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Abstract

Count data, most often modeled by a Poisson distribution, are common in statistical

process control. They are traditionally monitored by frequentist c or u charts, by

cumulative sum (CUSUM) and by exponentially weighted moving average (EWMA)

charts. These charts all assume the in-control true mean is known, a common fiction

that is addressed by gathering a large Phase I sample and using it to estimate the

mean. “Self-starting” proposals that ameliorate the need for a large Phase I sample

have also appeared. All these methods are frequentist, they allow only retrospective

inference during Phase I and they have no coherent way to incorporate less-than-perfect

prior information about the in-control mean. In this paper, we introduce a Bayesian

procedure which can incorporate prior information, allow online inference and which

should be particularly attractive for short-run settings where large Phase I calibration

exercises are impossible or unreasonable.
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1 Introduction

Standard univariate Statistical Process Control (SPC) methods split into the two broad

categories of variable and attribute type SPC, based on the form of the recorded data (con-

tinuous and discrete respectively). Within the attribute (discrete) data two classes arise:

binary and count data. The former represents the result of a classification procedure, where

the outcome for each individual observation will be either conforming (acceptable) or non-

conforming (unacceptable) according to some predetermined standards. In count data, we

observe a process that produces non-negative integer values (counts) for each unit inspected.

In an industrial application, these counts usually refer to the number of nonconformities per

unit. There are numerous applications in several fields that resemble this industrial setup;

like in epidemiology/public health (counts of H1N1 symptoms per school district), marketing

(arrivals of customers in a shop per time unit), criminology (number of murders in a city)

etc.

The usual approach is to assume that we have an underlying Poisson process, where the

Poisson distribution (P (θ)) can be used as the counting distribution, with the parameter

θ, expressing the average counts per unit. For such a process to be Poisson it has to obey

certain rules (see for example Feller, 1968) and there exist various diagnostics (see for example

McCullagh and Nelder, 1989) for verifying that the Poisson model is appropriate for a given

set of data.

From a SPC point of view, our interest in these types of processes is not only to have

some estimate of the underlying parameter θ, but to be able to detect, in an online fashion,

when the parameter shifts upwards (denoting process degradation) or downwards (denoting

process improvement). We wish to detect shifts as soon as they occur, but at the same
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time keep the false alarm rate at a low level. Furthermore, in some applications we might

be interested in making predictions, i.e. drawing inferences for future observable(s) of the

process.

The most popular frequentist SPC tool for count type data is the Shewhart’s u control

chart (see for example Montgomery, 2012), where the quality characteristic is defined as the

average number of nonconformities per inspection unit. In the cases where the inspection

unit is constant over time the equivalent c control chart can be used. As is well known the

Shewhart type charts are capable of detecting relatively large isolated shifts in the underlying

parameter. For persistent shifts in the parameter (of moderate/small magnitude) the use

of Poisson-CUSUM (Hawkins and Olwell, 1998) or Poisson-EWMA (Borror et al. 1998) is

suggested.

In the frequentist based methods, the parameter θ is assumed to be a prespecified con-

stant. As this constant is generally unknown, the usual practice is to conduct a Phase I

study, collecting a large initial set of data, which will be used to estimate the model param-

eters. These data are assumed to be statistically independent and identically distributed

(i.i.d.) observations of the assumed P (θ) model, i.e. we assume that there is no “special

cause” variation due to extraneous factors that can contaminate these estimates. Once this

calibration period is over we can start Phase II, where as new observations arrive, actual

testing for continued stability of the data stream is done.

There are several serious deficiencies in the existing standard frequentist approach. One

is that it has no good provision for changes occurring during Phase I. Another is that it

requires large learning data sets and so it does not accommodate short-run settings. A third

is that learning stops at the end of Phase I and no use is made of the information potential of

Phase II data except for the actual test of stability. Finally, the underlying i.i.d. assumption
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itself is often unrealistic.

Apart from the fact that the existing methodology has all these restrictive requirements,

it can not incorporate in the modelling any prior information regarding the parameter θ,

which is often available from a similar process, historic data or from expert opinion.

Various attempts have been made to overcome several of the existing limitations. Woodall

(1997) gave a nice bibliographic review of several such approaches related to attribute data.

For example, regarding the violation of the Poisson assumption, Kaminsky et al. (1992)

showed that this will cause a significant increase of the false alarm rate. Sheaffer and

Leavenworth (1976) described real scenarios where the Poisson distribution assumption is

inappropriate and proposed the use of Negative Binomial. Ryan and Schwertman (1997) and

Schwertman and Ryan (1997) reported that the normal type approximation in determining

control limits of attribute data was rather poor on the tails of the distribution and proposed

“optimal” control limits for certain cases. Shore (2000) proposed control limit calculations

by fitting an appropriate quantile function that preserves all first three moments, in order

to improve performance for skewed distributions. In Quesenberry (1991) the Q chart was

proposed for short runs of count data. Hawkins and Olwell (1998) described a “self-starting”

CUSUM that largely eliminates the need for a separate Phase I study. Alwan and Roberts

(1995) examined the effect of violating certain assumptions and misplacing the control limits.

From a Bayesian SPC point of view Hoadley’s (1981) Quality Measurement Plan (QMP)

was one of the first works that attempted to overcome the constraints of the classical SPC

in count data, treating the Poisson parameter as a random variable. QMP adopted an

(empirical) Bayes approach and provided an estimation-oriented control chart where at each

stage of the process an interval estimate of the process parameter is provided. In Bayarri and

Garćıa-Donato (2005), a Bayesian and an empirical Bayesian approach is presented: for each
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stage of the process the modelling of the underlying parameter is considered to be i.i.d. from

the prior distribution. Then the predictive distribution is used to infer discrepancies of the

underlying distribution parameter from the “in control” situation. In a similar i.i.d. setup

but with Jeffrey’s prior, Raubenheimer and Van der Merwe (2014) provided a version of the

Bayesian c chart, evaluating its performance against frequentist c chart, using Menzefricke’s

(2002) metrics. Finally, if emphasis is placed in detecting the time that the parameter shifts,

then the Bayesian change point methods of Shiryaev (1963) and Roberts (1966) could be

employed (see for example Kenett and Pollak, 1996 for the Shiryaev-Roberts type control

chart of a non-homogeneous Poisson process).

In this work we will treat the parameter of interest as a random variable within a purely

Bayesian approach, where observations will be obtained sequentially and inference for the

parameter of interest can start as soon as a single observable becomes available, thus elim-

inating the need for a special Phase I exercise. Inter alia, this provides a solution for the

“short-run” setting in which the entire process generates fewer data points than are normally

used just for calibrating a frequentist quality control scheme. Further, the parameter of in-

terest will be modelled with a change point model that is subject to random shifts in size and

direction. This will relax the i.i.d. assumption (generalizing the previous work of Bayarri

et. all, 2005 and Raubenheimer et. all, 2014) while at the same time will provide grounds

for capturing various out of control scenarios (outliers, step changes, linear drifts etc.) and

accommodating scenarios of departures from the Poisson distribution (like over-dispersion).

Bayesian decision theory will provide inference for both the underlying parameter and the

potential shift occurrence. In cases where the inference does not raise any concerns about

the parameter being “in control”, this posterior will be used as prior for the upcoming stage

of the process, leading to a sequentially updated scheme. Last but not least, within the
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Bayesian framework we can obtain the formal predictive distribution allowing predictive

inference for future observable(s).

In the following section the proposed Bayesian change point model will be presented,

while in section 3 inference issues will be explored for this new model. Section 4 will provide

the sensitivity analysis to verify the robustness of the new approach. Next, in section 5

we compare the new model against standard self-starting frequentist based methods. In

section 6 a real data application will illustrate the proposed method and finally section 7

will conclude this work. The technical details along with extended simulation results on

sensitivity and robustness are provided in Appendices.

2 Bayesian change point modeling

We observe sequentially the data X1, X2, . . ., which refer to the number of occurrences

(counts) Xn over mn inspected units, with the mn, being known and possibly varying over

time n = 1, 2, . . . The usual practice is to model these data assuming a Poisson process, i.e.:

Xn|θn ∼ Poisson(mnθn). (1)

Our main interest is in drawing inference for the unknown parameter θn, in an online fashion

and with no need of phase I calibration. At the beginning of the process (i.e. before any

observation becomes available), call it time 0, we have an initial prior distribution:

θ0 ∼ Gamma(α0, β0)⇒ π(θ0) =
βα0
0

Γ(α0)
θα0−1
0 exp{−β0θ0}. (2)
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This distribution quantifies (via the choice of α0 and β0), all the prior knowledge regarding

process performance, before the data arrive. Historic data on this or of a similar process, or

expert’s opinion could be used to provide appropriate estimates for these hyperparameters.

For example if for the parameter θ0 we believe (a-priori) that it has mean = µ0 and variance

= σ2
0, then by moment matching we can get:

α0 =
µ2
0

σ2
0

, β0 =
µ0

σ2
0

. (3)

In (the rare) cases where no such prior knowledge exists, a non-informative approach could

be adopted. For example one could use an improper prior distribution of the form:

πf0 (θ0) ∝ 1 ≡ Gamma(1, 0) or πJ0 (θ0) ∝
1√
θ0
≡ Gamma

(
1

2
, 0

)
(4)

with the former being the flat prior that can be presented as limiting Gamma(1, v) as v → 0

and the latter being the Jeffrey’s prior (also a limiting Gamma case) on the positive real

numbers. Both distributions are improper (they do not integrate to 1) but for the Poisson

likelihood provide proper posteriors (Gamma).

Once the initial prior is set, we relax the usual i.i.d. assumption (required in most

standard methods), adopting a change point model for the evolution of the parameter of

interest. So, as time evolves, for n = 1, 2, . . . we assume the following change point model:

θn|θn−1 ∼


θn−1 with prob. p0 (= 1− p1 − p2)

λ1θn−1 with prob. p1

λ2θn−1 with prob. p2


(5)
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where pi ∈ (0, 1), with
∑2

i=0 pi = 1, 0 < λ1 < 1 < λ2.

Thus, between successive times of the process, one of the following three scenarios can

occur to the parameter of interest: (i) no shift, (ii) downward shift, or (iii) upward shift. In

Poisson type data, the counts usually (but not always) refer to the number of nonconformities

in the process. As such in the SPC framework, scenario (i) will represent process stability,

while scenarios (ii)/(iii) will refer to process improvement/degradation (the interpretation

of scenarios (ii) and (iii) is reversed, in cases where the counts refer to better rather than

worse quality).

The values of (p0, p1, p2)
′ = p determine the relative frequency of the three scenarios,

while the values of λ1, λ2 define the magnitude of the decrease (in downward shifts) and

increase (in upward shifts) of the parameter respectively. The vector φ′ = (p, λ1, λ2) con-

stitutes the nuisance parameters in the model, assumed to be (a-priori) independent of each

other.

Specific values for λ1 and λ2 could be used, in processes where we know what is the

anticipated parameter shift (just like the CUSUM, which is designed for specific shifts).

However, we will allow both λ1 and λ2 to be random, permitting random sized down-

ward/upward shifts. For λ1, (0 < λ1 < 1) the natural choice is to use a Beta distribution, i.e.

λ1 ∼ Beta(γ, δ). Specifically, we will adopt a non-informative (flat) prior setup by selecting

γ = δ = 1, i.e.:

λ1 ∼ Beta(1, 1) ≡ Uniform(0, 1)⇒ π(λ1) = 1. (6)

The parameter λ2 (λ2 > 1) will be modeled via the Inverse Beta distribution:

λ2 ∼ IBeta(ζ, η)⇒ π(λ2) =
1

Be(ζ, η)

(
1

λ2

)ζ+1(
1− 1

λ2

)η−1
(7)

8



where ζ > 1, η > 0 are known hyperparameters. The IBeta is the inverse Beta distribution,

i.e. if Y ∼ Beta(ζ, η) then the random variable Z = 1/Y is distributed as IBeta(ζ, η) (the

extra requirement of ζ > 1 is necessary for the first moment existence of the IBeta).

The parameter λ2 is related to the magnitude of the positive jump. Prior knowledge

regarding its distribution can be used to elicit the hyperparameter values ζ and η. For

example if the prior mean (µ2) and variance (σ2
2) of the magnitude of the positive shift are

known, then matching the moments will give:

ζ = 2 +
µ2(µ2 − 1)

σ2
2

and η =

(
1 +

µ2(µ2 − 1)

σ2
2

)
(µ2 − 1). (8)

Alternatively, if for the positive shifts we know µ2 (anticipated magnitude) and that the

maximum allowable magnitude between any successive times of the process is r, then by

setting r = 6σ2 (a range that covers at least 90% of this prior) we can obtain an estimate of

σ2 and then by moment matching we will get estimates of ζ, η. Finally for cases where we

have a vague idea of what is the range of possible positive shifts we can use a rather large

value for r, leading to a vaguely informative prior.

The remaining nuisance parameter, p, just as with λ1, λ2, could be either estimated (for

example, we could use historic data to obtain estimates of how often the process is stable

or it drifts downwards/upwards), or alternatively within the Bayesian arena an appropriate

prior could be introduced. For the latter approach, a convenient and quite general choice

would be to model:

p ∼ Dirichlet(u)⇒ π(p) =
Γ(u0 + u1 + u2)

Γ(u0)Γ(u1)Γ(u2)
pu0−10 pu1−11 pu2−12 (9)

where pi > 0, i = 0, 1, 2 and
∑2

i=0 pi = 1, while u = (u0, u1, u2) refer to the hyperparameters,
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with ui > 0, i = 0, 1, 2. Just as we did with λ1, we will assume a non-informative set-up

where u0 = u1 = u2 = 1 leading to the uniform (flat) distribution over its support set

(simplex).

In general, prior knowledge about the process, can lead to more informative settings of

the prior distributions in φ. In the proposed scheme we used an objective (flat) prior setting

for λ1 and p, but if relevant information regarding these nuisance parameters exists, one

can simply modify the values of γ, δ and ui, i = 0, 1, 2 to match this information, moving to

a more informative scheme (similarly to what was done for the λ2 parameter). Sensitivity,

regarding the hyperparameter choices will be examined in detail in the related section.

We are interested in drawing inference regarding the unknown parameter θn, once the

data point Xn becomes available. This can include point/interval estimation (for monitoring

purposes), hypothesis testing of whether the parameter exceeds some upper/lower threshold

and (upward/downward) shift detection. All the above will simply attempt to summarize

aspects of the obtained posterior distribution θn|Xn, which can be thought of as the complete

inference regarding the unknown parameter. We will elaborate on these issues further in the

inference section.

We will adopt a Bayesian sequentially updated procedure, where the data which will

arrive sequentially will be fed into the Bayes formula to derive the posterior distribution of

the parameter of interest at the current time. When the parameter drifts to “out of control”

regions, then we stop the process and take some corrective action. On the other hand, for

as long as the unknown parameter provides posterior evidence that the process is under

control, we will use the posterior distribution of the current time as a prior for the upcoming

observation. The accumulated data observed up to time n : x1, x2, . . . xn will be denoted by

Xn = (x1, x2, . . . , xn).
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Since at each stage of the process the parameter of interest can either shift upwards,

downwards or not shift, in the Bayesian formulation of the process, the posterior of θn|Xn

will be a mixture with 3n components. Specifically, we have the following:

Theorem 1 At time n the posterior distribution of θn|Xn is a mixture of 3n Gamma distri-

butions:

p(θn|Xn) ∼
3n−1∑
j=0

w
(n)
j Gamma

(
α
(n)
j , β

(n)
j

)
with weights and parameters obeying the recursive equations, for i = 0, 1, . . . , 3n−1 − 1:

α
(n)
3i = α

(n)
3i+1 = α

(n)
3i+2 = α

(n−1)
i + xn

β
(n)
3i = β

(n−1)
i +mn w

(n)
3i = (1− P1 − P2)w

(n−1)
i Mi(xn)/NC

β
(n)
3i+1 = β

(n−1)
i /Λ1 +mn w

(n)
3i+1 = P1w

(n−1)
i M−

i (xn)/NC

β
(n)
3i+2 = β

(n−1)
i /Λ2 +mn w

(n)
3i+2 = P2w

(n−1)
i M+

i (xn)/NC

where:

Λ1 =
γ

γ + δ
, Λ2 =

ζ − 1 + η

ζ − 1
, P1 =

u1
u0 + u1 + u2

, P2 =
u2

u0 + u1 + u2
,

Mi(xn) =
Γ
(
α
(n−1)
i + xn

)
Γ
(
α
(n−1)
i

) 1

xn!

[
mn

β
(n−1)
i +mn

]xn [
β
(n−1)
i

β
(n−1)
i +mn

]α(n−1)
i

M−
i (xn) =

Γ
(
α
(n−1)
i + xn

)
Γ
(
α
(n−1)
i

) 1

xn!

[
Λ1mn

β
(n−1)
i + Λ1mn

]xn [
β
(n−1)
i

β
(n−1)
i + Λ1mn

]α(n−1)
i

M+
i (xn) =

Γ
(
α
(n−1)
i + xn

)
Γ
(
α
(n−1)
i

) 1

xn!

[
Λ2mn

β
(n−1)
i + Λ2mn

]xn [
β
(n−1)
i

β
(n−1)
i + Λ2mn

]α(n−1)
i
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NC =
3n−1−1∑
i=0

[
(1− P1 − P2) w

(n−1)
i Mi(xn) + P1 w

(n−1)
i M−

i (xn) + P2 w
(n−1)
i M+

i (xn)
]
.

Theorem 1 (proved in Appendix A) was given in its most general form for the cases that we

have informative prior settings for all of the nuisance parameters. For the objective priors

of λ1 and p proposed here, we have γ = δ = 1 and u0 = u1 = u2 = 1 leading to Λ1 = 1/2

and P1 = P2 = 1/3 respectively. Finally, for the cases where point estimates of the nuisance

parameters exist in advance, these estimates can be plugged into the respective (uppercase

notated) nuisance parameters (i.e. Λ1, Λ2, P1 or P2) replacing the values obtained from the

(non-informative) prior settings assumed here.

2.1 Posterior approximation issues

The number of components in the posterior mixture increases exponentially fast and soon

becomes difficult to handle. This is the price we pay for allowing bidirectional shifts at every

stage of the process. At time n, the exact posterior distribution has 3n components and one

can obtain the posterior probability of each of the possible 3n model evolution scenarios.

But do we really need to keep track of all these components? In practice, the vast major-

ity of these components will have negligible weights, which as more data become available

will become even smaller (since they are multiplied with probabilities). Furthermore, sev-

eral gamma posterior components will have tiny differences on the parameters. Thus, one

could approximate the exact 3n mixture with a much smaller mixture of K components,

without losing significant information for the parameter of interest. We will adopt here the

approximation algorithm proposed by Tsiamyrtzis and Hawkins (2010) which is a hybrid of

the algorithm proposed by West (1993). If we will call ` the number of components in the

posterior mixture, then for the stages for which ` ≤ K we use the exact posterior distribu-
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tion. Once we get for the first time to a stage where ` > K we initiate the approximation

algorithm which consists of the following four steps:

(I) Order the ` posterior components in ascending order based on their weights.

(II) Identify the component i ∈ {2, ..., `} which is the “nearest neighbor” to component 1.

(III) Pool components 1 and i, to a single new Gamma distribution with updated parameters

and set ` = `− 1.

(IV) Go to (I) and repeat, until ` = K

Once the approximation algorithm is activated, it will be applied to obtain the posterior

distribution for all subsequent data points. Specifically, for each new data point, the mixture

will grow from K to 3K components and the approximation algorithm will trim it down to

K. Similarly to Tsiamyrtzis and Hawkins (2010) the proximity in (II) among two Gamma’s:

fi ∼ Gamma(αi, βi), i = 1, 2 will be measured by Jeffreys (1948) divergence:

J (f1, f2) = (α1 − α2)

[
Ψ(α1)−Ψ(α2) + log

(
β2
β1

)]
+ (β1 − β2)

(
α2

β2
− α1

β1

)
(10)

where,Ψ(αi) = Γ′(αi)/Γ(αi), i = 1, 2 is the digamma function. In (III), when we decide to

pool the components G(α1, β1) and G(α2, β2) with weights w1 and w2 respectively, to a single

Gamma(A,B), then the new Gamma density will have weight w1 + w2 and its parameters
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will be obtained via the method of moments:

A =

[(
w1

w1+w2

)
α1

β1
+
(

w2

w1+w2

)
α2

β2

]2
(

w1

w1+w2

)
α1

β2
1

+
(

w2

w1+w2

)
α2

β2
2

+ w1w2

(w1+w2)2

(
α1

β1
− α2

β2

)2 (11)

B =

(
w1

w1+w2

)
α1

β1
+
(

w2

w1+w2

)
α2

β2(
w1

w1+w2

)
α1

β2
1

+
(

w2

w1+w2

)
α2

β2
2

+ w1w2

(w1+w2)2

(
α1

β1
− α2

β2

)2 . (12)

Another issue arising from the approximation algorithm is related to the choice of K.

From a practical perspective and especially when we have relatively small number of data

points, the recommendation is to to keep a few hundred components. A small simulation

study will help us to determine the effect of the choice of K in posterior estimates. Specif-

ically, we generated 1000 runs of length 12 according to the proposed bidirectional change

point model, with mn = 1,∀n = 1, . . . , 12, using the following hyperparameter values:

(α0, β0,Λ1,Λ2, P1, P2) = (4, 1, 0.5, 1.5, 1/3, 1/3). Then at each iteration i = 1, 2, . . . , 1000

we ran the exact model (with 312 components) and we obtained the posterior mean es-

timate at each stage n = 1, 2, . . . , 12 of the data, θ̂
[i]
n,E (n refers to the stage of the pro-

cess, E stands for the exact distribution while [i] refers to the iteration number). We re-

peated the posterior mean calculations for the approximate distribution with K components,

leading to the estimation of the θ̂
[i]
n,K . In Table 1 we provide the Mean Absolute Error:

MAEK =
∑1000

i=1

∣∣∣θ̂[i]n,E − θ̂[i]n,K∣∣∣/1000 for the values of K = 100, 500 and 1000, along with the

variability of the exact posterior mean estimate at each of the 12 stages of the process (for

these K, the approximation algorithm is activated at the fifth stage or later, so we skip the

first 4 stages, where the error is MAE = 0).

Table 1 about here
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This table suggests that even a hundred components should suffice for most practical pur-

poses, when the number of data points is small.

3 Inference

The unknown parameter θn within the frequentist based SPC is assumed to be a fixed

constant, which is estimated via a phase I exercise (where we typically assume iid data

coming from the “in control” distribution). The goal of the traditional frequentist methods

is to detect as soon as possible when the unknown parameter drifts from this estimated

“in-control” value. Within the Bayesian approach though the unknown parameter is treated

as a random variable. This offers great flexibility in terms of inference.

The posterior distribution obtained at each stage n of the process is considered to be the

complete inference of the unknown parameter θn. Thus we could start by simply plotting the

posterior distribution over time and qualitatively inspect the unknown parameter evolution

(Apley, 2012 proposed such plots for continuous data). Apart from visual inspection, we

can also provide quantitative summaries of these posterior distributions. If our interest is in

monitoring and we would like to have a point estimate of the posterior distribution, then we

could use the posterior mean, which under the squared error loss function is the Bayes rule,

i.e.:

θ̂n = E [θn|Xn] =
L−1∑
i=0

w
(n)
i

α
(n)
i

β
(n)
i

(13)

where L = min {3n, K}, depending on whether the exact or the approximate scheme is used

at stage n.

The fact that the unknown parameter, θn, is a random variable, allows us to move from

the frequentist’s “in control value” concept to the Bayesian “in control region”, so instead
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of talking about the “target value” we are allowed to talk about the (more realistic) “target

region”. This is actually not a new concept. For instance in the 6σ philosophy, talking about

the 3.4 defective parts per million opportunities (DPMO) in a normal process we refer to

4.5σ from the edges of ±1.5σ out to 6σ. Thus we allow the process mean to drift 1.5σ of its

target value (Tennant, 2001 and Lucas, 2002). So when we perform hypothesis testing we

can move from a point to an interval null hypothesis, i.e.

 H0,n : L ≤ θn ≤ U

H1,n : θn < L, or θn > U

 (14)

where L (U) denote a lower (upper) threshold value related to process improvement (degra-

dation) for the cases where the data xn refer to the count of defects.

These (predetermined) constants are related to the unknown parameter θn and should

not be confused with the traditional specification limits (referring to the observations xn)

and which, of necessity, will be smaller (larger) than L (U). The actual value of L (U) can

come from expert opinion, or from economic criteria trading off the costs of stopping and

adjusting the process with those of continuing a possibly deteriorated production. For this

sequence of hypotheses, one can compute the posterior probability of the null hypothesis

at each time n, P (H0,n|Xn), and decide to reject/accept the null, based on whether this

probability is too small/large. A time series plot of these probabilities might also give some

insight on the evolution of the process performance. Furthermore, Bayes factors (Jeffreys,

1948) could be employed or alternatively a Bayes test could be derived when a loss function

is introduced.

When the exact distribution is used, the weights w
(n)
i play an important role, since

they can be seen as posterior evidence of each of the 3n possible model evolution scenarios
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from time 1 to n that the particular gamma density represents. Once the approximation

starts though, we lose this ability to track the exact scenario. In this case, we will have K

components in the mixture, which will increase to 3K when a new data point arrives and

then the approximation algorithm will reduce them down to K. Before the approximation is

applied though, it is easy to identify which of these 3K components refer to scenarios of: (i)

no shift, (ii) downward or (iii) upward shift and by summing their weights, one can obtain

the marginal probability of each of the three scenarios at the current state, independently of

the earlier history.

Finally, one can derive the predictive distribution Xn+1|Xn, of the next (unseen) ob-

servation xn+1, based on the available data Xn = (x1, x2, . . . , xn) for forecasting or model

assessment purposes.

4 Sensitivity Analysis

In this section we focus our attention on the robustness of the proposed methodology to

mispecifications of the hyper-parameters (parameters of the prior distributions).

Adopting the objective prior setting for λ1 ∼ U(0, 1) ≡ Beta(1, 1) and p ∼ Dirichlet(1, 1, 1)

we still need to specify the parameter values for the initial prior θ0 ∼ G(α0, β0) and the prior

regarding the positive jumps λ2 ∼ IBeta(ζ, η). So one needs to tune in the hyperparameters

in these two priors for the method to run. In this section we will examine the robustness

of the posterior mean estimation to various misspecifications of the hyperparameter values

using a small simulation study.

We generate 1,000 series of length 10 according to the proposed model with the hyper-

parameter values given in the third column of Table 2. Then we run the exact (i.e. without
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approximating) model where the hyperparameters of both priors are correctly specified and

we obtain the posterior mean estimate of each stage n of the process, call it θ̂
[i]
n,c (n refers

to the stage of the process, c stands for correct hyperparameter specification in the model

while [i] refers to the iteration number). The boxplots of errors θ̂
[i]
n,c − θ[i]n (where θ

[i]
n refers

to the true simulated value at stage n of iteration i) for all stages of the process can be seen

in Figure 2 (scenario S1).

Table 2 about here

Next, we rerun the exact model three times, where we misspecify the prior hyperparame-

ters of θ0 only, λ2 only, and both θ0 and λ2, called scenarios S2, S3 and S4 respectively. The

hyperparameter misspecifications are presented in column four of Table 2. The misspeci-

fications attempt to give a form in the prior which will look sufficiently different from the

correct one. In Figure 1 we provide the plots of the correct and misspecified priors of the

parameters θ0 and λ2.
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Figure 1: The pdfs of the correct (solid lines) and misspecified (dash lines) prior settings for
the parameters θ0 and λ2
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Next, for each of these three scenarios of misspecifications we run the exact model and we

obtain the respective posterior mean estimates, at each stage of the process. The boxplots of

the error terms (posterior mean − true theta) for each stage and each of the four scenarios

(S1-S4) of correct/miss-specifications can be seen in Figure 2.
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S1: Correct specifications
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S2: θ0 ~ Gamma(1,1)

X1 X3 X5 X7 X9

−10
0

5
10

15
20

Erro
r

S3: λ2 ~ IBeta(5,10)
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S4: θ0 ~ Gamma(1,1) and λ2 ~ IBeta(5,10)

Figure 2: The error boxplots of the posterior mean estimate minus the true parameter value,
when all hyper-parameters are correctly specified or one/two priors (denoted in the title of
each subplot) is misspecified.

The mean and standard deviation of the absolute error, for each stage n = 1, 2, . . . , 10

and for each of the misspecification scenarios (S2-S4) and correct specifications (S1) can be

seen in Table 3.

Table 3 about here

We observe that in general the results appear to be quite robust when the hyperparam-

eters are misspecified. The only case where the prior choice seemed to affect (partially)

the results was the choice of the initial prior θ0. In this simulation scenario the misspeci-

fied θ0 was (on average) underestimating the correct θ0, something which is evident in the
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respective error plots. However, due to the dynamic update mechanism, the effect of this

misspecification quickly washes out, affecting only the very few initial data points.

More simulation results regarding sensitivity and robustness are presented in Appendices.

Specifically in Appendix B we examine the robust performance to various parameter evolu-

tion scenarios (step change, linear drift, etc) while in Appendix C we examine the sensitivity

of the proposed methodology when the Poisson assumption is violated (over-dispersed data).

5 Competing methods

When we analyze short run type of data in absence of a Phase I calibration stage a frequentist

based proposal is to use a self starting approach, where the calibration and monitoring is

performed simultaneously. The idea behind such techniques, is to transform the data and

obtain a pivotal statistic that will be free of the underline unknown parameter. We will

attempt to compare the performance of the proposed Bayesian scheme against such self

starting methods. Let’s assume that we have a short run of length 30 for Poisson count

data:

Xi|θi ∼ P (θi), i = 1, 2, . . . , 30 (15)

for which under the “in control” state (θIC) let’s assume that θi = 4. Our goal will be to

detect a step change of size {0.5σ, 1σ, or 2σ} (leading to θOOC ) that can occur at location

{5 or 15} in the data stream. Since our interest is in detecting a step change we will make

use of self starting cusum methods that fulfill certain optimality criteria. Specifically, we will

run two self starting Poisson cusum schemes, based on the scores proposed by Quesenberry

(1991, 1995) and Hawkins and Olwell (1997) that we will denote as Qcusum and HOcusum

respectively. The scores on which we run the Poisson self starting cusums are calculated as
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follows: Initially we obtain the cumulative probabilities:

An = Pr

[
Bin

(
n∑
i=1

Xi,
1

n

)
≤ Xn

]
, for n = 2, 3, . . . , 30 (16)

where Bin(A,B) denotes the binomial distribution with A trials and success probability B.

Then:

Qcusum: obtain Qn = Φ−1 (An), where Φ−1(·) is the inverse of the cumulative standard

normal distribution, for An < 1. The value of An = 1 is suggested to be winsorized (since

for this value the Qn score is undefined). Then we use the Qn scores to obtain the Qcusum

with:

K+
Q =

(
θOOC − θIC

2

)
1

σ
+ 0.2 (17)

with the correction constant 0.2 proposed in Hawkins and Olwell (1997) to encounter the

fact that the true mean of Qn is around 0.2 as opposed to 0.

HOcusum: we make use of an “educated guess”, call it m, of the underline parameter, and

we transform the data Xn to Yn such that the Yn will minimize:

∣∣∣∣∣
Yn∑
j=0

e−mmj

j!
− An

∣∣∣∣∣ (18)

for An < 1. In case of An = 1, it is suggested to put Yn = Xn. Then we use the Yn scores to

obtain the HOcusum with:

K+
HO =

θOOC − θIC
ln(θOOC)− ln(θIC)

. (19)

To the best of our knowledge no ARL related information exists for the above charts (or in

general for self starting methods). Furthermore, since our concern is in short run type data,

ARL discussion is probably not relevant here. For the decision interval type cusums, we need
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to determine the related decision constants hQ and hHO, so that we have predetermined false

alarm rate over a horizon of N data points. Specifically, for the short run scenario (N = 30)

under study, we will simulate the process under the “in control” state and then derive these

decision thresholds so that both achieve the same (predetermined) false alarm rate. Precisely,

we generate 10,000 sequences of “in control” data Xi ∼ P (4), for i = 1, 2, . . . , 30 and obtain

the scores Qn and Yn. Then we run the respective cusums and obtain the threshold values

hQ and hHO by fixing the false alarm rate at 5% (see table 4).

To compare against the self starting cusums we need to formulate a decision making

scheme for the proposed Bayesian approach. Since our interest is to detect shifts from

θIC = 4 to θOOC = {5, 6 or 8} we can consider this as a hypothesis testing problem with:

 H0,n : θn < θOOC

H1,n : θn ≥ θOOC

 . (20)

Then using the proposal given in the inference section we can obtain the posterior coverage

probability of H1,n and decide to reject the null hypothesis when this probability is above

a stopping threshold, that we will derive via simulations. For the nuisance parameters we

make use of flat priors for λ1 and p (i.e. γ = δ = 1 and p0 = p1 = p2 = 1/3 respectively)

while for θ0 we chose the vaguely informative α0 = 4, β0 = 1, and for λ2 we chose ζ = 11

and η = 5 (so that E[λ2] = 1.5, a symmetric choice with respect to E[λ1] = 0.5). Finally,

we keep only K = 100 components in the approximation scheme.

Similarly to what we did earlier, we use the 10,000 sequences of “in control” data to

obtain the P (H1,n|Xn) and then derive the decision threshold hB so that we have a 5% false

alarm rate (sse table 4).

Table 4 about here
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Once the decision constants have been determined so that all three methods have the same

false alarm rate (5%) when the process is “in control”, we will examine their detection power

when a step change of size {0.5σ, 1σ, or 2σ} ≡ {1, 2, or 4} occurs at location {5 or 15}.

Table 5 about here

The results (see Table 5) indicate that the Bayesian Poisson change point (BPCP) scheme

outperforms both Qcusum and HOcusum in all but one scenario, while the Q and HO cusums

appear to have similar performance. The correct detection rate for the new approach is

significantly higher from the competing cusum methods when the step change occurs early

in the process (at time 5) and it is still higher when we are at location 15. Only for the

step change of size 0.5σ at location 15 the new approach shows slightly smaller detection

power from the respective cusums. Apart from the detection rate though we are interested

in the time it takes to signal for each method. For this reason in the cases that we had shift

detection, we obtain the mean and standard deviation of the delay in identifying the shift.

Just as with the detection rates, the new approach has smaller mean delay in all scenarios

but the one where the step change of size 1σ occurred at location 5 (for which case we should

note that the correct detection percentage of BPCP is more than double from the respective

percentages of the cusums).

6 Real Data Application

The developed methodology will be illustrated in the monitoring of crime statistics, specifi-

cally on monthly counts of murders, recorded in the city of Houston, TX. The data filed from

the Houston Police Department and are available at http://www.houstontx.gov/police/cs/stats2.htm.

Let’s assume that as statisticians we are called on Jan 2014 to provide online monitoring and
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control of this crime index from that time onwards. The data we will use for this illustration

consist of 16 months (Jan 2014 - Apr 2015, see Table 6), and we assume that they become

available to us in a sequential manner.

Table 6 about here

So starting from Jan 2014, the data arrive sequentially and our goal is in drawing inference

(control/monitor the process) each time a new data point becomes available. We will make

use of the proposed Bayesian methodology with the objective prior choices for λ1 ∼ U(0, 1)

and p ∼ Dirichlet(1, 1, 1), while for the remaining parameters, the historic data of Jan 2010

-Dec 2013 (see Table 7) will be used to estimate/elicitate them.

Table 7 about here

In terms of controlling the data stream, beginning on Jan 2014, via hypothesis testing,

our interest will be to raise an alarm whenever the mean crime statistic exceeds an upper

threshold value U . So the hypothesis testing (14) will take in this application the form of

one sided hypothesis:

 H0,n : θn ≤ U

H1,n : θn > U

 . (21)

The upper threshold value U could be estimated in various ways. In this illustration we

set this value to be the 85th percentile of the 2010-2013 historic data. This turns out to be

U = 22.95, i.e. we would like to raise an alarm in an online fashion when the true mean (θn)

exceeds this value U .

Next, we will elicitate the initial prior distribution for the unknown parameter, θ0. For

this reason we will make use of the most recent annual data, i.e. of the year 2013. Specifically,
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the n = 12 data points of 2013 are assumed to have Yj ∼ Poisson(θ) likelihood, which we

combine with a flat prior πf0 (θ) ∝ 1 ≡ Gamma(1, v) as v → 0 (see (4)) leading to the posterior

distribution θ|(Y1, . . . , Y12) ∼ Gamma (
∑
Yj + 1, n) = Gamma(210, 12), which will play the

role of the initial prior θ0 before the Jan 2014 data point arrives, i.e. θ0 ∼ Gamma(210, 12).

Finally, we need to elicitate the parameter λ2 which reflects on the expected parameter

inflation when an upward shift occurs. In this example the initial expected value of the

unknown parameter is E[θ0] = α0/β0 = 210/12 = 17.5, while the upper threshold that

we are interested in not to exceed is U = 22.95. We will define a point estimate (via the

expected value) of λ2 as the ratio of U/E[θ0] = 22.95/17.5 = 1.311 which will indicate the

factor that can lead (in a single step) the unknown parameter from the initial prior mean

value to the OOC region. In general the ratio of U/E[θ0] is expected to be bigger than one

(necessary condition for λ2) or otherwise we will have a process which has prior mean in the

OOC region indicating that some corrective action is required before even we start running

the process.

Summarizing the parameter setup in this example via Theorem (1) we have:

θ0 ∼ Gamma(210, 12), P1 = P2 =
1

3
Λ1 =

1

2
, Λ2 = 1.311 .

We used K = 1, 000 components in the approximate posterior distribution, giving the

exact posterior for the first 6 data points and the approximate from there on. Our main

concern is to perform sequential hypothesis testing at each month and raise an alarm if the

unknown parameter (mean murder count) θn > U . From the new proposed methodology, at

each point of the process n, we can obtain the posterior distribution of θn|Xn which will be

a mixture of min {3n, K} Gamma distributions. This posterior distribution from a Bayesian
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perspective is the complete inference regarding the unknown parameter θn. In Figure 3

we provide the posterior distributions for each month of the 2014-15, as the data become

available sequentially.

10
20
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40

Posterior distributions of mean monthly murders 
 during Jan 2014 − Apr 2015 in Houston (TX)

Months of 2014−15

Mu
rde

rs

Jan Mar May Jul Sept Nov Jan Mar

Upper threshold: U
Data: xn

Post. Mean:θ̂n=E[θn|xn]

Figure 3: Posterior distribution plots of the mean murder counts (θn) at each month n of
2014-15 with the posterior coverage of the alternative hypothesis (θn > U) being highlighted.
The line plots of the posterior mean (point estimate) θ̂n = E[θn|Xn] (solid points) and the
data xn (square points) are also added.

Next, we obtained the posterior mean, which is Bayes rule under squared error loss

for this parameter, and plot it in Figure 3 (its values appear in column three of Table 8).

Furthermore, we calculated the posterior coverage probabilities of the alternative hypothesis:

Pr(θn > U |Xn), which we highlight in Figure 3 and report the exact values in column four
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of Table 8.

Table 8 about here

In addition, thanks to the weights in the posterior mixture, the new model provides the

marginal probabilities of whether the unknown parameter θn shifted downward, upward or

not at each time n, independently of the past. These probabilities are provided in the last

three columns of Table 8 and the downward, upward shift probabilities are plotted in Figure

4.
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Posterior prob. of downward/upward parameter shifts for 2014−15
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Post. prob. of downward shifts
Post. prob. of upward shifts

Figure 4: The marginal posterior probabilities of having a downward (dashed line) or upward
(solid line) shift at each month of the 2014-15 murder counts at the city of Houston, TX.

The combination of Figures 3 and 4 provides a much more informative setup to con-

trol/monitor the ongoing process, compared to what the traditional say c control chart

would do and most importantly it can do that in real time, allowing inference for Phase I

data and/or short production runs.

From a decision making point of view regarding the hypothesis testing one could proceed

27



in various ways with the posterior probabilities Pr(θn > U |Xn). One alternative is to

consider the E[θ0] as the IC value and the U as the OOC parameter value and run simulations

to determine the value of the decision threshold hB so that the false alarm rate (FAR) is at

some predetermined level for a finite horizon of N observations (similarly to what was done in

section 5). For example for FAR=0.05 and running 10,000 simulations of IC data sequences

of length 16, we obtained hB = 0.842, indicating that in Dec 2014 the criminal statistic under

study exceeds the predetermined threshold U . In a decision theory based approach, if the

costs of type I and II errors are known to be cI and cII respectively, then the Bayes test under

the generalized 0 − 1 loss function would reject H0 when Pr(θn > U |Xn) > cII/(cI + cII).

In the field of public security it is natural to expect cI < cII , so that cII/(cI + cII) > 0.5.

From Figure 4 we observe that in the last two months of 2014 there exist successive high

probabilities of upward parameter shifts leading eventually sufficient posterior mass (Figure

3) to be above the threshold hB = 0.842. Furthermore, in Jul 2014 the highest probability

of upward shift is recorded indicating the largest increase of the unknown parameter in

succesive stages, without trigerring an alarm though.

7 Conclusions

Traditional frequentist models for count data emphasize restrictive assumptions – of inde-

pendent observations from a Poisson distribution whose parameter is known exactly. The

assumption of known parameter then necessitates large Phase I studies, and the frequentist

approach is unable to incorporate prior information that is less specific than that of the

Phase I study.

The Bayesian model proposed here allows for evolution in the process parameter, and dis-
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tinguishes shifts that are too small to matter from those that do matter. Also as a Bayesian

approach, it gives a conceptually sound way of incorporating partial prior information, re-

moving completely the need for any Phase I study, and allowing monitoring to start with

the first process reading.

We believe these features make the approach particularly compelling for short-run prob-

lems in settings where there are processes that are somewhat like processes that were used

previously. Examples are where different machines and/or operators are used, and in scale-up

settings where pilot information is available.
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Appendix A: Proof of Theorem 1

Initially, we will need to derive the distribution of θn|θn−1 marginalizing out the nuisance

parameters φ′ = (p, λ1, λ2). The proof will be done using the general prior setup of:

λ1 ∼ Beta(γ, δ), λ2 ∼ IBeta(ζ, η) p ∼ Dirichlet(u0, u1, u2)

for the cases where prior info regarding these nuisance parameters exists and eventually we

will replace γ = δ = 1 and u0 = u1 = u2 = 1 to obtain the proposed objective form of the

theorem. First, we will prove (using induction) that:

θn|θn−1 ∼


θn−1 with prob. u0/(u0 + u1 + u2)(

γ
γ+δ

)
θn−1 with prob. u1/(u0 + u1 + u2)(

ζ−1+η
ζ−1

)
θn−1 with prob. u2/(u0 + u1 + u2)


.

For n = 1 it is easy to show that it holds. We assume that it is true for n − 1 and we

will show that it holds for n. Specifically, we have:

θn|θn−1, λ1, λ2,p ∼ p0θn−1 + p1λ1θn−1 + p2λ2θn−1

π(λ1) ∼ Beta(γ, δ)

π(λ2) ∼ IBeta(ζ, η)

π(p) ∼ Dirichlet(u) .

We will obtain the distribution of θn|θn−1 by integrating out all the nuisance parameters,
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i.e.:

π(θn|θn−1) =

∫ ∫ ∫
π(θn, λ1, λ2,p|θn−1)dp dλ2 dλ1

=

∫ [∫ [∫
π(θn|θn−1, λ1, λ2,p)π(p)dp

]
π(λ2)dλ2

]
π(λ1)dλ1 .

If we will call the inner integral I1 then we have:

I1 =

∫
π(θn|θn−1, λ1, λ2,p)π(p)dp

=

∫
[p0θn−1 + p1λ1θn−1 + p2λ2θn−1]

Γ(u0 + u1 + u2)

Γ(u0)Γ(u1)Γ(u2)
pu0−10 pu1−11 pu2−12 dp

=
Γ(u0 + u1 + u2)

Γ(u0)Γ(u1)Γ(u2)
θn−1

∫
p
(u0+1)−1
0 pu1−11 pu2−12 dp

+
Γ(u0 + u1 + u2)

Γ(u0)Γ(u1)Γ(u2)
λ1θn−1

∫
pu0−10 p

(u1+1)−1
1 pu2−12 dp

+
Γ(u0 + u1 + u2)

Γ(u0)Γ(u1)Γ(u2)
λ2θn−1

∫
pu0−10 pu1−11 p

(u2+1)−1
2 dp

=
Γ(u0 + u1 + u2)

Γ(u0)Γ(u1)Γ(u2)

Γ(u0 + 1)Γ(u1)Γ(u2)

Γ(u0 + u1 + u2 + 1)
θn−1

+
Γ(u0 + u1 + u2)

Γ(u0)Γ(u1)Γ(u2)

Γ(u0)Γ(u1 + 1)Γ(u2)

Γ(u0 + u1 + u2 + 1)
λ1θn−1

+
Γ(u0 + u1 + u2)

Γ(u0)Γ(u1)Γ(u2)

Γ(u0)Γ(u1)Γ(u2 + 1)

Γ(u0 + u1 + u2 + 1)
λ2θn−1

=

(
u0

u0 + u1 + u2

)
θn−1 +

(
u1

u0 + u1 + u2

)
λ1θn−1 +

(
u2

u0 + u1 + u2

)
λ2θn−1

= π(θn|θn−1, λ1, λ2) .
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Then, if we will call I2 the middle integral we will have:

I2 =

∫
π(θn|θn−1, λ1, λ2)π(λ2)dλ2

=

∫ [(
u0

u0 + u1 + u2

)
θn−1 +

(
u1

u0 + u1 + u2

)
λ1θn−1 +

(
u2

u0 + u1 + u2

)
λ2θn−1

]
×

× 1

Be(ζ, η)

(
1

λ2

)ζ+1(
1− 1

λ2

)η−1
dλ2

=

(
u0

u0 + u1 + u2

)
θn−1 +

(
u1

u0 + u1 + u2

)
λ1θn−1 +

+

(
u2

u0 + u1 + u2

)
θn−1

1

Be(ζ, η)

∫ (
1

λ2

)(ζ−1)+1(
1− 1

λ2

)η−1
dλ2

=

(
u0

u0 + u1 + u2

)
θn−1 +

(
u1

u0 + u1 + u2

)
λ1θn−1 +

(
u2

u0 + u1 + u2

)
Be(ζ − 1, η)

Be(ζ, η)
θn−1

=

(
u0

u0 + u1 + u2

)
θn−1 +

(
u1

u0 + u1 + u2

)
λ1θn−1 +

(
u2

u0 + u1 + u2

)(
ζ − 1 + η

ζ − 1

)
θn−1

= π(θn|θn−1, λ1) .

Then for the outer integral we will have: π(θn|θn−1) =

=

∫
π(θn|θn−1, λ1)π(λ1)dλ1

=

∫ [(
u0

u0 + u1 + u2

)
θn−1 +

(
u1

u0 + u1 + u2

)
λ1θn−1 +

(
u2

u0 + u1 + u2

)(
ζ − 1 + η

ζ − 1

)
θn−1

]
×

× 1

Be(γ, δ)
λγ−11 (1− λ1)δ−1 dλ1

=

(
u0

u0 + u1 + u2

)
θn−1 +

(
u2

u0 + u1 + u2

)(
ζ − 1 + η

ζ − 1

)
θn−1 +

+

(
u1

u0 + u1 + u2

)
θn−1

1

Be(γ, δ)

∫
λ
(γ+1)−1
1 (1− λ1)δ−1 dλ1

=

(
u0

u0 + u1 + u2

)
θn−1 +

(
u1

u0 + u1 + u2

)
Be(γ + 1, δ)

Be(γ, δ)
θn−1 +

(
u2

u0 + u1 + u2

)(
ζ − 1 + η

ζ − 1

)
θn−1

=

(
u0

u0 + u1 + u2

)
θn−1 +

(
u1

u0 + u1 + u2

)(
γ

γ + δ

)
θn−1 +

(
u2

u0 + u1 + u2

)(
ζ − 1 + η

ζ − 1

)
θn−1 .
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To ease the notation we will call:

Λ1 =
γ

γ + δ
, Λ2 =

ζ − 1 + η

ζ − 1
, P1 =

u1
u0 + u1 + u2

, P2 =
u2

u0 + u1 + u2

and then we have:

θn|θn−1 ∼


θn−1 with prob. P0 = 1− P1 − P2

Λ1θn−1 with prob. P1

Λ2θn−1 with prob. P2


. (I)

Next we will prove (via induction) the form of the posterior distribution of θn|Xn given in

the theorem. For n = 1 it is easy to show that it holds. Assume that the theorem holds for

n− 1, i.e. the posterior distribution of θn−1|Xn−1 is a mixture of 3n−1 Gamma distributions

with the weights and parameters obeying the respective relationships, i.e.:

p(θn−1|Xn−1) ∼
3n−1−1∑
i=0

w
(n−1)
i Gamma

(
α
(n−1)
i , β

(n−1)
i

)
.

Then we will prove that it holds for n. From (I) We have that:

θn|θn−1 ∼ (1− P1 − P2) Post(θn−1|Xn−1) + P1 Post(Λ1θn−1|Xn−1) + P2 Post(Λ2θn−1|Xn−1)

θn−1|Xn−1 ∼
3n−1−1∑
i=0

w
(n−1)
i Gamma

(
α
(n−1)
i , β

(n−1)
i

)
.

Thus for the distribution of θn|Xn−1 which will be the updated (based on the proposed
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model) prior distribution of stage n of the process we have:

π(θn|Xn−1) ∼
3n−1−1∑
i=0

[
(1− P1 − P2) w

(n−1)
i Gamma

(
α
(n−1)
i , β

(n−1)
i

)
+P1 w

(n−1)
i Gamma

(
α
(n−1)
i ,

β
(n−1)
i

Λ1

)
+ P2 w

(n−1)
i Gamma

(
α
(n−1)
i ,

β
(n−1)
i

Λ2

)]

∼
3n−1−1∑
i=0

[
(1− P1 − P2) w

(n−1)
i πi(θn) + P1 w

(n−1)
i π−i (θn) + P2 w

(n−1)
i π+

i (θn)
]

where πi(θn) ≡ Gamma
(
α
(n−1)
i , β

(n−1)
i

)
, π−i (θn) ≡ Gamma

(
α
(n−1)
i , β

(n−1)
i /Λ1

)
and π+

i (θn) ≡

Gamma
(
α
(n−1)
i , β

(n−1)
i /Λ2

)
. Then at time n the count Xn = xn will be observed over mn

inspected units and will form the likelihood:

f(Xn|θn) ∼ Poisson(mnθn) .

The posterior distribution will be given by:

p(θn|Xn) =
f(xn|θn)π(θn)∫
f(xn|θn)π(θn)dθn

∝
3n−1−1∑
i=0

[
(1− P1 − P2) w

(n−1)
i f(xn|θn)πi(θn)

+ P1 w
(n−1)
i f(xn|θn)π−i (θn) + P2 w

(n−1)
i f(xn|θn)π+

i (θn)
]
.
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We will call:

Mi(xn) =

∫
f(xn|θn)πi(θn)dθn =

Γ
(
α
(n−1)
i + xn

)
Γ
(
α
(n−1)
i

)
xn!

[
mn

β
(n−1)
i +mn

]xn [
β
(n−1)
i

β
(n−1)
i +mn

]α(n−1)
i

M−
i (xn) =

∫
f(xn|θn)π−i (θn)dθn =

Γ
(
α
(n−1)
i + xn

)
Γ
(
α
(n−1)
i

)
xn!

[
Λ1mn

β
(n−1)
i + Λ1mn

]xn [
β
(n−1)
i

β
(n−1)
i + Λ1mn

]α(n−1)
i

M+
i (xn) =

∫
f(xn|θn)π−i (θn)dθn =

Γ
(
α
(n−1)
i + xn

)
Γ
(
α
(n−1)
i

)
xn!

[
Λ2mn

β
(n−1)
i + Λ2mn

]xn [
β
(n−1)
i

β
(n−1)
i + Λ2mn

]α(n−1)
i

.

Then we have:

p(θn|Xn) ∝
3n−1−1∑
i=0

[
(1− P1 − P2) w

(n−1)
i Mi(xn)pi(θn|Xn)

+ P1 w
(n−1)
i M−

i (xn)p−i (θn|Xn) + P2 w
(n−1)
i M+

i (xn)p+i (θn|Xn)
]
.

If we will call NC to be the normalizing constant of the posterior distribution i.e.

NC =
3n−1−1∑
i=0

[
(1− P1 − P2) w

(n−1)
i Mi(xn) + P1 w

(n−1)
i M−

i (xn) + P2 w
(n−1)
i M+

i (xn)
]

then we get:

p(θn|Xn) =
3n−1−1∑
i=0

[(
(1− P1 − P2) w

(n−1)
i Mi(xn)

NC

)
pi(θn|Xn)

+

(
P1 w

(n−1)
i M−

i (xn)

NC

)
p−i (θn|Xn) +

(
P2 w

(n−1)
i M+

i (xn)

NC

)
p+i (θn|Xn)

]
= (I).

Given that the Gamma is conjugate prior for the Poisson, from standard Bayes theory it is
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easy to show that:

pi(θn|Xn) ∼ Gamma
(
α
(n−1)
i + xn, β

(n−1)
i +mn

)
≡ Gamma

(
α
(n)
3i , β

(n)
3i

)
p−i (θn|Xn) ∼ Gamma

(
α
(n−1)
i + xn,

β
(n−1)
i

Λ1

+mn

)
≡ Gamma

(
α
(n)
3i+1, β

(n)
3i+1

)
p+i (θn|Xn) ∼ Gamma

(
α
(n−1)
i + xn,

β
(n−1)
i

Λ2

+mn

)
≡ Gamma

(
α
(n)
3i+2, β

(n)
3i+2

)
.

Thus the posterior distribution (I) will become:

p(θn|Xn) =
3n−1−1∑
i=0

[
w

(n)
3i G

(
α
(n)
3i , β

(n)
3i

)
+ w

(n)
3i+1 G

(
α
(n)
3i+1, β

(n)
3i+1

)
+ w

(n)
3i+2 G

(
α
(n)
3i+2, β

(n)
3i+2

)]

where:

w
(n)
3i =

(1− P1 − P2)w
(n−1)
i Mi(xn)

NC
, w

(n)
3i+1 =

P1w
(n−1)
i M−

i (xn)

NC
and w

(n)
3i+2 =

P2w
(n−1)
i M+

i (xn)

NC
.

36



Appendix B: Robustness of the Parameter Evolution Model

The goal of the proposed random size and occurrence change point model for the un-

derlying parameter (θn), was to be general enough to cover various realistic alternatives

usually encountered in SPC. In this Appendix we will assess the performance/robustness of

the proposed model to certain types of model evolution misspecifications. Precisely, we will

examine four (quite) different modeling alternatives regarding θ with a process of length 30:

M1: Step change model: The parameter θ starts at θ1 = 4 and it is piecewise constant

with three step changes of size +4,−2 and +3 occurring at locations 7, 15 and 22

respectively.

M2: Ramp change model: The parameter θ is piecewise constant with values 4, 10 and 6,

during the time segments [1,6], [12,17] and [25,30] respectively. For the remaining two

segments: [6,12] and [17,25] it changes linearly with slopes +1 and −0.5 respectively.

M3: Sinusoidal model: The parameter changes according to the sinusoidal model, for

n = 1, 2, . . . , 30

θn = 4 + 2sin

(
2π

29
(n− 1)

)
.

M4: AR(1) model: The parameter varies according to the autoregressive of order 1 model:

θn = c+ φθn−1 + εn

with c = 1.2, φ = 0.7 (so that E[θn] = c/(1− φ) = 4) and εn ∼ N(0, 1).

M1-M3 present a deterministic sequence of θn while M4 is a random sequence – the plots

of M1-M4 can be seen in Figure 5. For each scenario we use the true vector (θ1, . . . , θ30) to
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generate 1,000 data sequences
(
x
[i]
1 , . . . , x

[i]
30

)
, where x

[i]
j ∼ Poisson (θj), with j = 1, . . . , 30

and [i] denoting the iteration number (i = 1, 2, . . . , 1, 000). Before running the proposed

model for each data stream, we need to specify the priors for the nuisance parameters which

are set to:

θ0 ∼ Gamma(4, 1), p ∼ Dirichlet(1, 1, 1), λ1 ∼ Beta(1, 1) and λ2 ∼ IB(10, 5) .

Apart from the objective prior choice of p and λ1 we have a somewhat informative prior for

θ0 (since all models starts at θ1 = 4) a vaguely informative choice for λ2 (due to absence of

available prior information).

Next, for each scenario, we apply the proposed model to each sequence of data, approxi-

mating the exact posterior distribution with a mixture of 100 components (i.e. we have the

exact posterior for the first four data points and the approximate from there on). The pos-

terior distribution is summarized by the posterior mean estimate (which is Bayes rule under

squared error loss). The boxplots of the posterior means over all 1,000 iterations, along with

the true underlying θ values, for each of the models M1-M4, are provided in Figure 5.

As we observe, the proposed model appears to be quite robust to various misspecifications

of the underlying model parameter θn. Specifically, based on the posterior mean summary

boxplots, we observe that on average the proposed model is capable of detecting the (various)

changes of the underlying parameter quite satisfactorily.
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Figure 5: The boxplots of the posterior mean estimate when the model evolution regarding
the parameter θn is misspecified. The true evolution of θn is denoted with the boldface line
and corresponds to models M1-M4.

Appendix C: Sensitivity to non-Poisson data

The performance of various frequentist approaches for count data are well known to suffer

seriously in cases where the data appear to diverge from the typical Poisson assumption. For

example, in Fang (2003) and Hawkins and Olwell (1998), the effect of non-Poison data to the

performance of the u control chart, and Poisson CUSUM respectively is explored. On the

other hand, quite often in practice the data appear not to conform to the Poisson assumption

(for example when failures come in clusters, or when we have a mixture of various types of

nonconformities, Jackson, 1972). Most often, count type data appear overdispersed, affecting

seriously the performance of standard frequentist methods. The usual practice in such cases

is to adopt a distribution with somewhat heavier tails than the Poisson, with the Negative
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Binomial being the most popular choice. If we use the pdf form of the Negative Binomial

that counts the number of failures before the r-th success (so that we have the same support

with the Poisson distribution) then for Y ∼ NB
(
r, o

o+1

)
we have:

fY (y) =

(
r + y − 1

y

)(
o

o+ 1

)r (
1

o+ 1

)y
where r > 0, o > 0 and y = 0, 1, 2, . . .

with:

E[Y ] =
r

o
= µ and V [Y ] = µ

(
1 +

1

o

)
where for any positive o we get V [Y ] > E[Y ]. The parameter o relates to the overdispersion,

where the smaller the value the bigger the overdispersion.

Next, we will examine the robustness of our approach in cases where the likelihood is

overdispersed compared to Poisson. Specifically, just as we did in Appendix B, we will

use models M1-M4 to generate the true vector (θ1, . . . , θ30) for each of the four scenarios.

Then we will generate 1,000 sequences of data using three alternative likelihood models,

corresponding to three different overdispersion factors o, with 25%, 50% and 100% variance

increase (compared to the mean) respectively.

O1:
(
y
[i]
1 , . . . , y

[i]
30

)
, where y

[i]
j ∼ NB(4θn, 4/5), with E[Y ] = θn and V [Y ] = 1.25θn

O2:
(
z
[i]
1 , . . . , z

[i]
30

)
, where z

[i]
j ∼ NB(2θn, 2/3), with E[Z] = θn and V [Z] = 1.5θn

O3:
(
w

[i]
1 , . . . , w

[i]
30

)
, where w

[i]
j ∼ NB(θn, 1/2), with E[W ] = θn and V [W ] = 2θn

with j = 1, . . . , 30 and i = 1 . . . , 1000 denoting the data point and iteration respectively.

We will adopt the identical prior setup to the one presented in Appendix B and we will

approximate the exact posterior distribution using only 100 components. In Figure 6 we
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provide the boxplots of the posterior means over all 1,000 iterations, along with the true

underlying θ values, for each of the models M1-M4, when the data are overdispersed according

to scenario O3 (where the variance is twice the mean). For the other two scenarios the

performance is quite similar. In Figure 7 the Mean Absolute Error (MAE) for the Poisson

and the overdispersion scenarios O1-O3 has been plotted for all scenarios M1-M4. As we

observe, the MAE appears somewhat inflated as we move to more dispersed data but it is

still comparable to the Poisson’s MAE. Thus in general the proposed method appears rather

robust to various degrees of overdispersion.
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Figure 6: The boxplots of the posterior mean estimate when the model evolution regarding
the parameter θn is misspecified and the data are overispersed (scenario O3). The true
evolution of θn is denoted with the boldface line and corresponds to models M1-M4.
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Figure 7: The MAE of the Poisson (solid line) and overdispersed (dashed, dotted and dash-
dotted for overdispersed scenarios O1-O3 respectively) data for models M1-M4.
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List of Tables

5 6 7 8 9 10 11 12

MAE100 0.00221 0.01325 0.02570 0.04878 0.06200 0.08639 0.10783 0.12337

MAE500 0 0.00004 0.00065 0.00184 0.00375 0.00893 0.01672 0.02419

MAE1000 0 0 0.00006 0.00031 0.00087 0.00277 0.00593 0.01107

sd
(
θ̂n,E

)
4.54709 5.31826 5.60457 5.54657 6.31890 6.63497 6.37572 7.06447

Table 1: The Mean Absolute Error at each stage (columns) of the process, for three choices
of K : 100, 500 and 1000, along with the standard deviation of the exact posterior mean
estimate, θ̂n,E.
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Parameter Prior Data Simulation settings Model Misspecification settings

θ0 Gamma (α0, β0) Gamma(4, 1) Gamma(1, 1)

λ2 IBeta (ζ, η) IBeta(10, 2) IBeta(5, 10)

Table 2: Sensitivity regarding the choice of hyperparameters: the parameters along with the
adopted priors (in the first two columns), the hyperparameters used to simulate the data
(column three) and the misspecifications (column four) that were used to run the model.
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1 2 3 4 5 6 7 8 9 10

S1 1.181 1.067 0.965 0.881 0.799 0.729 0.676 0.630 0.595 0.541

(0.930) (1.012) (0.908) (0.862) (0.868) (0.816) (0.869) (0.867) (0.846) (0.851)

S2 1.462 1.144 0.968 0.867 0.776 0.714 0.663 0.621 0.588 0.535

(1.295) (1.202) (1.015) (0.920) (0.907) (0.834) (0.878) (0.876) (0.853) (0.853)

S3 1.313 1.164 1.126 1.017 0.926 0.859 0.832 0.793 0.736 0.666

(1.138) (1.096) (1.169) (1.070) (1.020) (1.004) (1.064) (1.233) (1.039) (1.062)

S4 1.298 1.116 1.099 0.992 0.909 0.847 0.823 0.785 0.730 0.661

(1.124) (1.122) (1.213) (1.077) (1.031) (1.005) (1.069) (1.226) (1.038) (1.064)

Table 3: The mean and the standard deviation in parenthesis of the absolute error at each
stage (columns) of the process for the correct specifications (S1) and each of the three
misspecification (S2-S4) scenarios of the hyperparameters.
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Size of step change hQ hHO hB

0.5σ 7.632 16.299 0.959

1σ 4.715 11.337 0.877

2σ 2.491 7.229 0.569

Table 4: The h thresholds for each of the three methods and each of the three step change
scenarios obtained via simulations, so that all methods have the same (5%) false alarm rate
under the “in control” scenario.
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Mean (SD)

Method Loc Size h limit CD FA MA Delay in CD

Qcusum 5 0.5 σ 7.632 15.79% 0.00% 84.21% 14.09 (6.13)

HOcusum 5 0.5 σ 16.299 15.78% 0.00% 84.22% 14.05 (6.17)

BPCP 5 0.5 σ 0.959 28.34% 0.60% 71.06% 12.61 (7.00)

Qcusum 5 1 σ 4.715 31.32% 0.13% 68.55% 9.23 (5.94)

HOcusum 5 1 σ 11.337 32.12% 0.00% 67.88% 9.35 (5.91)

BPCP 5 1 σ 0.877 74.62% 0.58% 24.80% 10.60 (6.70)

Qcusum 5 2 σ 2.491 56.81% 0.55% 42.64% 5.18 (4.69)

HOcusum 5 2 σ 7.229 62.19% 0.21% 37.60% 5.41 (4.65)

BPCP 5 2 σ 0.569 99.40% 0.59% 0.01% 4.17 (2.86)

Qcusum 15 0.5 σ 7.632 20.87% 0.99% 78.14% 8.85 (3.94)

HOcusum 15 0.5 σ 16.299 21.85% 0.87% 77.28% 8.87 (3.97)

BPCP 15 0.5 σ 0.959 18.07% 2.19% 79.74% 7.87 (4.13)

Qcusum 15 1 σ 4.715 52.56% 2.04% 45.40% 7.52 (3.63)

HOcusum 15 1 σ 11.337 53.44% 1.69% 44.87% 7.46 (3.62)

BPCP 15 1 σ 0.877 54.93% 2.20% 42.87% 7.32 (4.05)

Qcusum 15 2 σ 2.491 86.41% 2.47% 11.12% 4.46 (2.98)

HOcusum 15 2 σ 7.229 90.00% 2.11% 7.89% 4.50 (2.94)

BPCP 15 2 σ 0.569 97.09% 2.20% 0.71% 4.05 (2.61)

Table 5: The performance of the three competing methods under various step change sce-
narios. The columns refer to: location of the step change (col. 2), size of step change (col.
3), the h threshold obtained by Table 4 (col. 4), the percent of Correct Detection (col. 5),
False Alarm (col. 6) and Missed Alarm (col. 7) rates. In the last column the mean and
standard deviation of the location delay in signaling an alarm for the correctly detected cases
is reported.
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Time (Month) 1 2 3 4 5 6 7 8 9 1 0 11 12 13 14 15 16

Murder Count 16 17 12 15 14 16 23 19 19 20 26 33 23 21 19 20

Table 6: The available monthly murder counts from Jan 2014 till Apr 2015 in the city of
Houston, TX (http://www.houstontx.gov/police/cs/stats2.htm) as reported by the Houston
Police Department
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Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

2010 19 27 18 16 29 26 18 23 20 29 20 15

2011 13 17 12 7 22 15 15 22 18 19 19 13

2012 14 13 27 11 18 18 20 24 16 14 12 18

2013 16 17 16 13 21 18 19 20 17 9 19 24

Table 7: The available historic monthly murder counts in the city of Houston, TX
(http://www.houstontx.gov/police/cs/stats2.htm) as reported by the Houston Police De-
partment
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Month xn E[θn|Xn] Pr(θn > U |Xn) Pr(no shift) Pr(down. shift) Pr(up. shift)

Jan 2014 16 17.978 0.078 0.680 0.073 0.247

Feb 2014 17 18.475 0.111 0.632 0.082 0.286

Mar 2014 12 12.377 0.009 0.305 0.591 0.104

Apr 2014 15 14.042 0.010 0.421 0.047 0.532

May 2014 14 14.418 0.005 0.523 0.085 0.392

Jun 2014 16 16.138 0.017 0.514 0.034 0.452

Jul 2014 23 20.947 0.274 0.329 0.001 0.670

Aug 2014 19 20.624 0.281 0.642 0.084 0.275

Sept 2014 19 20.420 0.279 0.624 0.090 0.286

Oct 2014 20 21.157 0.337 0.607 0.054 0.339

Nov 2014 26 25.419 0.750 0.447 0.003 0.550

Dec 2014 33 31.503 0.987 0.345 0.000 0.655

Jan 2015 23 24.164 0.578 0.528 0.405 0.066

Feb 2015 21 21.304 0.344 0.476 0.171 0.353

Mar 2015 19 20.104 0.226 0.570 0.118 0.312

Apr 2015 20 21.013 0.271 0.582 0.048 0.370

Table 8: The first column reports the date (n), xn is the murder count during month n
in the city of Houston, TX. Column three is the posterior mean at stage n of the process,
θ̂n = E[θn|Xn]. Next we provide the posterior coverage of the alternative hypothesis, Pr(θn >
U |Xn). In the last three columns the Pr(no shift), Pr(down. shift) and Pr(up. shift) are
the marginal probabilities of no, downward and upward shifts respectively of the unknown
parameters θn, at each month n, independently of the past history.
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