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1. Introduction

Data processing in digital computers is generally carried out by a
sequence of Boolean logic operations executed in silicon by the
complementary metal-oxide-semiconductor (CMOS) technology.
The CMOS transistor has been regularly scaling for the last
40 years via Moore’s law, where the reduction of the transistor
size results in less area consumption, hence lower fabrication
cost. Transistor size scaling was accompanied by a reduced
power consumption and an increase in the operation frequency,
thus leading to an improvement in circuit performance genera-
tion after generation.[1] The increase in CMOS logic performance
has been challenged by the increase in data processing need and

is even more stressed by the exponential
growth of data circulating in the internet
and provided by always-on and ubiquitous
sensors. Unfortunately, reducing the
device area also causes an increase in
power density which has caused a slowing
down in the CMOS scaling trend in the last
decade.[2] Conducting AI learning tasks is
also heavily demanding in terms of energy
consumption, which causes a world-scale
concern in view of ubiquitous AI tasks such
as image tagging, traffic monitoring, and
vocal assistants.[3,4]

Compared with digital computers, the
human brain only uses the extremely low
power (about 20W) and low frequency
(typically in the few Hz range) of informa-
tion processing.[5] The human brain thus
appears as a living biological example to
help introduce novel energy-efficient com-
puting paradigms to tackle data-intensive
and AI tasks. One of the main assets of
the human brain which enables low energy
consumption is its peculiar architecture,
where memory and computation are

colocated.[6] This is against the conventional computer architec-
ture, where computing takes place in a central processing unit
(CPU) according to programs and data which are fetched from a
working memory according to the von Neumann architecture.[7]

The working memory, i.e., most typically a dynamic random-
access memory (DRAM), is generally located on a physically sep-
arate chip, thus resulting in long latency and energy consumption
for data intensive tasks. Similar to the human brain, in-memory
computing (IMC) instead conducts data processing in situ within
a suitable memory circuit.[8] IMC suppresses the latency for data/
program fetch and output results upload in the memory, thus
solving thememory (or vonNeumann) bottleneck of conventional
computers. Another key advantage of IMC is the high computing
parallelism, thanks to the specific architecture of the memory
array, where computation can take place along several current
paths at the same time. IMC also benefits from the high density
of the memory arrays with computational devices, which gener-
ally feature excellent scalability and the capability of 3D integra-
tion. Finally, analogue computing is supported by the physical
laws of memory circuits, such as the Ohm’s law for product
and the Kirchhoff ’s law of current summation,[8–11] as well as
other memory-specific physical behavior such as nonlinear
threshold-type switching, pulse accumulation, and time measure-
ment.[12–15] Thanks to the combination of in situ, high-density,
parallel, physical, and analogue data processing, IMC appears
as one of the most promising novel approaches for computing
in the frame of AI and big data.
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With the rise in artificial intelligence (AI), computing systems are facing new
challenges related to the large amount of data and the increasing burden of
communication between the memory and the processing unit. In-memory
computing (IMC) appears as a promising approach to suppress the memory
bottleneck and enable higher parallelism of data processing, thanks to the
memory array architecture. As a result, IMC shows a better throughput and lower
energy consumption with respect to the conventional digital approach, not only
for typical AI tasks, but also for general-purpose problems such as constraint
satisfaction problems (CSPs) and linear algebra. Herein, an overview of IMC is
provided in terms of memory devices and circuit architectures. First, the memory
device technologies adopted for IMC are summarized, focusing on both charge-
based memories and emerging devices relying on electrically induced material
modification at the chemical or physical level. Then, the computational memory
programming and the corresponding device nonidealities are described with
reference to offline and online training of IMC circuits. Finally, array architectures
for computing are reviewed, including typical architectures for neural network
accelerators, content addressable memory (CAM), and novel circuit topologies for
general-purpose computing with low complexity.
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In addition to analogue computing, digital-type IMC sup-
ported by physical properties of the memory devices has also
been shown. Stateful logic can be realized in a memory circuit
by comparing the voltages among two or more devices and
conditionally inducing switching in one of these devices or
in an additional one, by the threshold-dependent set/reset
operations.[12,14–19] This approach can improve the density of
logic gates and suppress the latency associated with data transfer
for digital computation. On the other hand, digital IMC suffers
from an increased energy per operation due to the need to
change the state of a device during computation. The state
switching also increases the time for logic operation and critically
limits the lifetime of the circuit due to endurance constraints. For
these reasons, a device technology breakthrough might be
needed to support the development of largely scaled, low-energy,
high-performance logic IMC processors.

This work presents an overview of IMC in terms of device
technologies and circuit architectures. Within the extremely large
scenario of IMC concepts, we focus our attention on analogue-
type computing based on matrix-vector multiplication (MVM) in
the memory array. In Section 2, we provide an overview of
devices for IMC, covering both two-terminal and three-terminal
devices that have emerged recently. In Section 3, we describe the
main memory structures which are used in IMC circuit. In
Section 4, we focus on the programming operation, where a
certain set of conductance values are stored in the memory cir-
cuit to serve a certain IMC operation. In this respect, we describe
the main methodologies to program a set of conductance values
in the computational memory to serve for a certain IMC func-
tion. In this respect, we highlight the main programming meth-
odologies as well as the most typical nonidealities which affect
the accuracy of the IMC operation during either the offline or
online training of the memory array. Section 5 address the non-
idealities of the memory circuit. Finally, Section 6 presents the
main architectures that have been proposed for IMC, including
crosspoint arrays and other computational memory arrays, which
are relevant for various types of neural networks and general-
purpose algebraic computing tasks.

2. Memory Devices for IMC

Recently, several memory technologies based on the material
modification at the nanoscale have emerged as high-density,
low-power, low-cost, and high-speed devices for storage and
computing.[7,8,15,20,21] In general, the material modification, such

as a local change in the chemical composition or phase structure,
causes a major change in the device resistivity which can be
easily sensed by the peripheral circuit via electrode wires.
In particular, these two-terminal devices offer the advantage of
scalability to only few nm[22–24] and integration in 3D,[25,26] thus
supporting the ultrahigh density of memory needed for comput-
ing applications.

Figure 1 shows a summary of two-terminal devices which are
currently considered for storage and computing. Device technol-
ogies include the resistive-switching random access memory
(RRAM), the phase-change memory (PCM), the magnetic
random-access memory (MRAM), and the ferroelectric random-
access memory (FERAM).

2.1. RRAM Devices

Figure 1a shows the RRAM device, consisting of a stack of
metallic top electrode (TE), an insulating metal-oxide layer, and
a metallic bottom electrode (BE).[27–29] The resulting metal-
insulator-metal (MIM) structure shows a relatively large resis-
tance, thanks to the insulating nature of the oxide layer. This is
sometimes replaced with an alternative high-resistance material,
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Figure 1. Illustration of the two-terminal memory devices for storage and computing. a) RRAM, where the device resistance is controlled by field-
modulated filamentary paths in the dielectric layer. b) PCM, where the device resistance is controlled by the amorphous/crystalline phase in the chalco-
genide active layer. c) STT-MRAM, where the device resistance is controlled by the parallel/antiparallel polarization of the ferromagnetic layers in the MTJ.
d) FERAM, where the electrostatic polarization is controlled by the orientation of FE domains in the ferromagnetic active layer.
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such as a nitride layer,[30] a chalcogenidematerial,[31–33] or 2D tran-
sition metal dichalcogenides (TMDs).[34] The MIM device is first
electrically formed by a soft breakdown operation, causing a local
modification of the material composition or an increase in the
defect concentration, such as oxygen vacancies in the metal oxide.
The forming operation generally causes the buildup of a conduc-
tive filament, where the conductance is higher than that in the
original insulating layer, thus resulting in a low resistance state
(LRS) of the device. The conductivity of the conductive filament
can be electrically reduced by the reset operation, leading to a high
resistance state (HRS) of the device, or increased by the set tran-
sition, to recover the LRS. In a bipolar RRAM device, the set and
reset transitions are induced by voltage pulses of opposite polari-
ties, whereas the polarity of set/reset operations is the same in
unipolar RRAM devices.[35] Uniform-switching RRAM devices
also exist where the oxide layer modification extends throughout
the whole area instead of a localized filament region.[36,37]

2.2. PCM Devices

Figure 1b shows the PCM device, where the microstructure of a
phase-change material, generally a chalcogenide material such as
Ge2Sb2Te5 (GST), can be reversibly switched between a crystal-
line phase and an amorphous phase.[38–41] The amorphous phase
shows a disorder-induced high resistivity, in contrast with the
low resistivity of the crystalline phase; thus, the PCM state
can be identified by a simple voltage/current sensing.
Compared with the filamentary switching process of the
RRAM, the PCM relies on the bulk properties of the active mate-
rial, which generally leads to a larger resistance window and the
ability to operate the device with a multilevel cell (MLC)
scheme.[42,43] On the other hand, a large Joule heating is gener-
ally needed to accelerate the phase transitions, such as melting
and crystallization, which result in relatively large currents for
programming/erasing the device. Reducing the programming
current requires the scaling of the active region of the
PCM.[44–46] A significant problem for the PCM is the resistance
drift, where the device resistance increases with time after pro-
gramming due to the structural relaxation of the amorphous
phase.[47] Device technologies with improved stability against
drift have been developed[48] and demonstrated in IMC.[49]

2.3. MRAM Devices

Figure 1c shows the MRAM device, where the magnetic polari-
zation within a layer of ferromagnetic material such as CoFeB is
changed by electrical manipulation. The residual polarization in
the ferromagnetic material can be sensed via the magnetic tunnel
junction (MTJ), namely, a stack made of a thin insulating layer,
usually a highly crystalline metal oxide such as MgO, sandwiched
between a reference ferromagnetic layer with fixed polarization
and a free ferromagnetic layer with variable polarization. When
the two layers have parallel magnetization directions, the resis-
tance of the MTJ is relatively low, whereas the MTJ resistance is
relatively high for antiparallel magnetization.[50] The magnetiza-
tion direction in the free layer can be written by field-induced
switching, where a current pulse is applied across suitable write
lines to create a local magnetic field,[51] or spin-transfer torque

(STT), where the current pulse is applied directly across the
MTJ.[52,53] STT-MRAM devices have the advantage of fast switch-
ing in the few ns range, whichmakes them a strong candidate for
last-level cache (LLC) static RAM.[54] On the other hand, MRAM
generally displays a limited resistance window around a factor 2,
which makes it difficult to implement some IMC algorithms.[55]

2.4. FERAM Devices

Figure 1d shows the FERAM device concept, which is based on
ferroelectric (FE) materials where the electrostatic polarization
can be reversibly switched by the application of an external
electric field. Historically, most typical FE materials include
perovskite oxides such as PbZr1-xTixO3 (PZT) and SrBi2Ta2O9

(SBT).[56] These materials, however, have relatively a low
bandgap, high leakage, and low compatibility with the CMOS
process line. Most recently, FE phases of doped HfO2 have been
discovered,[57] which have revived the interest on FE phenomena
and materials for both storage and IMC applications. Similar to
the MTJ, an FE tunnel junction (FTJ) is able to convert a residual
FE polarization into a resistance signal, by placing the FE switch-
ing layer in series with a dielectric layer.[58,59] The FTJ structure
can be easily programmed by application of voltage pulses.
Despite the nonfilamentary switching within the FE layer,
FERAM uniformity can be affected by local variation in the
coercive fields among various crystalline grains and domains
within FE material.[60]

2.5. Three-Terminal Devices

Although the two-terminal structure is strongly promising for
crosspoint architectures with high densities, three-terminal devi-
ces might tradeoff density with other properties such as a better
control of the conductance state or an easier cell selection within
the array. Figure 2 shows a summary of three-terminal devices
that have been considered for IMC. The Flash device (Figure 2a)
is at the basis of most nonvolatile memory devices used for high-
density storage in solid-state drives (SSDs). The Flash memory
essentially consists of a metal-oxide-semiconductor (MOS) tran-
sistor with a floating gate (FG) between the contacted gate and
the substrate. The charge stored in the FG can be electrically
manipulated by high-field tunneling of electrons to/from the
substrate.[61] Once stored in the FG, the charge affects the tran-
sistor threshold voltage, namely, a larger amount of electrons in
the FG results in a higher value of the threshold voltage.
Alternatively, a different amount of charge also corresponds to
a different channel conductance, that can be used as a variable
resistance for IMC. This concept was used for hardware acceler-
ators of neural networks with arrays of Flash memories.[62] Also,
unsupervised learning by spike-timing-dependent plasticity
(STDP) was demonstrated with Flash memories.[63,64]

Figure 2b shows the typical structure of a DRAM, which rep-
resents the standard device for working memory in digital com-
puters. Different from the Flash memory, in a DRAM, the charge
is stored at a capacitor at the gate of the conduction transistor.
Another pass transistor is generally kept in the off state, unless
during the programming operation, when the pass transistor is
switched on. The charge across the capacitor can be tuned to

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2020, 2000040 2000040 (3 of 19) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.advintellsyst.com


control the threshold voltage and conductance of the conduction
transistor for analogue IMC.[65] To increase the retention time of
the capacitor charge, which is around 1ms in DRAM, the pass
transistor can be fabricated with low-mobility semiconductors
such as InZnGaO.[65] The lower subthreshold channel conduc-
tance helps enhancing the retention time so that the analogue
DRAM can be used for practical IMC applications.

The ferroelectric field-effect transistor (FEFET), shown in
Figure 2c, is a transistor concept where the threshold voltage
is varied by the remnant polarization in the FE gate-insulating
layer.[66,67] FEFETs can be arranged with NAND architecture
in either 2D[68] or 3D,[69] which may allow to reach similar density
as Flash memories. The interest in FEFET has significantly
increased after the discovery of FE phases in HfO2,

[57] thanks
to the better CMOS compatibility of HfO2 with respect to FE
ternary/quaternary oxides.

Figure 2d shows the spin-orbit torque (SOT) MRAM, consist-
ing of an MTJ deposited on top of a heavy metal (HM) line such
as Ta[70] or Pt.[71] In the STO-MRAM, the parallel/antiparallel
states of MTJ can be manipulated by applying an in-plane current
pulse along the HM line via SOT induced by spin Hall or Rashba
effect. Sub-ns switching speed has been demonstrated with
current densities in the range of few hundreds of MAcm�2.[71]

The main advantage of SOT-MRAM with respect to the STT
structure is that the programming operation does not involve
any current across the MTJ, which was the major source of deg-
radation and endurance failure in STT-MRAM. This advantage
comes at the price of a three-terminal structure, hence a larger
device area. Similar to STT-MRAM, the SOT-MRAM also typi-
cally shows binary switching between the parallel and the
antiparallel state, which is not suitable for analogue-type IMC.

Figure 2e shows the ionic transistor, also known as the elec-
trochemical random access memory (ECRAM). In a Li-based

ionic transistor, the gate dielectric consists of an ionic conductor
for Liþ such as lithium phosphorous oxynitride (LiPON).[72] The
channel transistor instead consists of a material such as LiCoO2

where Liþ intercalation and deintercalation can induce a change
in channel conductivity. For instance, the application of a positive
gate voltage leads to Liþ migration and channel lithiation, which
leads to a reduction in conductivity.[72] Ionic transistors have also
been developed based on organic materials where Hþ was the
migrating ion.[73] The Li-based ionic transistor has shown a
strong linearity where an applied gate pulse causes a fixed
increase or decrease in conductivity.[74] A potential problem of
the Liþ-based synaptic transistor is the leaky gate, due to the rel-
atively high conductance of the solid-state electrolyte. To prevent
the corresponding leakage, a selector device has to be connected
to the gate of the ionic transistor, which significantly increases
the array complexity.[75] Another potential issue is the lack of
compatibility with the CMOS process line, for which Liþ is
considered a concern. To solve both these issues, recently, a
metal-oxide-based ionic transistor was proposed.[76] In this
device, the migration of oxygen vacancies across a trilayer metal
oxide causes a change in the conductance of the WO3 channel.
Thanks to the insulating property of the metal-oxide stack, no
selector is needed in series with the gate.

Figure 2f shows the memtransistor, a contraction of memris-
tive transistor, consisting of a MOS transistor with a 2D semicon-
ductor channel, such as MoS2.

[77] In this structure, the application
of a large source-drain voltage leads to a permanent change in
conductivity as a result of the migration of grain boundaries[78]

or Liþ impurities in the MoS2 channel.
[79] The gate can be used

to control the channel conductance, e.g., to activate and deactivate
the defect migration induced by the source–drain voltage. The use
of a 2D semiconductor makes the memtransistor highly scalable
and suitable for 3D integration in the back end.
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Figure 2. Illustration of three-terminal memory devices for storage and computing. a) Flash, where the threshold voltage of the transistor is controlled by
the charge stored within the FG. b) Analog DRAM, where threshold voltage of the transistor is controlled by the charge stored across an independent
capacitor. c) FEFET, where the threshold voltage is controlled by the orientation of the FE dipoles within the gate insulator. d) SOT-MRAM, where the MTJ
resistance can be electrically manipulated by the in-plane current Ipol along a HM line. e) ECRAM, where the channel conductance is manipulated by the
field-induced ionic migration. f ) Memtransistor, where the conductance is controlled by the migration of defects across a 2D semiconductor channel.
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3. Memory Structures

Figure 3 shows the possible memory array structures for two-
terminal devices. In the one-resistance (1R) structure (Figure 3a),
the memory device is tied to a row wire by the TE and a column
wire by the BE or vice versa. This is the conventional crosspoint
array,[15] which allows the maximum density of packing memory
devices on the chip. The minimum theoretical area for the 1R
device is 4F2, where F is the lithographic feature size, which dic-
tates the width of the row/column and their spacing. This density
can be further increased in case of the 3D stacking of more
crosspoints.[80] For instance, the effective device area becomes
2F2 for a two-layer crosspoint and only F2 for a four-layer cross-
point. Both horizontal stacking of crosspoint arrays and vertical
arrays can be realized, the latter achieving a higher density,
thanks to the increased stackability due to the easier patterning
process of vertical wires.[81] Thanks to the close packing of the
crosspoint structures, the memory density of 4.5 Tb per square
inch has been demonstrated in one layer.[24]

Assuming that conductance values Gij are stored in the mem-
ory devices at row i and column j, the application of column vol-
tagesVj will induce a currentGijVj in each device, according to the
Ohm’s law. Based on the Kirchhoff ’s law, the row current reads

Ii ¼
X

j

GijVj (1)

which can be expressed in vectorial form as I ¼ GV, where I is the
current vector, G the matrix of conductance values stored in the
array, and V is the voltage vector.[8–11] The passive crosspoint array
is thus capable of executing a parallel MVM in the analogue
domain, which would require instead a huge number of multiply-
accumulate (MAC) operations in a conventional digital computer.

During MVM, voltages are applied simultaneously to all
columns whereas currents are collected at the grounded row ter-
minals. Ideally, assuming negligible voltage drop as a result of
parasitic wire resistances, the MVM operation should not suffer
from any cell–cell disturb or sneak-path effect.[82] On the other
hand, when individual devices are programmed, such as for exe-
cuting forming, set, and reset operations in the array, disturbs
might become a significant problem. For instance, application
of a positive voltage at a certain column of a crosspoint array
of RRAM devices might potentially induce set operation on all
cells in the row, unless specific biasing schemes are adopted.

A typical approach to overcome potential disturbs during array
programming is the V/2 scheme shown in Figure 3b.[83–85] In
this biasing scheme, voltages V/2 and �V/2 are applied to the
selected column and row, respectively, whereas all other lines
are grounded. As a result, the bias voltage across the selected cell
is V, whereas all other unselected cells are biased at 0 V, and half-
selected cells, sharing the same row or column of the selected
cell, are biased at V/2 or �V/2. As a result, the voltage drops
across nonselected and half selected is significantly lower than

(a) (b)

(c) (d)

Figure 3. Illustration of memory array structures for two-terminal devices. a) Passive crosspoint array, consisting of 1R elements with conductance Gij,
each connected between a row and a column. b) V/2 biasing scheme for 1R arrays, where a voltage V is applied across the selected cell (blue), whereas
half-selected cells (red) sharing the row/column of the selected cells are biased at voltage V/2. c) 1S1R array, where each memory element is connected to
an individual selector to prevent sneak paths. d) 1T1R array, where the select transistors allow to select a cell at the crossing between the selected wordline
and bitline.
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the one across the selected cell, thus preventing any disturb
within the array. To read an individual cell a voltage VR is applied
to the cell row, whereas all other rows and all columns are
grounded. The current at the selected column will reveal the
resistance R of the selected cell according to I ¼ VR=R.

[85]

Note that reading individual cells is essential to make sure that
a conductance valueGij is stored correctly in the crosspoint array.

Although the set, reset, and read operations appear feasible
with the V/2 biasing scheme, the 1 R crosspoint architecture
becomes unpractical because of the large standby current flowing
during set and reset. Also, as the selected device is being set at V,
the voltage V/2 and the corresponding current flowing across
half-selected devices in the LRS might be sufficiently high to
disturb the device, thus modifying the previously stored
conductance.

3.1. 1S1R Structure

To solve the issues in the 1R crosspoint array, the one-selector/
one-resistor (1S1R) structure in Figure 3c can be adopted.[86–88]

In this structure, the memory device is connected to a selector
device with a strongly nonlinear I–V characteristic, where the
current is virtually zero below a threshold voltage V t. As a result,
as a voltage V > V t is applied to the selected cell to induce
set/reset processes, the half-selected voltage V=2 < V t will not
induce any disturb. Both silicon-based and nonsilicon-based
selectors have been proposed, the latter category being favored
as it enables the back-end-of-line (BEOL) process and 3D stack-
ing. Various nonsilicon selector concepts have been proposed,
including oxide-based p–n diodes,[89,90] oxide-based tunneling
layers,[91,92] Mott oxides with insulator-metal transition,[93] mixed
ionic–electronic conductors (MIEC),[94] and ovonic threshold
switching (OTS) materials.[95–97] OTS selectors are characterized
by the low subthreshold leakage, large VT, and negative differential
resistance (NDR), which allows an excellent nonlinearity
factor of several orders of magnitude between the off-state and
on-state currents. In addition, OTS shows good endurance of
above 1011[98] and the ability for stacking at least two layers.[95,97]

The 1S1R concept is very promising for creating a new memory
market named storage-class memory (SCM), combining nonvola-
tile storage, a density higher than DRAM, and a performance
better than Flash memories. Because of these properties, the
1S1R structure seems an ideal vehicle for IMC applications,
although the nonlinear behavior of threshold-switching selectors
and the corresponding large current in the on state have to be care-
fully considered in the architecture design.

3.2. 1T1R Structure

Figure 3d shows the one-transistor/one-resistor (1T1R) struc-
ture, where the memory device is connected to an MOS transis-
tor for selection. With respect to the 1R and the 1S1R structures,
the 1T1R structure is more complicated in that a third terminal
and a corresponding wire must be dedicated to the transistor
gate. The presence of the gate terminal makes the selection
and unselection of the array device extremely straightforward.
The gate line is perpendicular to the TE line; therefore, only
the device at the intersection between the selected gate line

and the selected TE line is addressed during set, reset, and read.
In addition, the transistor allows for a proper current limitation
during forming and set transition of RRAM devices to control the
resistance state of the LRS.[99,100] During reset and read, instead,
the gate terminal is biased to a relatively high voltage to reduce
the parasitic resistance of the MOSFET, which might degrade the
precision and dynamic range of the conductance G for analogue
MVM. The larger flexibility, however, comes with the expense of
a larger device area and higher complexity of the array. Despite
these drawbacks, the 1T1R structure is by far the preferred struc-
ture for IMC applications.

The circuit structures of Figure 3 are limited to two-terminal
devices, although the 1T1R structure can be adapted for three-
terminal devices, such as three-terminal Flash memory array.
This is the so-called NOR structure, where applying a pulse at
a given gate (word) line and a given drain (bit) line results in
the programming of the device, without affecting all other devi-
ces in the array. In general, however, dedicated array structures
might be needed for correct programming, reading, and comput-
ing with three-terminal devices.

4. Computational Memory Programming

One of the strongest advantages of IMC is the ability to parallel-
ize analogue MVM within a memory array, according to
Figure 3a. The most straightforward application of MVM is
the realization of a hardware neural network, where the synaptic
weights can be stored as the memory conductance within the
array.[8–11,100] Each layer of the network can be thus mapped into
a memory array, where each memory element stores a synaptic
weight. On the other hand, nonlinear activation functions are
generally achieved by an external analog or digital circuit.
Similarly, memory-based MVM in the crosspoint array can accel-
erate other types of computations, such as linear algebra and
image processing.[10] For all these IMC applications, which we
refer to as “computational memory,” the device requirements
are different from those of a simple memory, in at least three
aspects. First, a high precision in the stored conductance values
Gij of the computational memory is essential, to compete with
floating-point precision of digital MAC. While such a strong
precision of conductance is not strictly necessary for memory
or storage applications, which are generally limited to 1- or 2-bit
precision, the analogue-type accuracy of conductance is instead a
key requirement for IMC. The second requirement is that of a
relatively high resistance, to limit the overall summation of all
the individual computational memory currents according to
Kirchhoff ’s law. In fact, a large current would result in a large
size of the transistor for column selection. To reduce the current,
each computational memory device should have a relatively high
resistance, which would also help reducing the parasitic voltage
drop across the array rows/columns. On the other hand, the read
current for memory applications should be a large as possible, to
enable fast random readout and easy design of the sense
amplifiers (SAs). The third difference which distinguishes
computational and conventional memories is the required per-
formance in terms of the programming time. The programming
time for a computational memory element is generally relaxed
with respect to the case of the conventional memory, as
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programming must be operated only at the beginning of the
IMC operations and state reconfiguration is generally rare.
This is the case of “offline training,” where conductance Gij that
has to solve a certain task is stored at time zero in the memory
array and later reconfigured only if/when needed. The values G
might consist of either input data obtained from sensors, e.g., the
genes from a DNA sequencer or synaptic parameters obtained
from the backpropagation algorithm to train a fully connected
neural network.

Opposite to offline training, the “online training approach”
consists of iteratively adjusting the memory conductance directly
on the hardware memory array, e.g., by adopting standard gra-
dient descent techniques such as the backpropagation algorithm.
This approach allows to take advantage of the IMC energy benefit
in both the training and the inference tasks.

4.1. Offline Training

To address offline training procedures and the corresponding
sources of nonideality, we consider a RRAM device with 1T1R
structure.[101] Figure 4a shows the I–V characteristics of the
RRAM device for increasing gate voltage of the select transistor.
The RRAM device consists of an active HfO2 layer sandwiched
between a Ti TE and a C BE, the latter connected to the drain of
the transistor according to the structure in the inset of Figure 4.
Set transition takes place as the applied voltage across the 1T1R
structure reaches a characteristic voltage Vset of about 2.2 V.

During set transition, the gate voltage controls the saturated
transistor current, which in turn controls the final conductance
of the LRS.[99] Then, the application of a negative voltage causes
the reset transition to the HRS.

From the results in Figure 4a, the gate voltage appears the
most suitable parameter to control the conductance G of the
RRAM for IMC applications. This is shown in Figure 4b, show-
ing the measured G after the application of a set pulse with
increasing gate voltage VG.

[101] The individual traces for 100
experiments from the same device are shown and compared with
the average conductance. The average conductance increases
almost linearly with VG � VT, where VT ¼ 0.7V is the threshold
voltage of the transistor. However, the individual traces display
noisy characteristics due to the stochastic ionic migration during
the physical set process.[102,103] Figure 4c shows the distributions
ofG for increasing VG, indicating a normal shape with a standard
deviation σG ¼ 3.8μS, independent of the programming level.
These results suggest that accurate programs/verify algorithms
are needed to correctly tune the conductance for IMC.

In addition to the cycle-to-cycle variability displayed by individ-
ual devices, there is also a device-to-device variability arising from
differences in the composition, structure, and geometry of the
cells within the array. Figure 4d shows the distributions of read
current at V read ¼ 0.5V for RRAM cells with the HfO2 switching
layer, which were programmed with four different levels (L2–L5)
of compliance current.[100] The lowest current level L1 corre-
sponds instead to the HRS. All distributions show a significant
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Figure 4. Offline training of a computational RRAM. a) I–V characteristics of a bipolar RRAM with 1T1R structure (inset) for increasing gate voltage of the
select transistor. VG controls the compliance current IC during set transition, hence the device conductanceG. b) Measured RRAM conductance as a function
of the gate voltage VG, indicating an almost linear increase in average behavior. Note the relatively large cycle-to-cycle variations of G. c) Distributions of
conductance for seven levels of LRS and one level of HRS (inset). The standard deviation is σG¼ 3.8 μS, independent of the programmed level.
a–c) Reproduced with permission.[101] Copyright 2020, IEEE. d) Cell-to-cell distributions of measured current at Vread¼ 0.5 V in an 1T1R array for five pro-
grammed levels. Reproduced with permission.[100] Copyright 2019, AIP Publishing. e) Time-dependent fluctuations of resistance R for a RRAM device inHRS,
indicating both RW and RTN phenomena. Reproduced with permission.[110] Copyright 2015, IEEE. f ) Resistance drift of a PCM device programmed at four
levels. Adapted with permission.[48] Copyright 2013, IEEE.
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variation in current, which includes both cycle-to-cycle and
device-to-device contributions.

Programming variability effects can be alleviated or even sup-
pressed by accurate program-verify techniques. For instance, in
the scheme of Figure 4b, one might gradually increase the gate
voltage to reach a certain target G. If G is exceeded by an error
ΔG which exceeds the tolerable window, corresponding, e.g., to
an accuracy of 8 bits, then the device can be reinitialized to the
HRS and a new VG ramp is attempted. Instead of restarting from
the HRS, one might apply suitable negative voltage pulses to
gradually decrease G, until the error become smaller than the
tolerance.[104,105] This approach takes advantage of the RRAM
being able to gradually increase and decreaseG in RRAM devices
by application of positive and negative voltage pulses, respec-
tively. Despite the energy and time needed to conduct, such
as an accurate program-verify technique may be considerable,
the overhead might still be tolerable, as long as the device con-
ductance is not frequently updated. For instance, some memory
arrays might be programmed only once for neural network accel-
erators, so that the programming time/energy might be amor-
tized over the whole chip lifetime.

An extreme case of device-to-device variation is the possibility
that the memory cell is stuck to a nonideal state, such as a LRS, a
HRS, or an intermediate state, for instance, as a result of the
cycling endurance failure.[106–108] Another possibility is that
the RRAM device cannot be formed, thus resulting in an
extremely low value of G, even lower than the HRS value. In
all these cases, it is clear that, in most cases, the matrixGij cannot
be stored correctly in the memory array. These problems can be
solved with suitable redundancy schemes, where the individual
cell, or most typically its entire row/column, are disabled and
replaced by a spare one. Error-tolerant online training schemes
have also been proposed to correctly compensate these stuck
memory elements.[109]

Even if the programming operation appears successful at time
zero, the conductance might still change after the programming
step as a result of subsequent relaxation or fluctuation of the
microscopic structure of the device. Figure 4e shows a typical
fluctuation of resistance, following a reset pulse on an RRAM
device.[110] Three devices with the same initial resistance were
chosen initially and measured at increasing time. The devices
show abrupt steps of resistance, called random walk (RW) and
random telegraph noise (RTN). As a result, the cell resistance
can increase, decrease, or stay unchanged.

Another typical phenomenon of unstable resistance is the drift
process of PCMs. Figure 4f shows the measured resistance of
PCM as a function of time after the reset process for four differ-
ent levels of an MLC. Various resistance levels in the PCM can be
obtained, e.g., by amorphizing an increasing volume of the
PCM.[111] The resistance increases with the amount of amor-
phous volume in the PCM, as the amorphous phase has a higher
resistivity than the crystalline one. The PCM resistance increases
with time in the figure can be attributed to the structural relaxa-
tion of the amorphous phase,[112] consisting of an annihilation of
defects, such as Ge—Ge wrong bonds,[113] and the consequent
increase in the mobility gap.[114] Both resistance fluctuation
and drift clearly represent significant problems for analogue
MVM, where the conductance G of all elements in the array
should remain stable.

4.2. Online Training

Figure 5a shows a typical three-layer multiple-layer perceptron
(MLP), where input signals propagate from left to right. In
the forward propagation, a neuron nj of a generic layer generates
a signal xj that is sent out to all output neurons mi in the next
layer after multiplication with the synaptic weights wij connecting
neuron nj with neuron mi. The signal received by any neuron mi

is given by the accumulation of all weighted signals from the pre-
vious layer, which thus reads

yi ¼
X

j

wijxj (2)

This formula perfectly matches Equation (1), namely the ana-
logue MVM executed by the memory array of Figure 3a. A neural
network can thus be implemented in a memory array, where the
MVM at each neuron layer is executed in the analogue domain
within a memory array.[8–11,115,116] It has been estimated that,
thanks to the suppression of data movement in the IMC archi-
tecture, the energy consumption is reduced by more than 10 000
times in an RRAM array with respect to the conventional MAC
approach in digital computers.[117] To correctly map a neural net-
work with a memory array, however, the conductance G should
be able to implement both positive and negative values of the
synaptic weight wij. To this purpose, two circuits are generally
adopted: in the first circuit, the current I ¼ VG is compared with
the current Iref ¼ VGref , obtained from a reference cell biased at
the opposite voltage (Figure 5b). Current comparison can be
achieved by simple Kirchhoff ’s law and the current can be used
to feed the activation function of the output neuron, together with
all current contributions from other synapses. In this scheme, the
effective synaptic weight is given by G�Gref , which can thus be
positive or negative depending on the value of G with respect to
Gref. In the second circuit, the synaptic weight is mapped by a pair
of conductancesGþ andG�, which are biased at positive and neg-
ative voltages, respectively.[115,116] The equivalent conductance is
Gþ �G� which can again have either a positive or negative sign.

The memory array can accelerate not only the forward propa-
gation from input to output layers during the inference mode,
but also the so-called backpropagation algorithm for online train-
ing.[115,118] In this approach, the synaptic weights are updated
after the submission of a whole (or part of the) dataset, and
the iterative repetition of the update allows to minimize the error
and improve the accuracy of the network. Referring to the net-
work of Figure 5a, the online training process consists of three
phases, namely 1) forward propagation, 2) backward propagation,
and 3) weight update. In the first operation, an input sample of
the dataset is presented at the input and propagated throughout
the network, thus leading to results yj appearing at the output
layer. These results are compared to the ideal results oj, thus
yielding a set of errors δj ¼ yj � oj. At this point, one should
backpropagate the error and update the value of each synaptic
weight wij, according to the weight update rule

Δwij ¼ ηxiδj (3)

where, xi is the signal at the synapse during the forward propa-
gation and η is the learning rate.[118,119] In this scheme, the

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2020, 2000040 2000040 (8 of 19) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.advintellsyst.com


weight must be updated with the least amount of time and
energy, for best efficiency of the online training process.
Thus, the weight should be updated without any preliminary
read or following verify pulse; rather, a single update pulse at
fixed voltage and time should be operated.

To test the compatibility of a memory device to online training,
the standard approach consists of the application of a train of
positive voltage pulses for weight increase, followed by a train
of negative voltage pulses for weight decrease. This is shown
in Figure 6 for a typical bipolar switching memory capable of
weight update on both positive and negative voltage pulses.
Figure 6a shows the ideal behavior of the memory device, where
the conductance G increases and decreases linearly for the
increasing number of pulses. In this case, the weight update
ΔG ¼ Δwij is constant, irrespective of the initial conductance G,

thus allowing for a weight update according to Equation (3) with-
out any preliminary measurement of G. In general, however,
memory devices show a nonlinear weight update, such as the
one shown in Figure 6b. Here, the initial pulses cause a steep
increase in conductance, followed by a saturation at longer
pulses. The same occurs for negative pulses. This is the behavior
generally observed for bipolar RRAM devices.[116] In this imple-
mentation, the synapse can have the structure of Figure 5b where
Gref is kept constant, whereas G is increased or decreased to
change the overall synaptic weight.

In addition to nonlinear update, the weight increase and
decrease might also display asymmetric shapes due to different
linearity factors for positive and negative applied pulses
(Figure 6c). The impact of the asymmetric weight update is that
more pulses might be needed to increase the conductance by a
contribution ΔG than the number of pulses needed to decrease
the conductance by the same amount. There is only one conduc-
tance valueGsym, in general, where the derivatives of the increase
and decrease characteristics are the same.[120] In the zero-shifting
technique, the reference conductance Gref is chosen to be equal
to Gsym, so that the symmetric response is obtained for
Gref ¼ Gsym, corresponding to G¼ 0.[76,120]

An extreme case of asymmetric update is the PCM device,
where G can gradually increase via crystallization, whereas the
conductance decrease induced by phase amorphization is gener-
ally abrupt and nongradual.[118] In this case, the synaptic weight
has the structure of Figure 5c, where the crystallization-induced
increase in Gþ causes an overall increase in weight, whereas the
crystallization-induced increase in G� causes an overall decrease
in weight. A change in G can thus be achieved by unidirectional
updates in Gþ and G�, i.e., an increase of G can be achieved by
an increase in Gþ or a decrease in G�. A significant problem of
the unidirectional update scheme is the limited increase in Gþ

andG�, which can never exceed the maximum value correspond-
ing to the fully crystalline state.[118] When one of the two conduc-
tances reaches the maximum value, then a reset operation is
necessary, to allow for further update operations. For instance,
if Gþ reaches the maximum value Gmax, then both Gþ and
G�should be reduced to keep a constant G ¼ Gþ � G�, while
allowing for further increase in Gþ.

(a) (b) (c)

Figure 5. Neural network implementation with memory arrays. a) Schematic illustration of an MLP with three synaptic layers. The output y1, y2, etc. is
compared with the true output o1, o2, etc., to yield the error ε1, ε2, etc., which can be backpropagated to perform the training of the network. b). A possible
implementation of the synaptic weight by a 1T1R memory, where the current I is compared with a reference current Iref across a common conductance
Gref, thus resulting in an equivalent conductance G�Gref to enable mapping of both positive and negative weights. c) Another possible implementation
of the synaptic weight with two 1T1R elements, where the synaptic weight is described by equivalent conductance Gþ�G�.
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Figure 6. Illustration of the weight update characteristic, namely the
device conductance G as a function of the number of pulses of the con-
stant positive voltage and constant negative voltage. a) Ideal characteristic,
where G increases linearly with positive voltage pulses and decreases lin-
early with negative voltage pulses. b) Nonlinear characteristic, where G
increases (decreases) steeply first, then saturates at positive (negative)
voltage pulses. c) Asymmetric characteristic, where the shape of the
response to positive and negative pulses differs significantly. d) Limited
window (dynamic range) of G where values close to G¼ 0 cannot be
reached. e) Variability of the update characteristic due to cycle-to-cycle
variations similar to Figure 4b. f ) Binary update, where no gradual update
is possible for neither positive nor negative voltage pulses.
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This type of unidirectional update is schematically reported in
the diamond plot of Figure 7a, showing Gþ as a function of G�

on�45� axis. In the diamond plot, the net valueG is represented
by the position along the vertical axis. For a unidirectional
device, where Gþ and G�can only increase, the position on
the plot can only move toward the right along the Gþor
G�axis. As the position hits the boundary Gþ ¼ Gmax or
G� ¼ Gmax, the conductances have to be shifted to smaller val-
ues along the horizontal axis, thus to preserve a constant value of
the net G. Figure 7b shows instead the case of bidirectional
update, such as the case of RRAM devices[116,121] or ionic tran-
sistors.[72–76] In this case, the position on the diamond plot can
move in any direction; thus, resetting to a lower G is generally
not necessary.

In general, the memory conductance does not only have a
superior limit Gmax, but also an inferior limit Gmin, which pos-
sibly creates an additional constraint to net conductance G. This
is schematically shown in Figure 6d, indicating a bidirectional
update of G limited between Gmin and Gmax. In such a case,
the differential synapse of Figure 5c is useful, as the zero con-
ductance G¼0 can be achieved by carefully tuning Gþ and G� so
that equal values are obtained to ensure the weight annihilation
according to Gþ � G� ¼ 0. While this situation is straightfor-
ward with Gþ ¼ G� ¼ 0, the presence of a minimum G might
make the achievement of null G rather difficult.

Other sources of nonideality are the stochastic variation of
conductance of Figure 6e, where an applied pulse can cause a
relatively large, random increase, or decrease in conductance
similar to Figure 4b. The weight-update granularity (i.e., the
dynamic range of conductance is covered by only few individual
increase/decrease steps) and stochasticity (i.e., the amplitude of
each step is random) prevent the fine control of the weight, hence
the network accuracy. A possible solution to large granularity as
well as asymmetric weight update is the hybrid CMOS/PCM syn-
apse of Figure 8. The hybrid synapse includes two differential
synapses, one storing the most significant pair (MSP) whereas
the other stores the least significant pair (LSP). Each element
of the LSP synapse is a three-transistor, one-capacitor element
for linear weight update, whereas the differential MSP synapse
consists of two PCM memories with a 1T1R structure with

nonvolatile storage.[122,123] In this way, the fine weight update
is conducted in the highly linear capacitor with conductance g,
which is then periodically aggregated to the PCM weight of
conductance G. At each time, the conductance is given by
FGþ g, where F is a gain factor usually in the range of
F ¼ 3. This circuit structure allows to largely improve the accu-
racy of online training toward the one achieved by software off-
line training in a previous study.[122]

While the gradual update of the synaptic weight is generally
beneficial for offline and online training, some memory devices
show binary switching with abrupt increase and decrease in con-
ductance, as shown in Figure 6f. This is the case for STT-MRAM,
for instance, where magnetic polarization switches as a macro-
spin throughout the whole device area; thus, partial polarizations
are generally not possible.[124] Similarly, some bipolar RRAM
devices can display abrupt bidirectional switching.[125–127] In this
case, the resulting neural network is inherently digital, which is
referred to as the binarized neural network (BNN). Note that the
gradual update of Figure 6a–e is not possible in BNNs, thus mak-
ing online training particularly challenging. A stochastic version
of online training can still be conducted in BNNs, utilizing
RRAM devices where an internal state variable can be controlled
by the application of voltage pulses.[125] Two synaptic weights can
thus be associated with the RRAM device, namely, an internal,
nonobservable weight Wint and an external, measurable Wext.
The internal weight maps the state variable of the device, e.g.,
the defect density and configuration within the filament region
in Figure 9a, whereas Wext is the device conductance which is

G+ G+
(b)(a)

G-G-

Figure 7. Illustration of the weight update for the differential synaptic
memory of Figure 5c. a) Unidirectional update characteristic, where Gþ

and G� show a gradual increase and abrupt decrease. b) Bidirectional
update characteristic, where Gþ and G� show both gradual increase
and gradual decrease. In both cases, the equivalent conductance
G¼Gþ�G� can be seen on the vertical axis, while Gþ and G� are
measured along the axis at þ45� and �45�, respectively, with respect
to the horizontal axis.

Figure 8. Illustration of the hybrid CMOS/resistive synapse. The hybrid
synapse includes a differential synapse with two three-transistor, one-
capacitor element for linear weight update, combined with a differential
synapse with 2 1T1R elements of PCM devices. The weight update term
gþ� g� contains the LSP in volatile memories, whereas the equivalent
conductance Gþ�G� stores the MSP in nonvolatile memories. The total
equivalent weight is given by W¼ F*(Gþ�G�)þ gþ� g�, where a gain
F¼ 3 is usually assumed. Reproduced with permission.[123] Copyright
2019, RSC Publishing.
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high for the filament connecting the two electrodes, otherwise
zero for all other configurations.[125] The application of pulses
results in a continuous change of Wint, although Wext will only
change as Wint reaches a certain threshold. Note that the transi-
tion across the threshold is highly stochastic, as a certainWint can
correspond to various configuration of defects. The BNN can
thus be trained with the backpropagation algorithm, similar to
an analogue network.[125] In a similar approach,Wext can be gen-
erated based on a measurable Wint, thus combining the benefits
of the gradual update of the analogue weight and higher preci-
sion of the BNN.[126]

Another approach to online training with binary switching
devices is the concept of multidevice synapse, where a single syn-
apse including several binary devices in parallel effectively
behaves as an analogue synapse.[127] Figure 9b shows simulation
results for the update characteristics for increasing the number
of memory elements. As the number of defects increases, the
synapse update becomes increasingly analogue, thanks to the sto-
chastic switching of individual elements.[127] In general, multide-
vice synapses also benefit from the better averaging of stochastic
variations (Figure 6e), thus improving the weight controllability
and the resulting network accuracy.[128]

As a final remark, the main advantages of online training
of neural networks are 1) the energy efficiency, thanks to
conducting the computation in the memory, thus taking
advantage of inmemory MVM for forward propagation, and
2) the possibility of adapting the training to the specificity of
the memory array, e.g., the presence of defects and device-
to-device variations.[129] At the same time, online training
for each individual neural network becomes energetically
unfeasible; thus, the best approach is to conduct online train-
ing on a specific task on a master neural network, then trans-
ferring all synaptic weights to all other hardware samples.
Techniques for defect-aware training have been proposed,
e.g., by introducing random stuck short/open within the sim-
ulated network.[109]

5. IMC Circuit Nonidealities

Various nonidealities at the device levels, such as device variations,
fluctuations, drift, and stuck open/short states, all affect the per-
formance of the IMC circuit. For instance, the accuracy of the neu-
ral network, namely, the ability of recognizing objects or speech,
might be degraded with respect to the ideal software accuracy for a
certain set of synaptic weights. It has been shown that neural net-
works with a relatively large number of neurons for each layer dis-
play the highest resilience to variations, thanks to the better
parallelism and the larger number of parameters to represent
the data at each layer. On the other hand, relatively deep neural
networks are instead more prone to device variations, due to
the accumulation of errors during feed-forward propagation along
the numerous layers of the deep neural network.[130]

In addition to device nonidealities, also, array parasitic can
represent a serious concern for the IMC circuits. One of the
major sources of circuit nonideality is the parasitic wire resis-
tance in the array, causing current-resistance (IR) drop along
the rows and columns of the memory array. This is shown in
Figure 10a, where the wire resistance r between each cell is evi-
denced. Assuming a typical read voltage of 0.1 V, which is limited
by noise, possible offsets of the voltage references and amplifiers,
and possible mismatches in the CMOS periphery, and assuming
an average device resistance R ¼ 100 kΩ, each device is expected
to carry an average current I ¼ 1μA. Assuming the same current
I for each device, then the overall voltage drop across the wire
is rI þ 2rI þ 3rI þ : : : þ NrI ¼ rIN2=2. For N ¼ 100 and
r ¼ 1Ω,[131] the voltage drop is around 5mV, which is a signifi-
cant contribution to the overall VR. In addition to the large IR
drop, the large total current NI also raises concerns in terms
of power consumption, size of the decoder transistors, and of
the SAs.

To reduce the line current and the corresponding IR drop, the
average device resistance should be increased as much as possi-
ble, e.g., in the MΩ[115] or GΩ range.[65] A large device resistance,
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Figure 9. Illustration of stochastic synaptic memories with binary devices. a) Stochastic weight update, where positive/negative pulses (top) are applied,
thus resulting in a gradual change of the internal weight and a binary update of the external weight Wext (center). The defect configuration in the fila-
mentary path is described by Wint, whereas the connection/disconnection of the filament to the TE/BE dictates the binary value of Wext. Adapted with
permission.[125] Copyright 2017, IEEE. b) Multidevice synapse, where the combination of the conductance of various binary memory devices can lead to an
overall analogue synapse suitable for gradual weight update. Reproduced with permission.[127] Copyright 2015, IEEE.
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however, might be more heavily impacted by resistance varia-
tions, fluctuations, and drift, which are generally most relevant
for HRSs.[102,103] Also, offline training with programming/
verifying such a large resistance also becomes challenging,
due to the relatively long time needed to sense the extremely
low read current within a very high resistance. Instead of increas-
ing the memory resistance, one may also reduce the size of the
individual memory arrays to reduce the overall IR drop. A tiled-
RRAM architecture has been proposed to conveniently reduce
the maximum array dimension of state-of-the-art RRAM devices
with typical resistances.[132] However, reducing the array size also
results in an increase in the number of the necessary analog–
digital converters (ADCs), digital–analog converters (DACs),
and other peripheral digital circuits, thus resulting in an over-
head in terms of circuit area and power consumption.

Another solution to partially solve the issue of the IR drop is
the current-controlled synaptic element of Figure 10b.[65] Here,
a three-terminal device is considered, such as a FEFET, a Flash
memory, or an ionic transistor, which serves as a current-
controlled synapse operating in the saturated regime. The saturated
current can be programmed by either online or offline training
techniques and represents the synaptic weight, whereas the input
information is encoded in the pulse width of the applied gate
pulse. The synaptic currents are summed by Kirchhoff ’s law
and used to discharge a pre-charged line or integrated on a capaci-
tor. Note that this is an alternative way of conducting the MVM of
Equation (1), where the pulse amplitude is replaced by the pulse
width as input vector, the synapse conductance is replaced by
the saturated current as weight matrix, and the summed current
is replaced by the integrated charge as MVM output, according to

Qi ¼
X

j

Iijtj (4)

As shown in Figure 10c, the IR voltage drop plays a much
smaller impact on the saturated characteristics of the synaptic
transistors, compared with linear characteristics of two-terminal
memory elements. This scheme has the additional advantages of
digital input voltages at the gate, as well as the possibility of
operating each transistor in the subthreshold regime, to enable
low-current IMC.

6. IMC Circuit Architectures

Figure 11 shows various IMC architectures that have been
developed to address application-specific computing problems.
All architectures take advantage of the possibility of building
compact memory arrays in a matrix shape and programming
each memory device with an arbitrary analog value. The most
popular architecture is the memory array for MVM acceleration
in the analogue domain,[9–11] although other architectures can be
built such as the content addressable memory (CAM)[133] and
analogue IMC accelerators for solving inverse problems in
one computing step.[104,134]

6.1. MVM Accelerators

Figure 11a shows a typical architecture for performing the MVM,
namely x ¼ A� b.[9–11] The input vector b is generally converted
into the analog domain voltage vector V with a DAC; then, it is
applied to crosspoint rows. The matrix A is mapped as conduc-
tance values of the memory elements in the crosspoint array.
In principle, any of the cell structures of Figure 3, namely 1R,
1T1R, and 1S1R, can be used in the memory array. Array
columns are connected to virtual ground such that the resulting
current in each column is given by Equation (1) for a crosspoint
of a given size N. Each current is converted into the voltage
signal by a transimpedance amplifier (TIA), then converted
into the digital domain by an ADC. This simple architecture
can conduct MVM in one operational step with constant time
independent of the size N of the problem, namely O(1) time
complexity.

MVM is the building block for accelerating neural networks,
where sum of product must be executed many times during
forward propagation. Here, vector b can be seen as the output
neuron signal at a given layer, whereas the conductance matrix
G maps the synaptic weights. IMC-based neural network accel-
erators have been widely demonstrated both for inference with
offline supervised training[135,136] and for online training,[11,137]

where MVM in the crosspoint array can be used to accelerate
both the network evaluation and the training. Online training
also allows to experience device nonidealities such as program-
ming variations, limited window, and stuck open/short, thus
resulting in a relatively high accuracy.[137] The nonlinear neuron
activation is generally performed within the digital domain. The
architecture is thus agnostic with respect to the type of training,
which can span various learning algorithms such as supervised
learning,[11,136,137] unsupervised learning,[138] and reinforcement
learning.[139] Multilayer architectures, such as convolutional
neural networks (CNN), can be accelerated within crosspoint
memory arrays using separate arrays for each network layer,[122]

arranging all networks in different locations within the same

(a)

(b) (c)

Figure 10. Parasitic voltage drop across array wires. a) Illustration of the
voltage drop across a three-cell row with memory resistance R and inter-
memory wire resistance r. b) Current-controlled synaptic element, where
MVM is executed by multiplying the pulse width of the input signal with
the saturated current of a synaptic transistor. c) Impact of IR drop for cur-
rent-controlled synapses and ohmic devices. Adapted with permission.[65]

Copyright 2019, IEEE.
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array[11] or even breaking each layer in several subarrays or
tiles.[132] Integrated circuits comprising crosspoint memory
arrays, DAC, TIA, and ADC have been already presented for neu-
ral network training,[140–143] showing software-equivalent accu-
racy and a performance density above 1 TOPs�1 mm�2.[140]

The memory architecture in Figure 11a can be used to
accelerate recurrent neural networks (RNNs) both for deep
learning[137] and for the solution of constraint satisfaction prob-
lems (CSPs).[144–149] In the latter case, one can consider theMVM
accelerator as a Hopfield-type RNN.[150,151] Hopfield RNNs are
brain-inspired networks that can perform cognitive computing
tasks on attractors, which are memory states that represent a
minimum energy value in the landscape described by the
network connectivity. Cognitive tasks in RNNs include attractor
learning, attractor recall, and probabilistic model training.[152,153]

When performing a recall operation, the Hopfield RNN con-
verges to a stable state by minimizing the energy function
E ¼ � 1

2

P
GijViVj.

[154] Thus, by programming the conductance
matrix G with a function to optimize, the Hopfield RNN can
iteratively find the minimum energy E.[150,151] However, many
optimization problems have a nonconvex energy landscape,
meaning that many local minima are present. As a result, a
Hopfield RNN cannot solve the problem efficiently. This class
of CSPs includes Max-SAT, Max-Cut, and the generic multidi-
mensional expression of Sudoku.[155] To make the system capa-
ble of solving such nonconvex problems, computational
annealing techniques are conducted, by introducing noise in
the system, which is equivalent to increasing temperature in
an annealing experiment. Simulated annealing allows the system
to escape from local minima and reach the global minimum.
The intrinsic noise in memory devices has been used as an
experimental tool to accelerate computational annealing,[146,147]

allowing for a speedup of the solution by a factor 30� compared
with GPU[146] in a low-power RNN.

Analogue MVM can also be used to implement spiking neural
networks (SNNs), which aim at mimicking the type of computa-
tion that takes place in the brain. In fact, while many SNNs have
been developed based on standard CMOS technology,[5,6,156–158]

it has been recognized that IMC allows for a more direct imple-
mentation of the neural network structure, as well as providing a
better resemblance of the learning and spiking mechanisms of
the brain. For instance, the biological learning rules, such as the
STDP[159] and the Bienenstock–Cooper–Munro (BCM) rule for
triplet-based learning,[160] can be naturally replicated in memory
devices. For instance, STDP has been demonstrated in a rela-
tively simple 1R structure,[161–163] one-transistor structures,[63,64]

1T1R structures,[164–166] and two-transistor/one-resistor (2T1R)
structures.[167,168] The time-dependent dynamics of volatile
RRAM[169,170] was also shown to feature bioinspired processes,
such as STDP learning,[171] BCM learning,[172] short-term
plasticity,[173] and oscillating neurons.[174,175] This type of
neuromorphic, brain-inspired IMC is highly promising for
ultralow-power smart sensors and biomedical devices interfacing
with the brain, such as neuromorphic neuroprostheses.

Finally, analogue MVM in the memory can naturally acceler-
ate algebraic computing problems such as image processing,[10]

sparse coding,[176] and the solution of linear systems and differ-
ential equations.[177,178] In the latter case, numerical algorithms
are adopted to break the algebraic problem in several iterative
steps, includingMVMwithin thememory architecture and a sep-
arate operation performed on a digital computer with floating
point precision. This approach is referred to as mixed-precision
computing, which takes advantage of the IMC concept only for
accelerating the MVM operation.[178–180]

(a) (b)

(c) (d)

Figure 11. Array architectures for IMC. a) MVM accelerator including DAC at the input, TIAs for current–voltage conversion, and ADC at the output.
b) TCAM array using terminal-resistive memory devices. c) IMC accelerator for solving a linear system Ax¼ b. d) IMC accelerator for linear and logistic
regression.
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6.2. Analogue Computing Accelerators

Recently, it has been shown that the crosspoint array can be prop-
erly connected in a feedback loop with operational amplifiers
(OAs) to solve a linear system of equation in one step without
any iteration.[104] Figure 11c shows the circuit architecture for
solving the linear system Ax¼ b in one step. The core architec-
ture is the same as Figure 11a, namely a crosspoint architecture
performingMVM between column voltages and conductance val-
ues G representing matrix A stored in the memory array. Vector
b is applied as input analogue current i, obtained as a DAC out-
put signal applied to an input conductance G0 connected to the
virtual ground. Virtual ground is obtained at the input terminal
of an OA where the output is connected to the array column with
a feedback configuration. The OA generates an output voltage
vector such that Gvþ i ¼ 0, to support the MVM by
Kirchoff ’s and Ohm’s law. By rearranging this equation, one
can obtain the unknown vector v ¼ �G�1i in one step, which
is the solution x ¼ v to the linear system Ax¼ b.

The circuit can be extended to matrices A which contain both
positive and negative entries, by inverting the output voltage v
of the OAs and applying it to a second crosspoint array G 0

parallel to G. As a result, one can solve a generic linear system
ðB� CÞx ¼ b, where B and C are mapped in the crosspoint
arrays G and G 0, respectively. As a special case, if the matrix
G 0 is replaced by the diagonal matrix λI, where I is the identity
matrix, and if the input vector is assumed i ¼ 0, then the prob-
lem reads ðA� λIÞx ¼ 0, where the unknown is the eigenvector
of the matrix A. These linear algebra problems can be extended to
differential equations, such as the Fourier equation or the
Schrödinger equation in one step within a crosspoint array.[104]

Note, however, that the circuit can only calculate the eigenvector
for the maximum eigenvalue, which should be shown to allow
for circuit implementation. This is the case, for instance, of
the Pagerank, which is an algorithm for ranking webpages,
where the maximum eigenvalue λ ¼ 1 is always known.[181]

To perform Pagerank, the matrix G of the connections between
webpages is programmed into the memory array, and the eigen-
vector corresponding to the maximum eigenvalue is computed.
Crosspoint circuits have been used to compute the Pagerank
problem.[101,104]

While matrix A is always square in the circuit of Figure 11c,
rectangular problems where the number of equations exceeds
the number of unknowns can also be addressed with dedicated
IMC architectures.[134] For instance, Figure 11d shows a double-
feedback circuit to compute regression in one step. A current
input vector y is applied as input current i by DAC connected
to input conductance G0. According to Kirchoff ’s law, the total
current GXvþ i, where GX is the conductance matrix of the left
crosspoint array and V is the output voltage of the second stage of
OAs, is converted to voltage vR ¼ ðGXvþ iÞ=GT by the TIAs and
applied to the right matrix. The right array encodes the same con-
ductance GX of the left array; thus, the output current is given by
GX

TðvGX þ iÞ=GT, which must be equal to zero due to the infi-
nite input resistance of the second-stage OAs. As a result, the
output voltage reads v ¼ �ðGX

TGX Þ�1GX
Ti, which represents

the Moore–Penrose inverse w ¼ ðXTXÞ�1XTy, where matrix X
is encoded into the conductance of the crosspoint array GX.

The solution is given in one step regardless of the matrix size,
without any iteration.

The Moore–Penrose inverse can be used to compute the linear
regression of a given set of data. By storing the independent
variables X in the crosspoint array and applying the dependent
variable y as the input current, the circuit output voltage is
v ¼ w, which represents the linear coefficient of the best fitting
line (or plane or hyperplane, depending on the number of
dimensions).[134] The same concept can be extended to other
types of regressions, such as polynomial regression and logistic
regression. The latter can act as a building block for large-scale
classification systems.[134]

The feedback configuration of the IMC circuits of Figure 11c,d
allows for physical iteration in the analogue domain to find the
solution of the problem with a relatively large sizeN. In principle,
the solution time does not depend on the size N of the problem,
thus resulting in O(1) complexity. This low complexity makes
IMC extremely promising for machine learning and other areas
which rely on linear matrix computation. However, due to the
nonidealities at the device level (e.g., device-to-device variations,
drift, etc.) and circuit level (e.g., IR drop, etc.), it appears challeng-
ing for the IMC technology to reach the same precision as con-
ventional digital circuits with floating-point precision. A more
general study at the system level is still needed to meet these
challenges and take full advantage of the low complexity and high
energy efficiency of IMC.

6.3. Content Addressable Memories

Memory arrays are usually accessed by an address, which allows
to select a certain memory bit to retrieve its content data. This
operation is unambiguous, i.e., a single data bit corresponds
to any specific address. However, many computing tasks require
the opposite operation, namely searching the position, or multi-
ple positions, where a given information is stored in the memory.
This memory architecture, which is referred to as CAM, returns
the data address in one clock cycle, independently from themem-
ory size, thus allowing for an acceleration of data search with
respect to software and other hardware approaches. CAM has
been used to accelerate multiple computing tasks such as IP
routing, image coding, and regular expression matching.[133]

The conventional CMOS-based CAM requires a large area and
complex circuit structure that limit its hardware implementation.
On the other hand, CAM can be naturally implemented with
IMC using two-terminal memory devices to allow for the signifi-
cant increase in density.

Figure 11b shows a 2� 2 ternary CAM (TCAM) array imple-
mented with RRAM devices, where the single cell is highlighted.
A TCAM is a more general type of CAM which is able to search
not only binary values (“1” or “0”) but also “don’t care” value
(“X”).[182–186] Two operations can be performed on the TCAM
array, namely writing and searching.[184] Signals SX1 and ND
control the access transistor for write operation, whereas the
selection transistor gate (WL1) is biased constantly at VDD. To
set the RRAM device on the right (M1), Vset is applied to SL1,
with SL1 kept at VDD to turn off the left transistor, corresponding
to device M2. The compliance current is regulated by the control
voltage SX1 whereas ND is grounded. To reset the device M1,
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SL1 is grounded whereas ND is biased at Vreset. The same
scheme can be applied to write M2 by inverting the signals
SL1 and SL1. State “0” corresponds to M1 in HRS and M2 in
LRS, whereas state “1” corresponds to M1 in LRS and M2
in HRS. To write state “X,” corresponding to “don’t care,” both
M1 andM2 should be in HRS state. During search operation, the
match line 1 (ML1) is precharged to VDDwhereas the search bit is
applied at SL1. If there is match, then ML1 remains in the
charged state. In fact, assuming that a “1” is searched whereas
a “1” is stored in the cell, device M2 in HRS prevents discharge of
ML1 to the grounded SL1, thus maintaining the charged state
of ML1. On the other hand, if there is no match, e.g., a “1” is
searched whereas a “0” is stored in the cell, then device M2
in LRS connects ML1 to ground, thus inducing a fast discharge
of the line. If state “X” is stored in the cell, then ML1 remains
charged regardless of the input vector, as both M1 and M2 in
HRS prevent connection of ML1 to SL1 and SL1.

Thanks to its modular implementations, TCAM can be easily
arranged in an array to search for large data patterns, as shown in
Figure 11b. Giving an input word on SL1 and SL2,ML1 andML2
remain charged only if each column data matches the input data,
or data “X” are stored in the column. TheML1 andML2 potential
is rapidly probed by a SA to recognize a discharge ifML1 orML2
drops below a certain threshold.

Interestingly, TCAM can be used to accelerate computing
problems without the need for area/power consuming ADC
and DAC and can be directly connected to the memory module
such as DRAM.[186] The matchline (ML) discharge speed con-
tains important information on the similarity between the search
and stored value. For instance, if a weak LRS is written on M1,
the discharge time while searching for “1” will be longer than the
time corresponding to a full LRS. The difference between these
two values can be translated into a Hamming distance and used
to accelerate custom neural network training.[185] Moreover,
analog-resistive CAM circuits have been proposed,[187] where
the stored values represent a range and the ML will stay charged
if the analog input signal is within the stored range. Analog CAM
can be used as the inference machine for machine learning
problems, such as decision trees and random forests.[187,188]

7. Conclusions

This work provides an overview on the devices, circuits, and
architectures that enable data processing directly within the
memory according to the so-called IMC paradigm. Emerging
memory devices, including two-terminal and three-terminal
devices, are first reviewed to clarify the operation principle
and the associated advantages and disadvantages for computing.
The device structures, including selector-free 1R, 1T1R, and
1S1R structures, have been discussed and compared. The most
typical nonidealities of the memory concept are discussed with
reference to different training processes, namely offline training
consisting of memory programming operation and online train-
ing where the synaptic weights are updated in situ. Nonidealities
at the array level are then considered, such as the IR drop along
the array wires which dictates additional requirements for the
memory resistance. Finally, the IMC architectures are reviewed
with focus on MVM, TCAM, and analogue accelerators for

solving linear algebra problems. Due to several advantages of
performance, energy efficiency, and complexity, IMC appears
extremely promising to accelerate many data-intensive comput-
ing tasks. Improvements in the device state control and resis-
tance window are however needed to compensate the device
nonidealities and improve the accuracy of IMC.
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