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Abstract

Decision making is an essential activity in manufacturing systems when designing production lines, scheduling,

etc. Many decision making problems are characterized by multiple conflicting criteria and a large number of

alternatives. For these complex decision making problems, it is rational to involve a group of decision makers

(DM) for considering different aspects of the problem. This paper proposes an approach for supporting the

decision making group to reduce disagreement in the group and obtain a common solution. The proposed

approach allows the DMs to specify a region of acceptance, known as indifference zone, in the objective space as

preference inputs. This makes the proposed approach applicable to problems with a large number of alternatives.

The use of indifference zone concept captures the uncertain nature of preference articulation. Moreover, the

indifference zone is shown beneficial in reducing the difficulty of reaching a group common solution. The

properties of the proposed method are investigated analytically and with numerical experiments. Finally, the

usefulness of the proposed method is shown by tackling a real-world packaging line configuration problem with

a large alternative set.

Keywords: Multi-criterion decision making; group decision making; consensus reaching; indifference zone;

manufacturing systems; production line configuration.

1. Introduction

1.1. Motivation

Manufacturing can be viewed as the application of mechanical, physical, and chemical processes to modify

the geometry and properties of the raw material to make the finished products. In manufacturing environments,

the decision makers (DM) frequently face the problem of assessing a wide range of alternatives, and selecting one5

based on multiple criteria. These decision making problems arise across the entire manufacturing cycle, from

vendor selection in a supply chain to the selection of machining methods and material handling equipment [1].

Generally, good decisions lead to more efficiency, profits and competitiveness of the manufacturing companies.

Making decision when taking into account multiple criteria is no trivial task. In many manufacturing

scenarios, due to the conflicting nature of different criteria, the optimal alternative is generally not unique but a10

set of options non-dominated by each other. For example, to design a robotic assembly line, DM has to decide

which type of robot to purchase and the allocation of robots to workstations. The optimal decisions correspond

to a compromise among cycle time, robot setup cost and robot purchase cost [2]. Bukchin and Masin [3] studied

the lot splitting problem in the flowshop system of single product. They showed that the best decisions on the
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sublot size are trading off between the system inventory level and the system throughput. Conflicting criteria15

exist also in production scheduling [4, 5], production-distribution planning [6], supplier selection [7, 8], product

design [9], manufacturing cell design [10] and many others. To solve multi-criteria problems, making use of

personal preference, which represents the understanding of the circumstance, experience and expertise of the

DM, is inevitable. Take the scheduling problem as a concrete example, the multi-criteria flow shop scheduling

problem is either solved in the “a priori” approach by providing the preference, e.g., weights of criteria, before20

running the optimization procedure; or it is tackled in the “a posteriori” approach, where the optimization

algorithm generates a non-dominated set for the posteriori decision-making based on DM’s preference [11]. To

be specific, in this research we consider the posteriori decision-making problem.

Another feature is that the DMs in manufacturing environment are often facing a large number of alterna-

tives. These are typically the outputs of factorial experiments or multi-objective optimization models [12]. In25

the tire tread compound problem, Derringer and Suich [13] used an experimental design to obtain twenty alter-

natives with different levels of hydrated silica, silane coupling agent and sulfur. For the assembly line balancing

problem, Yoosefelahi et al. [2] generated thirty-five non-dominated solutions with the proposed multi-objective

evolutionary algorithm. While in production scheduling, the number of alternatives could be even larger. As

reported in Arroyo and Armentano [14], the number of non-dominated solutions found by the proposed genetic30

local search varies from hundreds to one thousand for a dual-objective flowshop problem with twenty to eighty

jobs. Such cardinality no doubt makes the decision making difficult.

Although the given alternatives are non-dominated by each other, solutions having similar objective values

are not significantly different to the DM. For this reason, the DM may prefer not only one single solution, but

a set of solutions located in a certain region of the objective space. This region is known as the indifference35

zone (IZ) [15]. It defines the range of “close performance” where the alternatives are considered as indifferent.

Actually, the indifference zone is a common concept applied in engineering problems. For examples, Boesel et

al. [16] used the indifference zone of $10 (per-unit cost) in evaluating different configurations of an automobile

engine assembly line; Nazzal et al. [17] adopted the indifference zone of $5000 on the investment cost when

designing a flexible manufacturing facility. Gray and Goldman [18] applied an indifference zone of 0.365 minutes40

in choosing the best airspace configuration for the airport in terms of airspace route delay.

The quality of decision-making depends on the DM’s preference. Hence, for complex problems, it would be

too risky to rely on the opinion of only one DM due to the difficulty of considering all the relevant aspects of the

problem. As a result, a group of DMs characterized by different background and knowledge are involved in the

decision making process, to prevent prejudice and reduce opinion biases. Through discussion and negotiation,45

they reduce the level of disagreement and derive a common decision. This procedure is known as Group decision

making (GDM) [19]. GDM is an essential topic for manufacturing, and it has been successfully applied to some

problems like selecting enterprise resource planning (ERP) system [20], computer integrated manufacturing

system [21] and advance manufacturing technology [22].

The problem investigated in this article is the group decision making procedure in manufacturing environ-50

ment. We consider the industrial scenario where the DMs are facing with multiple conflicting criteria and a

large number of alternatives. Each DM has his/her own preference and a set of preferred solutions located in a

specified region of the objective space. We develop an approach to support the group to reach consensus and

choose the final solution efficiently.
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Figure 1: Framework of solving a group decision making problem

1.2. Short literature analysis55

The group decision making problem has attracted many attention during the last decades [19, 23, 24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34, 35]. The goal is to gather opinions from multiple decision makers and select a final

solution. The GDM approaches can be described by the general framework depicted in Figure 1. First, the DMs

express their opinions on the alternatives with certain preference structure. This procedure is also known as

preference articulation P : ok ! sk, which maps DMk’s opinion ok to the preference structure sk. For example,60

sk can be a ranking of the alternatives, or can be a pairwise comparison matrix whose elements indicating the

preference relation of two alternatives. The preference information are processed by a consensus model which

reveals the group consensus status. Then, two processes are adopted. The consensus reaching process (CRP)

iteratively increases the group consensus level. This process is generally facilitated by a moderator, or an

algorithm, that gives feedback to the experts for opinion adjustment. After the group consensus reaches a65

satisfactory level, a selection process is undertaken to select the final solution based on the aggregated group

preference. In some approaches, the group preference may be aggregated directly without using a CRP, as in

[23, 25, 24].

Early researches on the GDM problem are as Herrera et al. [19]. The authors proposed a consensus model

for supporting the GDM, where the DMs use linguistic labels as preference inputs. Based on several linguistic70

consensus degrees, the model can indicate the consensus information of the group at three levels, i.e., preference,

alternative and relation, to facilitate the job of the moderator. Cabrerizo et al. [28] extended this model for

unbalanced fuzzy linguistic terms. Besides linguistic information, consensus models adopting other preference

structures were also proposed. For example, Xu [26] used the intuitionistic fuzzy preference relations which allow

the DMs to express their uncertainties on the preference. For other preference structures, a detailed classification75

is described in the next paragraph. For aggregating the opinions to derive the final solution, Herrera et al. [23]

developed a method to transform different preference structures into the multiplicative preference relations. Xu

[24] developed several linguistic aggregation operators. Aggregation process was also developed in Herrera et

al. [25] for unifying preference information in the format of numerical, interval-valued and linguistic. Although

these aggregation methods can be directly applied to yield the final solution, they may sometimes lead to the80

solutions which are not well accepted by some DMs. To overcome this problem, the DMs should carry out a

CRP, where the DMs discuss and negotiate in order to achieve a sufficient agreement[36]. Cabrerizo et al. [37]
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introduced two CRPs; one is based on some identification rules and direction rules; the other one is an adaptive

approach originally proposed in Mata et al. [27], which adjusts the preference change according to the group

consensus state. Pérez et al. [30] developed a feedback mechanism taking into account the unequal importance85

of DMs. Dong et al. [33] proposed a dynamic peer-to-peer feedback mechanism that generates suggestions

based on the relative positions of experts’ opinions. Liao et al. [34] proposed a CRP which handles the DMs

with minor views by removing some critical opinions. Dong et al. [35] used a twofold feedback mechanism to

handle the non-cooperative experts by modifying their importance during the CRP. We refer the readers to

Herrera et al. [36] for a comprehensive review of the GDM approaches.90

The GDM approaches can be categorized by the preference structures used to represent DM opinions. These

include preference orderings, utility values and preference relations [38]. With preference ordering, the opinion

of DMk is represented by a permutation sk = {1, 2, ..., n} which indicates the ranking of the alternatives.

Using utility values, sk is a vector {u1, . . . , un}, where ui 2 [0, 1] represents the utility value of the alternative

xi. Preference relations describe the opinion by a matrix P = [pij ]n⇥n, where the element pij represents the95

degree of how much the i-th alternative is preferred over the j-th alternative. Different types of preference

relations are proposed according to the domain used to evaluate the intensity of the preference [36]: fuzzy,

multiplicative, linguistic and intuitionistic fuzzy. In fuzzy preference relations [29, 39, 40, 41, 30], pij 2 [0, 1]

and it is assumed that pij + pji = 1, 8i, j. pij = 1/2 indicates indifference between xi and xj , and pij > 1/2

indicates xi is preferred to xj . In multiplicative preference relations [23, 35, 33], pij = 1/pji and pij belongs100

to Saaty’s 1-9 fundamental scale [42]. In linguistic preference relations [19, 27, 24, 25], pij = S, where S is a

linguistic term set S = {s0, . . . , sg} with odd cardinality g + 1 and sg/2 being a neutral label. In intuitionistic

fuzzy preference relations [34, 26, 32, 31], to express the inaccurate cognitions of experts, the element pij is

defined as a tuple of (µij , vij ,⇡ij), where µij 2 [0, 1] represents the preference degree of xi to xj , vij 2 [0, 1]

indicates the non-preference degree of xi to xj and ⇡ij = 1� µij � vij is interpreted as a hesitancy degree.105

It is discovered that the majority of these GDM approaches adopt the preference relations as preference

input. Indeed, the preference relations retain as much as information and enable a more accurate articulation

[43]. This structure has been applied to some small problems, like the scholarship candidate selection problem

[34] and the brake pads suppliers selection problem [35] where only four or five alternatives are considered. Yet,

as the alternative cardinality increases, the number of required pairwise judgments raises quickly. Hence, it is110

impractical for adopting these approaches on the problems where the alternative set is large, as in manufacturing

scenarios. Moreover, it is almost inevitable to get inconsistent preference matrix due to the influence of the

limited ability of human thinking. Extra efforts are required to solve the inconsistency issue in the preference

matrix [44], and such efforts increase with the size of the alternative set and the preference structure complexity.

When faced with many alternatives, it is more convenient for the experts to express their preferences in115

the objective space. This can be done by specifying the aspiration levels of criteria directly, or by using some

posterior preference articulation approaches for more accuracy. Lee et al. [45] proposed an interval selection

approach to facilitate the selection of the best solution among a large number of non-dominated alternatives

in the dual-response-surface. At each iteration, the front is partitioned into several intervals, and the DM

chooses one from them. The selected interval is then partitioned into some sub-intervals for further selection.120

This procedure repeats until the alternatives within the interval are considered indifferent. To handle higher

dimensional response surface, Lee et al.[46] proposed a framework based on the interactive method developed by

Köksalan and Sagala [47]. This approach first partitions the objective space into some equal-sized cells. Then,
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it iteratively asks the DM to make the comparison between the current best alternative given by an estimated

utility model and the ideal point of the least promising cell, until all non-interested cells are eliminated. Based125

on the space partitioning mechanism, these approaches can efficiently locate the DM’s preferred region in the

objective space regardless of the alternative set size.

One important feature in the problem is that the preference of DM is represented by an IZ instead of a

single point. There are two advantages. First, IZ captures the preference uncertainty. Due to the limited

rationality of humans, an exact preference elicitation is difficult and infeasible. It is hence more reasonable to130

use interval-value for opinions representation [48, 32, 49]. Second, IZ facilitates consensus making. IZ has been

widely applied in the ranking & selection problem [50, 51, 52]. The goal of ranking & selection is to choose the

best from a set of solutions. It is not easy due to the presence of simulation noise. However, by introducing

the IZ as a tolerance, the DM can guarantee a quasi-best solution without excessive simulation efforts. Same

rationality goes for the GDM procedure, in which DM can use IZ as tolerance of opinion incompatibility to135

reduce the difficulty of reaching group consensus.

In summary, the large alternative set is faced in many manufacturing decision making problems. Common

GDM approaches based on pairwise comparison are found difficult to be applied due to the great efforts in

preference articulation and potential preference inconsistency. The objective space preference information,

supported by some posterior articulation techniques, provides an opportunity to tackle this issue. Yet, to the140

best of our knowledge, there is no GDM approach that is designed to make use of such preference structure.

1.3. Contribution

The paper proposes an approach to solve the group decision making problem in manufacturing systems. The

research contribution of this paper is twofold:

• We study a group decision making problem where the preference information is provided as an indifference145

zone in the objective space, and propose a consensus model to measure the group consensus level and

guide the consensus reaching process. Unlike common GDM models which adopt preference relations,

objective space preference information can be efficiently abstracted. This enables the model to handle

decision making problem with a much larger alternative set. Moreover, the indifference zone concept

is integrated into group decision making to, first, represent the preference uncertainty from preference150

articulation; second, reduce the difficulty of reaching group common solution.

• We develop a consensus reaching process based on the peer-to-peer opinion adjustment strategy [33]

for improving group consensus. We adjust the feedback mechanism to allow its implementation in the

objective space with finite alternative points. More specifically, to generate feedback to DMs, we find the

shortest opinion transition path on which solutions are proposed to the DMs for an efficient negotiation.155

The proposed approach can be applied to many decision making problems in manufacturing systems like

product design, assembly line balancing and production scheduling to improve the quality and efficiency of the

decision making process.

1.4. Outline

The remaining of the paper is organized as follows. Section 2 provides a problem definition. Section 3160

describes the proposed consensus model and section 4 presents the adopted consensus reaching process. In
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section 5, some numerical results on the efficiency and properties of the proposed approach are reported. In

section 6 we apply our method to a line configuration problem, and in section 7 the conclusion is made.

2. Problem definition

To choose a final solution from an alternative set X = {x1, ..., xn}, a group of experts or decision makers165

E = {DM1, ..., DMm} are involved in the decision making procedure. Each alternative x is evaluated by z

quantitative criteria, and x = (x(1), . . . , x(z)) where x(i) is the i-th objective function value. Decision makers

have equal importance but distinct preferences. As an initial step, preference articulation procedure is performed

to select the most preferred alternative x⇤
k, 8k 2 1, . . . ,m. Then, each decision maker specifies an indifference

zone �k ✓ R
z such that x⇤

k 2 �k. Denote Sk = {x 2 X|x 2 �k} as the preferred solution set. Solutions in Sk170

are considered indifferent to x⇤
k for DMk. DMp and DMq reach common solution(s) if Sp \ Sq 6= ;. A group

common solution is a solution x⇤ 2 Sk, 8k. Due to the inconsistency in group opinion, it is normal that such

common solution does not exist at the beginning. For this reason, consensus has to be made. Consensus refers

to the unanimity of individuals, by which the option or course of action attained will be the best representative

for the entire group [36]. To this end, a consensus model is used to evaluate the group opinion state, and a175

CRP is applied to revise expert preference and improve the group consensus level step by step, until the group

common solution is reached.

In this research, we focus on developing a consensus model and the corresponding CRP for the group decision

making problem when the preference information is provided in the format of �k, k = 1, . . . ,m.

3. Consensus model180

The consensus model aims at revealing the consensus status of the group and monitoring the agreement

reaching process by means of several consensus indexes. Herrera et al. [19] proposed a paradigm for the

consensus model with preference relation structure, which has been adopted in many other GDM researches

[41, 39, 40, 30, 37, 53]. In this paradigm, two types of consensus indexes, consensus degrees and proximity

measures, are calculated for helping the moderator to identify the critical preference values and the critical185

experts contributing to the group inconsistency. Guiding by these indexes, the CRP is performed.

By capturing the idea of this paradigm, in this section, we describe a consensus model much simpler to fulfill

the basic requirements: evaluating group consensus level and guiding CRP.

3.1. Distance between opinions of decision makers

To derive the consensus model, one crucial task is to measure the closeness or degree of consensus between190

the opinions. In our case, the opinions of DMs are given as IZ. To simplify the problem, we use the solutions

located within the IZ, i.e., Sk, to represent the spatial information. In this way, the closeness between two DMs’

opinions can be considered as the distance between two sets of points.

One standard function for measuring point set distance is the Hausdorff distance [54], which is widely applied

in research fields such as image matching, fractal geometry, among others. The Hausdorff distance is described195

as follows. Without loss of generality, in R
z, the distance between two alternatives x and y is given by the

p-norm kx�ykp. The setting p = 1 corresponds to the Manhattan distance, whilst p = 2 refers to the Euclidean

distance. In this work, we adopt the Euclidean distance.
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dist(b, S2) = 5
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b

c

d

dist(c, S1) = 5

h(S1, S2) = dist(a, S2) = 6.08

h(S2,S1) = dist(d, S1) = 7.28
H(S1,S2) = 7.28

(a) Example 1

S1

S2

S3

H(S
1, S

2) =
 4
.2
4

H(S1, S3) = 2.23

(b) Example 2

Figure 2: Examples of distance calculation

The distance between a point x and a set Q is defined as the distance between x and the nearest point

belonging to Q [54], which is given by:

dist(x,Q) = min
y2Q
kx� yk (1)

The directed Hausdorff distance between sets P and Q is defined as the maximum distance between each point

x 2 P and the nearest point y 2 Q, which is given by:

h(P,Q) = max
x2P

dist(x,Q) (2)

And finally, the Hausdorff distance between P and Q is calculated as

H(P,Q) = max(h(P,Q), h(Q,P )) (3)

An example of calculating the Hausdorff distance is given in Figure 2(a). Four points a,b,c and d have

the coordinates (2,2), (4,6), (8,3) and (9,0), respectively. Let S1 = {a,b}, S2 = {c,d}. Point-set distances are200

marked by dashed lines; the directed Hausdorff distances are marked by solid lines; the Hausdorff distance is

marked by thicker solid line.

It is observed that the Hausdorff distance is determined by the farthest point-set distance. This feature,

however, may lead to unreasonable results in evaluating the closeness of expert opinions. For a better expla-

nation, we consider the case of three DMs. The preferred solutions sets S1, S2 and S3 are plotted in Figure205

2(b). As shown, S1 \ S2 6= ;, S1 \ S3 = ;. Intuitively, the opinion of DM1 is considered closer to DM2 than to

DM3 because they share common solutions. But, when Hausdorff distance is used to measure such closeness,

we obtain the opposite conclusion. More specifically, the Hausdorff distance H(S1, S2) is larger than H(S1, S3),

this is because S2 contains a solution which is quite distant from S1. Indeed, the closeness measure should

consider the contribution of preferred solutions in a more balanced way. To this end, we adopt the averaged210

Hausdorff distance.

The averaged Hausdorff distance proposed in [55] is denoted as ∆p, where p = 1, 2, . . . ,1 is a parameter

smoothing the contribution of the distant solutions. The larger p, the larger the contribution of distant solutions
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and when p =1, ∆p coincides with the Hausdorff distance. In our case, to mitigate the contribution of distant

solutions, we use ∆1 to define the distance between two sets P and Q, which is given by:

∆1(P,Q) = max{
1

|P |

X

x2P

dist(x,Q),
1

|Q|

X

y2Q

dist(y, P )} (4)

where | · | is the set cardinality. For example, in Figure 2(a), the averaged Hausdorff distance between S1 and

S2 is calculated as

∆1(S1, S2) = max{
dist(a, S2) + dist(b, S2)

2
,
dist(c, S1) + dist(d, S1)

2
} = 6.14

Now we use the averaged Hausdorff distance to evaluate the opinion closeness of the three DMs (Figure 2(b)).

We found that ∆1(S1, S2) = 1.41, and ∆1(S1, S3) = 1.81. The relationship ∆1(S1, S2) < ∆1(S1, S3) coincides

with the intuition that DM1 and DM2 have closer opinions.

3.2. Consensus indexes215

The consensus indexes are used to serve the CRP. For a better explanation, we describe here briefly the

idea of the adopted CRP whose details will be given in section 4. The CRP identifies the pair of DMs whose

opinions are the most incompatible, then, opinion adjustments are proposed to them. Iteratively, the group

consistency increases and finally the group consensus is obtained. To identify the critical DMs pair, we define

the individual consensus index as in [33] but with a different closeness measure, which is given by:220

Definition 1. Let Sp and Sq be the preferred solution set of DMp and DMq. The individual consensus index

(ICI) between DMp and DMq is calculated by:

ICIpq = ∆1(Sp, Sq), 8p, q 2 1, . . . ,m (5)

ICIpq inherits the semi-metric properties of ∆p [55]: (1) (positive property) ICIpq � 0 with equality if, and

only if, P = Q, i.e., DM p and q hold identical opinions; (2) (symmetric property) ICIpq = ICIqp; (3) (relaxed

triangle inequality) ICIpq  V (ICIpk + ICIkq), where |P |, |Q|, |K|  V .

To evaluate the group consensus level, we propose two measures: Group decision maker consensus index

(GDCI) and Group alternative consensus index (GACI).225

Definition 2. The group decision maker consensus index, denoted as GDCI, is defined as the maximum indi-

vidual consensus index between any pair of decision makers within the group, given by:

GDCI = max
p,q2E,p 6=q

(ICIpq) (6)

GDCI is used to evaluate the overall closeness of the opinions in the group. Obviously, the smaller GDCI

is, the closer the DMs’ opinions are. When GDCI = 0, each pair of DMs is holding identical set of preferred

solutions, the group reaches absolute consensus. Yet, absolute consensus is not a necessary condition for reaching

a common solution. To verify how far is the group from reaching a common solution, the following measures

are used.230

Definition 3. Let X be the set of alternatives and E be the set of DMs, xi 2 X represents the i-th alternative

in the objective space. Sk, k 2 1, . . . ,m is the preferred solution set of the k-th decision maker. The consensus

8



index of the i-th alternative, denoted as ACIi, is defined as the averaged distance of the alternative to the

preferred solution sets of all decision makers, given by:

ACIi =
1

|E|

X

k2E

dist(xi, Sk) (7)

The ACI value evaluates the averaged distance of a specific alternative to the group opinions. A zero ACIi235

value indicates that xi is a common solution for the group.

Definition 4. The group alternative consensus index, denoted as GACI, is defined as the minimum alternative

consensus index among the alternative set, given by:

GACI = min
i2X

(ACIi) (8)

When GACI = 0, there exists at least one solution which falls simultaneously in the IZs of all DMs, i.e.,

there is at least one common solution. In summary, to monitor the group consensus, GDCI measures how far

the group is away from absolute consensus, GACI measures how far the group is away from reaching a common

solution.240

4. Consensus reaching process

In the group CRP, it is necessary that the DMs adjust their preferences or opinions according to the

suggestions of the moderator. Numerous CRPs have been proposed [40, 30, 37, 53, 27, 38], and most of them

are based on the aforementioned paradigm [19]. The core functionality is the feedback mechanism, which

generates the suggestions by tackling the following questions: (a) which DMs have to modify their preferences;245

(b) how to modify the DMs’ preference information.

In our case, DMs’ opinions are represented by indifference zones distributed in the objective space. To

make consensus, the process involves the shifting of these zones to reduce the dispersion of group opinion.

To this end, we apply the peer-to-peer opinion adjustment framework proposed in [33], which is found quite

appropriate for this purpose. The framework is shown in Figure 6. At each iteration, the DM pair that hold250

the most incompatible opinions are identified; and feedbacks are generated to them for preference modification.

The DM can either accept or reject the request. If he/she rejects, the feedback strategy is adjusted to avoid

further rejection. This cycle repeats until a group common solution is obtained or other termination conditions

are met.

In the peer-to-peer strategy, improving consensus between a pair of DMs acts as a building block. For this255

reason, in this section, we first describe the feedback mechanism to improve consensus between two decision

makers; then, the complete procedure for the group is presented.

4.1. Feedback mechanism

In Dong et al. [33], the feedback mechanism advises the DM pair to move their preference to certain

intermediate points between them by applying a weighted product operator on the preference matrix. This,260

however, cannot be applied in our case due to first, the preference structure is different; second, unlike in

the continuous space of preference matrix, we need to consider the feasibility in the objective space, i.e., the

proposed region should contain feasible alternatives. For this reason, we propose an approach based on the

opinion transition path to suggest intermediate points.
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We firstly consider a special case where DM has only one preferred alternative in their IZs. Denote these265

two alternatives as xp and xq, respectively. The consensus reaching between DMp and DMq can be considered

as a negotiation procedure in which they shift their preferred solutions towards each other. Each move is called

a transition. We assume a transition could happen only between neighboring solutions, i.e., x ! y, y 2 N (x).

To define the neighbors of a query point, common methods are like the r-neighbors, which defines the points

located within a radius r as neighbors; or the the k-nearest neighbors, which defines the first k nearest points as270

neighbors. Yet, both methods require a user-specific parameter, whose value is generally not easy to determine

properly. To avoid this, a parameter-free neighborhood structure, known as the Voronoi neighbors [56], is used.

The definition of Voronoi neighbors is given in Definition 5. To give an example, Figure 3 shows the Voronoi

neighbors of a query point.

Definition 5. Given a set of points N (|N | � 3 ) and a query point x 2 N , the Voronoi neighbors of x, denoted275

as N (x), are the points whose Voronoi polygons share edges with the Voronoi polygon of x.

Under the assumption of opinion transition, we can construct the opinion transition path along which the

negotiators would shift their preferred solutions. To guarantee the efficiency of negotiation, the shortest path

connecting xp and xq, denoted as Θ(xp, xq), is obtained as follows. Let G = (N,E ) be an undirected graph with

nodes N and edges E connecting the neighboring nodes, i.e., E = {(x, y)|x, y 2 N, y 2 N (x)}. The length of280

edge (x, y) is given by kx� yk. Then, the shortest transition path linking xp and xq can be found by applying

the Dijkstra algorithm [57].

To improve the consensus degree, negotiators are suggested to move their solutions to some intermediate

alternatives on the opinion transition path, denoted as x0
p and x0

q, respectively. To select x0
p and x0

q, the following

procedure is used. Let Θ(xp, xq) = {Θ(1), . . . ,Θ(l)} be the transition path between points xp and xq, where285

Θ(i) is the i-th node on the path, and Θ(1) = xp, Θ(l) = xq. Denote cdist(i, j) as the cumulated distance

between Θ(i) and Θ(j), which is given by cdist(i, j) =
P

ik<j dist(Θ(k),Θ(k + 1)). Let the total path length

be L = cdist(1, l). Then, the intermediate points x0
p and x0

q are located as

x0
p = Θ(k⇤), k⇤ = argmin

k=1,...,l
|cdist(1, k)� (1� ↵p) ⇤ L| (9)

x0
q = Θ(k⇤), k⇤ = argmin

k=1,...,l
|cdist(k, l)� (1� ↵q) ⇤ L| (10)

where ↵k, k 2 [p, q] is a user-defined parameter adjusting the transition distance, we name it the opinion

preservation degree. In the formula, (1 � ↵k) ⇤ L calculates the transition distance that DMk is suggested to290

move for improving consensus. The proposed solution x0
k is the one closest to the suggested distance. It is

obvious that the larger ↵k is, the more the DMk is able to stick to his/her original opinion. For example, when

↵p = 1 and ↵q = 0, DMq is suggested to abandon his/her preferred solution and move to xp whilst DMp can

retain his/her original opinion. However, to preserve the sovereignty of DMs, we use ↵k 2 [0.5, 1], k 2 [p, q]

so DMs are suggested to move to some intermediate alternatives in the transition path. If the special case295

(x0
p = xp ^ x0

q = xq) happens, we set x0
p = Θ(2) or x0

q = Θ(l � 1) to guarantee at least one transition is made.

It can be easily proved that consensus can be reached between two negotiators after a finite number of

iterations of the above procedure. An example of the opinion transition path and the proposed intermediate

10



Figure 3: Example of the Voronoi neighbors of a query point

Figure 4: Example of generating suggestions for two decision makers with single preferred solution
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Figure 5: Example of generating suggestions for two decision makers with multiple preferred solutions

points is illustrated in Figure 4.

300

Now we consider the general case where both DMp and DMq have a set of preferred solutions, denoted as Sp

and Sq, respectively. Since the alternatives in IZs are considered indifferent, the problem of finding intermediate

solutions between Sp and Sq can be decomposed into a series of sub-problems of finding intermediate point

between every possible pair of xp 2 Sp and xq 2 Sq. This approach is simple but time-consuming because the

number of possible paths linking Sp and Sq equals |Sp| · |Sq|. To reduce the computational burden, we use only305

a subset of Sp and Sq to represent their spatial information. The procedure is described below.

Let Vp and Vq be the vertices of the convex hull of set Sp and Sq, respectively. More specifically, Vk =

Vert(Sk) = {x 2 Sk|x /2 Conv(Sk\x)}, k 2 {p, q}, where Conv(·) is the convex hull of a set. Denote T =

{Θ1,Θ2, . . .} as the set of all possible opinion transition paths linking xp 2 Vp and xq 2 Vq. Initialize V 0
k =

;, k 2 {p, q}. For each path Θ 2 T, locate two intermediate points x0
p and x0

q according to Equation (9) and310

(10) , and update V 0
k = Vk + {x0

k}, k 2 {p, q}. Finally, we obtain the intermediate alternative set S0
k = {x|x 2

Conv(V 0
k)}, k 2 {p, q}.

In summary, the feedback mechanism can be denoted as a function [S0
p, S

0
q] = feedback(Sp, Sq,↵p,↵q). An

example of applying the feedback function between two negotiators is plotted in Figure 5, where ↵p = 0.842

and ↵q = 0.676. As shown, DMp makes a smaller concession due to a larger ↵ value.315

4.2. The complete process

In the complete CRP, at each iteration, say t, the critical DM pair is identified and the feedback mechanism is

used to generate suggestions for opinion adjustment. One problem here is how to preserve the original judgment

of DMs, or saying, how to decide the amount of concession between two negotiators. As suggested by [33], the

judgment preservation should be related to the proximity of his/her opinion to the rest of the group. Generally,320

the higher the proximity, the more reliable his/her opinion is and therefore the less concession he/she should
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make. For this reason, the opinion preservation degree ↵ in Equation (9) and (10) are calculated as below:

↵p = 1�

m
P

k=1,k 6=p,q

ICIkp

2(
m
P

k=1,k 6=p,q

ICIkp +
m
P

k=1,k 6=p,q

ICIkq)
(11)

↵q = 1�

m
P

k=1,k 6=p,q

ICIkq

2(
m
P

k=1,k 6=p,q

ICIkp +
m
P

k=1,k 6=p,q

ICIkq)
(12)

In these formula, the numerator of the second term measures the incompatibility between the DM and the

rest of the group, whereas the denominator is the summation of group incompatibility of the DM and his/her

negotiator. It is observed that ↵k, k 2 {p, q} is bounded to [0.5, 1], this guarantees that at each turn the325

suggested transition distance will not exceed L/2 in order to preserve the sovereignty of the DMs. Parameter

↵ acts as an indicator measuring the relative opinion proximity to the group. Therefore, if the special case

(x0
p = xp^x

0
q = xq) occurs, it is reasonable to suggest the DM with the smaller ↵ to do the minimum transition.

Another problem is how to adjust the feedback strategy if a decision maker rejects the provided sugges-

tion. Apparently, if DMp rejects the suggestion to move towards DMq, it implies that there may exist large330

disagreement in their opinions, and he/she would probably not revise his/her opinion according to DMq in the

remaining process. To better manage this phenomenon, we introduce the definition of ordered pair from [33]:

Definition 6. Let E = {DM1, . . . , DMm} be a set of m decision makers. An ordered pair of decision makers

in the group is defined as (DMp, DMq), DMp, DMq 2 E, where (DMp, DMq) indicates that DMp may revise

his/her judgments according to DMq.335

From definition 6 it is clear that (DMp, DMq) 6= (DMq, DMp). We use set D to represent all active ordered

pairs in the group, which is given by:

D = {(DM1, DM2), . . . , (DM1, DMm), . . . , (DMm, DM1), . . . , (DMm, DMm�1)} (13)

Whenever DMp rejects to revise his/her opinion according to another DM, say DMq, we remove the corre-

sponding ordered pair from D and avoid to generate suggestion for DMp based on the opinion of DMq.

Given that the alternative set could be quite large, some alternatives distant from the group preference can

be pruned to reduce the computational burden. For this end, we use the following pruning procedure. Let

SE =
S

k21,...,m Sk be the union of DMs’ preferred solution sets, which represents the group opinion. Let d⇤ be340

the diameter of set SE , i.e., d
⇤ = max

x,y2SE

kx� yk. Then, any alternative whose distance to SE is larger than d⇤,

i.e., {x 2 X|dist(x, SE) > d⇤}, is pruned because it is not interested by the group.

By gathering all building blocks, the CRP is described as follows.

Inputs: Alternative set X; initial indifference zone �k, 8k; the maximum number of iterations T .345

Outputs: Final preferred solution sets of DMs S⇤
k , 8k; group common solution(s); and the iteration counter t⇤,

0  t⇤  T .

Step 1. Derive the preferred solution sets Sk, 8k from �k, 8k. Initialize the active ordered pair set D0 by

Equation (13), set t 0, S0
k  Sk, 8k 2 1, . . . ,m.

13



Figure 6: Flow chart of the peer-to-peer opinion adjustment strategy

Step 2. Prune the alternative set X by removing alternatives distant from the group opinion.350

Step 3. Calculate the individual consensus index ICItp,q with Equation (5) for all (DMp, DMq) 2 D
t,

GDCIt with Equation (6 ), and GACIt with Equation (8). If one of the following termination conditions

(1) t � T , (2) Dt = ;, (3) GACIt = 0 meets, go to Step 5; otherwise continue.

Step 4. Identify the most incompatible decision makers DMa and DMb, with ICItab = max
Dt

ICItpq. At least

one of the ordered pair (DMa, DMb) or (DMb, DMa) should be in D
t. Calculate the opinion preservation355

degree ↵k, k 2 [a, b] with Equation (11) and (12). Generate suggestions using the feedback mechanism

[St+1
sug,a, S

t+1

sug,b] = feedback (St
a, S

t
b,↵a,↵b), and feedback to the DMs according to the following cases:

1. Both (DMa, DMb) and (DMb, DMa) are in D
t: Suggestions St+1

sug,a and St+1

sug,b are given to DMa and

DMb, respectively.

2. Only (DMa, DMb) ( (DMb, DMa) ) is in D
t: Suggestion St+1

sug,a ( St+1

sug,b ) is given to DMa ( DMb ).360

Upon receiving the suggestion, the DM, e.g., DMa, has two options:

1. Accept the suggestion. In this case, we set St+1
a  St+1

sug,a.

2. Reject the suggestion and refuse to revise opinion according to his/her negotiator, in this case, DMb,

any longer. We set St+1
a = St

a, and update D
t+1  D

t � (DMa, DMb).

For any other decision makers DMk 2 E, k 6= a, b, set St+1

k  St
k. Update t t+ 1, and return to Step365

2.

Step 5. Terminate the procedure. Output the obtained group common solution(s) , t⇤ = t, S⇤
k = St

k, 8k.

When the procedure is terminated, there could be two situations: (1) One or more common solutions are

obtained. In this case, any of them can be chosen as the final solution because they are equivalent for the group;370

(2) No common solution is obtained. This may happen if there exist big disagreements among the group, or

DMs refuse to revise their opinions during the consensus reaching procedure.
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The proposed CRP has been proved to be convergent in the case of infinite number of alternatives and

homogeneous distribution, i.e., the solution space is continuous, details are in Appendix A. This implies that

the CRP can always lead to a common solution if the group follows the suggestions. We also provide a bound375

for the required iterations for reaching convergence in Appendix B, using the same assumption of Appendix

A. This analysis shows a time complexity of O(m2), where m is the number of DMs. This implies that the

efficiency of the CRP is neither affected by the number of alternatives nor by the solution space dimension, yet

the group size may be a critical factor. It should be noted that this time complexity of O(m2) is for the rounds

of discussion to reach consensus. Since we use the Dijkstra algorithm to define the path between two DMs, the380

nested complexity is higher because the Dijkstra algorithm has a time complexity that depends on the number

of solutions. However, in real-world cases, group discussions are generally taking much longer time than running

the computer algorithm. For this reason, we consider O(m2) as a proper description for the method efficiency.

5. Numerical results

5.1. Illustrative example385

In this section, we give an illustrative example of the proposed consensus model and CRP. A group of three

DMs chooses a final solution from a large set of 500 alternatives. Without loss of generality, we randomly sample

the alternatives in 2-dimensional objective space with f1, f2 2 [0, 1]. The IZs of the DMs are given in Figure 7(a).

More specifically, R1 = Square[(0.1, 0.7), (0.2, 0.8)], which means for DM1, alternatives with f1 2 [0.1, 0.2]^f2 2

[0.7, 0.8] are preferred and indifferent. R2 = Square[(0.2, 0.2), (0.3, 0.4)], and R3 = Square[(0.9, 0.4), (1.0, 0.5)].390

Since no common solution exists for the group, the proposed CRP is applied. The maximum iteration T is

set as 12. The ordered pair of DMs is initialized as

D
0 = {(DM1, DM2), (DM1, DM3), (DM2, DM1), (DM2, DM3), (DM3, DM1), (DM3, DM2)}

Iteration 0: The individual consensus index matrix is calculated using Equation (5):

(ICI0pq)m⇥m =

2

6

6

6

4

0 0.4374 0.8054

0.4374 0 0.6558

0.8054 0.6558 0

3

7

7

7

5

By Equation (6) and (8), we obtain GDCI0 = 0.8054 and GACI0 = 0.3233. The most incompatible decision

maker pair is DM1 and DM3. To increase their consensus level, the feedback mechanism is used to generate

new preferred solutions. Using Equation (11) and (12) we obtain ↵0
1 = 0.7999,↵0

3 = 0.7001. For DM1, four

solutions, denoted as S1
sug,1, are proposed, whose f1 varies from 0.248 to 0.380, f2 varies from 0.675 to 0.759;

For DM3, S
1
sug,3 contains four solutions as well, with f1 2 [0.688, 0.802] and f2 2 [0.553, 0.648]. Both decision395

makers accept the suggestions, then we update S1
1 = S1

sug,1, S
1
3 = S1

sug,3, and S1
2 = S0

2 .

Iteration 1 - 7: The information of iteration 1 to 7 is summarized in Table 1. During the CRP, DM2 rejects

to revise according to DM3 at iteration 1, while in other cases, the decision makers accept the suggestions given

by the feedback algorithm. At iteration 7, the individual consensus index matrix is as below:

(ICI7pq)m⇥m =

2

6

6

6

6

4

0 0.0551 0.0713

0.0551 0 0.0943

0.0713 0.0943 0

3

7

7

7

7

5
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(a) Initial state (b) Final state

(c) GDCI
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GACI

(d) GACI

Figure 7: Illustrative example
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Table 1: Consensus reaching process of the illustrative example: Iteration 1 to 7

Iteration ICI matrix DM pair ↵ value |Ssug| Range of proposed solutions Accept ?

1

2

6

6

6

6

4

0 0.3630 0.4022

0.3630 0 0.5088

0.4022 0.5088 0

3

7

7

7

7

5

2 0.7628 9
f1: [0.343, 0.442]

NO
f2: [0.278, 0.439]

3 0.7372 11
f1: [0.559, 0.679]

YES
f2: [0.471, 0.572]

2

2

6

6

6

6

4

0 0.3630 0.3301

0.3630 0 0.3594

0.3301 0.3594 0

3

7

7

7

7

5

1 0.7606 9
f1: [0.225, 0.327]

YES
f2: [0.566, 0.696]

2 0.7394 9
f1: [0.169, 0.297]

YES
f2: [0.321, 0.488]

3

2

6

6

6

6

4

0 0.1787 0.3193

0.1787 0 0.3465

0.3193 0.3465 0

3

7

7

7

7

5

3 0.6794 9
f1: [0.411, 0.575] YES

f2: [0.566, 0.696]

2 0.8206 -
-

-
-

4

2

6

6

6

6

4

0 0.1787 0.2298

0.1787 0 0.2231

0.2298 0.2231 0

3

7

7

7

7

5

1 0.7776 6
f1: [0.279, 0.398]

YES
f2: [0.555, 0.674]

3 0.7224 8
f1: [0.371, 0.506]

YES
f2: [0.448, 0.556]

5

2

6

6

6

6

4

0 0.1794 0.0817

0.1794 0 0.1987

0.0817 0.1987 0

3

7

7

7

7

5

3 0.8436 10
f1: [0.354, 0.486] YES

f2: [0.418, 0.561]

2 0.6564 -
-

-
-

6

2

6

6

6

6

4

0 0.1794 0.0851

0.1794 0 0.1522

0.0851 0.1522 0

3

7

7

7

7

5

1 0.8206 10
f1: [0.239, 0.419]

YES
f2: [0.505, 0.674]

2 0.6794 12
f1: [0.210, 0.343]

YES
f1: [0.375, 0.566]

7

2

6

6

6

6

4

0 0.0551 0.0713

0.0551 0 0.0943

0.0713 0.0943 0

3

7

7

7

7

5

3 0.718 14
f1: [0.290, 0.459]

YES
f2: [0.402, 0.566]

2 0.782 -
-

-
-
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The procedure stops because two common solutions are found for the group, as shown in Figure 7(b). In400

Figure 7(c) and (d) are illustrated the trend of GDCI and GACI during the consensus reaching procedure. As

shown, these two indexes continue to decrease as the procedure goes, which brings the group to a high consensus

level and, finally, to common solution(s). It should be noted that common solution can be reached despite some

rejections from the DMs.

5.2. Simulation campaign405

In this section, we launch a simulation campaign to study the properties of the proposed method in terms

of effectiveness and efficiency. We aim at answering the following questions by numerical experiments:

1. Could we always obtain common solution(s) if the group follows all suggestions?

2. What is the contribution of the indifference zone in group consensus making?

3. Is the efficiency of the proposed approach sensitive to the cardinality of the alternative set or the group410

size?

We perform a full factorial design of experiments (DOE) with the following factors and levels:

• Number of solutions, n: two levels (500, 750)

• Number of decision makers, m: three levels (3, 5 and 7)

• Indifference zone size, Size: three levels (0, 0.1 and 0.2)415

• Number of objective space dimensions, z: two levels (2, 3)

n alternatives are randomly sampled in the z-dimensional objective space [0, 1]z. m decision makers are

involved, whose initial IZs are randomly specified as a hypercube with edge length Size. Note that Size = 0

represents the special case in which DM holds only one preferred solution. All these factors make 2 · 3 · 3 · 2 =

36 different problem settings. For each setting, 200 instances are generated and tested, resulting in 7200420

GDM problems. The proposed approach is applied with a maximum iteration T = 150. We record in each

experiment the number of iterations required for reaching common solution(s), and the number of common

solutions obtained.

The number of common solutions found in each experiment is summarized in Figure 8(a). In all experiments,

at least one common solution is obtained. In most cases, one to five common solutions are obtained. The cases425

with a large number of common solutions are due to the large indifferent zones. This result answers the first

question previously raised and validates the convergence proof provided in Appendix A.

The number of required iterations is analyzed with ANOVA. As show in Figure 8(c), all main factors, as well

as some interactions between them, are significant. The most influential factors are m (or n dm in the table)

and Size. From Figure 8(b) we have some observations:430

• The larger the IZs, the less iterations are required to reach common solution(s). The IZ indicates not only

the uncertainty but also the willingness of DM to reach consensus with others. When DMs hold larger

IZs, it becomes easier for the group to find overlapping zones in the objective space, which facilitates the

consensus reaching of the group.
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Analysis of Variance 

 

Source             DF  Adj SS   Adj MS   F-Value  P-Value 

  n_alt             1      70     69.6     26.64    0.000 

  n_dm              2   79497  39748.4  15210.16    0.000 

  iz_size           2   33329  16664.3   6376.79    0.000 
  n_dim             1      62     62.0     23.72    0.000 

  n_alt*n_dm        2       9      4.3      1.66    0.190 

  n_alt*iz_size     2     228    114.2     43.70    0.000 

  n_alt*n_dim       1       1      1.0      0.38    0.540 

  n_dm*iz_size      4    3931    982.7    376.03    0.000 

  n_dm*n_dim        2     121     60.6     23.18    0.000 

  iz_size*n_dim     2    4169   2084.6    797.68    0.000 

Error            7180   18763      2.6 

  Lack-of-Fit      16     519     32.4     12.73    0.000 

  Pure Error     7164   18244      2.5 

Total            7199  140180 

 

 
Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

1.61656  86.61%     86.58%      86.54% 

 
(c) ANOVA table of iteration number

Figure 8: Results of numerical experiments

• The required number of iterations increases with the group size m. As the number of DM pairs increases,435

the peer-to-peer preference adjustment scheme requires more iterations to reduce the group inconsistency.

This observation matches the time complexity O(m2) given in Appendix B.

• The effect of n (or n alt) is not obvious. This shows that the efficiency of the method is not dependent on

the size of the alternative set. Indeed, by making use of the spatial preference information, it avoids the

tedious modifications of the preference relation matrix whose size depends on the alternative size .This440

concusion matches the time complexity analysis given in Appendix B. This property reveals the potential

of the method for handling larger problems.

• The effect of z (or n dim) is not obvious. This implies that the method is able to solve problem with more

criteria without losing efficiency. This matches the time complexity analysis given in Appendix B.

In summary, the numerical results on the convergence property as well as the influence of m, n and z on the445

method efficiency coincide with the analytical analysis provided in the appendix.
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Figure 9: The packaging line

Table 2: Activities for improving the line productivity

Improvement activity Levels

(a) Set higher alarm levels for empty medicine box buffer [50, 200, 400]

(b) Set higher alarm levels for instruction manuals [100, 300, 600]

(c) Increase the buffer capacity of the empty medicine box [0, 200, 450]

(d) Increase the capacity of big package box [0, 108, 258]

(e) Reduce the transportation time between the line and the warehouse [0%, 25%, 50%]

(f) Increase the number of operators [0, 1, 2]

6. A case study

To verify the usefulness of the proposed approach, in this section, we present a case study on a real-world

decision making problem. The aim is to select a production line configuration from a set of alternatives for

a pharmaceutical manufacturing company. To emulate the decision making procedure, we invited Ph.D and450

master of science students to play the roles of DMs.

6.1. The decision making problem

The packaging line in a pharmaceutical company is used for the packaging of a medicine product. The line

is depicted in Figure 9. Pill blisters enter the line as raw material. In the first station, a cartoning machine is

used to insert two blisters together with an instruction manual into a small medicine box. Then, these boxes455

enter the second station for labeling and weighting. Finally, in the packing machine, the medicine boxes are

packed into a big package box, then exit the line as products.

The line is synchronized and automatic, yet some operations are manual. These include replenishing the

medicine boxes buffer and the instruction manual buffer of stage 1, loading and unloading the big package box

in stage 3, retrieving from the warehouse the medicine boxes and instruction manuals when necessary, etc. Note460

that when the medicine boxes buffer or instruction manual buffer becomes empty, the line will be forced to stop.

To prevent such stoppage, alarms are set to alert the operator for replenishing activities.

Currently, the line has a throughput of 108 [box/min] and runs with an annual cost of about 30000 [euros].

For the next production period, to fulfill the increasing market, the company has decided to improve the
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Figure 10: Case study alternatives

production capacity of the line through the activities indicated in Table 2. Considering the realistic features465

of the line, we chose to use a simple and intuitive design of experiment to generate feasible solutions for the

company. Note that by coupling the simulation model of the line to a multi-objective optimization algorithm,

one could result in more alternatives in a larger space. Based on the information provided by the company,

we set the corresponding levels for the improvement activities as in Table 2. More specifically, improving the

alarm level (a)(b) triggers more frequently the buffer replenishment to avoid line stoppage but also occupies470

more time of the operator. These alarm levels are chosen respecting the specification of the machines, e.g., the

level could not be set higher than the current buffer capacity. Activity (c) has the same purpose for avoiding

line stoppage. Activity (d) aims at reducing the frequency of loading/unloading the final package. The package

capacity levels (d) are set based on the query of the company, e.g., the company is highly interested in the

simulation results of increasing the package box capacity by 258. Activities (e) saves the time of operator in475

transportation. Activity (f) helps to mitigate the workload of operators so as to reduce the waiting time of

triggered tasks. The levels are set considering the maximum number of operators allowed in the working area of

the line. Among these improvements, modifying the alarm level (a)(b) can be realized by adjusting the control

codes in the machines; other activities incur a certain amount of costs, like purchasing new machine modules

or equipment, hiring employees, etc. A full factorial experiment with different levels of activities is performed,480

generating a total of 3⇥ 3⇥ 3⇥ 3⇥ 3⇥ 3 = 729 configurations.

The performance of different configurations is evaluated using discrete-event-simulation by considering three

criteria: line throughput, cost and operator utilization. Results are in Figure 10(a). Basically, higher investment

yields greater throughput and less operator occupation. By filtering the dominated solutions, the analysts

provide 126 alternatives for the decision making group (as in Figure 10(b)). Given that the operator utilization485

is less important than the other two criteria, for simplicity, the group focuses only on the throughput and the

cost.

6.2. The decision making group

The decision making group consists of four experts from different departments, they hold distinct opinions

as shown in Table 3. In the case study, each experiment was performed by four volunteers with the randomly490

assigned roles.
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Table 3: The opinion of decision makers from different departments

DM Department Opinion

DM1 Finance Our company has better projects to inverst. We propose a low invest-

ment in this project.

DM2 Marketing According to our market occupation, a throughput of about 160 would

satisfy the orders from different channels.

DM3 Production We should guarantee the customer satisfaction with a high throughput

to earn company reputation.

DM4 Stakeholder This project might be promising, yet there is certain risk for expanding

too much the productivity. The opinion of the Board is to limit the cost

at about 40000 euros.

Table 4: Summary of case study experiment results

Experiment ID Group ID # common solutions Common solution # Iterations # DM rejections

1 1 1 [157.01, 41250] 7 5

2 2 1 [158.74, 46250] 4 2

3 3 0 - 20 8

4 1 1 [158.74, 46250] 5 0

6.3. Experiment results

We have invited three groups of volunteers for the experiments. Before running the approach, the coordinates

of the alternatives are normalized to [0,1] by the utopia-nadir point method [58]. Note that if the spans of

alternatives are highly heterogeneous in different dimensions, the adopted normalization method may introduce495

scale bias to the normalized space. To mitigate such bias, one may divide each criterion by a corresponding

scaling parameter, which should be determined by experts. See [59] for more details on normalization techniques.

For each group, the volunteers first specify their IZs based on the opinion of their roles, then the CRP is applied.

The maximum number of iterations is set as 20. The results are summarized in Table 4.

For Group 1, the initial preference information is shown in Figure 11 (a). During the procedure, we observed500

in total five rejections. These were mainly due to DM1 and DM3 whose opinions were far away from the rests.

Even though, the common solution was obtained at the 7-th iteration. Compared to Group 1, the DMs in

Group 2 showed more willingness to reach consensus because only two rejections were made during the process.

As a result, common solution was obtained with fewer iterations.

The result of Group 3 is shown in Figure 12. The initial opinion inconsistency in this group is much505

higher than Group 1 due to a larger GDCI value. In the process we observed 8 rejections. The CRP stopped

at maximum iteration without any common solution. As shown in Figure 11 (b), the group opinions finally

divided into two subgroups: DM1 and DM4, DM2 and DM3. As we observed, the DM has rejected almost any

suggestion of moving towards to the other subgroup. Figure 11 (c) shows that the DMs in the same subgroup

reached absolute consensus at iteration 13 with ICI14 = 0 and ICI23 = 0. After that, no further improvement510
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Figure 11: GDM case study: decision making group 1
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(a) Initial state (b) Final state
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Figure 12: GDM case study: decision making group 3
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Figure 13: GDM case study: decision making group 3 (allowing partial acceptance)
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Table 5: Comparison between the CRP solution and two benchmarks

Experiment ID Group ID CRP solution Center solution Equilibrium solution

1 1 [157.01, 41250] [163.00, 54460] [158.74, 46250]

2 2 [158.74, 46250] [154.51, 51250] [158.74, 46250]

3 3 - [163.00, 54460] [165.43, 55000]

was made before the termination. Although common solution was not obtained, the proposed model has helped

to reduce the group incompatibility level as indicated by GDCI and GACI.

Generally, rejections from DMs increase the difficulty for the group to reach common solution, because each

rejection means the deletion of an ordered pair for opinion revision. According to the volunteers, they rejected

a suggestion when the zone contained certain extreme point far away from his/her current IZ. Yet, the rests515

were still acceptable. For this reason, it would be reasonable to allow accepting only a subset of the proposed

alternatives to avoid rejection. For validating this idea, we invited the decision making group 1 again and

carried out the 4-th experiment . They started with the same initial preferences as in experiment 1. Result

is given in Figure 13. As we observed, no rejection was made during the process. The previously rejections

were substituted by partial acceptance. For this reason, all ordered pairs remained active during the CRP. This520

contributes to a faster convergence to the common solution compared to experiment 1.

In summary, supported by the proposed method, the group found common solutions in three out of four

experiments. These solutions are closely located. More specifically, in experiment 1, the common solution was

[157.01, 41250]; in experiment 2 and 4, the same solution [158.74, 46250] was obtained. These common solutions

locate in the intermediate region of the DMs’ initial IZs, which reveals the result of a compromising procedure.525

Finally, in Table 5 we compare the solution obtained by using the CRP, i.e., with rounds of discussions, to

two benchmarks obtained by aggregating directly the initial preference of the group. More specifically, the center

solution is the closest solution to the centroid of the group initial preferred solutions; whilst the equilibrium

solution is defined as the solution xi∗ 2 X with the shortest averaged distance to all initial indifference zones

of DMs, where i⇤ = argmin
i21,...,n

ACIi. Both benchmarks reveal the group collective opinion in some way. However,530

since they are derived from DMs’ initial opinions, they cannot capture the interactions and changes of mind

emerging from the group consensus meeting. It is observed that the CRP solution deviates from the center

solution. Surprisingly, for Group 1 and 2, the results of CRP are very similar to the equilibrium solution. Such

consistency, on the one hand, results from a successful consensus meeting which leads to the group collective

opinion, and validates the rationality of the CRP; on the other hand, however, it does not suggest skipping535

the CRP and selecting xi∗ directly. Intuitively, xi∗ is the most potential common solution because reaching it

requires the minimum total transition distance for the group. Yet, reaching xi∗ is not always true but depends

on the DMs’ dynamic behaviors during the CRP. For example, a highly qualified expert would easily pull the

others around his/her position and introduce impact on the group opinion transition pattern. Also, skipping

CRP bears the risk of selecting a solution beyond the acceptance zone of all DMs, which is observed in the case540

of Group 3. This violates the purpose of GDM.
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7. Conclusions

This research proposes an approach for supporting the group decision making in manufacturing systems.

Firstly, we develop a consensus model using spatial information in the objective space as preference inputs.

It avoids the tedious pairwise comparison and allows the use of state-of-art posterior preference articulation545

techniques to ease the opinion expression. As a result, the proposed model is able to tackle a much larger

alternative set than common group decision making approaches, meanwhile it avoids the preference inconsistency

issue incurred by pairwise comparison. Secondly, the indifference zone is incorporated into the consensus model.

This not only allows the decision makers to express the preference vagueness, and more importantly, it has been

shown beneficial for the consensus reaching process. Finally, we adopt a recent proposed peer-to-peer consensus550

reaching process [33] for improving group consensus. Several modifications are made on the feedback mechanism

to allow its implementation in the discrete objective space with finite alternative points.

The properties of the proposed method are first investigated by analytical analysis. In the case of continuous

solution space, the convergence is proved; the bound of the required iterations is given as well, which implies a

time complexity of O(m2). Then, a full factorial design of experiments is carried out for the discrete space case.555

In all tested GDM problems, the proposed approach yields common solution(s) as long as the decision makers

follow the given suggestions. The efficiency of the method is not sensitive to the size of alternative set and the

objective space dimension, which shows its potential of tackling large decision making problems. Finally, the

usefulness of the proposed method has been shown by a case study, where the method is applied to a packaging

line configuration problem.560

There are also some limitations of the proposed approach. Firstly, the proposed method requires rounds

of group discussions to obtain a common solution. It is indeed taking more efforts (e.g. organizing meeting,

evaluating alternatives, discussions) than direct preference aggregation, such as picking the ‘center solution’ of

the initial group opinion without performing a consensus reaching process. In spite of the similarity of results in

some cases, the proposed method is able to capture the interactions and changes of mind during the negotiations565

and facilitate a decision supported by the group, which is not guaranteed by direct preference aggregation. Due

to the cost of consensus, the proposed method is suitable for problems where the decision has long-term effect

such as production line configuration, product design and cyclic staff scheduling, but not so cost-effective for

short-term managerial decisions. Secondly, as shown in one of our real-world experiments, group consensus

meeting reduces the group disagreement to some extent, but may not necessary result in a common solution.570

This indeed depends on the degree of opinion discrepancy as well as decision makers’ willingness of making

consensus. For future study, it is valuable to investigate the use of soft consensus or fuzzy majority concept to

yield a group decision in case no common solution is obtained from the meeting. Thirdly, due to the peer-to-peer

feedback mechanism, the required number of iterations to reach common solution increases quickly with the

number of decision makers in the group. This no doubt lowers the decision efficiency for large expert groups.575

For future work, it is interesting to study the effects of different consensus reaching mechanisms, for example,

using group collective opinion to generate suggestion feedback. Lastly, in the model, it is assumed that the

opinions from experts are equally important, which may not coincide with the scenarios where the group is

formed by experts with different levels of qualifications. It is necessary to consider a more general model in

which decision makers are of different importance as a future work.580
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Appendix A. Proof of convergence

When the number of alternatives n!1 and the alternatives are homogeneously distributed in the objective

space R
z, i.e., the solution space is continuous, the feedback mechanism proposed in section 4.1, denoted here

as [S0
p, S

0
q] = Γ(Sp, Sq,↵p,↵q), transits the convex hulls Sp, Sq to S0

p, S
0
q as:

S0
p = Conv({x+ ↵p(y � x), 8x 2 Vert(Sp), y 2 Vert(Sq)}) (A.1)

S0
q = Conv({y + ↵q(x� y), 8x 2 Vert(Sp), y 2 Vert(Sq)}) (A.2)

where Conv(·) represents the convex hull and Vert(·) is the set of strictly convex vertexes, and ↵p,↵q 2 (0, 0.5).

For simplification, we use Γ(Sp, Sq) to represent this transition in the following context. The distance between

two decision makers, say p and q, is given by the averaged Hausdorff distance, which is

∆1(Sp, Sq) = max{
1

|Sp|

Z

Sp

min
y2Sq

kx� ykdx,
1

|Sq|

Z

Sq

min
x2Sp

ky � xkdy} (A.3)

in continuous solution space. The proposed algorithm, denoted as A here, iterates as follows. At each iteration

t, the DMs with the largest ∆1 among the group E = {1, . . . ,m}, say p and q, move their indifference zones

Sp and Sq to the S0
p and S0

q, respectively. Here, we provide the demonstration that as the algorithm iteration

t!1, the maximum ∆1 between any pair of DMs in the group, denoted as ∆⇤
1, goes to zero.585

We consider the special case where Si, 8i 2 E contains only one point xi. In this case, ∆1(Si, Sj) = kxi�xjk.

Using the triangle property, we can show that the diameter of the set (the maximum distance between any of

the m points) shrinks after each transition. This implies that as t ! 1, the group opinion convergences to

zero distance. Details are as follows. At t-th iteration, let (p, q) be the DMs having the largest distance ∆⇤
1

among the group, this means the set diameter equals to kxp � xqk. The transition (x0
p, x

0
q) = Γ(xp, xq) reduces590

the distance between DM p and q, i.e., kx0
p � x0

qk < ∆⇤
1. For any other DMs, say i, we have kxi � x0

pk <

max{kxi � xpk, kxi � xqk} and kxi � x0
qk < max{kxi � xpk, kxi � xqk} due to the triangle property. Also, since

kxp�xqk is the diameter of the set, we have kxi�xpk < kxp�xqk and kxi�xqk < kxp�xqk. As a consequence,

we obtain that kx0
p � xik < ∆⇤

1 and kx0
q � xik < ∆⇤

1. That is, after the transition, the distance between xp or

xq and any other point in the set is less than the diameter of the set before the transition. In summary, the595

transition Γ(xp, xq) strictly decreases the ∆⇤
1 at each iteration, and the algorithm converges for t!1.

For the general case in which DMs hold convex hulls as indifference zones, the triangle property between

DMs vanishes because ∆1 is a semi-metric. In order to show the convergence, we make use of the maximum

distance between DMs as a bound for their ∆1. Similar with the above special case, using some properties

of the convex hull, we can see that the maximum pairwise distance between DMs strictly decreases after each600

transition, and the algorithm is convergent. Details are as follows. Firstly, a theorem is given to describe the

property of convex hull. Based on this theorem, two corollaries are provided to show the relationship of the

convex hulls after the transition is performed.

Theorem 1. Let x and y be two points in a set of points S. If the distance between x and y is equal to the

diameter of S, i.e., max
x,y2S

kx� yk, then x and y are strictly convex points, i.e., x, y 2 Vert(S).605

Proof This theorem describes the basic property of a convex hull, which is essentially identical to the lemma

proved in Bhattacharya and Toussaint [60] It states that the maximum distance between two convex hulls are

due to their vertexes, as:

dmax(Sp, Sq) = dmax(Vert(Sp),Vert(Sq)) (A.4)
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where dmax(Sp, Sq) = max
x2Sp,y2Sq

kx � yk returns the maximum distance between sets Sp and Sq. By setting

Sp = Sq, it shows that the diameter of Sp is due to its vertexes, which is Theorem 1.

Corollary 1. dmax(S0
p, S

0
q) < dmax(Sp, Sq),where [S0

p, S
0
q] = Γ(Sp, Sq).

Proof This corollary shows the relationship of two convex hulls after the transition acting on them. The proof610

is based on the fact that the transition moves their vertexes into the interior of the convex hull of their union

set; then, it is obvious that the maximum distance between these two convex hulls shrinks according to Theorem

1. Details are as follows. Given that S0
p and S0

q are obtained by the convex combination of sets Vert(Sp) and

Vert(Sq), it is obvious that Vert(S0
p) ✓ int(Conv(Sp [ Sq)) and Vert(S0

q) ✓ int(Conv(Sp [ Sq)), where int(·)

represents the interior. Also, we have Vert(S0
p[S

0
q) ✓ int(Conv(Sp[Sq)), which means the vertexes of the union615

of S0
p and S0

q lie in the interior of Conv(Sp[Sq). According to Theorem 1, we know that dmax(S0
p, S

0
q) are due to

Vert(S0
p) and Vert(S0

q), which are two internal points of Conv(Sp[Sq), so we have dmax(S0
p, S

0
q) < dmax(Sp, Sq).

Corollary 2. After the transition [S0
p, S

0
q] = Γ(Sp, Sq), for any other decision maker i 2 E, i 6= p, q, the

following relationship holds:

max{dmax(Si, S
0
p), dmax(Si, S

0
q)} < max{dmax(Si, Sp), dmax(Si, Sq)} (A.5)

Proof This corollary shows the relationship between a convex hull moved by the transition and another convex620

hull that remains still. It provides a bound for their updated distance. The proof is made by treating the two

convex hulls moved by the transition as an union. Since the transition moves the vertexes of this union to the

interior of its convex hull, and we know that the maximum distance between sets are due to their vertexes, we

can see that the maximum distance between this union and another convex hull shrinks after the transition.

Details are as follows. Let Sp [ Sq be the union of the convex hulls moved by the transition. The maximum625

distance to another convex hull, say Si, is given by dmax(Si, Sp [ Sq). According to the lemma given in Equa-

tion (A.4), we know that dmax(Si, Sp [ Sq) = dmax(Vert(Si),Vert(Sp [ Sq)). This reveals that for any set,

say Sk, if it satisfies Sk ✓ int(Conv(Sp [ Sq)), then dmax(Si, Sk) < dmax(Si, Sp [ Sq). Since the transition

Γ(Sp, Sq) makes {S0
p [S

0
q} ✓ int(Conv(Sp [Sq)), so we have dmax(Si, S

0
p [S

0
q) < dmax(Si, Sp [Sq). Finally, it

is obvious that max{dmax(Si, S
0
p), dmax(Si, S

0
q)} = dmax(Si, S

0
p[S

0
q) and max{dmax(Si, Sp), dmax(Si, Sq)} =630

dmax(Si, Sp [ Sq). Then, Corollary 2 is obtained.

Based on these building blocks, we provide the following theorem indicating the decreasing property of

the maximum pairwise distance between DMs in the group. For a better explanation, we define the pairwise

maximum distance matrix as Dmax(i, j) = dmax(Si, Sj). Note that Dmax(i, j) = Dmax(j, i).635

Theorem 2. Assume the decision maker pair with the largest maximum distance leads to the greatest averaged

Hausdorff distance in the group, i.e., argmax
i,j2E,i6=j

dmax(Si, Sj) = argmax
i,j2E,i6=j

∆1(Si, Sj). As the algorithm A iterates,

the maximum element in the matrix Dmax is strictly decreasing.
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Proof The proof is by analyzing the transition effect on the pairwise distance of DMs. The DM pairs can be

divided into three categories: (a) both DMs in the pair are moved; (b) only one DM in the pair is moved; (c)640

none of DMs are moved. According to the previous corollaries, we can see that the pairwise distance in (a) is

decreased; those in (b) are bounded; those in (c) are unchanged. So we obtain the conclusion. Details are as

follows. Let t be the current iteration, (p, q) = argmax
i,j2E,i6=j

dmax(Si, Sj) = argmax
i,j2E,i6=j

∆1(Si, Sj), and Dt
max be the

maximum distance matrix at iteration t.

For category (a): After the transition Γ(Sp, Sq), according to Corollary 1, we have Dt+1
max(p, q) < Dt

max(p, q).645

For category (b): According to Corollary 2, for any i /2 {p, q}, we have

Dt+1
max(p, i) < max{Dt

max(p, i), D
t
max(q, i)} < Dt

max(p, q),

Dt+1
max(q, i) < max{Dt

max(p, i), D
t
max(q, i)} < Dt

max(p, q).

For category (c): for any i, j /2 {p, q}, the relative positions of Si and Sj remain the same, then we have

Dt+1
max(i, j) = Dt

max(i, j) < Dt
max(p, q).

In summary, maxi,j2E,i6=j{D
t+1
max(i, j)} < maxi,j2E,i6=j{D

t
max(i, j)}.

As a result, for any DM pair (i, j), as the iteration t!1, Dmax(i, j)! 0 according to Theorem 2. Given

that the relationship ∆1(Si, Sj) < ∆1(Si, Sj) < Dmax(i, j) holds, we have ∆1(Si, Sj) ! 0, 8i, j 2 E, i 6= j as

well, and the algorithm A converges.650

Appendix B. Time complexity

Based on the assumptions and theorems we made in Appendix A, here we provide a bound of iterations

required by the algorithm A to reach common solution for the group. Again, this analysis is based on the

pairwise maximum distance matrix Dmax defined in Appendix A. The basic idea is to quantify the decrease

of the element’s bound in Dmax after each transition. By a simple deduction, we can obtain the number of655

iterations required to suppress the bounds to a sufficient small value.

Theorem 2 provides the bound on the maximum element of Dmax after the transition. Based on the same

assumption, the bound on any other elements of Dmax is given by the following corollary.

Corollary 3. At t-th iteration, after the transition of the most distant decision maker pair, i.e., Γ(Sp, Sq), the

maximum distance between any decision maker pair other than (p, q), denoted as Dt+1
max(i, j), is bounded by the660

second largest maximum distance in the group before the transition, denoted as Dt
max(a, b) here.

Proof The proof is similar to that for Theorem 2, the only difference is that we compare the updated elements

to Dt
max(a, b). Details are as follows. We use the same notions as in the proof of Theorem 2. For category

(b), for any i /2 {p, q}, we have Dt+1
max(p, i) < max{Dt

max(p, i), D
t
max(q, i)}. Since (p, i) and (q, i) are different

from (p, q), it is sure that max{Dt
max(p, i), D

t
max(q, i)}  Dt

max(a, b), so we have Dt+1
max(p, i) < Dt

max(a, b).665

Similarly, we have Dt+1
max(i, q) < Dt

max(a, b). For category (c), for any i, j /2 {p, q}, it is easy to see that

Dt+1
max(i, j) = Dt

max(i, j)  Dt
max(a, b). In summary, the corollary is proved.

Here we calculate the required iterations. Denote d̂t as the second largest value in Dt
max. Let D be all

possible undirected pairs of DMs in the group, and |D | = C2
m. Let DM pair (p, q) be the one having the670
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largest maximum distance at iteration 0. Assume the transition Γ reduces the maximum distance between any

DM pair at a constant rate, i.e., Dt+1
max(i, j) = ↵ · Dt

max(i, j), 8(i, j) 2 D , where 0 < ↵ < 1. Now let us start

at iteration t = 0. After a finite number of iterations, say c, the maximum element in Dmax falls below d̂0.

At iteration c, Dc
max(p, q) = ↵cD0

max(p, q); for any other DM pair, say (i, j), the bound is Dc
max(i, j)  d̂0

according to Corollary 3. Although it is not feasible that all these pairs hit the bound, but if it does happen,675

it requires C2
m� 1 transitions acting on all these pairs to realize the reduction on the maximum value in Dmax.

Let this happen and we move to iteration t = c + C2
m � 1, Dt

max(p, q) is the largest element and is bounded

by ↵cD0
max(p, q); and Dt

max(i, j), 8(i, j) 2 D , (i, j) 6= (p, q) are bounded by ↵ · d̂0. Assume all of them hit the

bounds, then another round of C2
m transitions are performed (one for (p,q) and the rest for the others), after

which the bounds become ↵c+1D0
max(p, q) for (p, q) and ↵2 · d̂0 for the others. This procedure repeats until680

Dt
max(p, q) is less than a small enough quantity, say, ✏, and the group obtains common solution.

Denote d⇤ = ↵c�1D0
max(p, q), and ⌘ as the number of rounds. To obtain ↵ηd⇤  ✏, the required number of

rounds is given by

⌘⇤ =
log ✏� log d⇤

log↵
.

The maximum required iterations is given by T = c� 1 + ⌘⇤C2
m, which implies a time complexity of O(m2).
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[35] Q. Dong, K. Zhü, O. Cooper, Gaining consensus in a moderated group: A model with a twofold feedback

mechanism, Expert Systems with Applications 71 (2017) 87–97.

[36] E. Herrera-Viedma, F. J. Cabrerizo, J. Kacprzyk, W. Pedrycz, A review of soft consensus models in a fuzzy

environment, Information Fusion 17 (1) (2014) 4–13.760
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[46] D.-H. Lee, K.-J. Kim, M. Köksalan, A posterior preference articulation approach to multiresponse surface

optimization, European Journal of Operational Research 210 (2) (2011) 301–309.
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