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ABSTRACT
Remotely sensed rainfall plays an important role in providing efficient
approaches for global or regional rainfall analysis. However, the accu-
racy of satellite-based products is mainly affected by the errors in
sensor observation and retrieval algorithms, particularly with respect
to extreme rainfall estimates. The objective of this study is to evaluate
the accuracy of satellite-based products in capturing rainfall
extremes. The eastern coastal areas of China were chosen as the
case study area to compare the accuracy of three mainstream satel-
lite-based products with respect to extreme rainfall estimates during
2003–2015 period. This included the Tropical Rainfall Measurement
Mission (TRMM) rainfall product 3B42V7, the Climate Prediction
Centre Morphing technique RAW (CMORPH-RAW), and the CMORPH
bias-corrected product (CMORPH-CRT). In general, all satellite-based
products demonstrated numerous errors in extreme rainfall esti-
mates. Based on three different indices of extreme rainfall, it was
observed that the satellite-based products underestimated the
amounts of rainfall extremes and their respective average values. It
was noted that CMORPH-RAW demonstrated the largest relative bias
(RB) and underestimated the average extreme rainfall by −31% to
−35%. Additionally, all satellite-based products exhibited poor cap-
abilities in capturing the variations in hourly extreme rainfall pro-
cesses. Finally, a simple potential flood index was developed to
simulate the potential flood areas in the eastern coastal areas of
China. We found that the potential flood areas can be simulated by
combining the potential flood index with the amounts of rainfall
derived by satellite-based products.
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1. Introduction

Improving the accuracy of retrievals in the amount and frequency of extreme events in
response to climate change, especially in extreme rainfall, is key to anticipation strategies
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(Sillmann and Roeckner 2008; Gebregiorgis and Hossain 2013; Agarwal et al. 2014).
However, obtaining an accurate reference of rainfall extremes among different dataset
types (gauge observations versus satellite-based estimations) and their specific spatial
and temporal resolutions is still a challenge (Sun and Barros 2010; Stisen and Tumbo
2015). At regional scales, which are relevant for extreme rainfall studies, ground observa-
tion requires long-period time series with high spatio-temporal resolution (Liang and
Ding 2017). Usually, ground rain gauges provide direct-point estimations. However,
measuring the rainfall globally is difficult due to its sparse distribution. As rainfall varies
significantly with respect to space and time, gridded rainfall products with spatial con-
tinuity are well suited for such measurements (Sorooshian et al. 2011; Vu et al. 2017).

Currently, various satellite-based products are available at global scale, namely the 1°/
daily Global Precipitation Climatology Project one-Degree-Daily (GPCP-1DD) (Huffman
et al. 1997), the 0.25°/daily Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks Climate Data Record (PERSIANN-CDR) (Ashouri et al. 2014),
the 0.25°/3-hourly Tropical Rainfall Measurement Mission (TRMM) Multi-Satellite
Precipitation Analysis (TMPA) 3B42V7 (Kummerow et al. 1998), and the 0.25°/3-hourly
Climate Prediction Centre Morphing (CMORPH) technique (Joyce and Janowiak 2004). As
alternative and cost-efficient data sources, these products demonstrate significant poten-
tial applications in climate change (Jenkins et al. 2002; Stanfield et al. 2015) as well as
rainfall-induced hazardous events warning (Hong et al. 2007; Li et al. 2009; Casse et al.
2015) with their quasi-global coverage and real-time availability. For instance, the seaso-
nal rainfall in a changing climate area over the Arabian Peninsula is described by
Almazroui et al. (2012) based on TRMM 3B42 and other gridded datasets. The utility of
CMORPH data has been demonstrated via an examination of the diurnal cycle in rainfall
both globally and regionally by Janowiak et al. (2005). In addition, satellite-based products
have been used to address the variations of rainfall extremes in climate variability studies
(Jamandre and Narisma 2013; Nastos et al. 2013).

However, the retrieval of rainfall extremes from satellite-based products also presents
certain uncertainties with respect to accuracy (Huang et al. 2014; Mehran and AghaKouchak
2014; Tang et al. 2016), which is attributed to factors, such as instrument issues and retrieval
algorithms (Sohn et al. 2010; Han et al. 2011; Li et al. 2013; Khan et al. 2014; Dembélé and Zwart
2016). Someefforts havebeenmade to assess the reliability of these satellite-basedproducts in
capturing extreme rainfall worldwide (Hermance and Sulieman 2018). In China, Yong et al.
(2013) compared the accuracy of four standard TRMM TMPA products over Mishui and
Laohahe basins and emphasized that all the products largely underestimated the rainfall
during extreme typhoon events. Huang et al. (2018) evaluated the performance of 3B42
real-time (3B42RT) and 3B42V7 products for an extreme rainfall event in Beijing and found
that both the products significantly underestimated rainfall. In other countries, Aghakouchak
et al. (2011) pointed out that the satellite-based products might not be suitable for detecting
extreme rainfall events as the retrieval process tended tomiss a significant volume of extreme
rainfall and could not capture extremes reliably. Anjum et al. (2016) evaluated the 3B42RT and
3B42V7 products during an extreme rainfall event (on 28–30 July 2010) over the Swat river
basin and its adjacent areas in the Hindukush region and concluded that both of these satel-
lite-based products could not capture the spatial pattern of rainfall appropriately. Moreover,
they underestimated the storm-accumulated rainfall by 32%-66%. In addition, these two
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satellite-based products did not capture any extreme rainfall events in Singapore between
December 2014-March 2015 (Tan and Duan 2017).

Rainfall has large spatial variability across different regions (Milewski et al. 2015). The
objective of this study is to evaluate the accuracy of satellite-based products in capturing
rainfall extremes over urban areas. Previous studies have proven that extreme rainfall
intensity (Song et al. 2015) and frequency (Chen et al. 2017) are more likely to increase in
the metropolitan areas in China, especially in the eastern coastal areas of China, which
have been experiencing rapid urbanization are becoming one of the most significant
global metropolitan areas. Yin et al. (2018) quantitatively simulated the flood risk in the
eastern coastal areas of China based on the Coupled Model Inter-comparison Project
Phase 5 global climate models. They found that the intensity of future flood risk will
gradually increase. Some researchers have also pointed that urbanization in these areas
has led to a rise in the magnitude of extreme rainfall intensity and potential risks of flash
floods (Li et al. 2013; Han et al. 2015; Zhong et al. 2017). Although several rain gauges are
distributed in these urban areas, gridded rainfall data derived by point-scale rain gauges
still encounter problems in underestimating extreme rainfall due to the integrated
methods (Li et al. 2019). Therefore, it is important to evaluate the accuracy and deduce
the reliability of satellite-based products in urban areas.

In this study, we considered the eastern coastal areas of China as the case study area
and attempted to compare the accuracy of three mainstream satellite-based products for
extreme estimates, that is 3B42V7, CMORPH-RAW, and CMORPH-CRT. The rest of the
contents of this paper are organized as follows: section 2 provides a brief description
related to gauge data and the three satellite-based products. Different indices of extreme
rainfall and evaluation methods are also described in section 2. Section 3 presents the
results from the comparisons of the satellite-based products for extreme rainfall esti-
mates. Finally, discussion and conclusions are presented in sections 4 and 5, respectively.

2. Materials and methods

2.1. Study area

The study area includes one city (Shanghai) and two provinces (Jiangsu and Zhejiang)
enclosing approximately 217,681 km2 within 27°25′ N-35°05′ N and 116°30′ E-122°50′
E (Figure 1(b)). The northern part of the eastern coastal areas of China mainly is
comprised of an alluvial plain with flat topography, while the south includes low
mountains and hills. This area experiences a humid subtropical climate with four
distinct seasons. Its average summer rainfall (1 June-31 August) accounts for more
than 30% of the average annual rainfall (Figure 1(c)).

2.2. Datasets

2.2.1 Rain gauge data
The daily rain gauge observations from 1 January 2003 to 31 December 2015 are
obtained from the Chinese National Meteorological Information Center (CNMIC) (http://
data.cma.cn/). Figure 1(b) shows the spatial locations of the selected 49 rain gauges.
The inverse distance weighted (IDW) method is used to interpolate the gridded rainfall
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data (GRD) with 0.25° spatial resolution. This method demonstrates a higher reliability
compared to ordinary kriging and co-kriging techniques (see Table 1).

The GRD is regarded as the “ground truth” to evaluate the accuracy of the three
satellite-based products.

The hourly rainfall data recorded by the Xujiahui station in Shanghai in 2015 and
provided by the Shanghai Meteorological Bureau are also considered for evaluating the
accuracy of satellite-based products in hourly extreme rainfall estimates.

2.2.2 Satellite-based products
Three different satellite-based products are used in this study, including 3B42V7,
CMORPH-RAW, and CMORPH-CRT (see Table 2) for their high spatio-temporal resolutions
and long length of data acquisition.

3B42V7 is a rain gauge-adjusted multi-satellite rainfall product developed by the
National Aeronautics and Space Administration and the National Space Development
Agency (ftp://trmmopen.gsfc.nasa.gov/pub/merged). This product combines multiple

Figure 1. (a) Location of the study area, (b) the distributions of rain gauges, and (c) the average
monthly rainfall over the eastern coastal areas of China from 2003 to 2015.

Table 1. Results of cross validation.
Interpolation methods root mean square error (mm/day) mean absolute error (mm/day) correlation coefficient

IDW 3.59 1.87 0.81
kriging 4.82 2.23 0.80
co-kriging 4.70 2.65 0.73
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independent rainfall estimates, such as the active/passive microwave fields, infrared (IR)-
based estimates, and the monthly Global Precipitation Climatology Centre (GPCC) rain
gauge analysis (Kummerow et al. 1998).

CMORPH is generated by the Climate Prediction Center (CPC) that functions under the
National Centers for Environmental Prediction (ftp://ftp.cpc.ncep.noaa.gov/precip/
global_CMORPH/3-hourly_025deg). It is derived from the IR imagery to propagate the
rainfall estimates obtained from the passive microwave data (Joyce and Janowiak 2004).
CMORPH-RAW performs real-time satellite observation without gauge calibration, while
CMORPH-CRT adopts the probability density function techniques to reduce the bias by
using the CPC unified daily gauge analysis.

In this study, daily accumulated rainfall values are calculated using the 3-hourly rainfall
data. Additionally, to match the period of rain gauge data, 13 years (2003–2015) of historical
data are selected in this experiment, which can meet the need for accuracy evaluation.

2.3. Methods

In this study, rainy days are defined as those days when the daily rainfall of GRD is higher
than 0.1 mm/day. In daily scale, we considered three indices to indicate extreme rainfall
events: (1) daily rainfall exceeding 50 mm/day (H50p); or (2) daily rainfall exceeding 95th
percentile of rainy days (R95p); or (3) daily rainfall exceeding 99th percentile of rainy days
(R99p). According to the three indices, the daily extreme rainfall events from time series
GRD were extracted for evaluating the accuracy of the satellite-based products. In an
hourly scale, extreme rainfall can be realized based on the definition that a rainfall event
lasts over 24 h, during which the hourly rainfall exceeds 16 mm (Kong et al. 2017).

We considered four statistical indicators, including root mean square error (RMSE),
mean absolute error (MAE), relative bias (RB), and correlation coefficient (CC) to quan-
titatively evaluate the satellite-based products during the period from 2003–2015. The
equations of these indicators are described in Table 3, wherein RMSE indicates the

Table 2. The basic information on the three satellite-based products.
Products Spatial resolution Temporal resolution Available period Coverage

3B42V7 0.25° 3-hourly 1998-present 50°N-50°S
CMORPH-RAW 0.25° 3-hourly 2003-present 60°N-60°S
CMORPH-CRT 0.25° 3-hourly 1998-present 60°N-60°S

Table 3. The statistical indicators for evaluating the satellite-based products.
Statistical indicators Formulas Perfect value Unit

Root Mean Square Error (RMSE) RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

P
n
i¼1 Gi � Sið Þ2

q
0 mm

Mean Absolute Error (MAE) MAE ¼ 1
n

P n
i¼1 Gi � Sij j 0 mm

Relative Bias (RB)
RB ¼

Pn

i¼1
Gi�Sið ÞPn

i¼1
Gi

� 100%
0 %

Correlation Coefficient (CC)
CC ¼

Pn

i¼1
Gi��Gð Þ Si��Sð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
Gi��Gð Þ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
Si��Sð Þ2

q 1 NaN

Notes: n represents the number of samples, Gi is gridded gauge rainfall (mm), Si is satellite-based product rainfall
estimates (mm). �G and �S are mean values of gridded gauge rainfall and satellite-based product rainfall estimates (mm),
respectively. More details are available in Jiang et al. (2018).
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average magnitude of error, MAE measures the average magnitude of absolute error,
RB is used to represent the systematic bias (i.e. overestimation, RB > 0 or underestima-
tion, RB < 0) of the satellite-based products, and CC is the correlation between the
satellite-based products and GRD.

3. Results

3.1. General evaluation of satellite-based products for extreme rainfall estimates

Figure 2 shows the scatter plots of extreme rainfall events between GRD and 3B42V7
(CMORPH-RAW or CMORPH-CRT) based on the three indices. Among the three
satellite-based products, the near-real-time product CMORPH-RAW exhibits the
worst performance in capturing the extreme rainfall amounts with the highest error
magnitude as well as a lack of agreement with GRD. All satellite-based products
demonstrate obvious underestimations of extreme rainfall estimates. 3B42V7 demon-
strates the lowest biases, while its H50p still exceeds −10%.

Figure 2. The scatter plots of the extreme rainfall amounts of (a) H50p, (b) R95p, (c) R99p from GRD
and (1) 3B42V7, (2) CMORPH-RAW, and (3) CMORPH-CRT during the period 2003–2015.
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Further, we calculated the average extreme rainfall in each grid for spatial evaluation
of satellite-based products during the period between 2003 and 2015. Figure 3 shows
the spatial distribution of average extreme rainfall based on the three indices. Overall,
all the satellite-based products underestimate average extreme rainfall in the coastal
region. Previous studies have pointed out that the calibration system of satellite
observations for discriminating rain from no rain performed poorly at the coastline by

Figure 3. The spatial distributions of the average extreme rainfall of (a) H50p, (b) R95p, (c) R99p for
GRD, 3B42V7, CMORPH-RAW, and CMORPH-CRT during the period 2003–2015.
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using passive microwave and infrared sensors (Kim et al. 2017). Additionally, the results
of the statistical indicators are summarized in Table 4. 3B42V7 exhibits a better perfor-
mance than CMORPH-RAW and CMORPH-CRT. Compared to GRD, the three satellite-
based products demonstrate larger estimation errors in assessing the average extreme
rainfall. With respect to the indicator RB, detection of average extreme rainfall is
significantly underestimated by satellite-based products, especially the underestima-
tion of the average extreme rainfall by −31 to −35% by CMORPH-RAW. Specifically, the
index R99p shows that all the satellite-based products perform poorly in estimating the
average extreme rainfall.

3.2 Satellite-based products’ evaluation of hourly extreme rainfall

Two extreme events that are in line with the definition of hourly extreme rainfall men-
tioned in section 2.3 were recorded by Xujiahui station in 2015. These two events
occurred on 16–17 June and 27–28 June. Figure 4 shows the 3-hourly amount of extreme
rainfall obtained from ground observations and the three satellite-based products. The
results indicate that all the satellite-based products occasionally demonstrate larger
errors. In the first event (Figure 4(a)), the 3-hourly maximum rainfall occurred on
16 June during 15:00–18:00. At this point, 3B42V7 exhibited a better performance

Table 4. The statistical results of satellite-based products for average extreme rainfall.
Indices Products RMSE (mm) MAE (mm) RB(%) CC

H50p 3B42V7 15.61 12.41 −4.88 −0.15
CMORPH-RAW 27.79 25.05 −34.16 −0.44
CMORPH-CRT 18.67 15.64 −13.62 −0.32

R95p 3B42V7 7.00 5.23 −3.71 0.45
CMORPH-RAW 14.06 12.32 −31.14 0.43
CMORPH-CRT 8.39 6.21 −9.92 0.34

R99p 3B42V7 16.62 12.18 −8.14 0.30
CMORPH-RAW 28.72 23.98 −35.24 0.14
CMORPH-CRT 19.96 14.93 −15.93 0.16

Figure 4. Two extreme rainfall time series of the Xujiahui station in 2015 and satellite-based product
observations. (a) 16–17 June, (b) 27–28 June.
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compared to CMORPH-RAW and CMORPH-CRT. Additionally, CMORPH-RAW and
CMORPH-CRT exhibited larger errors on 16 June during 12:00–15:00. However, 3B42V7
was the worst performer in terms of the second event (Figure 4(b)). Moreover, 3B42V7
exhibited obvious underestimation of extreme rainfall at times. It was observed that all
the satellite-based products overestimated extreme rainfall on 27 June from 6:00 to 15:00.

4. Discussion

4.1. Analysis of the estimation errors in satellite-based products

From this study, it was found that the three satellite-based products (3B42V7, CMORPH-
RAW, and CMORPH-CRT) present larger biases in terms of daily and hourly extreme rainfall
estimates. Particularly, all the satellite-based products exhibit obvious underestimations
of extreme rainfall during the evaluation of daily extreme rainfall. This conclusion is also
consistent with previous studies (Mehran and AghaKouchak 2014; Jiang et al. 2018). The
underestimation of extreme rainfall could be due to, such as errors in satellite sensors,
retrieval algorithms, and spatial sampling frequencies as well as varied bias correction
procedures related to uneven distribution of ground stations (Shen et al. 2010; Kenawy
et al. 2015; Miao et al. 2015). Although some satellite-based products have been corrected
using rain gauges, their capabilities of detecting extreme rainfall have not improved
evidently (Jamandre and Narisma 2013; Stampoulis et al. 2013; Guo et al. 2016).

We calculated the relative biases of the three satellite-based products at different daily
rainfall levels (see Figure 5). It was noted that the trends in biases from satellite-based
products increased as rainfall increased. In other words, all satellite-based products
exhibited an obvious underestimation with an increase in rainfall. Although 3B42V7

Figure 5. The RB of 3B42V7, CMORPH-RAW, and CMORPH-CRT in different daily rainfall levels.
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demonstrated lower biases than the others, its biases exceeded −10% when the daily
rainfall was higher than 50 mm/day.

To further investigate the sources of bias, three continuous metrics, namely prob-
ability of detection (POD), false alarm ratio (FAR), and critical success index (CSI) were
calculated to estimate the capability of satellite-based products in order to evaluate the
possibility of corresponding rain events. All the metrics had values ranging from 0 to 1.
Moreover, the POD and CSI (FAR) were positively (negatively) correlated with the
detection capability. All these values were computed by referring to Jiang et al.
(2018). Figure 6 shows the detection results of three satellite-based products for
different daily rainfall levels. With increasing thresholds, the detection capability of
three satellite-based products showed a significant downward trend, whereas the
ratio of false alarm tended to increase. The poor detection capability of satellite-based
products in heavy rainfall events (≥25 mm/day) results in non-negligible estimation
errors.

4.2. Application potential analysis of satellite-based products in flood events

Climate change increases flood risk in China, especially in the eastern coastal areas of
China, which suffer from potential threats that may be caused by tropical storms,
typhoons, and flood hazards, leading to serious economic and human losses. Currently,

Figure 6. The overall detection capacity of the three satellite-based products in different daily rainfall
thresholds.
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only satellite-based products can provide space-continuous global rainfall data. The
satellite-based products with open source are more attractive for hydrologist in flood
simulation. In this study, we developed a simple potential flood index to simulate the
potential flood areas in this region by integrating vegetation, topography, hydrology, and
rainfall information. In addition, we attempted to compare the capabilities of the tested
satellite-based products for potential flood area simulation.

The Potential flood index (PFI) can be calculated using equation (1).

PFI ¼ wC 1� Cð Þ þ wE 1� Eð Þ þ wSG 1� SGð Þ þ wD 1� Dð Þ þ wRR (1)

where w represents the weights of different parameters, C is the coverage of vegetation,
E is the elevation, SG is the slope gradient, D is the shortest Euclidean distance between
the grid and the water body, and R is the amount of rainfall (mm).

The parameters used in the potential flood simulating model are listed in Table 5.
The data sources include (1) Moderate resolution Imaging Spectroradiometer (MODIS)
monthly products MOD13A3; (2) Multi-Error-Removed Improved-Terrain Digital
Elevation Model (MERIT-DEM); (3) land use and land cover (LULC) map developed in
2005; and (4) GRD and satellite-based products. The MODIS data are used for calculat-
ing the Normalized Difference Vegetation Index (NDVI) as the coverage of vegetation.
The topographical features (e.g. elevation and slope gradient) are derived from the
MERIT-DEM. In addition, the water body layer is extracted from LULC map to calculate
the shortest Euclidean distance between the grid and the water body.

The values of the parameters in this table are normalized between 0 and 1, and all
gridded data are resampled to 1 × 1 km spatial resolution using the bilinear method.

In this study, four typical rainfall- and cyclone-induced flood events are used for
simulating the potential flood areas based on potential flood index. The flood events
were obtained from the open website of Dartmouth Flood Observatory, University of
Colorado (http://floodobservatory.colorado.edu/Archives/index.html). Table 6 shows the
details of the events that occurred in the eastern coastal areas of China during 2003–2005.

Table 5. The parameters used in potential flood simulating model.
Parameters Data sources Expressions Weights Meanings

C MOD13A3 See Liu et al. (2013) for
details

0.1 The coverage of vegetation
E MERIT-DEM 0.2 Elevation
SG 0.2 Slope gradient
D LULC map in 2005 min xi � xj

�� ��þ xj � yj
�� ��� �

0.2 The shortest Euclidean distance between the
grid and the water body

R GRD, satellite-
based products

/ 0.3 Rainfall information

Notes: xi (yi) is the longitude (latitude) of central point of grid i; xi (yi) is the longitude (latitude) of point j having the
shortest distance to grid i in the water body.

Table 6. Archive of large flood events in the eastern coastal areas of China during 2003–2005.
No. Latitude Longitude Year Beginning Ended Main Cause

(a) 28.83°N 118.40°E 2003 23 June 28 June Heay rain
(b) 28.42°N 120.83°E 2004 12 August 15 August Tropical cyclone
(c) 28.12°N 120.86°E 2005 16 July 20 July Tropical cyclone
(d) 28.58°N 118.55°E 2005 1 September 4 September Tropical cyclone
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Based on equation (1), we calculated the potential flood index in each grid for
different rainfall information sources, including GRD and satellite-based products. In
addition, the potential flood indexes are classified into five categories: 1) very high
(PFI values higher than 0.8); 2) high (PFI values ranging from 0.7 to 0.8); 3) medium
(PFI values ranging from 0.6 to 0.7); 4) low (PFI values ranging between 0.5 and 0.6);
and 5) very low (PFI values lower than 0.5). High values of the PFI correspond to the
area with a high risk of floods. Figure 7 shows the four flood events that occurred in
the southern part of the study area. In general, simulation results from all the
satellite-based products are more consistent with those obtained from GRD with
respect to most of the southern potential flood areas. However, the simulation
results from the satellite-based products are overestimated compared to those
from GRD (see Figures 7 and 8). It is noted that the satellite-based products demon-
strate an obvious overestimation in the northern part of the study area (non-
potential flood area). 3B42V7 exhibits a better performance compared to CMORPH-
RAW and CMORPH-CRT.

5. Conclusions

In this study, three satellite-based products (3B42V7, CMORPH-RAW, and CMORPH-CRT)
were systematically evaluated in the eastern coastal areas of China for detecting the
rainfall extremes during 2003–2015 period. The conclusions drawn from this work are
summarized, as follows:

(1) At daily scale, these three satellite-based products could capture the spatial
distribution of average extreme rainfall; however, they demonstrated larger
errors with respect to extreme rainfall estimates. The near-real-time product
CMORPH-RAW exhibited the worst performance in capturing the extreme rainfall
amounts.

(2) In terms of the hourly extreme rainfall estimates, all the three satellite-based
products exhibited poor performances in capturing the variations. Though
3B42V7 exhibited a better performance in the first event, compared to
CMORPH-RAW and CMORPH-CRT, it demonstrated the worst performance in
the second event. Moreover, it exhibited an obvious underestimation of
extreme rainfall.

(3) A novel potential flood index was developed to simulate the potential flood
areas in the eastern coastal areas of China. These PFI values indicated that
the simulated potential flood areas derived by the satellite-based products
were more consistent with the results from GRD in potential flood areas.

In summary, we suggest that satellite-based products can provide a cost-effective
data solution in scarce ground observatories. Although they may serve as an
important additional data source to generate flood warnings, other issues, such as
underestimation during the processes of extreme rainfall estimation, should be
considered.
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Figure 7. The spatial distributions of the flood centroids and potential flood index (PFI) values of GRD,
3B42V7, CMORPH-RAW, and CMORPH-CRT in four flood events. (a) 23–28 June 2003, (b)
12–15 August 2004, (c) 16–20 July 2005, (d) 1–4 September 2005.
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