6 - Configuration 3 

  



 

Figure 7 - Scheme of the new point cloud variational model with operating conditions  



 

Figure 8 - Datum reference frames assigned to the case study 

  



 

Figure 9 - Assembly graphs: a) Configuration 1, b) Configuration 2, c) Configuration 3 

  



 

Figure 10 - a) Minimum distance between the two spherical clouds, b) βi angles to evaluate if each 

spherical cloud is stable (amplified 100 times)  



 

Figure 11 - Results of configuration 1 

  



 

Figure 12 - Results of configuration 2 

  



 

Figure 13 - Results of configuration 3 

  



 

Figure 14 - Levene's test results: a) Configuration 1, b) Configuration 2, c) Configuration 3 
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Table 1 - Simulation results (10,000 runs) 

  



Table 1 - Simulation results (10,000 runs) 

Configuration Model Mean 
[mm] 

 
[mm] 

A-
Squared 

P-
value Skew. Kurt. 

1 
Reference 1.2606 0.017 2.28 <0.005 -0.254 1.557 

1 1.2702 0.014 0.43 0.309 0.017 -0.001 
2 1.2629 0.017 0.23 0.798 0.013 0.014 

2 
Reference 2.5706 0.021 0.60 0.120 -0.051 0.034 

1 2.5834 0.016 0.32 0.535 -0.018 0.013 
2 2.5773 0.018 0.43 0.301 -0.026 0.091 

3 
Reference 1.2607 0.016 0.52 0.188 -0.011 0.045 

1 1.2701 0.015 0.37 0.425 -0.021 -0.042 
2 1.2630 0.016 0.56 0.149 0.013 -0.012 
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