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Abstract

This paper investigates residential distribution networks with uncertain loads

and photovoltaic distributed generation. An original probabilistic modeling of

consumer demand and photovoltaic generation is presented that is based on

the analysis of large set of data measurements. It is shown how photovoltaic

generation is described by complex non-standard distributions that can be de-

scribed only numerically. Probabilistic analysis is performed using an enhanced

version of the Polynomial Chaos technique that exploits a proper set of polyno-

mial basis functions. It is described how such functions can be generated from

the numerically available data. Compared to other approximate meth-

ods for probabilistic analysis, the novel technique has the advantages

of modeling accurately truly nonlinear problems and of directly pro-

viding the detailed Probability Density Function of relevant observ-

able quantities affecting the quality of service. Compared to standard

Monte Carlo method, the proposed technique introduces a simulation

speedup that depends on the number of random parameters. Numer-

ical applications to radial and weakly meshed networks are presented

where the method is employed to explore overvoltage, unbalance fac-

tor and power loss, as a function of photovoltaic penetration and/or

network configuration.
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1. Introduction

In this paper, we analyze residential Low Voltage Distribution Networks

(LVDNs) in the presence of photovoltaic (PV) Distributed Generation (DG). It

is well known how the integration of DG into LVDNs can raise many challenges

and concerns. This is because traditionally-designed networks are dimensioned

for distributing power unidirectionally from the sources towards the passive

loads. In DG systems, instead, power is also injected backward into the network

leading to many potential troubles, such as overvoltage, phase unbalance and

current exceeding wire carrying capacity [1, 2]. Evaluating the impact that

photovoltaic DG could have on residential LVDNs is an important

issue. This is particularly challenging due to the remarkable degree of

statistical uncertainty exhibited by both PV sources and residential

customers power demand. A detailed analysis requires the adoption of

realistic stochastic models for the PV sources and loads[3, 4, 5, 6] as well as the

exploitation of advanced probabilistic computational tools able to explore in an

efficient way the many operational scenarios.

Several statistical models for residential loads have been adopted in previous

studies with many of them being based on the assumption that power demand

can be represented by Gaussian-distributed random variables. [7, 8, 9, 10], Dif-

ferent types of models have also been proposed for PV power generation, which

include bimodal Gaussian mixture model [11]. For what concerns probabilistic

analysis, the basic and reference method still remains Monte Carlo simulation

[7], [12]. However, due to the heavy computational times it can require, several

approximate probabilistic analysis techniques have also been proposed in the lit-

erature [13], [14], [15], which includes Point Estimate, Cumulant methods and

Surface Response Method [16, 17, 18, 19, 20]. Among existing techniques,
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Cumulant method works well for linear (or almost linear) problems

and its application to the nonlinear probabilistic power flow relies

on approximate linearizations. Similarly, the Point Estimate method

can provide approximations of the raw statistical moments of some

electrical variables, however further elaborations/approximations are

needed in order to derive the Probability Density Function (PDF)

of such variables. In this paper, we focus on the Surface Response

method based on polynomial chaos expansions and stochastic testing

method [21, 22, 23]. The features that make such a method partic-

ularly attractive are: (i) it can deal with truly nonlinear problems,

as it is the case for load flow problems in unbalanced grids; (ii) it

directly provides the detailed PDF of observable quantities that are

crucial for determining the quality of service, such as voltage peak,

voltage unbalance factor or power loss. In this paper, we present fresh

results about the statistical modeling and analysis of distribution networks in

the presence of PV distributed generation. Our approach is based on the ex-

ploitation of data-driven models for loads and PV generation. Our contributions

include among the others:

1. New results about statistical modeling of residential consumers power de-

mand are presented. Our approach is based on the analysis of large data

set of measurements grouped for different daily time windows. As a prac-

tical case study, we exploit the data available for the city of London [24]

and classified on the basis of the census of the users. The study highlights

how the power demand for a single user (or small set of users) is not dis-

tributed as a Gaussian statistical variable. In this case, power demand is

better modeled with nonGaussian distributed variables, and in particular

with Beta-distributed variables, whose PDF can be determined from data

by means of a parametric approach.

2. The issue of the stochastic modeling of photovoltaic sources is investi-

gated. Data analysis shows how the power generated by typical domestic
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PV plants have complex distributions. In this case, a parametric model-

ing is not adequate and delivered power statistical distribution is better

described by a numerical approach.

3. We describe and enhanced Probabilistic Load Flow (PLF) technique able

to deal with the complex loads/sources modeling scenario. The tech-

nique employs a generalized Polynomial Chaos (gPC) method with the set

of polynomial basis functions tailored to the non-elementary distributed

variables. We show how such gPC basis functions can be accurately gen-

erated starting from the numerically available density functions extracted

through data analysis.

4. The enhanced gPC method is exploited to calculate the Probability Den-

sity Function (PDF) of a set of observable quantities that are relevant

for the system design. In particular, we consider both radial and weakly

mesh networks and explore the statistical distribution of nodal voltages

and branch currents as well as of Voltage Unbalance Factor and total

power loss.

The rest of the paper is organized as follows: In Sec. II, we derive realistic

data-driven statistical models for users and PV sources. In Sec. III, we show

how the gPC basis functions can be derived from the data. Sec. IV is devoted

to the implementation of the gPC stochastic analysis for LTVN while Sec. V

extends the method to sensitivity analysis. Finally, in Sec. VI, we illustrate the

numerical applications of the method to both radial and weakly mesh networks.

2. Modeling power loads and sources

2.1. Residential loads

The first issue of our analysis is finding the typical statistical distributions

of residential consumers power demand. To this aim, we exploit the data set of

residential consumers daily power profiles measured in the town of London and

provided by the UK Power Networks distribution network operator [24]. Power

profiles are divided into different sets on the basis of the customers category.
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In order to account for the time dependence, measurements data are grouped

into several sets corresponding to different time windows during the day. Hence,

the statistical distribution of power demand is extracted for each time window.

As an example, Fig. 1 shows fifty power profiles over a four-hour time window

ranging from 10:00 AM to 02:00 PM for the category of ”Affluent customers”.

The choice of the window is completely arbitrary and does not affect

the method. The choice of a four hour window in this case is due

to the low resolution of the available data. The diversity in the usage of

domestic electrical appliances results in a great variability of the values assumed

by loads. Indeed, it is seen how a great number of power samples fall within

a low-power range (< 1.0 kW) while samples with high power values, close to

the peak (≈ 9 kW), are much rare. Qualitatively, this fact suggests how data

distribution is non symmetric and non Gaussian. In order to quantitatively

determine data distribution, the power values are first normalized to the peak

value KL. In this way, the active power absorbed by a load is written as

PL = KL y (1)

where y ∈ [0, 1] is a random variable distributed accordingly to the PDF f(y).

The application of the histogram operator to the normalized power values pro-

vides the (approximate) numerical samples f(yj) of the PDF over a sequence of

ordered values yj ∈ [0, 1], with yj+1 > yj . Fig. 2 shows the PDF data distribu-

tion for the considered time window from 10:0 AM to 2:00 PM and the Affluent

customers category. In this case, the peak power demand results KL = 9.2 kW.

Second, the extracted PDF samples f(yj) are fitted by trying several standard

statistical distributions (among which Weibull, Exponential, and Beta) [25].

We find that, for the available data, the best fitting is achieved by the Beta

distribution:

fβ(y, a, b) =
ya−1(1− y)b−1

Beta(a, b)
. (2)

where Beta(a, b) denotes the Beta function while a and b are positive param-

eters to be determined. The values of parameters a and b are deduced by an
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Figure 1: Typical residential power profiles over the time window: 10:00 AM–02:00 PM.

optimization procedure that minimizes the following objective function:

Error(a, b) =
∑
j

(
fβ(y

j, a, b)− f(yj)
)2
, (3)

with the constraints a > 0 and b > 0. Fig. 2 shows the Beta distribution

fβ(y, a, b) with parameters a = 1.1, b = 22.8 that yields data best fitting for the

considered case.

Fig. 3 reports the normalized power demand distribution for another cat-

egory of customers referred to as ”Comfortable customers”. In this case the

contractual peak power is lower and the measured peak power is KL = 5.2 kW.

Also in this second case, the PDF is well approximated by the Beta distribution

fβ(y, a, b) with parameters a = 1.2, b = 23.1. The correlation coefficient [26]

calculated on the power demand samples (over the considered time

window) of two different customers results very small, i.e. ≈ 0.01, thus

denoting a certain degree of independence. Our analysis, repeated for sev-

eral time windows during the day and different customers categories leads us to

the conclusion that residential (normalized) power demand can be realistically

reproduced by means of statistically independent Beta-distributed random

variables whose PDF can be extracted from data through the abovereported
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Figure 2: (histogram): normalized power PDF for Affluent customers category ; (dashed line)

fitting with the Beta distribution of parameters a = 1.1, b = 22.8.
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Figure 3: (histogram): normalized power PDF for the Comfortable customers category;

(dashed line) fitting with the Beta distribution of parameters a = 1.2, b = 23.1.
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Figure 4: Typical daily power profiles delivered by PV plants.

parametric approach.

2.2. Photovoltaic generation

We pass now to analyze the data set describing the active power delivered

by some typical photovoltaic domestic plants placed in the UK Power Networks

distribution network. Fig. 4 shows, as an example, three of such daily power

profiles. In the central hours of the day, the power samples exhibit a significant

variability due to the difference in solar irradiance. Figs. 5 and 6 show the PDF

of the PV-delivered power normalized to the peak value KS = 3kW over two

time windows from 10:00 AM to 02:00 PM and from 02:00 PM to 06:00 PM.

In both cases, the distributions of the delivered power exhibit quite complex

shapes that cannot be easily reconduced to any elementary/standard statistical

distribution [27]. Thus, the parametric method used for modeling residential

loads is not adequate for modeling PV generation and a numerical approach

should be adopted. To this aim, the power delivered by the PV source is written

as

PS = KS x, (4)

where x ∈ [0, 1] is a non-elementary-distributed random variable described nu-
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Figure 5: (histogram) PDF of the normalized PV delivered power over the time window: 10:00

AM–02:00 PM.
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Figure 6: (histogram) PDF of the normalized PV delivered power over the time window: 02:00

PM–06:00 PM.
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merically by the samples f(xj) of its PDF f(·) known over a sequence of discrete

values xj . For each considered daily time window, a sequence of couple values

(xj , f(xj)), along with the associated peak power KS, is enough to describe sta-

tistically the fluctuations of the PV generation. Random realizations of x can

be generated numerically by calculating the Cumulative Distribution Function

(CDF) F (x) associated to the density f(x). A random value of a variable z is

extracted with uniform probability between 0 and 1. It is assigned to the CDF

on the vertical axis, i.e. F (x) = z and the corresponding value on the horizontal

axis F−1(z) = x provides the wanted realization for x. Since the inverse rela-

tionship F−1(·) is known at discrete samples, some form of data interpolation

is required.

3. Building the gPC basis functions

Probabilistic analysis with gPC method (described in Sec. IV) requires de-

termining the proper polynomial chaos basis functions associated to each ran-

dom variable. For random variables with known elementary distributions (e.g.

Gaussian, Uniform, Beta) such polynomials are known in closed form [21]. In-

stead, for non-elementary-distributed random variables or for variables whose

PDF is known only numerically the correct gPC basis functions should be com-

puted. To this aim, we consider a generic random variable x non-elementary-

distributed over the domain x ∈ I ⊆ R and described by the associated prob-

ability density function (PDF) f(x). This includes the case where the samples

f(xj) of the PDF are known only numerically over a sequence of values xj ∈ I

as it is the case for PV sources. The gPC basis functions associated to such a

variable x are a set of polynomials qi(x) that are orthonormal with respect to

the inner product

〈qi(x), qj(x)〉 =
∫

I

qi(x) qj(x) f(x)dx = δij , (5)

where i and j are the polynomial degrees and δij denotes the Kronecker delta

operator. Such polynomials can be obtained by first calculating a set of monic
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orthogonal polynomials πi(x) through the three-term recurrence relation

πi+1(x) = (x− αi)πi(x) − βiπi−1(x), i = 0, 1, · · ·
π−1(x) = 0, π0(x) = 1, (6)

where αi and βi are real positive constants that depend on the PDF f(x).

A numerically stable algorithm for computing such coefficients is achieved by

combining the iterative Darboux’s formula

αi =

∫
I

xπ2
i (x)f(x)dx∫

I

π2
i (x)f(x)dx

, βi+1 =

∫
I

π2
i+1(x)f(x)dx∫

I

π2
i (x)f(x)dx

, i = 0, 1, · · · , (7)

with the recurrence relation (6) and initialization β0 = 1. Hence, the first n̂

gPC basis functions are deduced as follows:

qi(x) =
πi(x)√

β0β1 · · ·βi
, for i = 0, 1, · · · , n̂. (8)

In our numerical implementation, without loss of generality, we suppose

that the non-elementary-distributed variables x are defined over the normalized

interval I = [0, 1]. The samples f(xj) of the PDF, are known over a sequence

of Ns + 1 equally-spaced values xj = jΔx in I with j = 0, 1, . . . , Ns and

Δx = 1/Ns.

The computations in (7) always reduces to calculating integrals of the form
∫

I

p(x)f(x)dx (9)

where p(x) is a polynomial known in closed form (i.e., known through its co-

efficients) while the PDF f(x) is available in numerical form at the Ns + 1

sample points xj . In our implementation, the integral (9) is evaluated numeri-

cally through the Simpson’s integration formula. To this aim, we require that

Ns is even, i.e. Ns = 2Nint where Nint is the number of intervals of Simpson

integration. Integral (9) is then calculated as

Δx

3

Nint∑
s=1

p(x2s−1) · f(x2s−1) +

4 · p(x2s) · f(x2s) + p(x2s+1) · f(x2s+1).

(10)
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Under the mild hypothesis n̂ << Ns, we checked that the recurrence relation

(6) implemented with the Simpson integration formula (10) provides a quite

stable procedure for generating orthogonal polynomial functions. Consider for

example, the Beta-distributed variable y ∈ [0, 1] describing residential power

demand through the PDF fβ(y) in (2) with parameters a = 1.1 and b = 22.8, as

shown in Fig. 2. Using Ns = 256 samples, we obtain the following polynomials

sequence

q0(y) = 1

q1(y) = 10.8 +11.9y

q2(y) = 56.3 +136.8y +81.6y2

q3(y) = 182 +742y +977.8y2 +419y3

...

(11)

It is easy verified that such polynomials correspond to the normalized Jacobi-

chaos polynomials, as it should be for Beta distributed variables [21].

If, instead, the non-elementary distributed variable x describing PV genera-

tion with the PDF samples shown in Fig. 5 (and available only numerically) is

considered, the associated polynomials chaos are computed to be

q0(x) = 1

q1(x) = 0.170 +1.893x

q2(x) = −1.239 +0.322x +4.414x2

q3(x) = −0.252 −4.072x +1.025x2 +8.826x3

...

(12)

In this way, the correct polynomials are associated to each random variable

describing either PV generation or customers power demand.

We conclude this Section by addressing another crucial issue connected with

gPC methods. In fact, the implementation of gPC method with stochastic

testing (ST) (that we will describe in the next Section) requires that polynomial

basis (8) be evaluated in correspondence of a set of a few testing points. The

number n̂ + 1 of the testing points for each variable is such n̂ << Ns. The

selection of the testing points has a strong impact on the accuracy of the gPC
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(19) approximation. In our implementation, the testing points for each random

variable x are selected in order to preserve the accuracy when calculating the

polynomial inner product (5). To this aim, testing points are selected among

Gauss quadrature points (or nodes) x̂j ∈ R, with j = 1, . . . , n̂ + 1. Gauss

quadrature in fact guarantees that the calculation of integrals of the type

∫

R

g(x)f(x)dx ≈
n̂+1∑
j=1

g(x̂j)wj , (13)

where wj denote the Gauss weights, is exact for any polynomial g(x) of degree

≤ 2n̂+ 1 [22, 23].

Gauss nodes and weights can be derived by ordering the coefficients in (7)

in the following symmetric tridiagonal matrix

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0

√
β1

√
β1 α1

. . .

. . .
. . .

. . .

. . . αn̂−1

√
βn̂

√
βn̂ αn̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

The eigenvalue decomposition of J results

J = UΣUT (15)

where Σ is a diagonal matrix while U is a unitary matrix. The jth diagonal

element of Σ provides the Gauss node x̂j while the jth element of the first row

of U, i.e. u1,j is such that wj = u2
1,j .

As an example, for the Beta-distributed variable y ∈ [0 1] with PDF shown

in (2), and adopting polynomial numbers n̂ = 3, the Gauss nodes are found to

be

ŷ1 = 0.0136, ŷ2 = 0.0671, ŷ3 = 0.1624, ŷ4 = 0.3054 (16)

Similarly, for the non-elementary-distributed variable x with PDF shown in

Fig. 5, the Gauss nodes are

x̂1 = 0.1008, x̂2 = 0.3132, x̂3 = 0.6587, x̂4 = 0.8783 (17)
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Intuitively, it is seen how the Gauss nodes tend to be concentrated where the

PDF is large, i.e. around the random variable values that have the largest

occurrence probability. Finally, for multi-variable problems the grid of Gauss

nodes is obtained by performing the tensor product of the univariate nodes. For

l random variables and polynomial order n̂, the tensor product results in a grid

of n̂l multi-variable Gauss nodes.

4. Probabilistic Analysis with gPC Method

We consider a LVDN containing NL loads of the type (1) described by the

Beta-distributed variables yr ∈ [0, 1] with r = 1, . . . , NL. Each yr represents

the power demand of one residential customer over a given considered time

window of the day. The network also contains PV sources described by NS non-

elementary distributed variables xs ∈ [0, 1] of the type (4), with s = 1, . . . , Ns.

In this case, a single xs variable represents the statistical uncertainty of solar

irradiance in a given geographic area and thus it scales all the PV sources that

are geographically close. The random variables can be collected into the vector

of size NL +NS

�ξ = [y1, . . . , yNL , x1, . . . , xNs ]. (18)

Such vector variable represents the input of the probabilistic problem.

Hence, we focus on a set of Nout observable variables of the LVDN that can

affect the quality of the network and denote them as V j , with j = 1, . . . , Nout.

Such variables include some node voltages or line currents in the LVDN. They

are seen as the output of the probabilistic problem.

Each realization of the random variables yr and xs in �ξ corresponds to well

determined load and source power values and thus to well determined node

voltage values calculated by solving the deterministic load flow problem. As a

result, the jth observation variable V j(�ξ) (e.g. a node voltage) is a nonlinear

function of the random variables �ξ and thus it is a random variable as well.

The generalized polynomial chaos (gPC) method consists in approximating

the deterministic relationship that exists between vector �ξ and each observation
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variable with an order-γ truncated series expansion of the type [21]

V j(�ξ) ≈
Nb−1∑
i=0

cji Hi(�ξ), (19)

formed by Nb multi-variate basis functions Hi(�ξ) weighted by unknown coeffi-

cients cji .

Each multi-variate basis function is given by the product

Hi(�ξ) =

NL∏
r=1

qir (yr) ·
NS∏
s=1

qi′s(xs) (20)

where qir (yr) are the orthogonal polynomials of degree ir associated to resi-

dential consumer power demand while qi′s(xs) are the orthogonal polynomial of

degree i′s associated to PV generation.

The multi-variate basis functions (20) can also be referred to by means of

the index vector �i = [i1, . . . , iNL , i
′
1, . . . , i

′
NS

] collecting the univariate polyno-

mial degrees ir and i′s. For a given number of parameters NL +NS and series

expansion truncation order γ, the index degrees ir and i′s of the univariate

polynomials in (20) forming Hi(�ξ) should satisfy the following constraint

|�i| =
NL∑
r=1

ir +

NS∑
s=1

is ≤ γ. (21)

There is a one to one correspondence between the scalar index 0 ≤ i ≤ Nb − 1

and the index vector �i. As a consequence, the gPC expansion (19) can be

rewritten in vector index notation as follows [22]:

V j(�ξ) ≈
∑
|�i|≤γ

cj�i H�i(
�ξ), (22)

Without loosing generality, we can select i = 0 to correspond to |�i| = 0,

meaning that H0(�ξ) = 1.

For given truncation order γ and number of parametersNL+NS, the number

of gPC basis functions in (19) is given by

Nb =
(γ +NL +NS)!

γ! (NL +NS)!
. (23)
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The expansion coefficients cji in the series (19) [or equivalently cj�i in (22)] can

be calculated with a technique referred to as Stochastic Testing (ST) method.

According to ST method the Nb unknown coefficients cj in the series (19) are

calculated by selecting Nsam = Nb testing points �ξk, for k = 1, . . . , Nsam among

the multi-variable Gauss quadrature nodes. In each one of the testing points,

the observation variable Vk(t) = V (�ξk) is evaluated by running a deterministic

LF analysis. Hence, the series expansions (19) are enforced to fit exactly (i.e.,

the polynomials interpolate the samples) the values V j
k at the testing points.

For the jth observation variable, this results in the following linear system

M�c j = �V j , (24)

where �cj = [cj0, . . . , c
j
Nb−1]

T and �V j = [V j
1 , . . . , V

j
Ns

]T are the column vectors col-

lecting the unknown coefficients and observation variable values respectively.

The Nb × Nb square matrix M = {ak,i} = {Hi(�ξ
k)} collects the gPC basis

functions evaluated at the testing points, i.e.

M =

⎡
⎢⎢⎢⎣

H0(�ξ
1) . . . HNb−1(�ξ

1)
...

. . .
...

H0(�ξ
Ns) . . . HNb−1(�ξ

Ns)

⎤
⎥⎥⎥⎦ . (25)

It is worth observing that matrix M, sometimes referred to as the experiment

matrix, remains the same for each observation variable, so it is precalculated,

inverted and used for any j as follows:

�cj = M−1 �V j . (26)

Once the coefficients cji are computed, the mean value and variance of the

jth observation variable V j(�ξ) can easily be deduced as follows:

μj = 〈V j(�ξ)〉 = cj0

σ2
j = 〈V j(�ξ) · V j(�ξ)〉 =

Nb−1∑
i=1

(cji )
2.

(27)

Similarly, in view of orthogonality (5), the covariance of two observation variable
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V j(�ξ) and V k(�ξ) result:

〈(V j(�ξ)− μj) · (V k(�ξ)− μk)〉 =
Nb−1∑
i=1

cji c
k
i . (28)

In addition, and even more importantly, the gPC expansion (19) provides

a surrogate compact model for the multi-dimensional relationship V j(�ξ) that

links observation variables to random parameters.

The compact gPC model (19) can then be used in connection with the

MC method in order to determine the detailed PDF shape of V j(�ξ). This

is achieved by generating a very large number Nmc of uncertainty vectors

�ξk = [yk1 , . . . , y
k
NL

, xk
1 , . . . , x

k
Ns

], i.e. the realizations, accordingly to the joint

probability distribution of variables in �ξ. For each realization �ξk, the corre-

sponding realization of the observation variable V j(�ξ) is evaluated by means of

(19) in a numerically efficient way (much more efficiently than running a LF

analysis). As the number Nmc of evaluations grows, at limit tending to infinity,

the distribution of values calculated with the gPC model tends to the statistical

distribution of V j(�ξ). As a result, the detailed PDF shape of V j(�ξ) can be de-

termined in very short times, i.e. one million evaluations take a few seconds on

a quad-core computer. In Algorithm 1, we summarize the main computational

steps of the proposed data-driven uncertainty analysis method.

5. Sensitivity Analysis using gPC

From the gPC expansion (19) it is possible to extract another useful piece

of information, i.e. the sensitivity of the observable variable V j(�ξ) with respect

to parameters yr and xs. As an instance, let us focus on the rth parameter yr,

the associated sensitivity is defined as:

Sj
r =

∂V (�ξ)

∂yr

∣∣∣∣∣∣ �ξ = �0
(29)
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Algorithm 1 Data-Driven Uncertainty Analysis

1: Data Analysis :

2: Fix a time window, extract data for users y and PV sources x

3: Compute PDFs fx(x) and fy(y)

4: Build univariate gPC q(x) and q(y) with (5)–(7)

5: Determine univariate Gauss quadrature nodes x̂j , ŷj ,

6: Network Analysis :

7: In the LVDN: fix NL loads yr and NS sources xs and gPC order γ

8: Form Nb multi-variate basis Hi(�ξ) (20)

9: Select Nb testing points �ξk among tensor product of Gauss quadrature nodes

10: Form and invert experiment matrix (25)

11: For each testing point �ξk run a Deterministic Load Flow and store observable

variables V j(�ξk)

12: Output

13: for j = 1 : Nout do (for each observable variable V j)

14: find gPC coefficients cji (26)

15: calculate μj , σj , PDF, sensitivity Sj
r

18



In order to compute the sensitivity, the product terms in the expansion (22) are

reordered in the following way:

V j(�ξ) ≈
∑

�i=[0,0,ir ,0,...,0]

cj�i H�i(
�ξ) +

∑
�i=[...,ir−1,0,ir+1,... ]

cj�i H�i(
�ξ), (30)

where the first sum includes those products containing polynomial qir (yr) of

degree ir > 0 and all of the other polynomials of degree zero, i.e. H�i(
�ξ) =

qir (yr), while the second sum includes the remainder. Only the first term in

(30) contributes to sensitivity which thus results:

Sj
r =

∑
�i=[0,0,ir ,0,...,0]

cj�i
∂qir (yr)

∂yr

∣∣∣∣∣∣ �ξ = �0
(31)

The general form of polynomial qir (yr) is

qir (yr) = 1 + air1 yr + air2 y2r + · · · , (32)

so that the derivative in (31) reduces to

∂qir (yr)

∂yr

∣∣∣∣∣∣ �ξ = �0
= air1 (33)

i.e. it corresponds to the coefficient of qir (yr) that multiplies yr. A similar

derivation holds for computing the sensitivity of the observable variables with

respect to parameters xs.

6. Numerical Results

Power distribution networks have a radial, or weakly meshed, topology made

of several feeders. Commonly, remote controlled switches are deployed along

each feeder in order to isolate small subfeeder areas in case of fault or with the

aim of minimizing power loss [28]. For such reasons, it makes sense to investigate

loads uncertainty effects and PV penetration by focusing on small subnetworks

arranged in a single or a few feeders. In our numerical examples, we present

four different Cases. In the first two Cases, we focus on the single-feeder three-

phase symmetrical distribution network shown in Fig. 7. The network can
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Figure 7: Single-feeder network. The network topology is radial or weakly meshed. At nodes

6 and 7 it is possible to have both load and PV generation.

Table 1: The line parameter used in the example. R1 and X1 are the series parameter

Area N Phase length R1 X1

[mm2] [-] [m] [Ω/km] [Ω/km]

Branches 1, 4, 6, 7 3· 50 + 25Cu 3+N 100 0.391 0.078

Branches 2, 3, 5, 8 3· 50 + 25Cu 3+N 200 0.391 0.078

be reconfigured in a weakly meshed one by switching-on the branch number

8 (shown in the figure with a dashed line). In the first Case, four users are

connected to the network and no PV generation is considered. In the second

Case, in addition to the four loads, two PV sources are connected to the terminal

nodes of the net. In the third Case, the analysis is extended to the three-feeder

unbalanced topology shown in Fig. 17. In particular, we investigate the effect

that single-phase PV source penetration can have on branch current and three-

phase voltage unbalance. Finally, in the fourth example, we consider a

larger distribution network and evaluate the scalability of the gPC

method and its performance compared to reference MC method.
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Figure 8: PDFs of some nodal voltages magnitude in the single-feeder radial network (with

no PV source).

6.1. Case I: Single-feeder Network with only loads

The network in Fig. 7 is formed of seven branches connected to seven nodes.

Node 0 is the slack bus and its voltage is fixed to V0 = 230 V. A weakly mesh

network is simply obtained from the radial one by adding the branch number 8

that forms a loop. The parameters of the lines are reported in Tab. 1. In the first

scenario, four users are connected to the network at nodes 3, 4, 6 and 7. Each

user absorbs a random power PLr , with r = 1, . . . , 4, of the type (1) with peak

value KL = 10 kW scaled by the Beta-distributed variables yr. In simulations,

the Beta-distributed variables have the parameter values a = 1.1 and b = 22.8

extracted in Sec. II for residential consumers over the time window 10:00 AM–

02:00 PM. We apply the gPC method outlined in Algorithm 1 with NL = 4

random variables and adopting truncation order γ = 3. More specifically, the

univariate polynomials qir (yr) forming gPC expansion (19) are the univariate

Jacobi-chaos polynomial (11) associated to Beta-distributed variables. Fig. 8

shows the computed statistical distribution of the magnitude of some nodal

voltages in the radial network. Uncertain power consumption by loads results

in a reduction of voltages compared to slack bus. In particular, voltage V6 at
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Figure 9: PDFs of some nodal voltages magnitude in the single-feeder meshed network (with

no PV source).

terminal node 6 exhibits the largest variability, i.e. it ranges within the interval

≈ (226, 230)V , compared to the voltages at terminal node 3 and conjunction

node 2. Fig. 9 shows the statistical distribution of the same nodal voltages

in the weakly mesh network. Compared to the radial network, the interval of

variability of voltages reduce. For instance, in the mesh network, V6 ranges

within ≈ (228, 230)V . Fig. 10 illustrates the statistical distribution of the

magnitude of some branch currents in the radial network. Interestingly, current

distribution in the terminal branch 6 closely resembles the Beta-like distribution

of power load. Currents in the internal branches 5 and 2 have larger variability

intervals and, in addition their PDFs differ from the Beta distribution of the

single load tending to a sort of Gaussian.

In Fig. 11, we report the statistical distribution of some branch currents in

the mesh network. Compared to radial network, terminal current I6 preserves its

distribution while currents I5 and I2 in the internal branch exhibit a reduction

of their variability interval. The analysis of this first Case leads us to this

interesting conclusion: the presence of the loop in the mesh network reduces

the interval of variability of both nodal voltages and branch currents induced
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Figure 10: PDFs of some branch current in the single-feeder radial network (with no PV

source).
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Figure 11: PDFs of some branch current in the single-feeder meshed network (with no PV

source).
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by uncertain loads.

6.2. Case II: Single-feeder Network with loads and PV generation

In the second Case, in addition to the four loads, two PV sources are con-

nected to nodes 6 and 7. The two PV sources are described by the model (4)

where the peak delivered power KS is scaled by a random variable x1 describ-

ing solar irradiance uncertainty. Variable x1 is assumed to be distributed as

shown in Figs. 5 for the time window 10:00 AM–02:00 PM. Growing values of

the peak source power KS are considered in order to evaluate the effect of PV

penetration.

In this case, the gPC model has NL+NS = 4+1 = 5 random variables. The

univariate polynomials qir (yr) univariate Jacobi-chaos polynomial (11) are as-

sociated to the four Beta-distributed variables while the orthogonal polynomials

qi′s(xs) (12) are associated to the PV variable xs with s = 1.

Fig. 12 illustrates the computed statistical distribution of the voltage mag-

nitude V6 in the radial network for PV power peak values KS = 3kW and

KS = 6kW. The distributed PV generation introduces several changes with

respect to the scenario with only loads. In fact, the probability distribution

of V6 moves towards voltage values greater than 230 V (interval of variability

≈ 228− 242 V) giving rise to potential over voltage. Interestingly, in the mesh

network, the effect of PV generation is less relevant compared to the radial net

as shown in Fig. 13.

Similar observations hold for currents. Fig. 14 shows the effect that PV

generation has on current I2 in the radial network. For KS = 6kW, the current

module has a wider interval of variability that ranges from zero to 50A.

The effect that PV sources has on currents is less relevant in the mesh

network as shown in Fig. 15. In this case, current I2 has zero probability

to exceed 22A. In view of this second Case study, we come to the conclusion

that the presence of a loop in the mesh network mitigates the effects due to

the penetration of distributed PV generation. A confirmation of this is also

obtained by computing the sensitivity of the observable variables versus the
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Figure 12: PDFs of nodal voltage V6 in the single-feeder radial network in the presence of PV

sources.
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Figure 13: PDFs of V6 in the single-feeder meshed network in the presence of PV sources.
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Figure 14: PDFs of current I2 in the single-feeder radial network in the presence of PV sources.
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Figure 15: PDFs of I2 in the single-feeder meshed network in the presence of PV sources.

26



Table 2: Table of sensitivity coefficients.

Statistical Variables

y1 y2 y3 y4 x1

Radial Network

V6 -0.26 -0.08 -0.51 -0.42 3.38

I2 -2.2 0.00 -2.15 -2.15 15.6

Mesh Network

V6 -0.17 -0.12 -0.34 -0.21 2.04

I2 -1.13 -0.27 -1.06 -0.82 6.97

stochastic variables as defined in (31). The sensitivity of variables V6 and I2 are

reported in Tab. 2 for the radial and mesh networks. It is seen how a positive

variation (increase) in the power absorbed by loads, represented by variables

yr, induces negative variations (reduction) in voltage and current. By contrast,

an increase in the power delivered by PV sources represented by x1, induces

positive variations (increase) in voltage and current. The sensitivity versus PV

generation dominates over sensitivity to loads and in the mesh network the

module of such coefficients is smaller than in the radial one.

We end Case II by checking the accuracy of the gPC method by compar-

ing the calculated PDFs with those obtained with the reference Monte Carlo

method. Fig. 16 reports the PDFs of nodal voltage V6 in the radial net with

PV generation KS = 6kW computed with the MC method with 2, 000, 5, 000

and 10, 000 iterations. With the graphical detail of Fig. 16, the PDF curve pro-

vided by MC method with 10, 000 iteration is indistinguishable from the PDF

curve calculated with the proposed gPC method. For this simple network, the

simulation times of gPC and MC (with 10, 000 iterations) are 3.3s and 315s

respectively. The gPC method introduces a two orders of magnitude speed up

compared to MC simulation for the same accuracy.
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Figure 16: Detail of the PDFs of V6 in the radial net with KS = 6kW computed with Monte

Carlo (for different numbers of iterations) and gPC method.

6.3. Case III: Unbalanced Three-feeder Network

In this example, we study the three-feeder topology shown in Fig. 17. Such

a topology is a standard when studding network reconfiguration and loss reduc-

tion problems [28], [29]. In our implementation, the network is radial with 22

branches connected to 22 nodes, however it can be reconfigured into a weakly

meshed topology by switching-on the branches shown with a dashed line. For

simplicity all branches have the same length of 100m with per-unit series re-

sistance and admittance R1 = 0.391 [Ω/km], X1 = 0.078 [Ω/km] respectively.

Nine residential consumer loads are connected to the nodes 4, 6, 8 of the first

feeder, 11, 12, 14 of the second feeder and 16, 21, 22 of the third feeder. The

loads are three-phase with an active power PLr , with r = 1, . . . , 9, of the type

(1) with peak value KL = 10 kW scaled by the Beta-distributed variables yr.

The three-phase power is equally divided among the three phase thus leading

to a balanced network. In addition, two single-phase PV sources are connected

to nodes 21 and 22 at phase C. The two PV sources are described by the model

(4) where the peak delivered power KS = 6kW is scaled by a random variable

x1 describing solar irradiance uncertainty distributed as shown in Figs. 5. The
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Figure 17: Three-feeder network. The network topology is radial or weakly meshed.

PV sources introduce unbalancing into the network.

We apply the gPC method explained in Algorithm 1 with NL+NS = 9+1 =

10 random variables. Fig. 18 reports the computed statistical distribution of

the magnitude for the three phases of the internal branch 15 (highlighted in

Fig. 17) in the radial network. It can be seen how the module of current into

Phase C line (i.e. with PV generation) has a much wider variability interval than

Phase A and B with only residential consumers loads. Fig. 19, instead, reports

the same current distribution in the meshed topology: all currents reduce their

variability intervals.

Finally, Figs. 20, 21 show the calculated statistical distribution of two re-

markable figures of merit: the Voltage Unbalance Factor (VUF) (in percentage)

computed at terminal node 22 and the total power loss in the three-feeder net-

work. The VUF is defined as the ratio of the negative voltage sequence
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Figure 18: PDFs of phases A, B, C of branch 15 current in the three-feeder radial network.
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Figure 19: PDFs of phases A, B, C of branch 15 current in the three-feeder meshed network.
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Figure 20: PDFs of VUF at node 22 in the three-feeder radial and meshed network.
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component Vn to the positive voltage sequence component Vp, i.e.

VUF =
|Vn|
|Vp| · 100, (34)

with

Vn =
VAB + a2 · VBC + a · VCA

3
(35)

and

Vp =
VAB + a · VBC + a2 · VCA

3
, (36)

where VAB, VBC , VCA are the phasors of the unbalanced line voltages

while a = exp (j 120o) and a2 = exp (j 240o).

It can be seen how the reconfigured meshed topology mitigates significantly

the unbalancing effect induced by uncertain PV generation (i.e., zero probability

of VUF > 1%) as well as it reduces the total power loss (i.e., zero probability

of total loss > 0.3 kW).

6.4. Case IV: 141 bus distribution system

We end the numerical experiments by evaluating the performance

of gPC method versus MC method in the probabilistic analysis of

the benchmark 141bus distribution grid. Such a network is provided

within the MatPower software suite and its description can be found

in [30]. To this aim, we replace a number NL of loads (active) power

demand with random variables of the type (1) and perform probabilis-

tic analysis with the MC method (10, 000 iterations) and the enhanced

gPC method. For both methods we use MatPower as the determin-

istic load flow solver. The simulation time required by MC method

is ≈ 2, 900 s on a i7 Quad core computer and is almost independent of

the number of parameters. By contrast, the simulation times taken

by the gPC method grows with the number NL of random parameters

as reported in table 3. For the case NL = 50 parameters, the speedup

factor introduced by gPC method remains significant being ≈ 7× for

the same accuracy.
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Table 3: gPC simulation times [s]

NL = 5 NL = 10 NL = 20 NL = 50

6 19 71 398

7. Conclusion

In this paper, we have presented a statistical methodology for the analysis

of distribution networks in the presence of uncertain loads and PV generation.

One key feature of our method is that of being based on realistic data-driven

models for both PV generation and residential consumers power demand. In

the paper, for illustrative reasons, we have employed a data set available for

the city of London, however the method can be applied to any other data

set. The statistical analysis that we have presented relies on the generalized

Polynomial Chaos (gPC) method. However, we have shown how residential

consumers power demand and power delivered by PV sources can follow non-

standard/non-elementary statistical distributions. As a consequence, the known

gPC method should be enhanced in order to handle such complex nonstandard

scenarios. Method extensions include the computation of new sets of basis func-

tions as well as of properly selected testing points. The enhanced method has

been applied to both radial and weakly mesh networks in order to explore the

probability distribution of nodal voltages and branch currents as a function of

PV penetration. Other important figures of merit measuring network unbalance

and power loss have been investigated. Simulation results highlight how meshed

networks are more resilient than radial topologies against the adverse effects of

loads/sources variability and PV penetration.
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