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Spatially weighted PCA for monitoring 

video image data with application to 

additive manufacturing 

BIANCA M. COLOSIMO and MARCO GRASSO* 

Politecnico di Milano, Via La Masa 1, 20156 Milano, Italy 

Abstract. Machine vision systems for in-line process monitoring in advanced 

manufacturing applications have attracted an increasing interest in the recent years. One 

major goal is to quickly detect and localize the onset of defects during the process. This 

implies the use of image-based statistical process monitoring approaches to detect both 

when and where a defect originated within the part. This study presents a spatio-temporal 

method based on the Principal Component Analysis (PCA) to characterize and synthetize 

the information content of image streams for statistical process monitoring. A spatially 

weighted version of the PCA, called ST-PCA, is proposed to characterize the temporal 

auto-correlation of pixel intensities over sequential frames of a video-sequence while 

including the spatial information related to the pixel location within the image. The 

method is applied to the detection of defects in metal additive manufacturing processes 

via in-situ high-speed cameras. A k-means clustering-based alarm rule is proposed to 

provide an identification of defects in both time and space. A comparison analysis based 

on simulated and real data shows that the proposed approach is faster than competitor 

methods in detecting the defects. A real case study in Selective Laser Melting (SLM) of 

complex geometries is presented to demonstrate the performances of the approach and its 

practical use.  

Keywords: image-based process monitoring; in-situ defect detection; k-means clustering; 

principal component analysis; selective laser melting. 

 

1. Introduction 

The use of image data in process monitoring 

applications has attracted an increasing industrial 

interest in the recent years (Qiu, 2017). Indeed, the 

                                                 

* Prof. Bianca Maria Colosimo (corresponding author) is a full professor in the Department of Mechanical 

Engineering. Her email is biancamaria.colosimo@polimi.it. 

Dr. Marco Grasso is an assistant professor in the Department of Mechanical Engineering. His email address is 

marcoluigi.grasso@polimi.it.  

 

availability of robust, compact and low-cost machine 

vision systems that are easy to integrate into 

production plants has considerably increased thanks 

to continuous technological advances. In addition, 

high-performance computational capabilities make 

in-line analysis of image streams and video-
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sequences practically feasible, even in the presence of 

high spatial and temporal resolutions. In this 

framework, novel statistical process monitoring 

(SPM) tools are needed to face big data issues 

(Megahed and Jones-Farmer, 2015; Qin, 2014), 

where the term “big” refers both to the complexity of 

the data format (i.e., video images) and to the high 

frequency of data acquisition (e.g., up to thousands of 

frames per seconds). 

Megahed et al. (2011) reviewed control charting 

methods with image data, pointing out that SPM tools 

can be used not only to monitor the stability of image 

patterns over time, but also to detect where a change 

occurred within the image (in terms of location and 

size). A seminal approach was proposed by Armingol 

et al. (2003), which consists of designing an 

individual control chart for each pixel of the image. 

However, controlling the family-wise Type I error is 

an issue when a large number of charts (e.g., in the 

order of thousands and more) are used in parallel. 

Rather than monitoring the intensity of single pixels, 

different authors applied traditional SPM methods to 

monitor synthetic indexes and quality characteristics 

extracted via image processing algorithms. As an 

example, various studies applied univariate or 

multivariate control charts to monitor product 

dimensions (Horst and Negin, 1992; Tan et al., 1996; 

Lyu and Chen, 2009), surface properties (Nembhard 

et al., 2003; Tong et al., 2005; Wang and Tsung, 

2005) or other quantities (Liang and Chiou, 2008; 

Park et al, 2014) measured via in-line machine vision. 

Other methods (Yan et al., 2015) rely on the use of 

Principal Component Analysis (PCA) and its 

multilinear extensions to synthetize the information 

content of the images. In the framework of 

hyperspectral images, multivariate-image-analysis 

(MIA) control charts represent a well-known category 

of methods that apply the PCA for monitoring 

purposes (Geladi and Grahn, 1996; Bharati and 

MacGregor, 1998; MacGregor et al., 2001; Bharati et 

al., 2003; Yu and MacGregor, 2004; Graham et al., 

2007). In MIA, the PCA is separately applied to each 

image and regions of interest are identified within the 

“score space” spanned by the image data projections 

onto the retained principal components (masking 

operation). Control charts are then applied to 

synthetic descriptors computed within those regions 

(e.g., the number of image pixels belonging to the 

region in Bharati et al., 2003). Both tensor-based PCA 

and MIA variants for image data were proposed to 

better capture the overall data correlation structure, 

which includes temporal, spatial and spectral 

contributions (Yan et al., 2015; Lu et al., 2008a; Lu et 

al., 2008b). Their aim consists of avoiding any 

unfolding operation by applying the analysis to the 

multi-dimensional data array via higher-order 

statistics.  

All these methods are aimed at detecting a possible 

change of the image pattern in a sequence of images 

observed over time. Generally speaking, they focus 

on the temporal detection of image pattern shifts 

rather than on the spatial localization of the occurred 

change within the image. Other authors proposed so-

called “spatial control charts” (Megahed et al., 2011), 

which are applied to one single image at a time to 

identify the location of defective areas. Jiang and 

Jiang (1998), Jiang et al. (2005) and Lu and Tsai 

(2005) applied a univariate control chart to the pixel 

intensity of the image to localize outlying image 

regions. This kind of control chart is called “spatial” 

because the X axis of the chart represents a location 

on the image, rather than time (Megahed et al, 2011). 

Spatial control chart methods were studied and 

extended by Lin and Chiu (2006) and Lin et al. 

(2007a; 2007b; 2008).  

In the presence of textured surfaces, spatial SPM 

methodologies were proposed by Tunak and Link 

(2008),  Tunak et al. (2009) and Bui and Apley 

(2017). Another category of methods, a.k.a. anomaly 

detection (Funck et al., 2003), exploits image 

segmentation algorithms to isolate defective regions 

instead of using spatial control charts. These methods 

were studied by different authors, e.g., Yan et al. 

(2016), Qiu and Yandell (1997); Qiu (2005); Qiu and 

Sun (2007); Park et al. (2012), but they belong to 

image processing rather than SPM. 

Spatio-temporal approaches were proposed by 

Megahed et al. (2012) and He et al. (2016) to detect 

both the spatial location (and size) of a defect and the 

change-point in time within the image stream. 

Megahed et al. (2012) proposed a generalized 

likelihood ratio (GLR) method based on dividing the 

image into partially overlapping regions of interest 

and monitoring the average pixel intensities within 

them. He et al. (2016) extended this method to 

multiple fault detection problems. 

All the spatio-temporal methods mentioned above 

focus on SPM for image data, where images are 

random replicates of an in-control pattern. Compared 

with the existing literature, our approach has two 

main novel issues. First, it focuses on SPM for video 

image data. In this case, videos are not just a sequence 

of images but they are capturing a dynamic in-control 

state. As an example, in our proposed case study, 

dynamic changes are due to a laser melting of a 

powder bed along a pre-specified trajectory. Thus, the 

SPM task is evidently more complex, as the out-of-
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control state translates into a perturbation of the 

underlying dynamics. The second element of novelty 

that, we believe, can have a great potential by itself, 

is the spatial extension of the PCA for modelling the 

in-control signature of video image data. In fact, we 

propose an extension of the so-called T-mode PCA 

approach (Jolliffe, 2002), called ST-PCA, where a 

spatial weight matrix is included into the variance-

covariance decomposition to describe the spatial 

contiguity of pixels in each frame of the video 

sequence. Contrary to other methods mentioned 

above, this allows performing the eigen-

decomposition directly on the spatial correlation 

matrix of video image data (Stahlschmidt et al. 2015). 

This ST-PCA is used to model the in-control state of 

the observed phenomenon and it is combined with a 

clustering-based alarm rule to detect the local defect 

onset. 

The proposed methodology is applied to a real case 

study where in-line monitoring of metal additive 

manufacturing (AM) processes via in-situ high-speed 

video imaging is of interest. More specifically, we 

apply the proposed spatio-temporal approach to 

detect and localize the onset of “hot-spots” within 

each layer of parts produced via a laser powder bed 

fusion process (Gibson et al., 2010) also known as 

Selective Laser Melting (SLM). Hot-spot events 

correspond to local over-heating of the layer caused 

by out-of-control heat exchanges, which may produce 

internal and geometrical defects in the final product.  

The present study extends previous research on SLM 

process monitoring (Grasso et al., 2017) by proposing 

a novel spatially weighted T-mode PCA method to 

enhance hot-spot detection performances.  

The remaining part of the work is organized as 

follows. Section 2 presents the motivating case study 

in additive manufacturing. Section 3 describes the 

proposed approach. Section 4 and Section 5 present, 

respectively, a simulation study and a real case study 

to determine the performances of the proposed 

approach. Section 6 concludes the paper. 

2. A motivating case study in metal 

additive manufacturing 

Metal AM processes allow producing parts 

characterized by innovative shapes, complex features 

and lightweight structures that are difficult or even 

impossible to produce with conventional systems.  

SLM is an AM technology belonging to the category 

of powder bed fusion processes, where a laser enables 

the additive production of parts by fully melting a 

metal powder. A thin powder layer (e.g., thickness of 

about 30 - 50 μm) is deposited on a baseplate by a 

powder recoating system. Then, a scanner is used to 

displace the laser beam along a predefined path and to 

locally melt the powder to realize the first slice of the 

part. When the scan of this first layer is complete, the 

substrate is lowered, a new layer of powder is 

deposited and the process is repeated to realize the 

next slice (the interested reader is referred to Gibson 

et al., 2010 for further details). Fig. 1 shows a simple 

scheme of an SLM system. 

 

FIGURE 1 – Scheme of the SLM system (building 

chamber) 

Several authors pointed out that the limited stability 

and repeatability of the process still represent a major 

barrier to the industrial breakthrough of this 

technology (Mani et al., 2015; Tapia and Elwany, 

2014; Everton et al., 2016; Spears and Gold, 2016; 

Grasso and Colosimo, 2017). Indeed, various kinds of 

defects may originate during the process, with 

detrimental effects on the quality characteristics of the 

final product. In this framework, high-speed vision is 

potentially suitable to characterize fast thermal 

phenomena related to the laser-material interaction, 

and to detect the onset of defects. Nevertheless, 

commercially available systems still lack any 

automated defect detection capability. An example of 

an in-situ monitoring setup proposed in Grasso et al. 

(2017) is shown in Fig. 2a. It consists of an 

OlympusTM I-speed 3 camera (CMOS sensor) placed 

outside the build chamber viewport. A sampling 

frequency of 𝑓 = 300 fps was selected as a 

compromise between the capability of capturing the 

laser kinematics without losing relevant information, 

and the computational feasibility of in-process image 

analysis.  



 

 

4 

 

 

FIGURE 2 – a) Experimental setup for high-speed 

video imaging on a commercial Renishaw® SLM 

system (AM250); b) schematic representation of the 

high-speed image stream 

The acquired stream of grey-scale video images (Fig. 

2b) can be described in terms of a 3-dimensional 

array, 𝓤 = {𝑼1, 𝑼2, … , 𝑼𝐽}  ∈ ℝ𝐽×𝑀×𝑁, where 𝑀 ×

𝑁 is the size (in pixels) of each frame and 𝐽 is the total 

number of acquired frames over a time period of 

duration 𝑇 = 𝐽/𝑓, being 𝑓 the sampling frequency. 

𝑼𝑗 ∈ ℝ𝑀×𝑁 is the j-th image, 𝑗 = 1, … , 𝐽, and 

𝒖𝑛,𝑚 = {𝑢𝑛,𝑚,1, 𝑢𝑛,𝑚,2, … , 𝑢𝑛,𝑚,𝐽} is the intensity 

profile of the pixel at location (𝑛, 𝑚) over the 𝐽 

acquired frames, with 𝑛 = 1, … , 𝑁 and 𝑚 = 1, … , 𝑀. 

Grasso et al., 2017 showed that high-speed imaging 

may be used to detect and localize local “hot-spots” 

within the scanned slice caused by a wrong heat 

exchange towards the surrounding material. The loose 

powder has a lower conductivity than the solid 

material. Because of this, when laser heated features 

(e.g., acute corners, overhang zones, thin walls) are 

largely surrounded by loose powder, the diminished 

heat flux may yield excessive heat accumulation and 

slow cooling transitory. This produces an out-of-

control solidification mechanism.  

Our real case study consists of a complicated shape of 

about 50 × 50 × 50 𝑚𝑚 (Fig 3a) produced via SLM 

of AISI 316L powder (average particle size of about 

25 − 30 𝜇𝑚). Different hot-spot events occurred 

during the process in correspondence of acute corners 

belonging to overhang areas shown in Fig. 3b. Fig. 3c 

shows that these hot-spot events produced local 

geometrical deformations in the printed part. The 

major processing parameters are summarized in Table 

1. Further details are provided in Grasso et al. (2017). 

 
FIGURE 3 – a) complex shape part used to test the 

proposed approach; b) examples of triangular 

portions of the sliced CAD model; c) local defects 

corresponding the acute corners of those triangles. 
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TABLE 1 – Main process parameters used in the experimental activity 

 Power (𝑃) 
Exposure 
time (𝑡) 

Focus position 
(𝑓𝑝) 

Point distance (𝑑𝑝) Hatch distance (𝑑ℎ) Layer thickness (𝑧) 

Value 200 𝑊 80 𝜇𝑠 0 𝑚𝑚 60 𝜇𝑚 110 𝜇𝑚 50 𝜇𝑚 

 

 
FIGURE 4 – Dimensions of the triangular portions of the part slices monitoring in this study (complex-shape 

part); the defective corners where over-heating phenomena occurred are highlighted 

 

Three distinct videos were acquired during the SLM 

of triangular-shaped features in three different layers. 

Fig. 4 shows these triangular features belonging to the 

sliced CAD model of the complicated geometry and 

indicates the acute corners where the hot-spot events 

occurred. The three corresponding image streams 

were denoted as OOC scenario 1, 2 and 3, 

respectively, where OOC stands for “out-of-control”.  

A checkerboard camera calibration (Zhang, 2000) 

was performed to estimate the spatial resolution 

(about 150 µm/pixel). The image acquisition system 

was set in order to apply a crop operation to remove 

defocused regions and areas of the baseplate not 

involved by the process. The resulting image size was 

121 × 71. The maximum number of frames in a 

video-sequence was 320. 

Fig. 5 shows some examples of pixel intensity 

profiles, 𝒖𝑛,𝑚 (OOC scenario 1), at different locations 

of the video frames. 

The pixels can be divided into three categories, i.e., i) 

background pixels (Fig. 5, top panels), belonging to 

regions where no laser-material interaction occurred, 

ii) pixels belonging to the normal melting zone (Fig. 

5, middle panels), where in-control SLM process 

occurred, and iii) hot-spot pixels (Fig. 5, bottom 

panels), where a local out-of-control over-heating 

occurred. For 8-bit images, the pixel intensity range 

is 𝑢𝑛,𝑚,𝑗 ∈ [0,255], with an average background 

intensity of about 80. The normal melting zone is 

characterized by a high cooling rate that leads to a 

finer grain and stiffer material. The corresponding 

pixel profiles exhibit frequent spikes corresponding to 

points in time when the laser heated zone passed over 

the pixel location. The in-control cooling transitory is 

very fast, and hence the pixel intensity drops from the 

saturation level to the background level almost 

instantaneously. Hot-spot areas, instead, exhibit a 

saturation level that lasts for a longer time, and the 

drop from saturation to background intensity is much 

slower. This is representative of an out-of-control 

temporal auto-correlation pattern affecting a limited 

number of adjacent pixel locations.  

The in-situ detection and localization of hot-spots is 

of great industrial importance to achieve zero-defect 

additive manufacturing capabilities. Indeed, it allows 

one to stop the process to prevent producing defective 

parts or, when possible, to implement closed-loop 

control strategies to mitigate or even repair the defect 

during the process.  
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FIGURE 5 – Examples of intensity profiles belonging to background region (top panels), normal-melting zone 

(middle panels) and an out-of-control hot-spot region (bottom panel) 

 

FIGURE 6 – Unfolding of the original image stream into a data matrix for S-mode PCA (left) and T-mode PCA 

(right) 
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3. The proposed methodology 

Different PCA variants were proposed in the literature 

to cope with the spatial, temporal or spatio-temporal 

information content of image data, e.g., in geospatial 

analysis and atmospheric science (Demsar et al., 

2013; Compagnucci et al., 2001; Jolliffe, 2002). The 

common approach is known as S-mode PCA (Jolliffe, 

2002), where image pixels are treated as variables 

(columns of the data matrix) and video frames as 

observations (rows of the data matrix). Therefore, in 

the S-mode PCA, the 3-dimensional array, 𝓤, is 

converted into a matrix 𝐗 ∈ ℝ𝐽×𝑝, where 𝑝 = 𝑀 × 𝑁 

(Fig. 6, left side). It is also known as “unfolded” (Yan 

et al., 2015) or “vectorised” (Grasso et al., 2014) 

PCA. 

The S-mode PCA captures the pixel correlation in 

space to determine how outlying is each frame with 

respect to the set of considered images (Compagnucci 

et al., 2001). However, the variation of the image 

pattern from frame to frame caused by the underlying 

process dynamics may mask the occurrence of local 

defects. As a matter of fact, the S-mode PCA 

approach lacks any spatial localization capability. 

Tensor-based PCA methods, e.g., the multi-linear 

PCA and the tensor rank-one decomposition (Yan et 

al., 2015; Lu et al., 2008a; Lu et al., 2008b) were 

proposed to overcome this limit. These methods avoid 

the unfolding operation shown in Fig. 6 by applying 

an higher-order variant of the PCA to the original 

multi-dimensional data array, 𝓤. The projected low-

dimensional tensor captures the most of overall data 

variability, which includes both spatial and temporal 

contributions. When applied to image data, these 

methods yield a synthetic control statistic, e.g., the 

Hotelling’s 𝑇2, that associates one value to each 

frame. This control statistic allows one to detect when 

a shift in the video frame sequence has occurred, but 

not where it is localized within the image. An 

alternative approach, known as T-mode PCA 

(Jolliffe, 2002; Tsutsumida et al., 2017), is aimed to 

achieve a defect spatial localization within the image. 

It converts the 3-dimensional array, 𝓤, into the matrix 

𝐗 ∈ ℝ𝑝×𝐽 (Fig. 6, right side), where the video frames 

are treated as variables (columns) and image pixels as 

observations (rows). In particular, the T-mode PCA 

allows capturing the temporal auto-correlation of 

pixel intensities over consecutive frames. The 

                                                 

† The ST-PCA nomenclature should not be confused 

with the stPCA proposed by Stahlschmidt et al., 

2015, where more than one variable is measured at 

projections of the original image data onto the first 

retained PCs belong to the image space, and hence 

they let a spatial localization of anomalous regions. 

Nevertheless, the spatial correlation information is 

lost, because the actual distance between the pixels of 

the image is not taken into account. In order to capture 

both the temporal and spatial auto-correlation of 

image data, we propose a spatially-weighted version 

of the T-mode PCA, called ST-PCA. Sub-section 3.1 

presents the ST-PCA methodology; sub-section 3.2 

describes the methods to iteratively update the ST-

PCA model as new frames become available; sub-

section 3.3 presents a k-means clustering-based alarm 

rule suitable for hot-spot detection in SLM process 

monitoring applications. 

3.1. Spatially weighted T-mode PCA 

(ST-PCA†) 

The underlying idea of a spatially weighted T-mode 

PCA consists of incorporating the pixel spatial 

correlation into the projection operation entailed by 

the T-mode PCA. Such spatial information can be 

incorporated into the PCA by defining a 𝑝 × 𝑝 spatial 

weight matrix, 𝐖. The (𝑘, ℎ)-th element of the 

matrix, 𝑤𝑘,ℎ, quantifies the spatial dependency 

between the k-th and h-th pixels (the higher the value, 

the higher the dependency).  

The use of spatial weights in the basic PCA was 

proposed by Wartenberg (1985) and Jombart et al. 

(2008), with applications in geostatistics (Harris et al. 

2015). When multivariate spatial data are monitored 

over time, Stahlschmidt et al. (2015) extended those 

methods and proposed computing a time average of 

the spatially weighted covariance matrices associated 

to different points in time, and applying an eigen-

decomposition of this average. Differently from the 

approach of Stahlschmidt et al. (2015), we introduce 

the spatial weights into the T-mode PCA formulation, 

where different points in time (i.e., the frames) are 

treated as variables, and the eigen-decomposition 

applies to the T-mode covariance matrix that already 

encloses the temporal auto-correlation information. 

The proposed ST-PCA works by applying the spectral 

decomposition to the weighted sample variance-

covariance matrix defined as 𝐒 = 1

𝑝−1
(𝐗 −

𝟏�̅�)𝑇𝐖(𝐗 − 𝟏�̅�), where 𝐗 ∈ ℝ𝑝×𝐽 is the data matrix 

of the T-mode PCA formulation (Fig. 6, right side) , 

different locations, and a time-averaged spatial 

covariance matrix is considered. 
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�̅� ∈ ℝ1×𝐽 is the sample mean vector and 𝟏 is a 𝑝 × 1 

vector of ones.  

The matrix 𝐒 is a quadratic form whose 

decomposition into orthogonal components via 

eigenvector analysis has a closed analytical solution, 

being 𝐖 a symmetric weighting matrix (Koren and 

Carmel, 2004). This allows projecting the image data 

onto a new coordinate system while preserving the 

spatial correlation between the locations. The i-th 

loading, 𝒗𝑖 ∈ ℝ𝐽, 𝑖 = 1, … , 𝑝, is a vector of length 𝐽 

that associates a temporal weight to each frame. Thus, 

each PC is a linear combination of points in time (i.e., 

the frames). The j-th score, 𝒛𝑗 ∈ ℝ𝑀×𝑁, 𝑗 = 1, … , 𝐽, is 

a matrix of the same size of the original images, and 

hence it encloses the spatial information associated to 

each PC. The selection of the number, 𝑚 < 𝐽, of most 

relevant PCs follows the same principle of the 

traditional PCA (Jolliffe, 2002). In particular, 𝑚 can 

be selected by setting a threshold on the cumulative 

variance explained by the retained PCs. This simple 

approach allows comparing in a fair way different 

PCA-based methods being equal the percentage of the 

explained variance.  

Three different spatial weight definitions were 

considered and compared in this study, indicated by 

the matrices W1, W2 and W3, and defined as follows: 

W1: {𝑤𝑖,𝑗 = 1/𝑑𝑖,𝑗
2 } 

W2: {𝑤𝑖,𝑗 = 1 𝑖𝑓 𝑑𝑖,𝑗 ≤ 𝑟, 𝑤𝑖,𝑗

= 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} 

W3: {𝑤𝑖,𝑗 = (1 − 𝑑𝑖,𝑗/𝑟2)2 𝑖𝑓 𝑑𝑖,𝑗 ≤ 𝑟, 𝑤𝑖,𝑗

= 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} 

(1) 

where 𝑑𝑖,𝑗 is the Euclidean distance between the i-th 

and j-th pixels of the image, and 𝑟 is a reference 

distance threshold. The weight definitions in W2 and 

W3 are also known an box-car and bi-square kernel 

functions, respectively (Harris et al., 2014, 2015). 

They are discontinuous functions commonly used in 

geographically weighted models (Harris et al., 2011; 

Harris et al., 2014; Gollini et al., 2015; Demsar et al., 

2012), which set weights to zero at distances longer 

than 𝑟 (in this study, 𝑟 = 5). The weight definition in 

W1 involves a continuous weight decrease 

proportional to the square of the inter-pixel distance. 

The bi-square kernel (W3) couples a decaying weight 

formulation with a discontinuity at the pre-defined 

value 𝑟. The elements on the main diagonal of 𝐖 are 

set to zero (𝑤𝑘,𝑘 = 0) and the weights, 𝑤𝑘,ℎ, are 

scaled to sum to 1 (Wartenberg, 1985). In the rest of 

the paper, the term ST-PCA(W𝑖) will be used to 

denote the adoption of the i-th spatial weight matrix 

formulation defined in Equation 1. 

It is worth noticing that introducing a spatial 

weighting into the eigen-decomposition entailed by 

the ST-PCA can be regarded as a special case of 

kernel PCA (Scholkopf et al., 1997) where the kernel-

based transformation is aimed at capturing the spatial 

closeness of pixels within the image.  

In this study, we propose using the Hotelling’s 𝑇2 

statistic just as a synthetic index to describe the 

information content along the most relevant 

components of the image data within the 𝐽 acquired 

frames. The adoption of the 𝑇2 statistic to synthetize 

the information is similar to the approach proposed by 

Lin and Chiu (2006), although we envisage a different 

PCA formulation and use. Analogously to the T-mode 

formulation, this statistic is such that 𝑇𝑖
2 ∈ ℝ𝑀×𝑁, 𝑖 =

1, … , 𝑝 and it is defined as follows: 

𝑇2(𝑚, 𝑛) = 𝑇𝑖
2 = ∑

𝑧𝑗,𝑖
2

𝜆𝑗

𝑚

𝑗=1

, 𝑖 = 1, … , 𝑝 (2) 

where 𝜆𝑗 is the j-th eigenvalue and (𝑚, 𝑛) are the i-th 

pixel coordinates. The 𝑇2(𝑚, 𝑛) associates one 𝑇2 

value to each pixel location. Areas of the image 

characterized by different temporal auto-correlation 

patterns will result in different levels of the 𝑇2(𝑚, 𝑛) 

statistic. This provides a capability of locating 

anomalous patterns that exploits both the temporal 

and spatial dependencies in the image stream. 

Moreover, contrary to the T-mode PCA, every 

possible arrangement of the image pixels in one row 

of the 𝐗 matrix yields the same spatial pattern of the 

𝑇2(𝑚, 𝑛), thanks to the enclosure of the spatial 

correlation information into the statistic estimation. 

3.2. Iterative updating  

In order to combine the spatial defect localization 

with the ability to monitor the stability of the process 

over time, the ST-PCA must be iteratively updated as 

new frames (or batches of frames) become available. 

Recursive and moving window PCA updating 

schemes were proposed to cope with non-stationary 

process patterns (De Ketelaere et al., 2015). However, 

they are usually combined with the traditional (S-

mode) PCA implementation. In this section, we 

briefly review their application to the ST-PCA.  

The recursive updating approach was originally 

proposed by Wold (1994) and Gallagher et al. (1997), 

and a computationally efficient algorithm was 

proposed by Li et al. (2000). The underlying idea 

consists of augmenting the data matrix by including 
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any new observation, unless an out-of-control state is 

detected, and the PCA model and the control chart 

parameters are updated accordingly. In the ST-PCA 

framework, let 𝐗1:𝑝,1:𝑗 be the data matrix that includes 

𝑗 frames (columns). When a new frame becomes 

available, the data matrix is augmented to 𝐗1:𝑝,1:𝑗+1 

and an ST-PCA model based on this data-matrix is 

computed. If the pattern of the resulting synthetic 

statistic, 𝑇2(𝑚, 𝑛), is judged in-control (see sub-

section 3.3 for a discussion on the alarm rule), the 

procedure is repeated for the following frame, 

otherwise an alarm is signalled. Thus, differently 

from the traditional recursive approach, the number of 

columns is iteratively updated instead of the number 

of rows. A schematic representation of this approach 

is shown in Fig. 7a. 

 

FIGURE 7 – Schematic representation of a recursive 

(a) and moving window (b) updating scheme 

combined with the ST-PCA 

The moving window updating approach works by 

restricting the observations used in the estimation of 

the PCA model to those included into a window of 

most recent acquisitions (Wang et al., 2005; De 

Ketelaere et al., 2015). The underlying idea consists 

of iteratively augmenting the data matrix by including 

the new observation and by discarding the oldest one, 

keeping fixed the size, 𝐿, of the moving window. In 

the ST-PCA framework, let 𝐗1:𝑝,𝑗−𝐿+1:𝑗 be the data 

matrix that includes the 𝐿 most recent frames 

(columns). When a new frame becomes available, the 

moving window is shifted such that the ST-PCA is 

applied to 𝐗1:𝑝,𝑗−𝐿+2:𝑗+1. If the pattern of the 

synthetic 𝑇2(𝑚, 𝑛) statistic is judged in-control, the 

procedure is repeated for the next frame, otherwise an 

alarm is signalled. A schematic representation of this 

approach is shown in Fig. 7b. 

Both the recursive and the moving window approach 

can be applied either to update the ST-PCA for each 

new frame or for a batch of newly acquired frames. 

The latter solution may be more convenient to cope 

with real-time computational constraints in the 

presence of high-speed videos. However, the larger is 

the size of the batch, the larger will be the delay in 

detecting a possible out-of-control state, as in the use 

of batching for traditional control charts. The 

advantage of the moving window updating scheme 

consists of keeping constant the computational cost 

during the entire process, but its performances may 

depend on the selection of the window length, 𝐿. In 

this study, we compare the two methods combined 

with the ST-PCA and we provide some advices to the 

practitioner on their practical use in Section 5.  

As far as the basic (or S-mode) PCA formulation is 

concerned, some authors proposed computationally 

efficient algorithms to recursively update the eigen-

decomposition. As an example, Li et al. (2000) 

introduced a recursive PCA update based on rank-one 

modification and Lanczos tridiagonalization, whereas 

Wang et al. (2005) proposed the so-called fast moving 

window PCA. These methods are applicable to the S-

mode PCA, where the number of variables (i.e., the 

pixels) is kept constant, and the number of 

observations (i.e., the acquired frames) grows over 

time. Their extension to the T-mode PCA, where the 

number of variables (i.e., the acquired frames) grows 

over time, is more challenging and requires further 

research developments, although it represents a 

relevant issue to enable a faster and more efficient 

real-time implementation of T-mode and ST-PCA 

methodologies. 

3.3. K-means clustering-based alarm 

rule 

In this sub-section, we briefly review an automated 

alarm rule based on spatial clustering that encloses 

engineering knowledge about the SLM process. For 

more details, we refer the interested reader to Grasso 

et al. (2017).  

The alarm rule is aimed at automatically detecting and 

localizing the existence of hot-spots in the 𝑇2(𝑚, 𝑛) 

pattern. The k-means algorithm represents an 

effective and popular technique to segment a dataset 

into 𝑘 groups characterized by maximum within 
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similarity (Hastie et al., 2009).  In this case, the k-

means algorithm is applied to the 𝑇2(𝑚, 𝑛) spatial 

pattern by relying on the following assumption: under 

in-control conditions, only two clusters are expected, 

one corresponding to background pixels and one 

corresponding to the normal melting area (as 

discussed in Section 2). In the presence of a hot-spot, 

an additional cluster is expected, as a symptom of an 

out-of-control state. Therefore, the k-means 

clustering is applied to the 𝑇2(𝑚, 𝑛) values by 

iteratively setting an increasing number 𝑘 of clusters. 

A so-called “cluster validity” criterion is applied to 

automatically select the “correct” number of clusters 

that better explain the data partition (Zhao et al. 2009; 

Hastie et al. 2009). Then, the monitoring statistic 

simply consists of the number of clusters, 𝑘, that, 

accordingly to the aforementioned criterion, better fits 

the 𝑇2(𝑚, 𝑛) pattern. If 𝑘 = 2 the process is judged 

in-control, otherwise, when 𝑘 > 2, an alarm is 

signalled. Despite being an “unconventional” SPM 

approach, such clustering-based alarm rule exploit 

engineering knowledge about the SLM process. 

Indeed, the in-control and out-of-control number of 

clusters have a physical interpretation from the 

production process viewpoint, and this interpretation 

allows designing an alarm rule for SLM processes 

whose dynamics may continuously change from layer 

to layer (depending on the geometry of the part) and 

from part to part (e.g., in the presence of customized 

and one-of-a-kind products). 

A method for the selection of the number 𝑘 consists 

of looking for an elbow point in the sums of squared 

within-distances (SSWs) of the 𝑇2(𝑚, 𝑛) values of 

pixels belonging to each cluster and their mean value 

in the cluster, for different numbers 𝑘. The 𝑆𝑆𝑊(𝑘) 

index is computed as follows: 

𝑆𝑆𝑊(𝑘) = (1/𝑘) ∑ ∑ (𝑇2(𝑚, 𝑛)𝑐𝑙

(𝑚,𝑛)∈𝑐𝑙

𝑘

𝑙=1

− 𝑇2̅̅̅̅
𝑐𝑙

)
2

, 𝑘 = 1,2, … 

(

(3) 

where 𝑇2(𝑚, 𝑛)𝑐𝑙
 is the 𝑇2 value of the (𝑚, 𝑛)-th 

pixel belonging to the 𝑐𝑙 cluster and 𝑇2̅̅̅̅
𝑐𝑙

 is the mean 

𝑇2 value of the corresponding cluster. 𝑆𝑆𝑊(𝑘) is a 

monotone decreasing function of the number of 

clusters 𝑘, and its elbow identifies the number 𝑘 such 

that a further partition does not significantly improve 

the clustering result. The 𝑆𝑆𝑊(𝑘) index is divided by 

𝑘 in order to penalize the so-called “over-

segmentation”, i.e., the selection of too many clusters. 

This penalization is driven by the knowledge that only 

two clusters are sufficient to characterize the in-

control pattern.  

It is worth noticing that the 𝑆𝑆𝑊(2), i.e., the SSW 

statistic estimated when 𝑘 = 2 clusters are assumed 

to be present, may represent by itself a control statistic 

for alarm rule development. Indeed, the larger is 

𝑆𝑆𝑊(2), the higher is the probability that more than 

two clusters exist. Nevertheless, the estimation of a 

control limit for this statistic can be challenging in 

practice, due to the lack of an actual training phase, as 

the process dynamics continuously change. Anyway, 

future analysis may be envisaged to address this 

possible variant of the proposed method. 

4. Simulation analysis 

In order to investigate the benefits of including the 

spatial correlation information into the T-mode PCA 

formulation, a simulation analysis was carried out by 

artificially injecting hot-spot events of different 

duration and size into a real image stream. The 

reference high-speed video used for this analysis is a 

150 fps video-sequence acquired during the SLM of a 

cylindrical shape of diameter ∅ = 16 mm. The video-

sequence was acquired during the realization of one 

layer by using the setup shown in Fig. 8 (see Section 

5 for details on the experimentation).

 



 

 

11 

 

 

FIGURE 8 – Examples of video frames during the SLM of a cylindrical part  

 

FIGURE 9 – Example of pixel-intensity times series in the presence of a real hot-spot in OOC scenario 1 (left 

panel) and example of pixel-intensity time series with simulate hot-spot of duration 𝜏 = 75 (right panel) 

 

Fig. 8 shows an example of a subset of video frames, 

before injecting the hot-spot. This image stream is 

representative of an in-control process, where no 

anomalous behaviour was observed, the final quality 

of the part was acceptable and all the considered 

competitor techniques yielded no alarm. 

Hot-spot events were simulated by modifying the 

pixel intensity of a number 𝑛 of adjacent pixels for a 
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given duration, 𝜏. Three levels of hot-spot size were 

considered, corresponding to 𝑛 = 9 (small), 𝑛 = 20 

(medium) and 𝑛 = 45 (large).  

The hot-spot consists of a saturated intensity 

(𝑢𝑚,𝑛,𝑗 = 255) for several consecutive frames 

followed by a slow cooling transitory (i.e., a pixel 

intensity decrease) to the average background 

intensity. A sigmoid function was used to generate 

this pattern, accordingly to the following expression: 

𝑢𝑚,𝑛,𝑗(𝜏) = 255/(1 + exp(0.2(𝑗 − 0.95𝜏)) ,

𝑗 = 1, … , 𝜏 

(4) 

Expression (4) generates a realistic hot-spot pattern 

over time. As an example, Fig. 9 (right panel) shows 

a pixel-intensity time-series pattern with a simulated 

hot-spot of duration 𝜏 = 75 frames, compared with a 

pattern produced by a real hot-spot in OOC scenario 

1 (Fig. 9, left panel).  

Fig. 10 shows three examples of a single frame where 

the hot-spot was injected at three different sizes. 

Cross-shaped hot-spots were simulated at medium 

and large sizes to make them more easily visible in 

the figures also when displayed in black and white. 

Anyway, we observed that the shape of the hot-spot 

does not affect the results of the analysis.  

 

 

FIGURE 10 – Examples of one single frame where an hot-spot event of different sizes were injected (arrows 

indicate the spatial location of the hot-spot) 

 

Hot-spot events were randomly injected in 100 

different locations of the image, starting from the 51st 

frame. For each hot-spot location and size, the 

duration 𝜏 was varied in the range 𝜏 ∈ [1, 180].  

Sub-section 4.1 first presents a discussion on the 

performances of a tensor-based PCA approach 

applied to this simulation study. Sub-section 4.2 

presents a more in-depth comparison between the hot-

spot detection performances provided by the T-mode 

PCA and the ST-PCA. 

4.1. A comparison against tensor-based 

PCA 

The multilinear PCA proposed by Lu et al., (2008a) 

was used in this study as representative of tensor-

based PCA methodologies that allow extending the S-

mode PCA by capturing both spatial and temporal 

information. It works by determining a multilinear 

transformation that maps the original tensor space 

ℝ𝑀×𝑁×𝐽 into a tensor subspace ℝ𝑃1×𝑃2×𝐽 with 𝑃1 <

𝑀 and 𝑃2 < 𝑁, where 𝑀 and 𝑁 are the dimensions of 

the video frames. 𝑃1 and 𝑃2 are the number of PCs 

retained to capture a given percentage of data 

variability along the “first mode” (size 𝑀) and 

“second mode” (size 𝑁) of the original data tensor. 

For a detailed description of the method we refer the 

reader to Lu et al., (2008a). An approximate approach 

for dimensionality reduction consists of truncating the 

first and second mode eigenvectors beyond the (𝑃1)𝑡ℎ 

and (𝑃2)𝑡ℎsuch that the retained fraction of the data 

variability in each mode is equal to a given 

percentage. This method is an extension of the 

dimensionality reduction strategy of the regular PCA 

to the multi-linear case (Grasso et al., 2014). The 

Hotelling’s 𝑇2 statistics can then be use to synthetize 

the information content along the retained PCs. This 

statistic associates one value to each frame, and hence 

the alarm rule described in Section 3 is not applicable. 

A more traditional 𝑇2 control chart can be designed 

instead. The following approach was used in this 

study: the first 𝐾 frames of the current in-control 
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video-sequence were used to estimate the multilinear 

PCA parameters and to design the 𝑇2 control chart‡ 

with empirical control limit (by default we set the 

Type I error 𝛼 = 0.0027). Then, either the recursive 

or moving window schemes were applied to update 

the multilinear PCA model and the control limit 

estimation as new frames deemed in-control were 

acquired. We set 𝐾 = 50 frames to initiate the control 

chart design, because hot-spot injection always 

started at the 51st frame in our simulation analysis.  

The T-mode PCA and the ST-PCA were coupled with 

the clustering-based alarm rule described in Section 

3, by using either a recursive or a moving window 

updating scheme. In the latter case, for all the tested 

methods, a window size 𝐿 = 50 was applied. Too 

small window sizes may compromise the capability 

of capturing the intrinsic behaviour of the process, 

but, on the other hand, too large window sizes may 

reduce the computational benefit with respect to the 

recursive updating scheme. In the present analysis, 

𝐿 = 50 was selected as a reasonable compromise 

between these two issues. However, a sensitivity 

analysis was carried out and its results are discussed 

in Section 5. 

In order to guarantee a fair comparison between the 

competitor approaches, the number of retained PCs, 

𝑚, for the estimation of the Hotelling’s statistic was 

selected by setting the same threshold on the 

percentage of expected variance. It was observed that, 

especially in the simple T-mode PCA, the number of 

PCs to explain even 50% of the overall variability was 

quite large. Thus, comparisons were made by 

considering two levels of explained percentage, one 

at 50% and a more conservative one at 80%. In the 

multilinear PCA, the same threshold was applied on 

the variability explained in both the modes (Grasso et 

al., 2014).  

Table 2 shows the performances of the competing 

methods when applied to the in-control video 

sequence, where no hot-spot injection was applied. 

The approaches based on the T-mode and the ST-PCA 

(coupled with any spatial weight matrix defined in 

Section 3) yielded no alarm, whereas the multilinear 

PCA-based approach issued alarms with both the 

recursive and the moving window updating methods. 

As an example, Fig. 11 shows the multilinear PCA-

based control charts with explained variance 

threshold at 50% where the first alarm was issues at 

frame 𝑗 = 79 in recursive updating mode (left panel) 

and at frame 𝑗 = 100 in moving window updating 

mode (right panel). 

 

TABLE 2 – Performances of the competitor methods in the presence of the in-control video-sequence  

Update approach % explained variance Run Length (# frames) 

Multilinear PCA T-mode PCA ST-PCA 

Recursive 50% 79 No alarm No alarm 

80% 84 No alarm No alarm 

Moving window (𝐿 =
50) 

50% 100 No alarm No alarm 

80% 100 No alarm No alarm 

 

The result in Table 2 highlights the lower robustness 

of the multilinear PCA-based approach to the natural 

frame-to-frame variability caused by the SLM 

process dynamic. In order to compare the three 

methods being equal the in-control performances, the 

type I error, 𝛼, used in the multilinear PCA-based 

control chart was iteratively reduced until no alarm 

was issued in the in-control video-sequence. This 

yielded to 𝛼 < 0.0001 in all the considered 

implementations. Then, the multilinear PCA-based 

                                                 

‡ Notice that it is a common practise to monitor not 

only the 𝑇2 statistic, but also the sum of prediction 

errors along directions orthogonal to the retained 

ones; however, for a fair comparison against the T-

control chart was applied to the out-of-control 

scenarios. The result was that no alarm was issued at 

any hot-spot severity level. This further result 

highlights the lower sensitivity of the multilinear 

PCA-based method to local out-of-control events that 

affect a very limited region of the frame. Indeed, the 

natural process dynamic tends to mask the occurrence 

of local out-of-controls, which reduces the 

effectiveness of traditional monitoring tools. 

mode PCA and ST-PCA based approaches, only 

the 𝑇2 control chart was considered for the 

multilinear PCA too. 
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FIGURE 11 – Examples of 𝑇2 control charts based 

on multilinear PCA applied to the in-control video-

sequence (left panel: recursive update, 50% 

explained variance; right panel: moving window 

update, 𝐿 = 50, 50% explained variance) 

4.2. Comparison between T-mode PCA 

and ST-PCA 

Fig. 12 shows the number of PCs for the T-mode PCA 

and the ST-PCA(W1)§ corresponding to 50% and 80% 

of explained variability, when the analysis was 

applied to the original video (no hot-spot).  

Fig. 12 shows that the ST-PCA is always more 

efficient than the T-mode PCA in terms of number of 

PCs needed to explain a given percentage of variance. 

In the T-mode PCA, at the end of the process, more 

                                                 

§ Other definitions of the weight matrices for the use 

in the ST-PCA yielded very similar numbers of 

retained PCs. 

than 50 PCs are needed to explain about 50% of the 

overall variability, whereas in the ST-PCA slightly 

more than 10 PCs are sufficient to capture 80% of the 

variability. This is a first major advantage of the ST-

PCA formulation against the basic T-mode PCA. Fig. 

12 also shows that the moving window updating 

scheme allows avoiding a continuous increase of the 

number of retained PCs, 𝑚, because the PCA always 

applies to a batch of frames of fixed dimension, with 

consequent benefits in terms of computational costs. 

Fig. 13 and Fig. 14 show two examples of a 

comparison of k-means clustering results when the 

explained variance threshold is set at 50% and the two 

different updating schemes are used. Both Fig. 13 and 

Fig. 14 refer to a simulation run where the hot-spot 

centroid was located approximately at pixel 

coordinates 𝑋 = 70 and 𝑌 = 40, for different values 

of 𝜏 (i.e, the 𝜏 corresponding to a first signal from the 

ST-PCA based approach). 

The closeness of the hot-spot to the normal melting 

zone is representative of real conditions, as the hot-

spot originates just after the transition of the laser spot 

over the critical area. Fig. 13 compares the k-means 

clustering results for the T-mode PCA and the ST-

PCA(W1)  when the recursive updating scheme was 

used.  The black area corresponds to the cluster of 

background pixels, the grey area to the “normal 

melting” cluster and the red area to the “hot-spot” 

cluster. Fig. 13 shows that, for the considered values 

of 𝜏, only the ST-PCA(W1) allows signalling and 

localizing the hot-spot. This is made possible thanks 

to a wider gap between the 𝑇2(𝑚, 𝑛) values in the hot-

spot region and the ones in the normal melting region. 

Indeed, the inclusion of the spatial correlation 

information enhances the identification of regions of 

adjacent clusters that exhibit anomalous intensity 

patterns. 

Fig. 14 compares the k-means clustering results for 

the T-mode PCA and the ST-PCA(W1) when the 

moving window updating scheme was used with 𝐿 =
50. In this case, the T-mode PCA allows detecting 

only the medium and large size hot-spots. This 

confirms the enhanced power of the ST-PCA to 

anticipate the detection of this kind of events. 

The general results of the simulation analysis are 

shown in Fig. 15 and summarized in Table 3. The T-

mode PCA and the ST-PCA were compared by using 
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as performance indicator the average run length 

(ARL), expressed in number of frames. For sake of 

clarity, Fig. 15 shows a comparison of the 95% 

confidence intervals of the ARL for the T-mode PCA 

and ST-PCA(W1) only, when the first 𝑚 PCs explain 

at least 50% of the overall variability. The complete 

results are shown in Table 3. 

 

FIGURE 12 – Comparisons between the number of PCs retained by using the T-mode or the ST-PCA (W1) for 

different levels of explained variance and different iterative updating methods  

 

FIGURE 13 – Comparison of k-means clustering results for the T-mode and ST-PCA (W1) based methods – 

recursive updating scheme and explained variance threshold at 50% 
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FIGURE 14 – Comparison of k-means clustering results for the T-mode and ST-PCA(W1) based methods – 

moving window (𝐿 = 50) updating scheme and explained variance threshold at 50% 

 

FIGURE 15 – 95% confidence intervals of the ARL for the T-mode and ST-PCA-based methods; results obtained 

by applying the recursive updating scheme (left panel) and the moving window updating scheme (right panel) 
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TABLE 3 – Summary of simulation analysis results (bold fonts indicate the best performances in terms of ARL) 

Update 
approach 

% explained 
variance 

Hot-spot size ARL (# frames) 

T-mode PCA ST-PCA (W1) ST-PCA (W2) ST-PCA (W3) 

Recursive 50% Small 149.79 (47.94) 45 (1.74) 45.05 (1.81) 45.05 (1.81) 

Medium 127.90 (14.86) 35.15 (0.86) 34.80 (1.32) 34.80 (1.41) 

Large 57.30 (4.44) 31.45 (2.39) 26.95 (2.74) 26.75 (2.60) 

80% Small No alarm 122.02 (3.34) 115.50 (5.48) 116.60 (6.89) 

Medium No alarm 49.90 (15.14) 50.95 (12.65) 52.20 (12.38) 

Large No alarm 38.10 (8.22) 39.05 (8.70) 39.85 (9.57) 

Moving 
window  
(𝐿 = 50) 

50% Small 45.40 (1.54) 39.95 (0.50) 39.95 (0.50) 39.95 (0.50) 

Medium 43.60 (2.57) 39.60 (1.36) 39.60 (1.36) 39.60 (1.36) 

Large 37.65 (3.29) 34.90 (0.70) 34.90 (0.70) 34.90 (0.70) 

80% Small No alarm No alarm No alarm No alarm 

Medium No alarm 38.70 (9.79) 47.40 (8.57) 47.10 (11.64) 

Large No alarm 35.75 (3.65) 37.05 (6.56) 37.15 (7.12) 

 

As expected, the larger is the size of the hot-spot, the 

faster is its detection with both the compared 

methods. However, Fig. 15 shows that the ST-PCA-

based approach allows anticipating the defect 

detection with respect to the T-mode based approach, 

by using both a recursive or a moving window 

updating. As far as the recursive update is concerned, 

the T-mode based approach requires a longer time to 

signal the hot-spot (more than 120 frames in the 

presence of a small or medium hot-spot), whereas the 

ST-PCA-based approach always signals the out-of-

control condition with ARL< 50 frames. This is 

caused by the fact that the T-mode PCA is less 

efficient in terms of dimensionality reduction and 

only a small number of first T-mode PCs are affected 

by the hot-spot. Therefore, the hot-spot effect on the 

𝑇2(𝑚, 𝑛) statistic is mitigated by the presence of a 

large number of unaffected PCs. In the ST-PCA, 

instead, a lower number of PCs is retained, and the 

presence of the hot-spot affects most of them, which 

is a consequence of making a better use of the spatial 

auto-correlation information. This yields a faster 

detection, even when the size of the hot-spot is small. 

The performances of the T-mode improved by using 

a moving window updating scheme. This is caused by 

two reasons: first, the number of retained PCs is much 

lower than in the recursive case and it does not grow 

over time, which reduces the mitigation effect caused 

by the several PCs not affected by the hot-spot. 

Second, by discarding older frames where no hot-spot 

was present, it is possible to inflate the effect of the 

hot-spot itself. This effect becomes maximum when 

the hot-spot affects all the frames included into the 

time window. Therefore, the hot-spot can be either 

detected within a maximum time period equal to the 

window size (i.e., ARL≤ 𝐿), or not detected at all. 

Table 3 shows that the T-mode based approach allows 

detecting the hot-spot only by setting the threshold of 

explained variance for the selection of 𝑚 at 50%. 

When the threshold is set at 80%, the T-mode PCA 

never yields an alarm. Indeed, the ratio of PCs 

affected by the hot-spot over the non-affected ones 

becomes very small with a consequent reduction of 

the 𝑇2(𝑚, 𝑛) sensitivity. The threshold at 80% 

reduces the performances of the ST-PCA based 

approach as well, but at a lower extent. When the 

recursive update is used, the hot-spot is always 

detected by using the ST-PCA, although after a longer 

duration. When the moving window update is used, 

instead, the ST-PCA based approach is able to detect 

only a hot-spot of medium or large dimensions. This 

is caused by the fact that a window size 𝐿 = 50 is too 

small for the lowest severity out-of-control condition: 

a larger window size or a recursive technique would 

be needed. 

Regarding the different spatial weight definitions, 

Table 3 shows that the weights W1, W2 and W3 

provide analogous results, which highlights the 

robustness of the ST-PCA-based method with respect 

to how spatial weights are defined.  

5. Experimental results 

5.1. Comparison study 

The proposed approach was compared against two 

alternative methods described in Grasso et al. (2017). 

The first competitor represents the most intuitive and 

simplest method to detect out-of-control states in 

video images. It consists of monitoring directly the 

average pixel intensities of the image stream. For each 

pixel, the mean intensity over the 𝐽 observed frames 

is computed, �̅� = {�̅�𝑚,𝑛 = (1/𝐽) ∑ 𝑢𝑚,𝑛,𝑗𝑗 }, and the 



 

 

18 

 

clustering-based alarm rule is applied to �̅�. The 

second competitor is the simple T-mode PCA-based 

approach. All the methods were tested by using either 

the recursive or the moving window updating scheme. 

In this latter case, a default length of the moving 

window 𝐿 = 50 was considered, but the results of a 

sensitivity analysis with respect to this parameter are 

discussed in sub-section 5.2. The T-mode PCA and 

ST-PCA were compared by retaining the number 𝑚 

of PCs that captured at least 80% of the overall 

variability.  

Fig. 16, Fig. 17 and Fig. 18 show the results of the T-

mode PCA and ST-PCA based methods for the three 

OOC scenarios, when the recursive updating scheme 

was used. In particular, they show the estimated 𝑇2 

statistic when a hot-spot alarm signal was issued. 

Although the 𝑇2(𝑚, 𝑛) values from different PCA 

formulations belong to different scales, the colormap 

on the left and central panels was set in order to keep 

a similar range of colours. The right panels of Fig 16, 

17 and 18, instead, use black, grey and red colours to 

represent the background, normal melting and hot-

spot areas (when detected), respectively.  

The overall results of all the compared methods are 

eventually shown in Table 4. Additional information 

about the dataset and the nature of the signalled events 

are discussed in Appendix A. 

 

 
FIGURE 16 – Results of T-mode and ST-PCA based methods with recursive updating in OOC scenario 1, 𝑗 = 40 

(first hot-spot detection) 
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FIGURE 17 – Results of T-mode and ST-PCA based methods with recursive updating in OOC scenario 2, 𝑗 = 94 

(first hot-spot detection) 

 
FIGURE 18 – Results of T-mode and ST-PCA based methods with recursive updating in OOC scenario 3, 𝑗 =

164 (first hot-spot detection) 
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TABLE 4 – Results of compared methods in the IC scenario and OOC scenarios 1, 2 and 3 

Approach 
Time of first signal 

(frame index) 

Signalled defect 
area  

(# pixels) 

Signalled defect 
location (X) 

(pixels) 

Signalled defect 
location (Y) 

(pixels) 

OOC Scenario 1 

Average 
intensity 

Recursive No detection - - - 

Mov. window No detection - - - 

T-mode PCA 
Recursive 𝑗 = 201 79 106.27 52.28 

Mov. window 𝑗 = 198 101 104.25 52.71 

ST-PCA 
Recursive 𝒋 = 𝟒𝟎 15 110.60 52.40 

Mov. window 𝒋 = 𝟒𝟎 15 110.60 52.40 

OOC Scenario 2 

Average 
intensity 

Recursive 𝑗 = 144 193 74.86 53.81 

Mov. window No detection - - - 

T-mode PCA 
Recursive 𝑗 = 95 219 74.95 54.49 

Mov. window No detection - - - 

ST-PCA 
Recursive 𝑗 = 94 231 74.29 55.80 

Mov. window 𝒋 = 𝟗𝟐 243 74.81 55.98 

OOC Scenario 3 

Average 
intensity 

Recursive No detection - - - 

Mov. window 𝑗 = 173 273 33.88 55.73 

T-mode PCA 
Recursive 𝑗 = 169 482 41.90 56.59 

Mov. window 𝑗 = 168 151 31.19 56.25 

ST-PCA 
Recursive 𝑗 = 164 131 30.31 56.94 

Mov. window 𝒋 = 𝟏𝟓𝟑 168 29.21 55.75 

In OOC scenario 1 (Fig. 16), the first alarm was 

signalled at frame 𝑗 = 40 by the ST-PCA based 

approach, in correspondence of a first short-duration 

hot-spot occurrence in the defective acute corner of 

the triangular shape. In the same scenario, the T-mode 

PCA yields a local peak of the 𝑇2(𝑚, 𝑛), but it is not 

sufficient to signal an alarm by means of the 

clustering-based rule. Indeed, the T-mode PCA based 

approach allows signalling the hot-spot only at frame 

𝑗 = 201 (when the recursive update is used), i.e., 

when the hot-spot becomes much more severe in 

terms of both size and duration (see also Appendix A). 

The improved performances provided by the ST-PCA 

result from a better characterization of both the spatial 

and temporal correlation of pixel intensity profiles. In 

correspondence of the hot-spot, even when it is 

limited in size and intensity, the ST-PCA inflates the 

local peak of the 𝑇2(𝑚, 𝑛) statistic by taking into 

account the spatial closeness of the pixels within the 

defective region, which enhances the capability of 

signalling that region as an additional cluster. In OOC 

scenarios 2 and 3 (Fig. 17 and Fig. 18), the hot-spot 

covers a larger area but, at least at the beginning of 

the process, its duration is too short for an early 

detection. However, the ST-PCA yields a faster 

detection also in these two additional scenarios, even 

if the gap between the performances of the methods 

based on the two PCA variants is smaller than in 

scenario 1. Table 4 summarizes the performances of 

all the compared methods in terms of i) time of first 

detection, ii) area of the signalled OOC cluster and iii) 

coordinates of its centroid.  

The latter two information allows one to compare the 

results not only in terms of time to signal, but also in 

terms of hot-spot localization (centroid coordinates) 

and size. 

The simple method based on monitoring the average 

pixel intensities is the less effective one, as it is not 

able to signal the hot-spot in some cases, or, in other 

cases, it yields the larger detection delay among the 

compared methods. The ST-PCA based approach 

outperforms the two competitors thanks to an 

anticipated defect detection capability in OOC 

scenario 1. In scenario 2, the T-mode PCA is able to 

signal the hot-spot only when coupled with a 

recursive updating scheme. In scenario 3, the T-mode 

PCA based approach with recursive update signals a 

defective area that is more elongated along the X 

direction than the actual hot-spot. This is caused by 

the worst hot-spot localization provided by the 

corresponding 𝑇2(𝑚, 𝑛) statistic compared with the 

same statistic originated by the ST-PCA in the same 

scenario (see Fig. 18).  



 

 

21 

 

Generally speaking, the ST-PCA based approach is 

not only faster in detecting the defect, but it is also the 

only method that leads to an alarm in all the 

considered OOC scenarios, regardless of the iterative 

updating scheme. The recursive and the moving 

window (𝐿 = 50) updating methods, coupled with the 

ST-PCA, provide quite similar performances. A 

sensitivity analysis with respect to the parameter 𝐿 is 

discussed in the following sub-section. 

5.2. Sensitivity analysis 

Table 4 showed that the moving window updating 

scheme with window length 𝐿 = 50 is not only more 

computationally efficient but also comparable to the 

recursive approach in terms of defect detection 

power. However, the performances may be 

influenced by the choice of the parameter 𝐿. A 

sensitivity analysis was performed to investigate this 

effect. The moving window ST-PCA based approach 

was tested with different window lengths and the 

results are summarized in Table 5.  

In all the considered cases, the results are quite robust 

to the choice of the parameter 𝐿,  as the hot-spot is 

detected with similar delays and no false alarms are 

produced even in the presence of small values of 𝐿. 

Generally speaking, small moving window lengths 

may filter out longer process dynamics with 

detrimental effects on the characterization of the 

temporal auto-correlation of pixel profiles. On the 

other hand, large moving window lengths provide no 

computational benefit against the recursive updating 

scheme. Thus, a trade off between these two effects 

should drive the selection of the parameter 𝐿,  from a 

practical implementation viewpoint. 

TABLE 5 – Sensitivity of the proposed ST-PCA based approach to the moving window length in OOC scenario 1, 

2 and 3 

Size of moving 
window (𝐿) 

Time of first signal  
(frame index) 

Signalled defect area  
(# pixels) 

Signalled defect 
location (X) (pixels) 

Signalled defect 
location (Y) (pixels) 

OOC scenario 1 

20 𝑗 = 40 11  110.36 52.10 
30 𝑗 = 40 12 110.50 52.00 
50 𝑗 = 40 15 110.60 52.40 
70 𝑗 = 40 15 110.60 52.40 

OOC Scenario 2 

20 𝑗 = 88 174 74.25 56.31 
30 𝑗 = 89 180 74.55 56.24 
50 𝑗 = 92 243 74.81 55.98 
70 𝑗 = 92 243 74.33 55.62 

OOC Scenario 3 

20 𝑗 = 166 204 27.33 57.03 
30 𝑗 = 152 197 27.71 56.53 
50 𝑗 = 153 168 29.21 55.75 
70 𝑗 = 168 156 29.21 56.33 

5.3. Computational costs and 

implementation guidelines 

Both the T-mode PCA and ST-PCA required about 

0.15 ÷ 0.30 𝑠 on a computer equipped with an Intel® 

Core™ i7-3537 CPU @ 2.00 GHz when the data 

matrix encloses all the 320 frames of size 121 × 71 

pixels (OOC scenarios). If the number of frames 

included into the processed data matrix is kept fixed 

(moving window approach), the overall computation 

time can be strongly reduced, e.g. less than 0.06 𝑠 

with 𝐿 = 50. More efficient implementations for real-

time use are expected to yield a further consistent 

reduction of the required time. Future research will be 

aimed at evaluating applications and possible 

extensions with larger images sizes for in-situ 

monitoring of wider areas of the build. 

Based on the outcome of the sensitivity analysis 

previously discussed, and on computational 

efficiency considerations, the following practical 

implementation guidelines can be advocated: 

 The ST-PCA analysis should be initialized with a 

sufficient number of frames, i.e., the first ST-PCA 

model should include at least 40 – 50 frames since 

the beginning of the process. This may reduce the 
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risk of false alarms caused by an over-fitting to 

few initial observations.  

 The recursive updating scheme can be used at the 

beginning of the process to iteratively augment 

the data matrix up to a sufficient dimension, 𝐿, to 

properly characterize the process dynamics. 

Then, the moving window updating scheme can 

be used to keep fixed the size 𝐿 of the matrix and 

the computational cost. 

 If the updating of the ST-PCA model and 

clustering analysis for each single frame is not 

computationally feasible, it is possible to apply a 

batch-wise update: the PCA model is updated 

only when a new batch of 𝐵 frames has been 

made available, where 𝐵 should be chosen 

depending on computational contraints. 

However, it is worth noticing that the larger is 𝐵, 

the lower is the potential reactivity of the defect 

detection method. 

6. Conclusion 

The increasing use of machine vision systems in 

advanced manufacturing applications is reshaping the 

nature of process data in SPM applications, leading to 

the adoption of novel big data perspectives. Indeed, 

machine vision pushes the need for image-based 

statistical process monitoring methods able to deal 

with large amounts of data characterized by new 

formats (i.e., images or video images) acquired at 

high speed (possibly up to thousands of frames per 

second). In this framework, one goal of industrial 

interest consists of determining both when and where 

a defect originated during the monitored process via 

video image analysis. To this aim, we proposed a 

novel approach based on spatially weighted PCA 

aimed at representing the spatio-temporal signature of 

the process enclosed in the monitored video image 

data.  The simulation analysis showed that this 

approach is more effective than the basic T-mode 

PCA formulation in detecting the onset of a local 

defect. A real case study in metal additive 

manufacturing was proposed. This represents one of 

the most recent industrial applications of machine 

vision systems, where in-situ cameras could be used 

to monitor the stability of the process and to detect 

and localise defects during the layer-wise production 

of the part. Nevertheless, the mainstream literature 

and commercially available systems still lack 

automated defect detection capabilities. The ST-PCA 

technique was coupled with a k-means clustering-

based alarm rule that exploits engineering knowledge 

about the process, without the need for a training 

phase. The experimental results showed that the 

proposed approach allows identifying hot-spots 

caused by out-of-control overheating phenomena 

faster than competitor methods.  

Future research could be aimed at tuning and 

extending the method to make it applicable in real 

time for continuous process monitoring. A relevant 

extension of the present study regards the 

development of novel control charting methods based 

on continuous statistics, with an enhanced capability 

of controlling the Type I error performances.  Further 

analysis may also address the extendibility of the 

method to other types of detect and other image 

acquisition setups. 
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Appendix A 

Fig. A1, A2 and A3 show some examples of frames 

belonging respectively to OOC scenario 1, 2 and 3. 

The red arrow indicates the location of the hot-pot 

detected by the proposed approach.  
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FIGURE A1 – Example of frames belonging to the video image dataset corresponding to OOC 

scenario 1 
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FIGURE A2 – Example of frames belonging to the video image dataset corresponding to OOC 

scenario 2 
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FIGURE A3 – Example of frames belonging to the video image dataset corresponding to OOC 

scenario 3 
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