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Abstract – The layerwise production paradigm entailed in laser powder bed fusion (LPBF) offers the 

opportunity to acquire a wide range of information about the process stability and the part quality while the 

part is being manufactured. Different authors pointed out that high-resolution imaging of each printed layer 

combined with image segmentation methods can be used to detect powder recoating errors together with 

surface and geometrical defects. The paper presents the first study aimed at characterizing the accuracy of in-

situ contour identification in LPBF layerwise images by means of a measurement system performance 

characterization. Different active contours segmentation methods are compared, and the sources of variability 

of the resulting measurements are investigated in terms of repeatability, part-to-part and build-to-build 

variability. The study also analyses and compares the sensitivity of in-situ measurements to different lighting 

conditions and laser scan directions. The results show that, by combining appropriate image pre-processing 

and segmentation algorithms with suitable lighting configurations, a high measurement repeatability can be 

achieved, i.e., a pure error that is up to one order of magnitude lower than the total measurement variability. 

This performance enables the detection of major geometric deviations and it paves the way to the design of 

statistical in-situ quality monitoring tools that rely on layerwise image segmentation.  

Keywords: Additive Manufacturing; Laser Powder Bed Fusion; image segmentation; active contours; 

measurement accuracy. 

 

 

1. INTRODUCTION 

The laser powder bed fusion (LPBF) technology has attracted an increasing interest in different industrial 

sectors for the production of innovative structures, complex shapes and customized parts [1 – 3]. Compared to 

other metal additive manufacturing processes, it provides high accuracy and resolution combined with good 

mechanical and microstructural properties, which make it suitable for applications characterized by stringent 



quality requirements. At the same time, those requirements impose the need for reliable and robust in-situ 

monitoring tools able to quickly detect process defects and to reduce the time and costs associated to post-

process quality inspections. To this aim, the layerwise production paradigm offers the opportunity to gather a 

large amount of data while the part is being produced. An increasing number of studies have been devoted to 

the development of in-situ sensing and monitoring methodologies in LPBF in the recent years [4 – 6]. The 

different methods proposed in the literature differ in terms of measured quantities, also known as process 

signatures, and in terms of sensing setup. In particular, the LPBF technology enables two major sensing 

configurations, namely co-axial sensors, which exploit the optical path of the laser to monitor the melt pool 

properties, and off-axial sensors, which allow measuring additional quantities by means of a much larger field 

of view and on different spatial/temporal scales. This study focuses on the off-axial sensing approach, using 

high-resolution cameras to acquire layerwise images of the powder bed, possibly before and after the laser 

scanning of the slice. As pointed out by various authors (Abdelraham et al. [7]; Li et al. [8]; Aminzadeh and 

Kurfess [9]; Foster et al. [10]; Kleszczynski et al. [11]; zur Jacobsmühlen et al. [12 – 13]), layerwise imaging 

in LPBF could be used to detect in-plane and out-of-plane defects, reconstruct the 3D geometry of the part on 

a layer-by-layer basis, detect powder contamination flaws and other powder recoating errors. The specific 

focus of our study regards the possibility of quickly detecting major deviations between the in-situ detected 

contours of foreground regions and the nominal geometry of the slice. A motivating example is shown in Fig. 

1, which refers to the LPBF of a complex AISI 316L shape [14-15]. A local recoating error occurred in one 

layer and repeated for few following layers. Because of the lack of powder over a portion of the scanned region, 

a discontinuity in the material was produced, leading to the major delamination shown in Fig. 1 (bottom-right 

panel), which was further inflated by thermal stresses in the part. Fig. 1 shows that by combining pre-scan and 

post-scan images during the LPBF process and comparing the in-situ detected region with the nominal shape 

of the slice it could be possible to anticipate the detection of such a severe defect (the mismatch between the 

two regions is highlighted in blue in Fig. 1). This capability is particularly appealing from an industrial 

implementation viewpoint, as almost all LBPF systems are already equipped with off-axial cameras that 

capture pictures of each layer during the process [4]. 



 

Fig. 1 – Example of macroscopic defect in an AISI 316L part produced by using a Renishaw AM250 LPBF 

system, and the possibility of in-situ defect detection based on a combination of pre-scan and post-scan 

images for contour reconstruction and comparison against the nominal geometry [14-15] 

 

It is worth noting that part dimensions and geometries measured in-situ are not representative of the final 

dimensions and geometry of the as-built part, because of shrinkage and thermal stress-induced distortions that 

cannot be captured on a layer-by-layer basis. However, if a major departure from the expected shape is 

observed in one layer, it is worth signalling it as soon as possible, since it may be representative of a defect 

that cannot be recovered as the process goes on. Fig. 1 highlights that an accurate image segmentation enables 

such defect detection ability. In this framework, understanding the accuracy of in-situ contour identification 

based on layerwise image segmentation represents a key issue to characterize the performance of the 

measurement system to identify defects and departures from a known reference. This motivated the present 

paper, which represents the first measurement system performance characterization applied to layerwise 

imaging in LPBF. To this aim, we propose an experimental procedure that relies on the dimensional 



measurement of simple geometrical features. The in-situ optical measurement in one layer was compared with 

a reference defined by means of ex-situ optical measurements of the same layer (both the in-situ and ex-situ 

images were acquired at room temperature to avoid mismatches caused by shrinkage effects). The sources of 

variability that affected the measurement accuracy were investigated by means of a random effect model to 

decompose the total variability of the measurement into part-to-part variability, build-to-build variability and 

pure error (measurement repeatability). The study also analyses and compares the sensitivity of the image 

segmentation and the resulting measurement with respect to different illumination conditions and laser scan 

directions. 

Among the wide number of image segmentation techniques available in the literature [16], the present 

study focuses on a specific category of methods known as active contours [17 – 19]. They iteratively modify 

an initial boundary defined by a closed curve until a so-called segmentation-dependent energy functional is 

minimized. Active contours methods were demonstrated to be quite effective in segmenting images similar to 

LPBF layer images, including noisy patterns, non-homogeneous pixel intensity patterns and not well-defined 

edges [17 – 18]. Moreover, they yield connected contours, whereas edge detection methods often produce 

discontinuous boundaries. One major drawback of active contours consists of the need to set a contour 

initialization. However, as pointed out by Li et al. [8], this is not an issue in the LPBF application, as the 

nominal slice contour information can be used to drive the initialization step. This makes active contours 

particularly suitable for layerwise image segmentation in LPBF. In particular, we compare two region-based 

algorithms, i.e., the so-called Active Contours without Edges (ACWE) proposed by Chan and Vese [19] and 

the more recent level set method with bias field estimation (LSE BFE) proposed by Li et al. [20]. Their use in 

LPBF applications have been advocated by Abdelrahman et al. [7] and Li et al. [8], respectively, but, to the 

best of the authors’ knowledge, no characterization of their performances has been carried out so far.  

The experimental study was performed by means of an LPBF prototype system with an open architecture 

that allows gathering high-spatial resolution images of the build area and testing different lighting 

configurations.  



Section 2 briefly reviews the state of the art on layerwise image analysis and monitoring in LPBF; Section 

3 presents the real case study and the experimental settings; Section 4 describes the proposed methodology; 

Section 5 presents the achieved results; Section 6 concludes the paper. 

 

 

2. STATE OF THE ART 

In the recent years, various studies investigated in-situ monitoring methods in LPBF based on the layerwise 

acquisition of powder bed images: they are summarized in Table 1. One stream of research was devoted to the 

detection of powder bed inhomogeneity, super-elevated regions and uneven patterns that may interfere with 

the powder recoating system. Kleszczynski et al. [11] presented a first seminal study that showed the capability 

of high-resolution imaging to identify powder bed defects and uneven patterns, although only qualitative 

analysis were included. Based on the same experimental setup presented by Kleszczynski et al. [11], zur 

Jacobsmühlen et al. [12 – 13] proposed a thresholding approach to automatically detect super-elevated edges. 

A following study [11] proposed a method to combine in-situ imaging with recoating blade vibration 

measurements. The idea to use layerwise imaging to detect out-of-plane deviations from a smooth surface was 

further developed by Land et al. [21] and Zhang et al. [22]. They proposed a monitoring system that combined 

off-axis cameras with a fringe projector to measure the topography map of both the scanned slice and the un-

melted powder surface in each layer. More recently, Imani et al. [23 – 24], Gobert et al. [25] and Scime and 

Beuth [26] proposed different methodologies to automatically extract features representative of local surface 

pattern variations and to identify defects or wrong melting conditions. 

Other authors proposed in-situ monitoring methods based on the segmentation of layerwise images. Foster 

et al. [10] showed that by segmenting layerwise images it was possible not only to detect powder contamination 

and recoating errors, but also to generate a 3D reconstruction of the part geometry. The issues and challenges 

related to the achievement of an accurate segmentation of these images was clearly discussed by Aminzadeh 

(2016), who showed that noisy intensity patterns combined with non-uniform smoothness of solidified regions 

and non-uniform illumination make traditional edge detection and segmentation algorithms poorly effective. 

To the best of the authors’ knowledge, the studies of Aminzadeh [27] and Aminzadeh and Kurfess [9] are the 

only ones that attempted to determine the accuracy of in-situ image segmentations. This task was accomplished 



by comparing the identified contours with a manual segmentation applied to the same images. The 

segmentation approach proposed by Aminzadeh [27] and Aminzadeh and Kurfess [9] combined histogram-

based thresholding with image pre-filtering and morphological operations, but various ad-hoc thresholds and 

heuristic settings were needed. A different family of image segmentation methods, i.e., active contours, was 

proposed by Abdelraham et al. [7] and Li et al. [8]. Abdelraham et al. [7] proposed a method to automatically 

detect surface anomalies in layerwise images related to uneven surface patterns within the laser printed area. 

The active contours algorithm developed by Li et al. [20] was proposed to register the nominal slice contour 

to in-situ images in a calibration phase. Li et al. [8] proposed the active contours methodology for layerwise 

image segmentation in the framework of a 3D geometrical reconstruction of the part via in-situ images. In this 

case, the active contours algorithm was used to identify the region of interest consisting of the printed area 

within the layer, and then a topography map was estimated via fringe projection coupled with stereo imaging 

within that region. Li et al. [8] discussed the enhanced capability of active contours to deal with the various 

challenges of LPBF layerwise images. In particular, active contours represent a segmentation approach that 

prevents from defining ad-hoc thresholds and reduces the need for ad-hoc post-segmentation morphological 

operations. This study is grounded on this category of image segmentation techniques.  

 

Table 1 – Summary of the literature devoted to LPBF process monitoring via layerwise imaging  

Reference Camera type Spatial resolution Illumination Image segmentation 

[11 – 13] Monochrome SVCam-
hr29050,  SVS-VISTEK  GmbH 

24 µm/pixel Directed light + matt 
reflectors for diffuse 
lighting 

Not applied 

[21] Single-lens reflex camera + 
fringe projector 

Not specified Structured light Not applied 

[22] PointGray Flea3 camera + 
fringe projection 

6.8 µm/pixel Structured light Not applied 

[23 – 24] 36.3-megapixel 
DSLR camera (Nikon D800E) 

Not specified Bright field directional 
lighting 

Not applied 

[26] 1280 x 1024 pixel stock 
camera of EOS M290 

290 µm/pixel Side directional lighting Not applied 

[25] 36.3-megapixel 
DSLR camera (Nikon D800E) 

50 µm/pixel Multiple flash modules Not applied 

[10] 36.3-megapixel 
DSLR camera (Nikon D800E) 

50 µm/pixel (lens A), 
15 µm/pixel (lens B) 

Multiple flash modules Not specified 

[9; 27] 8.8 megapixel camera 7 µm/pixel Square LED on the 
ceiling of the chamber 

Histogram-based 
thresholding 

[7]  36.3-megapixel 
DSLR camera (Nikon D800E) 

45-88 µm/pixel Multiple flash modules  Active contours 

[8] Stereo Basler ace-acA2500-
14gm cameras (2592 × 1944 
pixels) + fringe projection  

Not specified Structured light + side 
flash modules 

Active contours 

 



 

3. EXPERIMENTAL STUDY 

3.1. System configuration 

The experimental study was carried out by using an LPBF prototype system developed at the Department 

of Mechanical Engineering of Politecnico di Milano. The configuration of the system is shown in Fig. 2. The 

build area is 60 x 60 mm and the scanning system is an IPG YLR-300, a Ytterbium-doped yttrium aluminium 

garnet (Yb:YAG) laser source, with a maximum power of 250 W and a wavelength of 1060 nm. The system 

works in slight argon overpressure of 50 mbar. The argon flow direction is perpendicular to the powder 

recoating direction and the recoater consists of a flexible silicon blade. To acquire the in-situ images, the 

prototype system is equipped with an integrated 10.55 Mpix IDS UI-5490SE-C-HQ camera (3840 x 2749 Pixel 

MT9J003STC CMOS sensor with pixel size equal to 1.67 µm and a pixel depth of 8) mounting a 25 mm lens 

placed as shown in Fig. 2.  

 

Fig. 2 – Front view (left panel), 3D view (central panel) and later view (right panel) of the PLBF prototype 

system used for the experimental activity 

 

The imaging system is equipped with six directional light sources consisting of LED strip lights placed in 

six different locations on the ceiling of the build chamber as shown in Fig. 3. Each light source is labelled with 

a capital letter: A, B, C, D indicate light sources parallel to the X axis (horizontal light sources), whereas L 

and R identify the left and right sources parallel to the Y axis (vertical light sources). When multiple light 

sources are turned on at the same time, e.g., A and L together, the resulting lighting configuration is labelled 

by the union of capital letters, i.e., AL. The possibility of turning on multiple light sources simultaneously 

leads to several different combinations of illumination configurations. The light sources were grouped into 



four groups: front (A and B), back (C and D), left (L) and right (R). The system configuration allows the 

generation of dark and bright field illumination patterns [16]. When region (A and B) are turned on, alone or 

simultaneously to vertical light sources (L and R), a dark field illumination is obtained: the majority of light is 

not reflected towards the camera. When light sources in the back region (C and D) are turned on, alone or 

simultaneously to vertical light sources (L and R) a bright field illumination s obtained: the majority of light 

is reflected towards the camera. When multiple light sources are turned on simultaneously (e.g., double parallel 

or perpendicular lights, or more than two light sources at a time), other illumination conditions can be generated 

as well, which do not strictly belong to the two aforementioned conditions. An exhaustive experimentation 

was carried out in a preliminary stage to investigate the effects of all possible combinations of six available 

light sources. For sake of space and clarity, a reduced set of 24 lighting configurations is discussed in this 

study. They are representative of lighting conditions either in industrial LPBF systems or in previous studies 

(Table 1). As an example, the BCLR configuration is representative of industrial systems equipped with a ring 

of LED lights around the laser protection glass, whereas single and double parallel light sources are 

representative of industrial systems equipped with single and multiple directional light sources. Table 2 

summarizes all the 24 lighting configurations considered in this study.   

 

Fig. 3 – Locations of the six directional LED light sources: view of the build chamber ceiling (left panel), 

front view (central panel) and lateral view (right panel) 

 

A checkerboard calibration of the camera [28] was performed to correct the perspective error and to 

estimate the actual spatial resolution. In this study, an in-situ spatial resolution of 20 µm/pixel over the entire 

build area was achieved. All the ex-situ images were acquired by means of a Mitutoyo Quick Vision Active 



optical microscopy equipped with a 2.5X lens. The spatial resolution of ex-situ images was one order of 

magnitude higher than the one available in-situ, i.e., about 1,9 μm/pixel. 

 

Table 2 – List of 24 lighting configurations tested in the presented experimentation 

 Dark field Bright field Other configurations 
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3.2. LPBF process and designed experiments 

Five different builds were manufactured via LPBF of AISI 316L steel by using the prototype system 

described in Section 4.1. with fixed default process parameters listed in Table 3. The AISI 316L powder had 

an average particle size of 25 μm. A summary of builds produced during the experimental activity is shown in 

Table 4. 

 

Table 3 – Default process parameters used to produce all the specimens 

Laser Power Scan speed Hatch distance Scan strategy Layer thickness 

225 𝑊 500 𝑚𝑚/𝑠 0,07 𝑚𝑚 Meander 0,05 𝑚𝑚 

 

Table 4 – Summary of builds included in the experimentation, corresponding experimental plan and goals 

 Plan Purpose 

Build 1 Full factorial, 2 factors, 2 replicates 

Specimen shape (2 levels): cylinders and parallelepipeds 

Scan direction in top layer (4 levels): 0°, 45°, 90°, 135° 

Tuning of segmentation algorithm parameters 

Build 2 Replicate of Build 1 Scan direction effect analysis 

Build 3 Latin-square, 1 factor, 3 replicates 

Specimen shape (3 levels): cylinders, parallelepipeds and triangular 

prisms; Fixed scan direction in top layer: 0° 

Lighting condition screening 

Measurement system performance 

characterization 

  Build 4 Replicate of Build 3 

Build 5 Replicate of Build 3 (repeated image acquisition of the same layer) Measurement system performance 

characterization 

Measurement repeatability evaluation 



The first two builds, hereafter denoted by Build 1 and Build 2, included 16 specimens: 8 cylindrical 

specimens of nominal diameter 𝑑 = 5 𝑚𝑚, and 8 parallelepiped specimens with squared base area of nominal 

side 𝑙 = 5 𝑚𝑚. The process was interrupted at the 80th layer, i.e., at height 𝑍 =  4 𝑚𝑚 above the build plate 

and images of the last layer were acquired both in-situ and ex-situ. The scan direction was rotated by 45° at 

each layer, and the starting scan direction for each specimen was varied such that, in the last layer, the slices 

were printed with four different scan directions with respect to the X axis, i.e., 0°, 45°, 90° and 135°. Each 

build was designed such that two replicates of the same scan direction were available in the last layer for each 

shape, i.e., circles and squares. A random spatial allocation of the specimens on a 4 x 4 regular grid was 

performed in each build (see Fig. 4, left panel). Build 1 was used for the calibration of the ACWE and LSE 

BFE algorithms, i.e., for the choice of parameter 𝜗 in both the methods and the kernel parameter in the LSE 

BFE method. The selected values of these parameters were then used for all the other experiments. Build 2 

was used to investigate whether the scan direction had a statistically significant effect on the segmentation 

performances for the different lighting conditions.  

Fig. 4 shows one example of in-situ image acquired for the last layer of Build 2 (Fig. 4 a), the corresponding 

ex-situ image (Fig. 4 b) and the ground-truth contours superimposed to the in-situ image (Fig. 4 c). The scan 

angles applied to produce the last layer of each specimen are shown in Fig. 4 b.  

 

Fig. 4 – Example of in-situ image of Build 2 (a), corresponding ex-situ image (b) and superimposition of 

ground-truth contours on the original in-situ gathered image (c)  

 



Based on the results of these preliminary analysis, two additional builds, hereafter denoted by Build 3 and 

Build 4, were manufactured with the same AISI 316L powder and the same process parameters. These builds 

were used to screen out worst illumination configurations and to perform the measurement system performance 

characterization study. Build 3 and Build 4 consist of a 3 x 3 latin-square design of three different geometries: 

three cylindrical specimens of nominal diameter 𝑑 = 5 𝑚𝑚, three parallelepiped specimens with squared base 

area of nominal side 𝑙 = 5 𝑚𝑚, and three isosceles triangular prisms with base of height ℎ = 6 𝑚𝑚 and angles 

equal to 67.38° and 45.24°. Analogously to the previous two builds, the process was interrupted at the 80th 

layer, and images of the last layer were acquired both in-situ and ex-situ. Differently from the previous two 

builds, in Build 3 and Build 4 all the slices belonging to different shapes were printed with the same scan 

direction in each layer. In the last layer, the scan angle with respect to the X axis was 0° for all the shapes1. 

One additional build, i.e., Build 5, was produced to estimate the measurement repeatability. It is a replicate of 

Build 3 and 4, but multiple (three) in-situ images of the same layer were acquired under each illumination 

condition. Fig. 5 shows two examples of in-situ images acquired for the last layer of Build 3 (Fig. 5 a) and 

Build 4 (Fig. 5 d), the corresponding ex-situ images (Fig. 5 b and Fig. 5 e) and the ground-truth contours 

superimposed to the in-situ images (Fig. 5 c and Fig. 5 f).  

 

Fig. 5 – Example of in-situ image of Build 3 (a), corresponding ex-situ image (b) and superimposition of 

ground-truth contours on the original in-situ gathered image (c)  

 

                                                           
1 Indeed, the results discussed in Section 5 show that the scan direction had no statistically significant effect on the 

segmentation performances.  



4. METHODOLOGY 

The active contours methodology has been applied to static image segmentation of single images and 

boundary tracking in temporal image sequences since the first introduction of so-called “snakes” by Kass et 

al. [29]. The underlying idea consists of implementing an iterative method that starts with a first boundary 

definition in the form of a closed curve. Then, the shape of this boundary is iteratively changed and adapted 

by applying shrink/expansion operations called “contour evolution” driven by the minimization of an energy 

function. Active contour methods can be divided in two classes: edge-based and region-based [17 – 18]. Edge-

based methods work by finding discontinuities in the intensity of an image, where an edge consists of a 

boundary between two regions characterized by different properties (e.g., pixel intensities). They rely on local 

derivative estimation, and hence they are not very effective in the presence of weak object boundary and noisy 

patterns like in layerwise images in LPBF. Abdelraham et al. [7] and Li et al. [8], proposed the use of a region-

based active contour technique, which exploits a certain region descriptor to guide the contour evolution. The 

algorithm works by segmenting the image so that each region has homogeneous properties. Active contours 

are more robust than edge-detection based techniques with respect to image noise and not well-defined edges, 

but they can perform poorly if the foreground region has non-homogeneous intensity, which strongly depends 

on lighting conditions [17; 20]. The ACWE method proposed by Chan and Vese [19] and applied by Li et al. 

[8] to LPBF images is a well-known approach belonging to this category. In the presence of heterogeneous 

foreground, the ACWE method, like other analogous region-based methodologies may be not effective in 

identifying both the dark and bright areas of the foreground region. The LSE BFE method proposed by Li et 

al. [20] and implemented by Abdelraham et al. [7] is instead specifically aimed at overcoming this limit, but 

at the expense of an increased algorithm complexity and longer computational time. The LSE BFE method 

belongs to the region-based active contour category, but it is able to segment regions characterized by non-

homogeneous intensity. This is achieved by introducing a local clustering criterion for intensities in a 

neighbourhood of each pixel.  

The ACWE and LSE BFE methodologies are briefly reviewed in Appendix A. Section 4.1 presents the 

proposed approach to apply these methods to layerwise image segmentation in LPBF; Section 4.2 describes 

the proposed methodology to evaluate the image segmentation and to determine the accuracy and repeatability 

of dimensional measurements based on in-situ image segmentation. 



4.1. Layerwise image segmentation 

The active contours methodology implementation requires the definition of the initial contour, i.e., the 

zero-level set function to initialize the iterative segmentation procedure. To this aim, an approach similar to 

the ones used by Abdelraham et al. [7] and Li et al. [8]. The underlying idea consists of exploiting the 

knowledge of the region of interest corresponding to the nominal slice contour in each layer. More specifically, 

we defined the initial level set function as the bounding box of the nominal contour available from the sliced 

model of the part.  

We also investigated the possibility to enhance the segmentation capability by pre-processing the in-situ 

gathered images. Indeed, both active contours methods reviewed in Appendix A rely on the assumption that 

the two regions have different mean intensities. However, as shown in Fig. 6 (top panels), because of the 

inhomogeneous intensity within the printed region caused by an uneven surface pattern, the foreground area 

exhibits intensity values spread over an interval that is overlapped with respect to background intensities. It is 

known from the literature [17 – 18] that when foreground regions include both darker and brighter areas than 

the background, the traditional active contours algorithm tends to segment either the dark or bright zones. 

Because of this, two implementations of the ACWE and LSE BFE algorithms were considered. The first 

consists of the direct application of the two algorithms to the original images. The second involves a pre-

processing step aimed at increasing the gap between average foreground and background intensities. The 

proposed pre-processing operation consists of transforming the post-scan image by subtracting the average 

background intensity estimated from pre-scan images, and then applying the absolute value to the resulting 

difference of pixel intensities. This yields the following transformation of the original image: 

𝑈0(𝑥, 𝑦)∗ = 𝑎𝑏𝑠(𝑈0(𝑥, 𝑦) − �̅�0,𝑝𝑟𝑒) (1) 

 

where 𝑥 and 𝑦 are the pixel coordinates, 𝑈0(𝑥, 𝑦)∗ is the transformed pixel intensity and �̅�0,𝑝𝑟𝑒 is the average 

pixel intensity of the image captured before the laser scanning. This transformation allows converting the 

portions of the foreground region that are darker than the loose powder intensity into brighter ones. Fig. 6 

(bottom panels) shows that this pre-processing operation enlarges the gap between foreground and background 

intensities and it also reduces the pixel intensity variability within the foreground area. In the remaining of the 



paper, the nomenclature “transformed image” is used to highlight when either the ACWE or the LSE BFE 

algorithms were applied to images pre-processed via expression (1). 

 

Fig. 6 – Example of original (top-left panel) and transformed (bottom-left panel) image with the 

corresponding pixel intensity boxplots (right panels) of foreground and background regions  

 

4.2. Characterization of in-situ measurement 

In order to characterize the performances of in-situ measurements we compared them against a reference, 

also known as measurement standard in metrology or ground-truth in the machine vision literature [30; 16], 

defined on the basis of ex-situ optical microscopy images of the additively produced specimens. The following 

procedure was applied.  

1. The LPBF process of the simple geometrical features mentioned in Section 3 was interrupted after a 

pre-defined number of layers (no top-skin scanning was performed while producing the last layer); 

2. A sufficient time was waited before acquiring in-situ images to let the parts cool down to room 

temperature, in order to capture images representative of the actual dimensions and shape after the 

shrinkage; 



3. In-situ high-resolution images were acquired before and after the laser scan in the last layer; 

4. The part was removed from the system and ex-situ optical microscopy images of the top layer were 

acquired.  

The comparison between in-situ and ex-situ measurements was performed in two sequential steps. First, a 

simple image segmentation evaluation criterion [30] was used. It consists of a pixel-wise and non-shape 

dependent comparison between the in-situ and ex-situ foreground regions, which was suitable to preliminarily 

to screen out lighting conditions that yielded poor segmentation results, but also to assess the possible effect 

of the scan direction and to calibrate the active contours algorithms (i.e., to select the parameter values to be 

used in the energy functional minimization problem). Then, the measurement system performance 

characterization was performed to determine the measurement accuracy in the presence of best segmentation 

conditions only, by estimating the dimensional measurement error of specific benchmark geometrical features.  

Regarding the preliminary image segmentation evaluation step, several criteria are available in the 

literature [30]. The more consolidated approach relies on the comparison with a so-called ground-truth 

reference that represents the correct segmentation for the current image. This involves computing a measure 

of similarity (or dissimilarity). In this study, we refer to the Dice’s index [31 – 32], a region-based similarity 

index extensively used in image analysis. Differently from [9], where the ground-truth was determined by 

manually segmenting the in-situ images, the use of ex-situ images was motivated by the need of a ground-truth 

definition with a resolution of an order of magnitude higher. In particular, ex-situ images were segmented by 

combining image pre-processing and a human-assisted iterative refining of active contours-based 

segmentation. The Dice’s index is defined as follows [31]. Let Ω𝑖𝑛𝑠𝑖𝑡𝑢 and Ω𝑡𝑟𝑢𝑡ℎ be, respectively, the 

foreground regions identified from in-situ image segmentation and the corresponding ground-truth reference 

after registration. The Dice’s metric computes the intersection area between Ω𝑖𝑛𝑠𝑖𝑡𝑢 and Ω𝑡𝑟𝑢𝑡ℎ normalized 

with respect to the mean sum of individual areas. It is defined as follows:  

𝐷𝑖𝑐𝑒(Ω𝑖𝑛𝑠𝑖𝑡𝑢, Ω𝑡𝑟𝑢𝑡ℎ) =
2‖Ω𝑖𝑛𝑠𝑖𝑡𝑢 ∩ Ω𝑡𝑟𝑢𝑡ℎ‖

‖Ω𝑖𝑛𝑠𝑖𝑡𝑢‖ + ‖Ω𝑡𝑟𝑢𝑡ℎ‖
 (2) 

 



where ‖∙‖ represents the number of pixels in the region. The index ranges between 0 and 1, where 1 means 

that the two regions coincide, whereas 0 means that there is no intersection between the regions. The Dice’s 

index estimation requires a registration between the ground-truth contours and the in-situ images. To this aim, 

a landmark registration involving a non-reflective similarity transformation (i.e., rigid translation, rotation and 

resampling with no reflection) was applied to couples of in-situ and ex-situ images, before applying any 

segmentation algorithm [33]. The landmarks were manually selected in both in-situ and ex-situ images, 

corresponding to the four corners of the build. The registration transformation was estimated once for each 

build and applied to images acquired under every lighting conditions.  

Once the algorithms have been calibrated and only lighting conditions that provided the highest quality 

segmentations (i.e., highest Dice’s index values) were retained, the dimensional error was estimated by means 

of a robust minimum squared error fitting of identified contours for the measurement of different geometrical 

features, including the diameter of circular shapes, the side length of squared shapes and the angles of triangular 

shapes. 

Fig. 7 shows the geometrical features whose dimensions were measured by means of both in-situ and ex-

situ images. The sides of squared shapes were labelled as 𝑙𝑥 and 𝑙𝑦, the diameter of circular shapes was denoted 

as 𝑑, whereas the angle at the apex of the isosceles triangles was denoted as 𝛽. 

 

Fig. 7 – Example of simple geometrical features measured by means of the robust minimum squared error 

fitting approach 

 

Once the images had been converted into a point profile via image segmentation, the linear sizes considered 

(circle diameter and side of the squared shape) were defined and estimated in accordance to the ISO 14405-1 



standard [34]. A global least squares size has been considered. In the case of the side of the square, this requires 

the solution of the following problem: 

min
𝑎,𝑏,𝑐1,𝑐2

(∑ (
𝑎𝑥𝑖,1 + 𝑏𝑦𝑖,1 + 𝑐1

√𝑎2 + 𝑏2
)

2
𝑛1

𝑖=1

+ ∑ (
𝑎𝑥𝑗,2 + 𝑏𝑦𝑗,2 + 𝑐2

√𝑎2 + 𝑏2
)

2𝑛2

𝑗=1

) (3) 

 

where 𝑎, 𝑏, 𝑐1, 𝑐2 are optimization parameters, 𝑛1 is the number of points identified in one side, (𝑥𝑖,1, 𝑦𝑖,1) are 

the coordinates of the ith point of this side, and similarly 𝑛2 is the number of points identified in the opposite 

side and (𝑥𝑗,2, 𝑦𝑗,2) are the coordinates of the jth point. The side is then given by |𝑐1 − 𝑐2|/√𝑎2 + 𝑏2. In the 

case of the diameter of the circumference, the following problem must be solved: 

min
𝑑,𝑥,𝑦

(∑ (√(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2 −
𝑑

2
)

2𝑛

𝑖

) (4) 

 

where 𝑑, 𝑥, 𝑦 are optimization parameters, 𝑛 is the number of points identified on the circumference, and 

(𝑥𝑖, 𝑦𝑖) are the coordinates of the ith point. The diameter is then given by 𝑑. 

The apex angle was defined, in accordance with the ISO 14405-3 standard [35], as a two-line prismatic 

angular size, the two sides being independently fitted by least squares. The two sides where independently 

fitted by solving: 

min
𝑎,𝑏,𝑐

(∑ (
𝑎𝑥𝑖 + 𝑏𝑦𝑖 + 𝑐

√𝑎2 + 𝑏2
)

2𝑛

𝑖=1

) (5) 

 

where 𝑎, 𝑏, 𝑐 are optimization parameters, 𝑛 is the number of points identified one of the sides, and (𝑥𝑖, 𝑦𝑖) are 

the coordinates of the ith point. Once the sides have been fitted, as the parameters 𝑎, 𝑏 con be geometrically 

interpreted as normal to the direction vector of the line, the apex angle can be easily obtained. 



In all cases the outlying points where iteratively discarded to obtain a robust fitting. In the case of the 

triangle and of the square shape the points close to the vertices where discarded, as it was difficult to attribute 

them to one or the other side. 

It is worth noting that the final dimensional error characterization does not require any registration between 

in-situ and ex-situ images. Therefore, if registration inaccuracy exists, it may produce a constant bias in the 

Dice’s index computation but not in the final dimensional error estimation.  

The characterization of the layerwise image-based dimensional measurement involves the analysis of the 

sources of variability that affect the measurement. Generally speaking, this kind of analysis, also known as 

gauge repeatability and reproducibility (R&R) study, entails a decomposition of the total variability, 𝜎𝑡𝑜𝑡
2 , into 

the variability due to different parts, the variability due to different operators, and the variability due to the 

gauge itself [36]. In our study, the measurement system is not operator-dependent, as the camera is fixed and 

all calibration and image segmentation operations can be automated. Therefore, the sources of variability 

consist of part-to-part variability, 𝜎𝑝𝑎𝑟𝑡
2 , build-to-build variability, 𝜎𝑏𝑢𝑖𝑙𝑑

2 , and pure error, 𝜎2. The part-to-part 

and the build-to-build variability represent the variability in the measurement result that is not due to 

measurement errors, but to the fact that more than one build has been manufactured, and more than one part 

per build has been executed. The part/builds are not exactly identical, indeed. The pure error instead considers 

the variability due to the difference of repeated measurements of a single build. As all the measurements were 

conducted exactly in the same conditions, and all the algorithms adopted for the image analysis were 

deterministic, this variability is due to uncontrollable effects like, as an example, the reading noise of the 

sensor. As such, it is an estimate of the measurement repeatability. A random effect model was used to 

decompose the total measurement variability into these terms. For each measured quantity, i.e., side lengths of 

squared shapes, diameter of circular shapes and angle at the apex of triangular shapes, a two-factor random 

effect model [36] was fitted to data gathered by producing Build 3, 4 and 5. The response variable was the 

measurement result, and design factors are the builds and the parts within the builds. The factor “part” was 

nested into the factor “build” leading to the following random effect model: 

𝑦𝑖𝑗𝑘 = 𝜇 + 𝜏𝑖 + 𝛽𝑗(𝑖) + 𝜖𝑖𝑗𝑘 (6) 

 



where 𝑖 = 1, … ,3 (number of builds), 𝑗 = 1, … ,3 (number of parts of the same shape in each build), and 

𝑘 = 1, … , 𝑛𝑖 (number of measurement repetitions in the i-th build). 𝜇 is the the mean dimension measured in-

situ, and hence 𝜇 − 𝜇𝑟𝑒𝑓 (where 𝜇𝑟𝑒𝑓 is the corresponding mean dimension measured ex-situ) represents the 

estimate of the measurement bias. The measurement bias is the systematic measurement error committed every 

time a part is measured. Even if, once the bias has been estimated, it can be corrected, in general measurement 

characterized by a small bias are preferable, as bias estimate can be difficult and expensive. 𝜏𝑖 indicates the 

build factor, whereas 𝛽𝑗(𝑖) indicates the part factor, where the subscript 𝑗(𝑖) indicates that the part factor is 

nested into the build factor. 𝜖𝑖𝑗𝑘 is the random error term. 

Based on the model (6), the following decomposition of the total measurement variability was obtained:  

𝜎𝑡𝑜𝑡
2 = 𝜎𝑝𝑎𝑟𝑡

2 + 𝜎𝑏𝑢𝑖𝑙𝑑
2 + 𝜎2 (7) 

 

Indeed, the error variability, 𝜎2, in our nested design coincides with the pure error variability associated 

to the repeated measurements in Build 5, and hence it was used as an estimate of the measurement repeatability.  

 

 

5. RESULTS 

 

5.1. Preliminary analysis 

The results of the analysis aimed at selecting the value of the penalization coefficients in both ACWE 

and LSE BFE algorithms, and the kernel parameter in the LSE BFE algorithm are detailed in Appendix B. 

They showed that both the active contours methodologies are robust to the choice of the penalization 

coefficients, whereas the kernel width has a significant effect on the segmentation performances of the LSE 

BFE algorithm. In all the analysis presented in this study, the LSE BFE performances were always evaluated 

based on the corresponding optimal value of the kernel width parameter based on Build 1 data. All other 

penalization coefficients involved in both ACWE and LSE BFE algorithms were kept fixed. 

The effect of the laser scan direction was investigated by means of a two-way (shape and scan direction) 

Analysis of Variance (ANOVA) applied to the Dice’s similarity index provided by four different methods: 

ACWE on original images, ACWE on transformed images, LSE BFE on original images and LSE BFE on 



transformed images. The ANOVA results (see Appendix C) revealed that for none of the considered lighting 

conditions neither the shape nor the scan direction were statistically significant at familywise confidence of 

5%, with the only exception of lighting configurations AD and BD for which the scan angle resulted to have a 

significant effect. Both configuration AD and BD combined two horizontal light sources parallel to the X axis, 

and they yielded a significantly lower segmentation performance in the presence of scan angle 90°, i.e., when 

the direction of scanned hatches was perpendicular to the LED strips direction. Indeed, under these conditions, 

the surface pattern irregularity associated to the scanned hatches was emphasized and resulted in worst 

segmentation results caused by a stronger inhomogeneity of pixel intensities within the foreground region.  

These results highlight that the two active contours methodologies are quite robust with respect to the 

scanning direction for almost all the lighting conditions, and especially for the lighting conditions that provided 

the best segmentation performances. Because of this, the following analysis were performed fixing the scan 

angle at 0° value.  

 

5.2. Effect of illumination conditions 

The results of the preliminary screening of lighting conditions are displayed in Table 5. Table 5 shows the 

sample mean and the sample standard deviation of Dice’s index values for the compared methods in each 

lighting configuration. Fig. 8 shows the 95% confidence intervals for the Dice’s index provided by the ACWE 

and LSE BFE methodologies when they were applied either to the original or transformed images.  

Table 5 and Fig. 8 (left panels) show that when the image segmentation was applied to the original images 

only the dark field configuration consisting of the single light source A (one horizontal light source in the front 

region and no vertical light source) yielded a high segmentation performance, significantly higher than all 

other configurations. When the segmentation algorithms were applied to the transformed images, instead, there 

was a considerable improvement of the segmentation performances for various lighting configurations (Fig. 8, 

right panels). They include all the configurations where at least one front horizontal light source was present, 

either alone (i.e., A and B) or together with vertical light sources (i.e., AL, AR, BL, BR, BLR). All these 

configurations belong to the dark field condition, whose benefit consists of yielding a smoother pixel intensity 

pattern within the foreground region, which finally improved the segmentation. Fig. 8 (right panels) shows 



that good segmentation was also achieved in the presence of configurations combining both front and back 

horizontal light sources in addition to one or both vertical light sources (i.e., BCL, BCR, BCLR), especially 

when the ACWE method was applied. In this case, the pre-processing operation defined in expression (1) 

combined with multi-source lighting yielded a quite smooth intensity pattern within the foreground region, 

that finally led to a more accurate contour identification with respect to the one achieved by segmenting the 

original images.  

 

Table 5 – Mean Dice’s index and standard deviation (in brackets) for different segmentation methods in the 

presence of all the lighting conditions 

 

Vertical Horizont ID 

Dice’s index 

LSE BFE ACWE 

Original image Transformed image Original image Transform. image 

D
ar

k 
fi

e
ld

 

None Front A 0.938 (0.029) 0.951 (0.073) 0.927 (0.0589) 0.962 (0.017) 

None Front B 0.870 (0.142) 0.950 (0.039) 0.827 (0.213) 0.955 (0.017) 

Left Front AL 0.748 (0.140) 0.942 (0.034) 0.670 (0.236) 0.948 (0.020) 

Right Front AR 0.794 (0.120) 0.912 (0.047) 0.728 (0.142) 0.937 (0.033) 

Left Front BL 0.734 (0.145) 0.938 (0.028) 0.696 (0.193) 0.945 (0.019) 

Right Front BR 0.764 (0.139) 0.912 (0.060) 0.733 (0.157) 0.912 (0.065) 

Both Front BLR 0.787 (0.157) 0.912 (0.051) 0.657 (0.131) 0.937 (0.028) 

B
ri

gh
t 

fi
e

ld
 

None Back C 0.607 (0.142) 0.911 (0.046) 0.574 (0.149) 0.576 (0.153) 

None Back D 0.604 (0.142) 0.868 (0.070) 0.484 (0.157) 0.646 (0.199) 

Left Back CL 0.703 (0.143) 0.625 (0.160) 0.575 (0.158) 0.658 (0.151) 

Right Back CR 0.696 (0.151) 0.666 (0.156) 0.544 (0.147) 0.683 (0.152) 

Left Back DL 0.812 (0.120) 0.809 (0.119) 0.743 (0.187) 0.833 (0.100) 

Right Back DR 0.844 (0.108) 0.879 (0.076) 0.788 (0.143) 0.796 (0.159) 

Both Back CLR 0.762 (0.126) 0.863 (0.087) 0.661 (0.116) 0.888 (0.083) 

O
th

er
 c

o
n

fi
gu

ra
ti

o
n

s 

Left Both BCL 0.721 (0.174) 0.879 (0.092) 0.676 (0.121) 0.936 (0.023) 

Right Both BCR 0.763 (0.147) 0.914 (0.040) 0.623 (0.139) 0.919 (0.033) 

Both Both BCLR 0.791 (0.122) 0.922 (0.067) 0.663 (0.194) 0.945 (0.023) 

None Both AC 0.658 (0.166) 0.703 (0.226) 0.560 (0.154) 0.813 (0.162) 

None Both AD 0.664 (0.099) 0.713 (0.190) 0.518 (0.162) 0.691 (0.225) 

None Both BC 0.700 (0.194) 0.866 (0.091) 0.611 (0.115) 0.885 (0.075) 

None Both BD 0.764 (0.111) 0.797 (0.197) 0.587 (0.170) 0.817 (0.167) 

Left None L 0.626 (0.155) 0.822 (0.156) 0.449 (0.143) 0.852 (0.145) 

Right None R 0.721 (0.181) 0.863 (0.111) 0.606 (0.250) 0.876 (0.108) 

Both None LR 0.710 (0.143) 0.863 (0.097) 0.590 (0.106) 0.896 (0.052) 

 

 



 

Fig. 8 – 95% confidence intervals for the mean Dice’s index for the following methods: ACWE on original 

images (top-left panel), ACWE on transformed image (top-right panel), LSE BFE on original images 

(bottom-left panel), LSE BFE on transformed image (bottom-right panel) 

 

According to a Tukey’s multiple comparison test at 95% confidence level [36], when both the ACWE and 

LSE BFE algorithms were applied to original images, the single light source A yielded segmentation 

performances significantly higher than all the other lighting configurations. When the ACWE algorithm was 

applied to transformed images, 12 lighting configurations (highlighted with bold fonts in Table 5) resulted to 

yield Dice’s index values that were statistically higher than all other conditions and not statistically different 

from each other. When the LSE BFE algorithm was applied to transformed images, this was achieved in the 

presence of 10 lighting configurations (highlighted with bold fonts in Table 5). In practice, the pre-processing 

operation (1) makes the segmentation performances more robust to illumination thanks to the enhanced gap 

between foreground and background intensities, and this allowed achieving quite good results for several 

different configurations.  



For sake of space, in the following measurement system performance characterization, only illumination 

conditions corresponding to an average Dice’s index larger than 0.95 were considered. According to Table 5, 

this leads to configuration A for the segmentation algorithms applied to original images, and configurations A 

and B when the segmentation algorithms were applied to the transformed images. It is worth mentioning that, 

in most the cases, the triangular shapes yielded worse Dice’s index values than other shapes. This issue was 

further investigated in the measurement performance characterization discussed in sub-section 5.3. 

 

 

5.3. Measurement system performance characterization 

Table 6 shows the sources of variability for the compared methods in the presence of the most suitable 

illumination conditions discussed in sub-section 5.2. The results refer to four measured quantities, i.e., the side 

of squared shapes along the X and Y axis, 𝑙𝑥 and 𝑙𝑦, the diameter of circular shapes, 𝑑, and the angle at the 

apex of the isosceles triangles, 𝛽. Fig. 9 shows the 95% confidence intervals for the mean dimensional errors 

superimposed to all the individual measurement errors. 

In different cases, the build-to-build variability was approximately equal to zero. This regards conditions 

where the difference among the builds was strongly non-statistically significant, and hence the build-to-build 

variability contribution to the total variability decomposition was negligible. 

In addition to the variability source decomposition, the bias between in-situ and ex-situ sample mean 

dimensional measurements is shown in the last column of Table 6. Table 6 shows that all the segmentation 

methods applied either to original or transformed images are characterized by a quite low pure error, i.e., a 

quite high measurement repeatability. As an example, 𝜎 < 40 𝜇𝑚 for 𝑙𝑦, 𝑙𝑥 and 𝑑 (i.e., less than 0.8% of the 

reference dimension), and 𝜎 = 1° − 4° for 𝛽 (i.e., less than 9% of the reference dimension). The highest 

repeatability for all measured quantities was yielded by the LSE BFE method applied to original images 

(lighting condition A). In that case, the repeatability reduced to 𝜎 < 5.7 𝜇𝑚 for 𝑙𝑦, 𝑙𝑥 and 𝑑 (i.e., less than 

0.1% of the reference dimension), and 𝜎 = 0.6° for 𝛽 (i.e., about 1.3% of the reference dimension). 

 

 



Table 6 – Measurement variability sources and measurement bias for different: image pre-processing approach 

(1), illumination condition (2), segmentation method (3), and measured quantity (4) 

(1) (2) (3) (4) 
Total var. 

𝜎𝑡𝑜𝑡 

Pure error 

𝜎 

Build-to-build 

𝜎𝑏𝑢𝑖𝑙𝑑 

Part-to-part 

𝜎𝑝𝑎𝑟𝑡 
Bias 

O
ri

g
in

al
 i

m
ag

e 

A 

ACWE 

𝑙𝑦 [μm] 80.19 11.71 56.22 55.97 -329.88 

𝑙𝑥 [μm] 54.09 5.37 ~ 0 53.82 -32.54 

𝑑 [μm] 161.03 5.70 ~ 0 160.93 -113.13 

𝛽 [°] 8.05 3.51 ~ 0 7.25 -3.29 

LSE 

BFE 

𝑙𝑦 [μm] 78.92 5.44 62.85 47.43 -328.93 

𝑙𝑥 [μm] 57.41 3.67 ~ 0 57.29 -48.15 

𝑑 [μm] 142.68 5.68 ~ 0 142.57 -128.40 

𝛽 [°] 5.38 0.55 0.62 5.31 -4.20 

T
ra

n
sf

o
rm

ed
 i

m
ag

e 

A 

ACWE 

𝑙𝑦 [μm] 102.97 8.00 0.00 102.66 -185.33 

𝑙𝑥 [μm] 109.89 12.51 68.01 85.41 -122.402 

𝑑 [μm] 128.26 39.09 ~ 0 122.16 -171.56 

𝛽 [°] 3.72 1.23 ~ 0 3.51 -2.20 

LSE 

BFE 

𝑙𝑦 [μm] 105.90 8.10 ~ 0 105.59 -148.00 

𝑙𝑥 [μm] 85.63 12.67 ~ 0 84.69 -84.94 

𝑑 [μm] 129.41 39.59 ~ 0 123.21 -134.83 

𝛽 [°] 4.32 1.53 ~ 0 4.04 -3.00 

B 

ACWE 

𝑙𝑦 [μm] 97.09 8.81 62.77 73.55 -159.64 

𝑙𝑥 [μm] 84.75 22.43 57.08 58.49 -106.10 

𝑑 [μm] 122.82 23.89 ~ 0 120.48 -160.36 

𝛽 [°] 2.42 1.64 ~ 0 1.78 -2.14 

LSE 

BFE 

𝑙𝑦 [μm] 133.23 8.92 109.39 75.53 -121.97 

𝑙𝑥 [μm] 63.26 22.72 ~ 0 59.04 -64.17 

𝑑 [μm] 128.29 24.20 33.74 121.39 -124.12 

𝛽 [°] 1.93 1.05 ~ 0 1.62 -2.40 

 

All the considered methods were quite comparable in terms of build-to-build, part-to-part and total 

variability: this denotes that the repeatability of the measurement is small compared to the part-to-part 

variability. The only exception is the measurement of the angle 𝛽 based on the ACWE method applied to the 

original images. This was caused by a higher variability in the identification of slice contours corresponding 

to the corners of the triangular shapes, which have a relevant impact on the corresponding measurement 

repeatability. In all cases, the pure error is up to one order of magnitude lower than the total variability: most 

of the variability depends then on the natural variability of the process, and not on the measuring instrument. 

As such the precision of the system in the identification of the dimension characteristics should be considered 

adequate to monitor the process: if there is a significant deviation from the nominal behaviour, the measuring 

system, together with an adequate image processing and segmentation method, will be able to identify it. 

 

 



 

Fig. 9 – Individual measurement errors and 95% confidence intervals of mean measurement errors for the 

following measured quantities: 𝑙𝑦 (top-left panel) 𝑙𝑥 (top-right panel), 𝑑 (bottom-left panel) and 𝛽 (bottom-

right panel) 

 

Fig. 9 shows that in-situ measurements tend to underestimate all the dimensional quantities: this is 

expected to be caused by a limited accuracy in the system calibration (a magnification error is present because 

of the error in the estimation of the pixel size, i.e. the pixel to micrometre conversion) that generates a 

systematic underestimation in the measurement result. Furthermore, a scale error (the system behaves 

differently in the x and y directions) is present: the bias affecting the measurement of 𝑙𝑥 is lower than the one 

affecting the measurement of 𝑙𝑦. The scale error is expected to be due to the camera orientation (Fig. 9). The 

calibration of the camera needs then an improvement, which can be based on this experimental evidence as 

well.  

In addition to this, there are other effects influencing the measurement bias of 𝑙𝑦. As an example, Fig. 10 

shows that both the ACWE and LSE BFE methods applied to original images yielded a much higher bias for 



the measurement of 𝑙𝑦 than other methods applied to the same images. This was caused by an underestimation 

of the foreground region produced as shown in Fig. 10. Fig. 10 compares the segmentation of a squared shapes 

produced by the ACWE method applied to the original image (left panel) and to the transformed image (right 

panel). For sake of clarity, in both the panels of Fig. 10, the identified contours are superimposed to the original 

image. Fig. 10 shows that the bottom edge of the shape appears brighter than the rest of the foreground region, 

because of how the directional light is reflected back to the camera. When the segmentation was applied to the 

original image, that brighter region was not included into the identified foreground region. The image pre-

processing operation (1) allowed the segmentation algorithm to properly include the brighter edge into the 

segmented region instead, which reduced the error in the estimation of the 𝑙𝑦 dimension.  

 

Fig. 10 – Example of in-situ image segmentation for a squared shape in Build 3 obtained by applying the 

ACWE method to the original image (left panel) and to the transformed image (right panel) in the presence 

of lighting condition A 

 

The segmentation of images transformed according to expression (1) allows enhancing the measurement 

trueness in specific cases like the one depicted in Fig. 10, but the segmentation of original images provided a 

slightly better precision. In both the cases, the irregularity of the contours shown in Fig. 10 was caused by a 

limited sharpness of edges between the foreground and background regions. The lack of well defined edges 

was one of the motivating factors for the use of active contours, since it makes poorly effective conventional 

edge detection and image segmentation techniques [9; 27]. However, future research will be aimed at further 

improving the quality of the layerwise images working on the image system configuration and on pre-

processing operations.  



Generally speaking, the ACWE and the LSE BFE methodologies produced analogous measurement 

performances, although the ACWE involves a simpler and more computationally efficient algorithm than the 

LSE BFE, which also does not require the estimation of kernel parameters. A further comparison in terms of 

computational efficiency is discussed in sub-section 5.4. 

As pointed out in the introduction, part dimensions measured in-situ are not representative of the final 

dimensions of the as-built part, as shrinkage effects and thermal stress-induced distortions cannot be captured 

on a layer-by-layer basis. However, the measurement repeatability and uncertainty discussed above are 

compatible with the capability of detecting a major deviation from the expected shape, together with the 

detectability of powder recoating errors. This can be achieved by combining a suitable lighting configuration 

with active contours image segmentation. 

 

5.4. Computational cost 

The computational efficiency of the ACWE and LSE BFE algorithms was estimated on a workstation 

equipped with an Intel® Xeon® CPU E5-2650 v2 @ 2.60 GHz. Two Matlab® implementations of the 

algorithms were used in this paper, i.e., the ACWE v.1.0 developed by Dongcai2 and the LSE BFE toolbox 

v.1.0 developed by Li3. Fig. 11 shows the average percentage contour variation between the i-th and (i-1)-th 

iteration steps for the measurement configurations considered in Section 5.3, whereas Fig. 12 shows the 95% 

confidence intervals for the mean duration of one algorithm iteration in the same measurement configurations. 

Fig. 11 shows that both the algorithms converge to the final contour identification in very few steps, i.e., 

less than 10 iterations. However, the ACWE is much more efficient than the LSE BFE, as the average duration 

of one ACWE iteration is lower than 0.1 s and the average duration of one LSE BFE iteration is larger than 

2.8 s. Moreover, the computational cost of the LSE BFE depends on the type of image (i.e., original or 

transformed) and on the illumination condition. This is mainly driven by the optimal kernel width used in each 

specific condition. As shown in Appendix B, the segmentation of transformed images requires higher values 

of the kernel width, which inflates the computational effort, as the K-means clustering is performed on larger 

                                                           
2 https://it.mathworks.com/matlabcentral/fileexchange/34548-active-contour-without-edge (last access: 18/07/2018) 
3 https://it.mathworks.com/matlabcentral/fileexchange/59752-mri-segmentation-and-bias-field-correction (last access: 

18/07/2018) 

https://it.mathworks.com/matlabcentral/fileexchange/34548-active-contour-without-edge
https://it.mathworks.com/matlabcentral/fileexchange/59752-mri-segmentation-and-bias-field-correction


areas. Considering that both the methods converge in less than 10 iterations for the images considered in this 

study, the ACWE algorithm requires less than 1 s to provide a measurement, whereas the LSE BFE may require 

up to 50 s. Being comparable the measurement performances resulting from the implementation of both the 

methods, the ACWE methodology is more attracting from an in-situ monitoring viewpoint thanks to its 

enhanced computational efficiency. 

 

Fig. 11 – Percentage of pixel-wise variation of detected contours between i-th and (i-1)-th iterations of the 

ACWE and LSE BFE algorithms applied either to original images (lighting configuration A) or transformed 

images (lighting conditions A and B) 

 

 

Fig. 12 – Duration of one iteration of the ACWE and LSE BFE algorithms applied either to original images 

(lighting configuration A) or transformed images (lighting conditions A and B) 
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6. CONCLUSIONS 

In-situ sensing and monitoring methodologies represent key enabling technologies to make metal additive 

manufacturing processes able to meet stringent and challenging qualification requirements imposed by highly 

regulated industrial sectors. The layerwise production paradigm is well suited to in-situ monitoring as it offers 

the opportunity to gather a large amount of data while the part is being produced. This study was focused on 

the use of layerwise imaging combined with image segmentation algorithms to quickly detect major 

geometrical deviations during the process. This is particularly attracting from an industrial implementation 

viewpoint, as almost all industrial LPBF systems are equipped with cameras that capture images of the powder 

bed on a layer-by-layer basis. Although part dimensions and geometries measured in-situ are not representative 

of the final dimensions and geometry of the as-built part (because of shrinkage and thermal stress-induced 

distortions), if a major departure from the expected shape is observed in one layer, it represents an alarm that 

is worth signalling. 

This study represents the first attempt to determine the accuracy and repeatability of in-situ measurements 

enabled by layerwise image processing and segmentation. To this aim, an experimental procedure that relies 

on the dimensional measurements of simple geometrical features was proposed. Two active contours 

segmentation methods were compared in the presence of several different lighting configurations, and the 

effects of the laser scan direction and image pre-processing operations were investigated as well. 

The results showed that: 

 For both the compared active contours methods, dark field illumination configurations produced 

the best segmentation and measurement performances, although a pre-processing operation based 

on the knowledge of the average pixel intensity of pre-scan images made both the methods more 

robust to illumination conditions; 

 The segmentation results in the presence of most effective lighting configurations were robust to 

the laser scan direction;  

 The ACWE and LSE BFE segmentation methods yielded statistically comparable measurement 

performances, although the ACWE is more computationally efficient and hence preferable from 

an in-situ implementation viewpoint. It is worth noting the ACWE computational efficiency does 



not depend on lighting conditions and pre-processing operation, contrary to the LSE BFE 

approach; 

 Under best lighting configurations, the pure error was an order of magnitude lower than the total 

variability: most of the variability depends then on the natural variability of the process, and not 

on the measuring instrument. Thus, the precision of the system in the identification of the 

dimension characteristics should be considered adequate to monitor the process; 

 Under best lighting configurations, the total measurement variability was in the order of 80 𝜇𝑚 −

160 𝜇𝑚 for squared and circular shapes (about 1.6% – 3.2% of the nominal dimension), which is 

comparable to the shrinkage percentage of stainless steel parts, whereas the pure error was lower 

than 40 𝜇𝑚 (lower than about 0.8% of the nominal dimension);  

 Worst results were achieved in the measurement of angles; in that case a higher pure error was 

observed. This issue requires additional investigations and an extension of the present study to 

more complex geometries; 

 The measurements were affected by magnification and scale errors that produced different 

measurement biases along the X and Y axis: this is expected to be caused by a limited accuracy in 

the camera calibration procedure. This motivates the study of more effective calibration methods, 

possibly augmented by the results of the present performance characterization;  

 The proposed image pre-processing operation allowed enhancing the measurement trueness in 

some cases with respect to the segmentation of original images, but it slightly inflated the pure 

error. 

Future research will be aimed at extending these first achievements to more complex geometries and at 

investigating possible alternative sensing setups and image processing methodologies to further enhance the 

measurement performances. Moreover, grounding on the major findings of this study, an in-situ statistical 

monitoring approach for the detection of geometrical errors and layerwise defects can be developed. A future 

promising research direction consists of investigating image fusion methods to combine layerwise images 

acquired in the presence of different lighting configurations. A few seminal studies explored this possibility 

[7; 10; 25], but the characterization of resulting benefits in terms of measurement performance improvements 

still need to be quantified and analyzed. One additional research theme that deserves additional research 



consists of combining image segmentation algorithms with surface topography reconstruction methods to 

improve the layerwise characterization. 
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APPENDIX A 

The underlying principle of active contour algorithms for image segmentation is based on the Mumford 

and Shah’s minimization problem [19]. Let 𝑈0 be the original grayscale image and let Ω be its domain, such 

that 𝑈0: Ω → ℝ. The segmentation problem can be formulated in the following terms: find a decomposition of 

Ω into 𝑁 sub-regions Ω1, Ω2, … , Ω𝑁  such that an optimal piecewise smooth approximation 𝑈 of 𝑈0 varies 



smoothly within each sub-region Ω𝑖 and rapidly or discontinuously across the boundaries of Ω𝑖. Mumford and 

Shah [37] formalized this problem into the minimization of the following energy functional: 

𝐹𝑀𝑆(𝑈, 𝐶) = ∫ (𝑈0 − 𝑈
Ω

)2𝑑𝑥𝑑𝑦 + 𝜇 ∫ |∇𝑈|2𝑑𝑥𝑑𝑦
Ω\C

+ 𝜗|𝐶| (A1) 

 

where 𝑥 and 𝑦 are the coordinates of the pixels within the image, 𝐶 is the contour of length |𝐶| corresponding 

to the desired segmentation defined as the union of the contours of all the sub-regions (𝐶 = ⋃ 𝐶𝑖
𝑁
𝑖=1 ), 𝜇 and 𝜗 

and two weighting parameters and Ω\C = ⋃ Ω𝑖
𝑁
𝑖=1 . 

The minimization of 𝐹𝑀𝑆(𝑈, 𝐶) can be simplified by considering a piecewise constant approximation 𝑈 

such that 𝑈𝑖 = 𝑐𝑖 for each 𝑖 = 1, … , 𝑁, where 𝑐𝑖 is a constant. Under this assumption, the Mumford-Shah 

minimization problem is called a “minimal partition problem” [19] and the energy functional becomes: 

𝐹𝑀𝑆(𝑈, 𝐶) = ∑ (∫ (𝑈0 − 𝑐𝑖
Ω𝑖

)2𝑑𝑥𝑑𝑦 + 𝜗|𝐶𝑖|)
𝑁

𝑖=1
 (A2) 

 

For a fixed contour 𝐶, the energy functional in (A2) is minimized by setting 𝑐𝑖 = 𝑚𝑒𝑎𝑛(𝑈0)Ω𝑖
. The ACWE 

method proposed by Chan and Vese [19] simplifies the Mumford-Shah functional in the framework of the 

“minimal partition problem” as follows: 

𝐹𝑀𝑆(𝑐1, 𝑐2, 𝐶) = ∫ (𝑈0 − 𝑐1
Ω1=𝜔

)2𝑑𝑥𝑑𝑦 + ∫ (𝑈0 − 𝑐2
Ω2=Ω−𝜔

)2𝑑𝑥𝑑𝑦 + 𝜗|𝐶| + 𝜇𝐴(𝐶) (A3) 

 

where 𝐴(𝐶) is the area inside 𝐶 and 𝜇 is the corresponding weighting term (i.e., a double penalization is 

envisaged, one on the area and one on the length of the identified contour). As a matter of fact, expression 

(A3) reduce the problem to a segmentation into only 𝑁 = 2 sub-regions, where 𝑈0 is approximated by a 

constant in each of them, with a penalization of the length of the contour. The traditional way to find the 

minimum of 𝐹𝑀𝑆(𝑐1, 𝑐2, 𝐶) is based on the level set formulation, where the contour is defined as a level set 



function: 𝐶 = {(𝑥, 𝑦)|Φ(𝑥, 𝑦) = 0}. Regarding the penalization of the contour length and area, Chan and Vese 

[19] proposed, as a default choice, setting 𝜇 = 0, whereas the value of 𝜗 depends on the specific application.  

The LSE BFE method proposed by Li et al. [20] is aimed at extending the region-based active contour 

methodologies to images characterized by pixel intensity inhomogeneity within the segmented areas. It 

combines the level set estimation with a bias field estimation. The underlying idea consists of replacing the 

energy functional proposed by Chan and Vese [19] with a local clustering criterion function for the intensities 

in a neighbourhood of each point. The local clustering criterion is integrated over the neighbourhood centre to 

define the new energy functional to be minimized, grounding on the level set formulation. This approach is 

based on the assumption that the observed image, 𝑈0, can be modelled as follows: 

𝑈0 = 𝑏𝐽 + 𝑛 (A4) 

 

where 𝐽 is the true image, 𝑏 is parameter that accounts of intensity inhomogeneity, labelled bias field, and 𝑛 is 

an additive noise. The LSE BFE relies on the following assumptions: i) the bias field, 𝑏, is slowly varying, and 

hence it can  be approximated by a constant in the neighbourhood of each point of the image domain; ii) the 

true image, 𝐽, approximately takes 𝑁 distinct constant values 𝑐1, … , 𝑐𝑁 in distinct regions Ω1, … , Ω𝑁 that form 

the partition of the image; iii) the noise term is a zero-mean Gaussian noise with small variance. 

Thus, differently from the ACWE method, the LSE BFE methodology attempts to estimate at the same 

time both the segmentation Ω\C = ⋃ Ω𝑖
𝑁
𝑖=1  corresponding to constants 𝑐1, … , 𝑐𝑁 and the bias field, 𝑏.  

In order to apply the local clustering criterion, the kernel trick is used. This leads to a modified 

formulation of the energy functional minimization problem where three coefficients must be selected: i) the 

contour length penalization coefficient, 𝜗, ii) a regularization coefficient, 𝜇, that replaces the penalization term 

𝜇𝐴(𝐶) in (A3) [38], and iii) the kernel width parameter. Li et al. [20] proposed the use of a truncated Gaussian 

kernel with width parameter 𝜎 and such that ∫ 𝐾(𝐱) = 1. This implies the selection of one further parameter, 

i.e., 𝜎, with respect to the ACWE methodology. 

 

 



APPENDIX B 

The parameter 𝜇 was set to zero for both the methods: this is the default choice advocated by Chan and 

Vese [19], whereas Li et al. [20] demonstrated that the LSE BFE algorithm is not sensitive to the choice of 

that parameter. A sensitivity analysis for the choice of 𝜗, i.e., the penalization coefficient applied to the contour 

length in the ACWE and LSE BFE algorithms, instead, was performed by referring to Build 1 data. For each 

illumination condition and for each segmentation method, the Dice’s index was computed for 𝜗 ∈

[0.0001 100] ∙ 2552. The result was that the Dice’s index was in most of the cases exactly constant within the 

entire interval, and only for few lighting conditions it exhibited a non statistically significant variation of the 

mean. This confirms previous findings in the literature that highlighted the robustness of the active contours 

methods here considered with respect to the choice of penalization coefficients [19 – 20]. In all the analysis 

presented in this study, the parameter 𝜗 was set to 0.001 ∙ 2552.  

The choice of the kernel parameters in the LSE BFE formulation, instead, has a higher impact on the 

segmentation performances. According to Li et al. [20], a convolution kernel 𝐾 was constructed as a 𝑤 × 𝑤 

mask where 𝑤 is the smallest odd number such that 𝑤 ≥ 4𝜎 + 1, being 𝐾 the Gaussian kernel of width 𝜎. For 

each illumination condition and for each scan direction in Build 1, the Dice’s index for the LSE BFE method 

applied either to the original or transformed images was computed for 𝜎 ∈ [1 90]. As an example, Fig. B1 

shows the Dice’s similarity index as a function of the kernel width, 𝜎, for the LSE BFE algorithm applied to 

original images, just for specimens with scan direction equal to 0°. For sake of clarity, a subset of 10 

illumination conditions was displayed in Fig. B1, as they are representative of dark field and bright field 

behaviours, respectively. For the first five dark field configurations, namely A, B, AL, AR and BL, quite high 

segmentation performances were achieved and they improved as 𝜎 increased, although above a given value of 

about 𝜎 = 10 no further improvement was achieved. For the five bright field configurations, namely D, DR, 

DL, AD and BCL, the segmentation goodness was lower and it exhibited a maximum at relatively low values 

of 𝜎, i.e., 𝜎 < 10. This is in accordance with the findings of Li et al. [20], who pointed out that when less 

localized intensity inhomogeneities are present, larger values of 𝜎 should be preferred. Indeed, we observed 

that best segmentation quality was generally related to smoothest pixel intensity patterns within the foreground 

region, for which the 𝜎 selection procedure converged to higher values.  



 

Fig. B1 – Example of average Dice’s index values as a function of the kernel width parameter in the LSE 

BFE algorithm applied to original images in the presence of a subset of lighting conditions: dark field 

conditions are shown with continuous line, bright field conditions are shown with dashed line 

 

Moreover, when the LSE BFE methodology was applied to transformed images, the selection of optimal 

kernel width values converged to significantly higher values than those obtained by applying the same method 

directly to the original images. Fig. B2 shows the 95% confidence intervals for the mean optimal 𝜎 in the two 

cases. This difference can be explained by the fact that the pre-processing operation (13) reduces the variation 

of pixel intensity within the foreground region and, as pointed out above, larger values of 𝜎 should be preferred 

in the presence of reduced localized intensity inhomogeneity. 

In all the analysis presented in this study, the LSE BFE performances were always evaluated based on the 

corresponding optimal value of the 𝜎 parameter. No interaction effect was observed between 𝜎 and 𝜗 as far as 

the LSE BFE algorithm is concerned. 

 

Fig. B2 – 95% confidence intervals for the mean kernel width parameter of the LSE BFE algorithm applied 

either to original or transformed images 
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APPENDIX C 

Table C1 shows the p-values of the ANOVA tests used to investigate the existence of statistically 

significant effects of the scan direction on the Dice’s index for different lighting conditions and for different 

segmentation algorithms.  

 

Table C1 – p-values of ANOVA tests for the determination of statistical significance of the scan direction on 

the resulting Dice’s index for different lighting conditions  

Light conditions p-values for “scan angle” factor 

 Vertical Horizontal ID 
LSE BFE ACWE 

Original image Transformed image Original image Transform. image 

D
ar

k 
fi

el
d

 

None Front A 0,493 0,621 0,054 0,573 

None Front B 0,316 0,257 0,802 0,99 

Left Front AL 0,375 0,386 0,224 0,35 

Right Front AR 0,905 0,823 0,472 0,271 

Left Front BL 0,056 0,34 0,423 0,34 

Right Front BR 0,546 0,765 0,385 0,873 

Both Front BLR 0,369 0,792 0,493 0,732 

B
ri

gh
t 

fi
el

d
 

None Back C 0,311 0,404 0,162 0,206 

None Back D 0,443 0,241 0,749 0,599 

Left Back CL 0,183 0,322 0,341 0,331 

Right Back CR 0,859 0,991 0,993 0,99 

Left Back DL 0,44 0,28 0,492 0,485 

Right Back DR 0,054 0,866 0,42 0,432 

Both Back CLR 0,228 0,495 0,582 0,576 

O
th

er
 c

o
n

fi
gu

ra
ti

o
n

s 

Left Both BCL 0,307 0,586 0,324 0,475 

Right Both BCR 0,577 0,848 0,564 0,849 

Both Both BCLR 0,479 0,507 0,257 0,652 

None Both AC 0,085 0,335 0,094 0,176 

None Both AD 0,002 0,002 0,002 0,002 

None Both BC 0,697 0,822 0,858 0,848 

None Both BD 0 0,001 0 0 

Left None L 0,677 0,522 0,374 0,562 

Right None R 0,042 0,655 0,296 0,875 

Both None LR 0,653 0,815 0,783 0,927 
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