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Abstract

Additive Manufacturing (AM), commonly known as three-dimensional printing, is

widely recognized as a disruptive technology, and has the potential to fundamentally

change the nature of future manufacturing. Building products layer-by-layer, AM rep-

resents a paradigm shift in manufacturing with many industrial applications. It enables

production of huge varieties of customized products with considerable geometric com-

plexity, and the same time, with extended capabilities and functional performances.
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Despite tremendous enthusiasm, AM faces major research challenges for widespread

adoption of this innovative technology. Specifically, addressing the unique challenges

associated with quality engineering of AM processes is crucial to the eventual success

of AM. This paper presents an overview of quality-related issues for AM processes and

products, focusing on opportunities and challenges in quality inspection, monitoring,

control, optimization, transfer learning and building quality into the product through

design.

Introduction

Additive manufacturing (AM), also known as three-dimensional (3D) printing, refers to

a new class of technologies associated with the direct fabrication of physical products

from Computer-Aided Design (CAD) models using a layered manufacturing process.

In contrast to traditional molding or material removal processes, AM products are

produced by adding material layer by layer without part-specific tooling and fixturing.

It holds the promise of direct digital manufacturing, that is, products with complex

shapes or geometries are digitally described in 3D model files and then sliced into

successive cross sections to initiate AM production.

In the past, the manufacturing paradigm experienced a revolutionary shift from

craft production to mass production. A novel paradigm shift from mass production to

mass customization has been emerging due to the introduction of AM. Unlike mass pro-

duction, AM reduces tooling and intermediate steps for direct digital manufacturing.

Complexity-free fabrication through layer-by-layer techniques enables individualized,

customized manufacturing of low-volume products in huge varieties and of considerable

geometric complexity.

Furthermore, advanced functional materials and novel design methods significantly

expand the degrees of freedom in AM design and manufacturing (Bourell et al., 2009;

Gibson et al., 2009; Hilton and Jacobs, 2000; Melchels et al., 2010; Campbell et al.,
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2011; Pan et al., 2014; Beyer, 2014). It is therefore widely recognized as a disruptive

technology, having the potential to fundamentally change the nature of future manu-

facturing. Indeed, the changes can amount to a new industrial revolution, according

to The Economist (Economist, 2012) and Harvard Business Review (d’Aveni, 2015)

magazines.

AM market, though small comparing to traditional manufacturing, has grown

rapidly (Figure 1). According to the latest Wohlers Report, “overall the 3D printing

industry grew by 21% in the 2017− 18 reporting period. This figure is an increase on

the 17.4% in worldwide revenues from 2016, and is edging closer to the 25.9% growth

reported in 2015” (Huff and Wohlers, 2018). In the high-value added metal AM,

“system installations accompanies improved process monitoring and quality assurance

measures in metal AM, although more work is ahead“ (Wohlers, 2018). Apparently

quality is a key element to foster the industrial breakthrough of AM technologies in

the manufacturing scenario.

Figure 1: World machine tool production (Langefeld, 2016)
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AM: product features and industrial sectors

One of the claimed advantages of AM is its natural capability to achieve complexity-free

fabrication, i.e., complex geometries can be printed without dramatic increase in pro-

duction costs. A manifestation of such capability is to design and build lightweight

components, where product weight is reduced by exploring complex shapes and main-

taining functionality at the same time (Figure 2). The application to aerospace and

automotive sectors is crucial, where lightness directly translates into reduced fuel con-

sumption (i.e., reduced buy-to-fly ratio) and limited CO2 emissions for green mobility.

One such testimonial is the GE fuel nozzle illustrated in Figure 2, a component of

the Leap jet Engine (Kellner, 2017). Application of AM made this nozzle 25% lighter

(with 15% of fuel savings) by reducing the number of components from twenty to one

and increasing its durability five fold in comparison to the conventional design. This

nozzle has an expected demand of about tens of thousands pieces per year and may

eventually need more metal AM machines than the current annual worldwide demand

(Kellner, 2017). In niche automotive (mainly racing), an electric motorbike achieves a

weight reduction of about 30% (Figure 2) (Markham, 2016).

Figure 2: Examples of lightweight designs (GE fuel nozzle, AIRbus A380 bracket, APWorks mop-
torbike)

Another major area of exploiting complexity-free fabrication lies in biomimetic

and medical applications. Personalization is particularly important when products

have to adapt to individual patients’ biometric features such as the shapes and sizes
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of teeth or hips and joints. Even the microscale features such as surface texture and

porosity can be designed and built. AM built implant can replicate the surface of

the bones and their inner structure, which is not fully dense but characterized by

controlled density (as per hip implant shown in Figure 3, where surface undercuts

facilitate osteointegration).

Figure 3: Examples of Biomimetic and personalized products via AM (courtesy EOS, Arcam,
Renishaw)

Machinery and tooling industries take the advantage of the design freedom of AM

to enhance cooling and heat exchange. Examples of AM built thermal exchangers,

tooling and molds are shown in Figure 4 (top row). Conformal cooling in tools and

molds (see Figure 4) is achieved with curvilinear channels, which follow the complex

patterns of the external surfaces to dissipate heat close to heat sources. Increased heat

transfer performance can result in 20% cycle time reduction and a 50% increase in the

quality. It should be noted that complex curvilinear internal channels can hardly be

realized with conventional processes.

Creative industries benefit from design freedom offered by AM. The bottom row of

Figure 4 illustrate new designs for lighting, furniture, jewelry and textiles.
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Figure 4: Examples of AM built products in machinery (top) and creative industries (bottom)
(courtesy EOS, Renishaw, pinterest)

Quality challenges in AM

The paradigm shift to mass customization calls for a new quality control paradigm

for AM. For this purpose, effects of various AM complexities on quality inspection,

monitoring and process optimization have to be investigated:

• Complexity of product geometry : AM theoretically renders the fabrication process

free of geometric complexity. This is only partially true, as complexity translates

into increased processing times and defective rates. Moreover, quality measure-

ment and inspectability are inversely related to product complexity. Internal

surfaces, undercuts or hidden features can be easily printed but not measured or

inspected.

• Complexity of process optimization: AM is most suitable for the extremely low

volume or even personalized manufacturing of complex products with frequent

change of geometries. This presents a unique challenge to calibrate AM processes

for high dimensional and geometric accuracy. In mass production processes such

as the injection molding process, weeks or even months can be afforded for fine-

tuning process parameters and tooling setups because the same configuration

6



remains unchanged for a large batch of identical products. One possible way to

speed up process optimization is by combining process simulation with experi-

mental design. Unfortunately, process simulation is difficult per se, as typical

AM processes generally involve material phase-changing, namely, liquid, paste

or loose powder and solid have to be modeled at the same time. This phase-

changing process is difficult to simulate and is usually not able to capture all the

phenomena (porosity due to melt pool instability as well as distortion due to ther-

mal stresses) which arise at different scales. Achieving accuracy and predicting

defects is a daunting task.

• Complexity of product data collection: Statistical Quality Monitoring (SQM) or

Statistical Process Control (SPC) methods have mainly been developed for mass

production. SPC relies on sufficient sample data to support control chart de-

sign. In AM with frequent design changes and low volume production, it is often

cost-prohibitive to collect sufficient sample data in order to establish credible sta-

tistical distributions for quality characterization. The existing SPC methodology

therefore faces the short-run production challenge.

Although AM has evolved from rapid prototyping to product manufacturing in the

past 30 years, the bulk of current AM research is devoted to new development of CAD

and process planning methods, finite element modeling (FEM), novel materials, pro-

cesses, and machines suitable for AM, innovative solutions for in-situ sensing (Bourell

et al., 2009). Although process monitoring and control have been identified as critical

issues, there is a dearth of research in improving the quality of AM products (Bourell

et al., 2009; Huang et al., 2015). A review of the state of the art indicates that existing

quality control methods are unable to serve the unique needs of AM. Due to multi-

ple complex interacting physical and chemical phenomena, fabricating interchangeable

parts using AM often relies on basic trial-and-error approaches to a certain degree.

Post-processing with machine tools is then still required to meet design specifications,
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significantly negating the time and cost benefits of direct digital manufacturing. The

challenges in accuracy control in AM call for new research to establish theoretical

foundations that enable complexity-free quality control.

AM processes, typical defects and quality inspec-

tion

AM embraces many different processes and materials (polymers, metals, ceramics,

composites - see Table 1). According to the standards ISO/ASTM 52900 (ISO, 2015),

seven processes are possible, all sharing the same principle of manufacturing the prod-

uct layerwise. The basic principle behind the seven AM processes is briefly described

in Figure 5, thanks to the nice summary provided by Loughborough University on its

website (Loughborough, 2017).

Table 1: AM: process families and materials

Materials Process categories

Vat pho-

topolymer-

ization

Material

Jetting

Binder Jet-

ting

Powder

Bed Fusion

Material

Extrusion

Directed

Energy

Deposition

Sheet Lam-

ination

Thermoset Polymers X X

Thermoplastic Polymers X X X X X

Wood X

Metals X X X X X

Industrial ceramic X X X X

Structural ceramic X X X

Note: Combinations of the above material classes, e.g. a composite, are possible

Quality characteristics of AM-built products includes geometric and dimensional

accuracy, surface finish, volumetric properties (e.g., grain structure and size) and vol-

umetric errors (pores, cracks, etc.). Some of these elements eventually define the me-

chanical properties of the part (e.g., stress, tensile strength, fatigue resistance), which

are very important for product functionality. According to the National Institute for

Standards and Technology (NIST) (Mani et al., 2015): “the variability in part quality

due to inadequate dimensional tolerances, surface roughness, and defects, limits the
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Laser WiperObject.(cured)Y.platform VatPhotoresin
Vat Photopolymerization: Material is
cured by light-activated polymerizationMaterial.spoolHeater.elementNozzleObject SupportmaterialBuild.platform

Material extrusion: material is selectively
dispensed through a nozzle and then solidifies

PowderrollerNew.powderstock Object/Part Powder.bedBuild.platformInkjet.print.headLiquid.Binder
Binder jetting: A liquid is jetted to bind a
powder layerElevatorBuild.platformBuild.substrateLeveling.blade UV.curing.lamp Part Buildmaterial Supportmaterial

Material jetting: drops of materials are
deposited layer by layer

Powder Bed Fusion: A laser or electron beam is used to
selectively fuse a powder bed

LaserMotorized,mirrorCross,hatched,materialMaterial,spool UsedMaterial,spoolBuild,platform
Sheet lamination: sheets are bonded

Laser,or,Electron,beamPowder,rollerPowder,stock Powder,bedObject/Part Build,platformSupportsBuild,platformObject/PartElectron,beam,or,laser Metal,wire Material,(metal),wiresupplier
Directed Energy Deposition: Focused energy is fusing powder
while it it is deposited.

Figure 5: AM processes - (Loughborough, 2017)
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metal AM broader acceptance for high-value or mission-critical applications”.

Figure 6 shows some examples of defects in AM-built products. In particular, Fig-

ure 6 a) to c) show different types of geometric errors, ranging from dimensional and

geometric accuracy (a), to incomplete printing (b), and warping (c). These defects

can be due to many possible causes: wrong product design, problems with the pow-

der deposition system, improper parameter selection or scanning strategy, incorrect

air gas flow, etc. Shrinkage is a typical problem in thermal processes, due to volu-

metric changes during solidification and cooling. It can result in bending (Figure 6

c), or even cracking (Figure 6 e). We will specifically focus on possible approaches

to prevent/correct shrinkage defects in the following sections dealing with part-to-part

control. Figure 6 d) shows internal porosity, which is a very relevant defect, especially

in metal products. Pores are small, hidden voids inside the printed workpiece that

can strongly affect its mechanical performance (e.g., fatigue limit). Porosity can occur

due to many different phenomena, such as gas intrapped in the powder or wrong se-

lection of the process parameters (excessive or insufficient energy density delivered by

the process during melting).

Metrological challenges in AM

With reference to measurement and inspection, different challenges have to be faced

when the quality of AM parts is of interest. Indeed, shape complexity plays an im-

portant role, especially for internal cavities and channels, undercuts or porosity. Tra-

ditional measurement systems, such as Coordinate Measurement Machines (CMMs)

or Optical scanners (e.g., laser scanners, structured light) allow one to inspect and

acquire external, accessible surfaces. When internal geometries are of interest, X-Ray

Computer Tomography (X-Ray CT) is emerging as the only viable solution (Hiller and

Hornberger, 2016; Villarraga-Gómez et al., 2018) for AM product inspection. Bor-

rowed from medical applications, X-Ray CT uses X-rays to reconstruct cross-sections
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a) b) c)

d) e)

Figure 6: Typical examples of defects in AM built products: a) to c) geometric and dimensional er-
rors; d) internal porosity (courtesy LPW); e) cracking (courtesy Renishaw, AddMeLab - Politecnico
di Milano).

of a physical object, which are used to recreate the virtual 3D model of the inspected

product without destroying it.

From a metrological viewpoint, different research directions are currently open to

assess X-Ray CT as a reference instrument for the quality inspection of AM parts.

Among these directions, uncertainty estimation and system calibration play a major

role (Villarraga-Gómez et al., 2018; Hiller and Hornberger, 2016; Kruth et al., 2011).

One key feature of X-ray CT is that it produces voxel-based reconstructions. A voxel

is a three-dimensional extension of a pixel. As pixel-based images can be modeled as a

greyscale on a bi-dimensional grid, voxel-based data can be represented as a grey scale

in a 3-dimensional or volume grid (Figure 7). Surface reconstruction and geometry

modeling starting from voxel-based data is an interesting area where more research is

needed. Existing literature on data modeling and monitoring in biomedical applications

of X-Ray CT will possibly represent a starting point (Kalender, 2006). Furthermore,

multisensory data fusion in dimensional and geometrical metrology will possibly be
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further exploited to combine data provided by different metrological systems to enhance

surface reconstruction for AM applications (Weckenmann et al., 2009; Colosimo et al.,

2015; Wang et al., 2015; Xia et al., 2011).

Figure 7: A voxel-based reconstruction where greyscale is representing reconstruction uncertainty.

Statistical Quality Monitoring (SQM) or Statis-

tical Process Control (SPC) for AM

Product quality and process repeatability have been recognized as major barriers for

wide adoption of AM technologies (Bourell et al., 2009; Tapia and Elwany, 2014; Gao

et al., 2015; Huang et al., 2015). There is still a lack of consistency when building AM

products across across machines, operators, and manufacturing facilities. Current AM

technologies are insufficient to meet the stringent requirements of industrial sectors,

which provide wide room for quality control methodolgoies.

With reference to process stability, SQM can be based on product or process data.
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In the first case, quality features are measured on a sample of products to detect

possible out-of-control states. In the second case, data gathered from the process (e.g.,

signals, images) are considered as drivers to detect the onset of process instability. In

the following, both these two approaches are discussed with reference to AM processes.

SQM for product data

When product data are of interest, recent literature on profile and surface monitoring

can be considered as a viable solution to perform SQM on 3D-printed objects (Woodall,

2007; Wang et al., 2014; Colosimo et al., 2014, 2008). In this case, a statistical model

of the geometric profile or surface is firstly fitted. Then, all the estimated coefficients

and the residual variance can be monitored via control charting.

Considering the high level of shape complexity characterizing AM products (Figure

2-4), profile or surface model fitting can turn out to be a cumbersome task. An alterna-

tive solution is computing simpler quality descriptors that have to be monitored with

time. As examples, different statistics computed considering the actual deviation from

the nominal shape (mean, standard deviation, min or max deviation) can possibly be

considered as quality features in control charting.

When SQM is applied to AM products, a second important challenge can be the

small amount of Phase 1 or training data set available for control chart design. Indeed,

AM is often used in high-value-added contexts (e.g., aerospace and biomedical prod-

ucts) where customized, short-run or even one-of-a-kind productions are considered.

Short-run settings have been discussed in the SPC literature for a long time (Que-

senberry, 1991; Crowder and Eshleman, 2001; Castillo et al., 1996) and the nominal

control chart has been proposed as a possible solution to the lack of training data. In

nominal control charts, the main idea is to “standardize” the quality characteristic. In

the literature, the deviation from the target is often used as a “standardized” feature,

assuming that this quantity does not depend on the specific product, and hence Phase
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1 data can be collected across many different product types. Self-starting control charts

(Hawkins, 1987; Sullivan and Jones, 2002) can be further used to start monitoring as

soon as data become available.

For AM products, the percentage of shrinkage defined in Huang (2016) and Luan

and Huang (2017b) can be a possible choice of “standardized” quantity. Suppose an

ideal AM process builds a circle and square shape as shown in Figure 8. With the

presence of only natural process variation, the built products in solid curves should be

contained within narrow envelops. Quantities such as roundness or cylindricity are not

appropriate here because these measures tend to be shape-dependent, which limits the

ability to quantify a different shape.

Figure 8: Statistic for AM process monitoring Luan and Huang (2017b)

One possible measure of shape deformation across different shapes is the percentage

of shrinkage η, which can be defined as

η =
|∆S|Actual

SNominal

(1)

where SNominal represents the nominal in-plane surface area of the product and |∆S|Actual

is the measured, absolute change of surface area from the design. Extension to the 3D

case naturally follows.

Under stable process condition and with the same materials, we may expect that

products with various shapes will have similar percentages of shrinkage and conse-

quently individual control charts such as EWMA can be applied for process monitor-

ing.
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SQM on process data: in-situ process monitoring

In a recent report, the National Institute of Standards and Technology (NIST) (Mani

et al., 2015, 2017) outlined how in-situ process monitoring and control represent a

significant opportunity to reduce process variation and ensure quality. As a matter

of fact, many features of the process signature are observable in-line during the build

and can be directly correlated to the final quality of AM products (Tapia and Elwany,

2014; Everton et al., 2016; Spears and Gold, 2016; Grasso and Colosimo, 2017).

PROCESS
CONTROLLABLE• Beam/head• Speed, power, diameter• Layer thickness variability• Gas flow rate• Scanning strategy
PREDEFINED• Powder size distribution• Layer thickness• Packing density• Absorptivity• Build plate

SIGNATURE
MELT POOL• Temperature• Geometry• Plume characteristics

TRACK• Size• Shape• Thermal gradient

LAYER• Thermal homogeneity• Irregular deposition• Melted shape• Local defects

PRODUCTGEOMETRY• Deviations  in  shape  and  size• Roughness
VOLUMETRIC ERRORS• Pores• Cracks• Residual stresses

MECHANICAL PROPERTIES• Strength• Hardness• Toughness• Fatigue

AM PROCESS-SIGNATURE-PRODUCT

Figure 9: AM from process parameters to product quality via process signature (adapted from
(Mani et al., 2015))

Figure 9 refers to powder bed AM and it summarizes the most important set of

process parameters (first column) affecting the final quality of products (third column),

which is characterized by geometric and volumetric errors and mechanical properties.

In the second column, possible descriptors of the process signature are listed. The

process signature can be acquired in-situ and in-line, and represents the link between

the parameters and the final quality of 3D-printed products (first and third columns,

respectively (Mani et al., 2015). With reference to laser powder-bed processes, Figure

10 describes different levels for in-situ data gathering, namely:

• melt pool level (where the laser melts the powder);

• laser track (the scanning path of the laser);

• slice (part of the layer where the powder has been melted);
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• powder bed, which is where the powder has been delivered just before scanning.
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Figure 10: Different scales and possibilities for in-situ monitoring of AM processes.

All this information can be usefully monitored with time to detect onset of de-

fects. All the information at the melt pool level can be linked to volumetric errors,

i.e., detecting undermelting and overmelting conditions which can result in internal

porosity. Instability of the melt pool can be also detected, as an indicator of possible

volumetric erros in the final job. At the laser track level, the information on the spa-

tial and temporal cooling rates can be gained. This information can be used to predict

thermal stresses and cracks. It is worth noting that the actual monitoring systems

can provide information on the last layer only, while no information can be gained on

the heating/cooling phenomena underneath. As the spatio-temporal distribution of

temperature among layers influences thermal stresses, defects originating in the under-

neath layers can be hardly detected using in-situ sensing. Eventually, data observed at

the powder bed level can allow one to compute the geometric and dimensional devia-

tions of the printed geometry with respect to the nominal one (using image analysis to

detected the melted shape). A second important information at the powder bed level

is detection of hot spots, i.e., locations where the cooling rate is too slow (and maybe

a redesign of the part, including additional supports, is needed). Eventually, powder

bed images can allow one to detect an improper distribution of the powder spread into
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the bed, before starting the selective melting step. This problem can result in porosity

due to overmelting/undermelting or local geometric defects.

Data provided by the different sensing architectures can be mainly classified into

three data types (Figure 11, 12,13):

• Signal data, which can be represented as a time series or profile, functional data,

and which are associated with some quality features of interest (e.g., temperature

or area of the melt pool) (Grasso et al., 2018);

• Image data, or high-resolution pictures of the build layer (before or after scanning)

(Grasso and Colosimo, 2017);

• Video-image data recording of the process melting and cooling transient (Grasso

et al., 2017; Colosimo and Grasso, 2018). Pixel&APixel&BPixel&C&(defect) Intensity&with&time(8bpp&– scale:&0>255)
Figure 11: Examples of signals taken from video-image data (Grasso et al., 2017).

a) b) c)

Figure 12: Examples of AM images: a)frame from high-speed video; b) frame from infrared video;
c) high spatial resolution image (20 m/pixel) of the powder bed after laser scan.
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Figure 13: Examples of video-image data: Frames sub-sampled by the video acquired while AM
processing of zinc via Selective Laser Melting (Grasso et al., 2018)
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SQM can be applied to the context of in-situ data monitoring by following different

approaches. At a first level, signals, images and videos can be pre-processed to select

a set of quality indicators that have to be monitored with time. As an example, a

multivariate control chart can be used for monitoring the dimension and the intensity

of the laser plume (Grasso et al., 2018). Similar approaches can be used for the number

and size of spatters (Repossini et al., 2017) acquired with high-speed video imaging. In

these cases, effort is required to select the appropriate set of descriptors. Furthermore,

approaches for autocorrelated data have to be considered, as data are usually acquired

at high frequency (e.g., 1000 frames per second), setting the stage for big data SQM.

At a more general level, approaches for the statistical monitoring of images or video-

image data have to be developed. Recent literature on SQM outlined how image-based

SQM is going to play a relevant role in the near future (Megahed et al., 2011, 2012;

Qiu, 2005, 2018; Colosimo, 2018). To this aim, approaches combining spatio-temporal

models with control charting (Grasso et al., 2017; Colosimo and Grasso, 2018) or spatio-

temporal modeling (Yan et al., 2017b,a) appear as promising solutions. The feasibility

of these approaches in almost-real-time settings is an open issue, deserving further

attention.

Part-to-part quality prediction and control

For low-volume AM production with potential frequent changes of product designs,

materials, and processing conditions, part-to-part quality prediction and control is

essential to make AM a viable manufacturing technique.

As previously mentioned, the quality of AM-built products includes shape accu-

racy, surface finish, mechanical properties (e.g., stress, tensile strength), and structure

properties (e.g., grain size, pores, cracks, etc.). Since some quality characteristics such

as surface finish are more invariant to part-to-part design changes than shape accuracy,

our discussions focus more on the geometry of AM-built products.
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The objectives of part-to-part quality prediction and control include, but are not

limited to (i) representing of shape accuracy; (ii) establishing models for predicting

shape accuracy through the learning of previously built products; (iii) enhancing pre-

scriptive models by learning new data; (iiv) improving the shape accuracy of new builds

through compensation.

Representation of shape accuracy

The shape accuracy of AM-built objects is often assessed by a Coordinate Measurement

Machine (CMM) or a 3D scanner. The measurement data is normally in the form of

a point cloud with point coordinates defined in a Cartesian coordinate system (CCS).

Representation of geometric accuracy based on point cloud data can be a non-trivial

matter because of the infinite possibilities of design shapes. A shape-dependent repre-

sentation would likely lead to shape-dependent models, which would restrict learning

and extrapolation from limited tested cases (Huang et al., 2015). Considering the na-

ture of low-volume production, a unified representation of shape accuracy is desirable

for quality control in AM. Such a representation will facilitate modeling and learning

from limited sample data, and also facilitate the equally important task of drawing

inferences on the prediction and compensation of untested shapes.

One solution is to transform or pre-process the point cloud data before modeling.

Examples include transforming in-plane (x − y plane) and out-of-plane (z direction)

shape deviations from the CCS to the Polar Coordinates System (PCS) as deviation

profiles (Huang et al., 2015; Jin et al., 2016), and representing 3D shape deviation

in the Spherical Coordinate System (SCS) as deviation surfaces (Huang, 2016). The

motivation of this transformation is to decouple the geometric shape complexity from

the deviation modeling. Figure 14 shows examples of deviation profiles presented in

PCS for simple disk shapes with varying diameters and a polygon shape.

Note that other data representation approaches should be explored depending on
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Figure 14: (a) Deviation profiles of 4 disks printed horizontally (left panel) Huang et al. (2015);
(b) Deviation profiles of 4 half-disks printed vertically (middle panel) Jin et al. (2016); (c) Deviation
profile of a pentagon printed horizontally (right panel) Huang et al. (2014)

the learning objectives.

Establishing models for predicting shape accuracy through

learning

Quality prediction for AM aims to predict the quality of both built and untried prod-

ucts based on a limited number of test cases. For example, a limited number of test

shapes and training data might be available in AM processes (Figure 15). The geo-

metric accuracy of a new product with a completely different shape may have to be

predicted for effective quality control. AM modeling for quality prediction can there-

fore be classified as predictive modeling and prescriptive modeling. While traditional

predictive modeling tipically makes predictions within its experimental domains, e.g.,

a class or family of products, prescriptive modeling is able to predict quality of new

and untried categories of shapes beyond the experimental scope.

As shown in Figure 14, four full disks printed horizontally manifest repeatable

harmonic patterns which can be captured, for example, by the Fourier series. Adding

shape size as an additional variable in the predictive model slightly increases the data

collection and modeling efforts (Huang et al., 2015). When half-disks are printed
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Figure 15: Training data

vertically, or when building truly 3D objects in general, however, the deviation patterns

change dramatically. Furthermore, the patterns vary with sizes due to complicated

inter-layer interaction along the vertical directions (Jin et al., 2016).

Even objects printed in the same direction, say, horizontally, incorporating shape

as another learning variable, will significantly complicate the model building process

owing to the fact that the dimension of shape space is infinite. Figure 14 illustrates a

pentagon printed horizontally and its observed deviation profiles (Huang et al., 2014).

Compared to the smooth profiles of the circular disks, the pentagon deviation profile

exhibits sharp transitions at the corners, thereby ruling out the feasibility of simply

applying Fourier series approximation because of the large number of terms needed.

One attempt to add shape as a learning variable is through the so-called cookie-cutter

modeling framework (Huang et al., 2014). Extension to 2D freeform shapes is presented

in Luan and Huang (2017a). Little work has been done on exstending these ideas to

3D shapes (Jin et al., 2016).

Enhancing prescriptive models by systematic augmenta-

tion of new data

Predicting the shape accuracy of untried products involves larger uncertainties. Spec-

ifying the functional basis in prescriptive models can often be heuristic making pre-

diction errors for new products inevitable. Thus, there is a need to systematically

augment data from the newly printed products and extract new shape deviation fea-

tures to enhance prediction performance.
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In Sabbaghi et al. (2017), an adaptive Bayesian methodology is developed to im-

prove prescriptive models by re-learning the updated training data after a new product

is printed. A sequential and adaptive learning of in-plane deviation models is estab-

lished. Figure 16 compares the improvement of model prediction before and after the

Bayesian learning procedure.
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Figure 16: (a) Predicted in-plane shape deviation (dashed lines) of two regular pentagons before
Bayesian learning (solid lines) (Huang et al., 2014). (b) Predicted in-plane shape deviation of a
new pentagon after Bayesian learning Sabbaghi et al. (2017)

However, more research is required to develop sequential learning algorithms with

the aim of better predicting deviation profiles of untested shapes. Research is also

needed for more reliable quantification of uncertainty associated with such predictions.

Improving shape accuracy of new builds through compen-

sation

While predicting shape deformation can be interpreted as the classical problem of

prediction, minimizing shape deformation of AM-built products is an inverse problem,

which is challenging due to geometric complexity, product varieties, material phase-

changing and shrinkage, interlayer bonding, and limited sample data. Various methods

and strategies have been developed to improve the geometric quality of AM processes,

for example through simulation study based on the first principles (Stor̊akers et al.,
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1999; Secondi, 2002; Mori et al., 1996); offline optimization of process settings through

experimentation (Wang et al., 1996; Zhou et al., 2000; Sood et al., 2009), calibration

through building test parts (Wang et al., 1996; Wang, 1999; Zhou et al., 2000; Lynn-

Charney and Rosen, 2000; Tong et al., 2003, 2008), part geometry calibration through

extensive trial-build (Hilton and Jacobs, 2000), or adjustment of product design and

process planning (Lynn-Charney and Rosen, 2000; Cho et al., 2003; Zhou et al., 2009;

Tong et al., 2003, 2008; Huang et al., 2015, 2014; Sabbaghi et al., 2014; Moroni et al.,

2014; Xu and Chen, 2015).

Once models of predicting quality are established, one viable and efficient approach

to shape accuracy control is to compensate the product design to offset the geomet-

ric shape deviations. The key issue is therefore to determine the optimal amount of

compensation based on measured or predicted shape deviation for both 2D and 3D

cases.

The prevalent method of determining compensation in practice is the shrinkage

compensation factor approach, which is rooted in the material shrinkage study in cast-

ing and injection molding processes. This approach applies a shrinkage compensation

factor uniformly to the entire product or different factors to the CAD model for each

section of a product (Hilton and Jacobs, 2000). This method implicitly assumes that

the shape deviation is uniform in the section where the compensation factor is applied.

Since products built via AM often have complex shapes, this assumption does not hold

for general cases. The compensation factor approach is thus far from being optimal for

AM.

An analytical and optimal compensation approach was developed in (Huang et al.,

2015; Huang, 2016), where the minimum area deviation criterion and the minimum

volume deviation criterion are proposed to derive a close-form solution for compensat-

ing 2D and 3D shape deviations, respectively. Experimental validation shows that the

compensation method can improve accuracy by an order of magnitude for cylindrical

products (Huang et al., 2015), by at least 75% for polyhedrons (Huang et al., 2014),
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and by at least 50% for freeform shapes (Luan and Huang, 2015, 2017a). New compen-

sation criteria and algorithms can be developed to reduce both global and local shape

deviations.

Note that a large body of AM work on surface quality, mechanical properties,

structure defects such as porosity and lamination are not included in the discussion. A

majority of the work are experimental in nature or process planning (Armillotta, 2006;

Sun et al., 2008), with some exceptions of applying classical Design of Experiments to

identify optimal process condition to reduce defects.

Statistical Transfer Learning for AM

Traditional machine learning methods assume that training and test data have the

same feature space and follow the same distribution so that patterns extracted from

historical data can be used to predict future outcomes. When this assumption does

not hold, most predictive models will suffer degraded performance and have to be

rebuilt using training data from the target domain(Pan and Yang, 2010). However, in

many real applications, obtaining sufficient training data from a new domain can be

expensive or infeasible. In such cases, statistical transfer learning would be desirable,

which addresses the problem of how to achieve high predictive performances for a target

domain by transferring knowledge from a related source domain with statistical models

and methodologies.

In the past a few decades, a great deal of research has been undertaken on statistical

transfer learning. The survey papers by Pan and Yang (2010) and Weiss et al. (2016)

present an extensive overview of existing transfer learning methods and applications

in the fields of machine learning and data mining. In addition, there are some success-

ful statistical learning applications in the field of quality engineering, such as network

modeling (Huang et al., 2012), the predictive modeling of degenerate biological systems

(Zou et al., 2015) and surface shape prediction (Shao et al., 2017). A recent survey
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paper (Tsung et al., 2018) provides a review of transfer learning literature from a sta-

tistical perspective and discussed some extensions to SPC. Based on different forms of

transferring information from a domain, current methods to statistical transfer learn-

ing mainly fall into three categories: instance transfer, feature transfer and parameter

transfer (Pan and Yang, 2010). The instance transfer reuses certain parts of the source

data in the target task based on the assumption that instances from the source and

target are generated from two different but closely related distributions. The fea-

ture transfer aims to find a common feature representation that reduces the difference

between source and target domains. The parameter transfer assumes that different

domains should share some parameters or hyper-parameters of prior distributions.

Quality control for AM involves improving the geometric accuracy of fabricated

products. In contrast to mass production, for one-of-a-kind manufacturing processes,

an effective quality control strategy involves increasing the predictive performance of

statistical shape deformation models for any new shape and deriving an effective com-

pensation plan for any new and untried product. Due to the huge variety of product

shapes and the low volume of production in AM processes, it is usually cost-prohibitive

to collect sufficient sample data, which means only limited sample data for limited

shapes are available. Thus, there is a great need to improve the predictive perfor-

mance for new target shapes by transferring information from source shapes. There

are, however, two major obstacles to achieving this. First, it is not feasible to build a

single comprehensive model for a large variety of complex shapes based on data-driven

methods due to insufficient data. Second, the connection between shape deformations

of distinct shapes is unknown, which makes it difficult to infer a new target shape

based on limited source shapes.

To tackle the above challenges, a novel in-plane shape deformation modeling scheme

from a statistical transfer learning perspective has been proposed by Cheng et al.

(2017), which uncovers the connection among the shape deformation of different prod-

ucts based on error decomposition and greatly improves the predictive performance
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for any new shape. In particular, the shape deformation of a product is decomposed

into two parts: the shape-independent error, which is determined by the coordinates of

product boundary points, and the shape-specific error, which is additionally induced

due to specific shape features. The shape-independent error can be modeled in the

CCS with measured deviations of a grid of marks designed inside a large plate, which

are rarely affected by the shape boundary. The learnt model can be directly used to

predict the shape-independent error component for any shape. Then the shape-specific

error for each shape can be isolated from the shape-independent error and will only

depend on shape features. This will make it much easier to investigate modeling of

the shape-specific error instead of directly modeling the total shape deformation, es-

pecially when only sample data for limited shapes are available. Preliminary studies

have shown that the shape-specific error for any new shape can also be well predicted

from source shapes by choosing a reasonable shape feature representation such as the

derivative of radius defined in the PCS. Extension of the in-plane shape deformation

transfer learning framework to 3D cases should be studied further.

A major assumption for transfer learning among different shapes is that the man-

ufacturing condition is unchanged. However, in reality, variations such as changes of

AM machines, machine conditions and materials often exist and will make a systematic

change to the manufacturing condition. The predictive performance of the models ac-

quired from the old manufacturing condition will be degraded in the new condition. To

avoid re-collecting the entire training data, there is a great need to develop statistical

transfer learning approaches for AM quality control from one manufacturing condition

to a new condition. This kind of transfer learning framework can have greater practi-

cal value in future cybermanufacturing systems, when data from heterogeneous sources

are aggregated together. Efforts in this direction have been made in (Sabbaghi and

Huang, 2018, 2016; Cheng et al., 2018). However, various approaches to these works

are still limited to certain classes of shape. More transfer learning frameworks have to

be developed.
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Design of Experiments for AM

For more than the past five decades, design of experiments (DOE) has played a crucial

role in quality engineering. However, DOE for improving the quality of AM processes

involves a major paradigm shift due to the unique challenges associated with (a) the

non-standard quality representation of AM-manufactured products leading to complex

responses (typically profiles), (b) dissimilar experimental units making it difficult to

replicate experiments, (c) the complex nature of input factors such as intended product

geometry.

As explained in previous Sections, a convenient manner to obtain the 2D represen-

tation of AM-built product quality is to model the shape deformation as a function

of the polar angle. Such deformation models have been effectively utilized in the

compensation-based approach for quality control of AM-products, as previously de-

scribed. However, the success of this approach depends on accurate modeling and

predicting the quality of AM-built products, a task that can only be achieved through

a careful experimental approach. Clearly, predicting the deformation of each indi-

vidual shape by creating a test product is too expensive, and practically impossible.

Prediction of deformation models must therefore involve a sequential strategy. Let

{ψ1, . . . , ψK} denote a class of shapes for which deformation models need to be pre-

dicted, where K is large, and suppose we have already obtained deformation models

f̂1(ψ1), . . . , f̂L(ψL) by manufacturing a small subset of shapes {ψ1, . . . , ψL} where L

is much smaller than K. The design question can be formulated as follows: suppose

we have resources to make N test products. Which of the remaining (K − L) shapes

should be manufactured so that it is possible to predict deformation models for the

untested shapes with the maximum possible efficiency?

Clearly, this problem can be solved only if the deformation of theK shapes ψ1, . . . , ψK

can be modeled using a suitable parametric or non-parametric function of the input

variables x. Consider a simple example: suppose our goal is to fit deformation models
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for circles with an arbitrary nominal radius r0. Note that we can represent the in-

plane deformation model of a cylinder by a function f(x), where x ≡ r0. Suppose we

have manufactured three cylinders with radii 0.5, 1.0 and 1.5 inches, and used their

deformation data to fit a model f̂(x). Then, K is infinite and L = 3. Now, the design

question is, what should be the radius of the next cylindrical test product so that f(x)

can be predicted with the maximum possible efficiency?

Another example is a more general problem where the goal is to fit deformation

models for regular polygons with an arbitrary number of vertices p and an arbitrary

nominal circum-radius r0. The argument x for such deformation functions f(x) is a

vector x = (p, r0). Thus choosing the dimension of the next polygon to manufacture

is a two-dimensional optimization problem.

When the class of shapes being considered is such that the dimension of x is fixed

(such as one in our first example and two in the second), the problem of choosing

subsequent input values (design points) x can be treated as a sequential optimal design

problem. Solving such problems entails defining a criterion based on the information

content about the unknown parameters of the model and choosing the subsequent

design points by maximizing such criterion. Sequential Bayesian designs for solving

such problems have been proposed and successfully implemented in other application

areas in the recent past; see for example Zhu et al. (2014) and Lee et al. (2018). Such

designs appear to be natural candidates for AM application, due to the non-linearity of

the prescriptive models and the Bayesian approach adopted for model-fitting (Huang

et al., 2015; Sabbaghi et al., 2018). However, the functional nature of the response

adds a layer of complexity to this problem and requires new research.

What makes this design problem even more challenging is the need to adaptively and

collectively improve the knowledge about an ensemble of shapes that include multiple

primitive shapes as well as derived freeform shapes. Suppose we have two tentative

deformation models, one for the circular shape and one for a regular polygon with p

edges, that we want to fine-tune with a few additional test products. The problem
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now is to assign these new (to-be-manufactured) shapes to circles of different radii and

polygons with a different number of edges and radii of their circum-circle so that the

generated data maximize the collective information about the deformation models for

circles and polygons. Such optimal design problems with varying dimensions of input

variables may be of interest to researchers in experimental design.

Physical Models, Calibration and Uncertainty Quan-

tification for AM

Even with smart algorithms for generating sequential designs, the need for a struc-

tured framework to develop simulation models for the deformation of AM-manufactured

shapes is being increasingly felt for the following reasons. First, relying solely on phys-

ical experiments to predict deformation models is unlikely to be a successful approach

in the long run due to the great diversity in shape and size of AM-built products.

Thus, only a limited number of physical experiments can be conducted that may be

grossly inadequate for building generic and flexible prediction models. Second, to make

the prediction models more flexible, it is important to incorporate process physics into

the models. Such integration of physical knowledge into empirical models can be done

using the principles of calibration of computer models.

To illustrate the idea with the simplest case of manufacturing cylindrical products,

assume that based on process physics, η(x, θ;φ) is an interpretable and deterministic

physical model that can be used to simulate the in-plane deformation of a cylinder of

radius x at polar angle θ. Here φ denotes a calibration parameter vector which needs

to be set at a fixed value to generate a value of the function η(x, θ;φ). Suppose three

cylinders with radii 0.5, 1 and 3 inches have already been manufactured. We would like

to calibrate the physical model based on the actual observations on deformation. For

this purpose, as in Kennedy and O’Hagan (2001), we model the “true” output ξ(x, θ)
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of a physical experiment as the sum of the deterministic simulation model η(·,φ) and

a discrepancy term δ(·), that is,

ξ(x, θ) = η(x, θ,φ) + δ(x, θ). (2)

The observed output from the physical experiment is then expressed as the sum of

the true output and a noise term:

y(x, θ) = ξ(x, θ) + ǫ(x, θ). (3)

Using the data obtained from the three cylindrical products, we would like to (a)

estimate the discrepancy function δ(·), (b) find an “optimal” value of the calibration

parameter φ, and (c) determine the radius of the next cylinder to manufacture. Such

analyses are discussed quite extensively in computer experiments literature on calibra-

tion (Kennedy and O’Hagan, 2001; Tuo and Wu, 2015) and statistical adjustment to

engineering models Joseph and Melkote (2009) but the aspects of AM that pose new

challenges are (i) the functional nature of the response and (ii) the focus on identi-

fication and estimation of the discrepancy function δ. Research conducted so far on

calibration with functional responses (Bayarri et al., 2007; Higdon et al., 2008), makes

strong assumptions about the discrepancy (such as its representation by the same basis

function as the reality) that are unlikely to hold in the current scenario.

Conclusions

With the advancement of Industrial Internet of Things and its Cyber-physical Systems

as a backbone, future product creation and manufacturing environments will be hyper-

connected and globalized. One important trend of this manufacturing revolution is

cyber-enabled AM, which has inspired the formation of entirely new Product-Service-

Systems and cyber communities of additive manufacturers centered around the creative
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design and fabrication of innovative products. In this scenario, quality engineers and

statisticians should combine their joint efforts to provide novel solutions that answer

to the pressing industrial demand for a new generation of robust, reliable and high-

quality AM systems. Automated Machine Learning of AM data, monitoring, control

and optimization will play a major role in this transition.

The paper describes how AM is fostering the need of a novel generation of tools,

revising quality inspection, monitoring, control and process optimization using “big”

data streams, going from voxel-based 3D data (from X-ray CT), fast video-images,

complex shapes point clouds and signals. In this scenario, companies are looking for

novel tools to take proper advantage of this huge data stream and improve the overall

AM process quality, which is quite poor at this time.

Considering the specific target of AM toward high-value, personalized production, a

renewed attention to short-run approaches has been pointed out as mandatory. Differ-

ent approaches for modeling part-to-part, machine-to-machine and process-to-process

variability were mentioned as critical for AM applications at this time. To this aim,

approaches for statistical transfer learning will be playing a relevant role in the near

future.

This paper briefly indicated prospects of building statistical models from computer

experiments, AM processes’ simulation is still an ongoing field of research and no

mature software products for industrial use exist at this time. On the other side,

simulation of the AM product performances with respect to functional requirements

and geometrical constraints is a flourishing area including topological optimization.

Connection with metamodeling and process optimization via data fusion of computer

and real experiments is of great interest in the near future.

In conclusion, this paper outlined new interesting directions for future research con-

necting the emerging challenges in advanced manufacturing with some current trends

in statistical quality engineering. In this area, we really hope to encourage the devel-

opment of novel tools to overcome existing barriers and challenges.
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