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Abstract

Multihead weighing machines (MWMs) are ubiquitous in industry for fast and
accurate packaging of a wide variety of foods and vegetables, small hardware items
and office supplies. A MWM consists of a system of multiple hoppers that are filled
with product which when discharged through a funnel fills a package to a desired
weight. Operating this machine requires first to specify the product weight targets
or setpoints that each hopper should contain on average in each cycle, which do
not need to be identical. The selection of these setpoints has a major impact on
the performance of an MWM. Each cycle, the machine fills a package running a
built-in knapsack algorithm that opens –or leaves shut– different combinations of
hoppers releasing their content such that the total weight of each package is near to
its target, minimizing the amount of product “given away”. In this paper, we address
the practical open problem for industry of how to determine the setpoint weights for
each of the hoppers before starting up the MWM, given a desired total package weight.
An order statistic formulation based on a characterization of near-optimal solutions
is presented. This is shown to be computationally intractable, and a faster heuristic
that utilizes a lower bound approximation of the expected smallest order statistic
is proposed instead. The setup solutions obtained with the proposed methods can
result in substantial savings for MWM users. Alternatively, the analysis presented
could be used by management to justify the acquisition of new MWM machines.

∗Corresponding author. Dr. Castillo is Distinguished Professor of Industrial & Manufacturing Engi-
neering and Professor of Statistics. e-mail: exd13@psu.edu

†Ms. Beretta is a Ph.D. student in Mechanical Engineering.
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1 Introduction

A multihead weighing machine (hereafter an MWM, sometimes called a combinatorial
weighing machine) is a computer-controlled machine used to fill a package with small
products or parts with a given target weight. This machine has a wide range of applications
in the food industry for packaging pasta, coffee beans, cereals, snacks, candies, vegetables,
and even for packing poultry pieces and beef. Its applications cover also the packaging of
non-food items, for instance, clips, nails, screws and a variety of other small hardware items.
Among the multihead weigher manufacturers, the one with the world leading position has
31,000 MWMs installed all over the world [12]. Despite their widespread use, analytical
studies aimed at optimally setting up an MWM, a critical step affecting the performance
of these machines, are lacking. In this paper, we model and analyze an MWM and propose
methods for its optimal setup.

A MWM is composed of a system of feeders, a set of H pool hoppers, a set of H
weight hoppers and a discharge chute to the packaging machine (Figure 1). The product
is continuously fed via a central dispersion feeder (usually a vibrating cone) and H radial
feeders (vibrating channels) to the pool hoppers. The role of the pool hoppers is to stabilize
the product before dropping it into the weight hoppers. The average weight of product
µi, i = 1, ..., H, that each hopper should contain must be specified by an operator before
starting the machine. These average weights need not be identical. Once the machine is
started, each cycle, a built-in knapsack-like algorithm selects a subset of hoppers whose
sum of observed weights is closest to the target value after which a computer opens the
selected hoppers releasing the product through the discharge chute into the package. Some
hoppers can therefore remain shut filled with product from cycle to cycle. One cycle is
repeated for each package. The performance of an MWM heavily depends on the initial
hopper weights {µi}. In industrial practice, operators currently use trial and error rules
to setup the hopper weights based on the product to pack and the target weight of the
package, but such setting-up operation may be far from optimal. In this paper, we focus
on the analysis and optimal setup of MWMs with a single layer of hoppers (Figure 1), the
most common type of MWM in industrial use.

Practically all of the extant technical literature related to MWMs (see, e.g., [7, 8,
9, 10, 11]), which mostly originates in Japan where MWMs were first developed, deals
with the repetitive problem of finding the best combination of hoppers to open in each
cycle, proposing different versions of Knapsack formulations, but does not address the
setup problem of selecting the hopper weights before starting up the machine. The MWM
problem we address below is somewhat related to canning problems [2, 13] but they differ
in that they deal with a single target filling setting problem, and more importantly, there
is no selection combination problem involved.

MWM’s are based on an empirically observed “variance reduction” technique: it was
noted that by filling a package from the combination of product from several hoppers,
negative correlations are induced between the weights of product in opened hoppers given
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Figure 1: A single-layered multihead weighing machine. The central dispersion cone is connected to a
series of vibrating radial feeders, one per hopper, which can be controlled individually providing individual
controllability to each hopper mean weight setpoint µj .

that they are random variables that are selected in each cycle subject to a constraint in
their sum (which gives the package total weight) [8]. The negative correlations reduce the
mean square error of the packages weight, “giving away” less product while satisfying the
target constraint.

The rest of the paper is organized as follows. The next section presents a mathematical
formulation of the MWM setup problem and an exact approach for simple problems (i.e.
when only few combinations of hoppers opening are considered). Next, the behavior of
good solutions obtained by numerical search is characterized. These characteristics are
then used in section 4 to develop a heuristic approach to the optimal MWM setup problem.
The paper ends with recommendations and directions for further research.

2 Formulation of the optimal setup problem of a mul-

tihead weigher machine

Let wj be the observed weight of the product contained in the jth hopper in a particular
cycle of operation, j = 1, 2, ..., H where H is the number of hoppers in the machine. Each
cycle the machine fills up a package with product released from a subset of the hoppers
and the depleted hoppers are refilled. Assume wj is a realization of the random weight
Wj ∼ N(µj, σ

2
j = α2µ2

j), µj > 0, j = 1, 2, ..., H and assume each weight is independent of
other weights Wi(i 6= j). The proportionality constant α (with α < 1) is assumed known
and given as it depends on the product to be packed. The proportional relation between
mean and standard deviation of the weights is known to exist in this type of machines
(e.g., see [8]). We point out that as long as σ = f(µ) holds for any known f , the methods
developed below also apply after trivial modification. However, given that the available

3
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empirical evidence (see, e.g. [3], p. 87) indicates that a simple linear relation of the form
σ = αµ fits the weight data very well, it was adopted in what follows. A setup of the
machine consists of specifying the values of the setpoints µ′ = (µ1, µ2, ..., µH), to which,
according to our assumption, also determine the hopper weight variances σ2

j , j = 1, ..., H,
for a given target value T that specifies the minimum weight content of each package to be
filled. Once the machine is setup, the combinatorial weigher machine starts to fill packages
of product, solving a knapsack algorithm per package. Our goal is to determine the best
setpoints µ according to some specific criteria on the weight content of the packages.

While there are different knapsack formulations that have been reported in the MWM
literature, most of them utilize a linear objective function and linear constraints. In this
section, we assume the machine has a built-in algorithm that solves for each package the
deterministic knapsack problem:

min ω• =
H∑

j=1

δjwj subject to: ω• =
H∑

j=1

δjwj ≥ T (1)

where δj is either 0 or 1. In this formulation, the total observed package weight ω• is
required to be as small as possible but larger or equal to the given target package weight
T . Prior to observing the hopper weights {Wj = wj} in any cycle, the total package
weight W• is the minimum of K dependent, not identical normal random variables Xi for
i = 1, 2, ..., K, subject to the constraint W• ≥ T , where K equals the total number of
possible combinations of opened/closed hoppers from which the knapsack algorithm can
select (choosing the δj variables above). We hasten to point out that we are not concerned
with solving the knapsack problem; the knapsack problem is internal to the machine and
considered given. We are concerned with determining the setpoints of the machine, i.e., the
mean weights in each hopper, which are the “inputs” of the system as depicted in Figure
2.

The optimal setpoints could be found from the distribution of the optimum objective
function value (i.e., the package weight W•) of a random Knapsack where Wj substitutes
wj in (1). However, there are only limited results related to this distribution ([15], p. 526).
They are asymptotic results as the number of hoppers H →∞ under the assumption the
hopper weights Wi’s are U(0, 1) random variables, which is clearly not our case. In the
remainder of this section we describe how to compute the exact moments of the total weight
package W• in problem (1) and how this leads very rapidly to computational complexities
in practice.

If all possible combinations of any number of hoppers can be selected to open (or close)

in a cycle, then clearly there are K =
∑H−1

i=0

(
H

i

)
= 2H − 1 combinations, since we

can assume that at least one hopper will open in each cycle to let some product get in
the package. In later sections, K will denote the number of combinations that leave up

to s < H hoppers shut in a cycle, in which case K =
∑s

i=0

(
H

i

)
. From now on, we

use the term combination to refer to a specific selection of δj, j = 1, 2, ..., H variables in
(1), i.e., to a specific selection of hoppers that are opened in a cycle. We also apply this

term by extension to the package weight Xi =
∑H

j=1 δjWj that combination i generates

(i = 1, ..., K).

4
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Weigher
Knapsack
 algorithm

(given)

μ1,μ2, ... ,μH

w
1
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2
,...,w

H

(hopper
weights)Hopper weight

setpoints (means)

W
●

T 

(min. package weight) 

(package
weight)

Mutihead weigher
machine under study

Figure 2: Information flow in the system under study. The setup problem in a multihead weigher machine
consists in finding values of the hopper weights µ1, ..., µH that optimize some property of the resulting
package weight ω•. The built-in knapsack algorithm the machine comes equipped with is considered
internal and given. Therefore, the system under study (delimited by dashed lines and hatched) requires
determination of the “inputs” (the µi’s) to optimize some property of the “output” ω•.

To consider the different combinations of weights, let matrix P = {pij} be a K × H
matrix where {pij = δj|i}, with pij = 1 if combination i includes opening hopper j and
pij = 0 if otherwise, i = 1, ..., K. We then define the random vector of combinations
X ′ = (X1, X2, ..., XK) as:

X = PW (2)

where W ′ = (W1,W2, ...,WH) follows a multivariate N(µ,ΣW ) distribution with ΣW =
diag(α2µ2

j). It follows that for the different weight combinations that can be formed we
have that:

X ∼ N(Θ,Σ) where Θ = E[X] = Pµ, and Σ = Var(X) = PΣWP ′.

The K ×K matrix Σ includes the covariances between the random weights resulting from
the different combinations of selected hoppers, some of which may be large, depending on
the K combinations to consider. If combinations that “share” many hoppers are included,
Σ may be close to rank deficient.

Problem definition. The optimal MWM setup problem we address, that corresponds
to the knapsack problem (1) requires solving:

min
µ

MSE(W•|W• ≥ T )

that is, finding the hopper setpoints such that the mean square error of the package weight
W• = min(X1, X2, ..., XK) withW• ≥ T is minimized, since it is desired no package should
weigh less than T . The distribution ofW• is a function of the hopper mean weights µ. Note
that the µj are not required to be integers. Therefore, we must first find the distribution
of a constrained smallest order statistic of a set of correlated normal variables, and setup
an optimization problem with it. As far as we know, there are no published results related
to such problem in the Order Statistics literature. Afonja [1] found expressions for the
first two moments of the unconstrained maximum order statistic of a set of correlated
normals. The constraint W• ≥ T considerably increases the computational complexity
when obtaining the moments in exact form.
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Figure 3: A “toy” weigher machine setup problem with two combinations. Hashed regions 1 and 2 are
areas where combination X1 is better than combination X2 (X1 is closer to and greater than T ); in regions
3 and 4 X2 is better (X2 is closer to and greater than T ). Shaded region 5 is infeasible. The search for a
feasible solution needs to be undertaken over regions 1 through 4.

We show next that the computational expense of the expressions needed to obtain the
moments of such constrained minimum is too large in general, motivating the approximate
approach shown in a later section.

Consider first the simple case where there are only two combinations of hoppers (K =
2). Figure 3 shows the regions where each random variable Xi (i = 1, 2) achieves the
minimum weight. The two hashed regions (numbers 1 and 2) are areas over which X1 is
minimum and greater than T ; symmetrically, the two unshaded areas (3 and 4) are where
combination X2 is the minimum and greater than T . We point out that we do not seek to
find min(X1|X1 ≥ T,X2|X2 ≥ T ), which would correspond only to taking the minimum
over areas 1 and 4 in Figure 3. This is not what we seek, since, for instance, we could
have X1 ≥ T but X2 < T and still have found a feasible solution to our packing problem;
all we need is at least one combination to be larger or equal to T . Thus, for H = 2 we
need to search in all four areas 1 to 4 in Figure 3. If we define W• = min(X1, X2), then
for a feasible solution to exist this minimum must be greater or equal to the target T , i.e.,
W•|W• ≥ T . Note that the minimum of the combinations is what is constrained, not the
individual combination weights.

Define X ′
i = Xi − T , as in the figure. The weigher machine must select one of the

variables X ′
i to fill up a package. The rth moment of the selected weight W• is therefore

6
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given by:

E[Wr
• |W• ≥ T ] =

∫ ∞

0

x′r
1

∫ ∞

x′

1

φ(X ′) dx′
1dx

′
2 +

∫ ∞

0

x′r
1

∫ 0

−T

φ(X ′) dx′
1dx

′
2

+

∫ ∞

0

x′r
2

∫ ∞

x′

2

φ(X ′) dx′
2dx

′
1 +

∫ ∞

0

x′r
2

∫ 0

−T

φ(X ′) dx′
2dx

′
1 (3)

where φ(X ′) is the (bivariate) normal density of X ′, i.e., N(Θ − T ,Σ) with T equal
to a K-vector filled with the package target weight T . The four terms correspond to
integrals over the probability measure in areas 1, 2, 4 and 3 in Figure 3, respectively.
Solving the setup problem for a combinatorial machine in this case consists in minimizing
MSE(W•|W• ≥ T ) = Var(W•|W• ≥ T ) + (E[W•|W• ≥ T ] − T )2 = E[W2

• |W• ≥ T ] −
E[W•|W• ≥ T ]2 + (E[W•|W• ≥ T ] − T )2 with respect to µ1 and µ2. Therefore, the
integrals above will need to be performed several times inside an optimization routine.

Consider next the case of K = 3 different combinations the MWM can select from.
In this case we will get more rectangular areas similar to regions 2 and 3 in Figure 3.
Specifically, the rth moment of the selected weight is given by the expression:

E[Wr
• |W• > T ] =

3∑

i=1

{∫ ∞

0

x′r
i

∫ ∞

x′

i

∫ ∞

x′

i

φ(X ′) dx′ +

∫ ∞

0

x′r
i

∫ 0

−T

∫ 0

−T

φ(X ′) dx′

+

∫ ∞

0

x′r
i

∫ ∞

x′

i

∫ 0

−T

φ(X ′) dx′ +

∫ ∞

0

x′r
i

∫ 0

−T

∫ ∞

x′

i

φ(X ′) dx′

}
(4)

which is an expression with twelve 3-dimensional integrals where

12 =

[(
K − 1
K − 1

)
+

(
K − 1
K − 2

)
+ · · ·+

(
K − 1

0

)]
·K = 2K−1 ·K

for K = 3.

Evidently, 2K−1 ·K grows very fast. If all the combinations of H hoppers are considered
(so K = 2H − 1) the total number of 2H − 1-dimensional integrals, 22

H−2 · (2H − 1), grows
extraordinarily fast, see Table 1.

No. of hoppers (H) No. of Integrals Dimension of each integral (K)
1 1 1
2 12 3
3 448 7
4 245760 15
5 3.3286 e10 31
8 7.3817 e78 255

Table 1: Number of multidimensional integrals needed to compute a moment E[Wr
• |W• ≥ T ] of the package

weight assuming all 2H − 1 possible combinations are considered.

Although in practice not all possible combinations need to be considered, the exponen-
tially increasing number of combinations and the required computations render an exact

7
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approach intractable for problems of realistic size. Therefore, we proceed next to develop
approximate approaches to the solution of this problem. We first characterize the prop-
erties of near-optimal solutions obtained by a search procedure in order to seek similarly
good solutions in a heuristic approach to be discussed in section 4.

3 Characterization of near optimal solutions to the

MWM setup problem

As mentioned earlier, hereon by a ‘good’ solution we mean a low (or near minimum) MSE
solution subject to the constraint W• ≥ T . For computational simplicity, in this section
we only consider simulated MWMs with H = 4 and H = 5 hoppers when none, one,
or two hoppers can remain shut in a cycle( i.e., s = 2). The target value T = 500 and
the parameter α = 0.123 were used throughout. There is no loss of generality since the
characteristics discussed in this section are independent of these parameters. Figure 4

Figure 4: Marginal density plots of the combination weights {Xi} generated by two non-optimal so-
lutions of a weigher problem with H = 4 hoppers. Plot on the left is for the solution µ′ =
(500/4, 500/4, 500/4, 500/4). Plot on the right is for the solution µ′ = (400, 300, 200, 100). Combina-
tions that leave up to s = 2 closed hoppers were considered. Darker density lines correspond to X[1] and
X[K].

shows the marginal densities of the K = 11 combinations Xi, i = 1..., 11, generated in a
H = 4 hopper problem for two typical, but not optimal solutions. The marginal densities
of the first order statistic X[1] and the last order statistic X[K] (the moments of these
densities were obtained as described in Appendix A) are highlighted. The plot on the left
corresponds to the setpoints µ′ = (T/4, T/4, T/4, T/4), a ”logical” solution in which all
hopper setpoint weights are equal. As it can be seen, the weigher machine will have only
one combination available to fill the T = 500 gr. packages, namely, the density of the
largest order statistic which corresponds to all hoppers opened in each cycle. Note also
how there are many densities that overlap perfectly, since there are K = 11 combinations,

8
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but only three are uniquely different densities. This is a very poor solution, since there will
be about a 50 % chance that the constraintW• ≥ T = 500 will not be satisfied. The graph
on the right shows the marginal densities for a different ‘ladder’ solution with setpoints
µ′ = (400, 300, 200, 100). The marginal densities are much more dispersed, which is better
than the previous solution. But note how the densities are not dispersed symmetrically
around T = 500, and in particular, note how there are only a few ‘good’ combinations, i.e.,
densities located near or above T = 500, so the performance will be far from optimal.

In contrast with the two previous solutions which can be classified as poor, Figure
5 shows the marginal densities for near-optimal solutions for the H = 4 case and the
H = 5 cases, obtained by a simulation-based search of the best combination as reported
in [4]. This search attempts to minimize the MSE of the selected weights W• such that
W• ≥ T . The solution found for the H = 4 problem is µ′ = (294.5, 276.7, 183.7, 66.6).
For the H = 5 hopper MWM there are K = 16 combinations possible (with up to s = 2
hoppers remaining shut), and the densities shown in the figure correspond to the solution
µ′ = (203.7, 178.6, 110.9, 191.0, 55.7). Some useful characteristics of the solutions µ∗ that

a)  H=4  (K=11)                                                   b)  H=5  (K=16)

{ {

*
*

Figure 5: Density plots of the near-optimal {Xi} combination weights for a problem with a) 4 hoppers
and b) 5 hoppers. Combinations that leave up to s = 2 closed hoppers were considered. Darker density
lines correspond to X[1] and X[K]. Note the cluster of densities (*) around T = 500 (see text).

generated the combinations shown in Figure 5 are shown in Table 2.

An interesting characteristic common to all near-optimal both solutions such as those
shown in Table 2 is that the average of the two extreme order statistics, (E[X[1]]+E[X[K]])/2
remains slightly above T . At the same time, the combinations are quite dispersed. This
leads to our first empirical characterization of a good solution.

Characteristic 1: in a good solution, the combinations {Xi}Ki=1 should be such that the
average of the two (unconstrained) extreme order statistics is larger than T .

Likewise, good solutions such as those in Table 2 have a cluster ofmany densities around
T , indicated with a “*” in Figure 5. These densities should not all be near identical, but
should differ “enough”, thus some variability in them is desirable. How to define “somewhat

9
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Property H = 4 H = 5
µ∗ (294.9, 276.7, 183.7, 66.6) (203.7, 191.0, 178.6, 110.9, 55.7)

(E[X[1]] + E[X[K]])/2 536.0 537.7
Θ 523.2 508.7

-log(det(Σ)) 49.67 89.42

p ≡
∑K

i=1 P{Xi ∈ (T, T + 100)} 2.78 4.79
c(Θ, T ) 4 7

-log(det(M )) 26.10 66.19

Ê(W•|W• > T ) 522.8 514.2

V̂ar(W•|W• > T ) 301.1 129.2

M̂SE(W•|W• > T ) 822.7 331.1

Table 2: Some characteristics of the near optimal (min MSE) solutions for H = 4 and H = 5 hoppers,
T = 500, α = 0.123 obtained by searching combinations with up to 2 hoppers shut. A heuristic method
is developed to find solutions that mimic all these characteristics. Quantities listed below the line were
estimated via simulation for the solution in question.

different” is difficult. In our numerical results, we obtained good performance by defining
two solutions to be different enough if they differ by 4% or more of the target weight. We
hence defined u(Θ, T ) to be the vector of values Θi that differ by at least 0.04T of other
Θi’s: u(Θ, T ) ≡ unique(Θ − (Θ mod 0.04 · T )), where we assume we have available a
function unique that returns the different items in a vector. Then, we define the number
of densities with significantly different locations in an interval around T (0.8 ·T, 1.2 ·T ) as:

c(Θ, T ) =
∑

i

{(ui > 0.8 · T ) and (ui < 1.2 · T )}

These non-identical densities around T provide significantly different combinations in each
cycle to the knapsack algorithm to select from and fill up a package. Hence, for a near-
optimal solution we observe that the sum of the marginal probabilities

∑K
i=1 P{Xi ∈ (T, 1.2·

T )} is large relative to a non-optimal solution. This can be summarized in:

Characteristic 2: good solutions generate combinations whose densities cluster around
T and are characterized by a large count number of uniquely different densities c(Θ, T )
as defined above. Thanks to this cluster of densities, good solutions are associated to a
relatively large value of p(Θ, T ) ≡ ∑K

i=1 P{Xi ∈ (T, 1.2 · T )}, the probability of package
weights just above T , compared to non-optimal solutions.

The marginal density functions of each combination, however, are usually positively cor-
related and the probability p(Θ, T ) is not very informative by itself unless the correlations
are accounted for. A set of highly positively correlated combinations behaves essentially as
fewer combinations. The determinant of Σ is a simple measure of the global degree of cor-
relation in the combinations. It was observed that the values of log(det(Σ)) are relatively
large for the near-optimal solutions compared to non-optimal solutions. This implies that
in a good solution, the resulting combinations {Xi}Ki=1 are relatively less correlated. Thus,
the densities should be as little correlated as possible (especially those close to T ), in order
to provide as uncorrelated combinations as possible to the knapsack algorithm. Apart of
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the cluster of good combinations close to T , other densities should disperse in a symmetri-
cal manner around T . To emphasize these two aspects, low correlation of the combinations
located near T and variability of their locations around T , we define the matrix:

M = Σ+ (Θ− T )(Θ− T )′

which adds to Σ a measure of variability of the locations of the densities around T in the
second term. The values observed for log(det(M )) for the near-optimal solutions are large
relative to non-optimal solutions (Table 2). This has the effect of dispersing the densities,
avoiding too similar densities around T . In summary, we have the following.

Characteristic 3. A good solution provides large values of det(M ) ≡ |M | relative to
non-optimal solutions.

Finally, we point out an obvious but useful property of any solution µ. The combina-
torial weigher machine does not give preference to any hopper over the others, and each
hopper can be set in exactly the same way as the others. In other words, we have:

Characteristic 4. The quality of a solution (µ1, µ2, ..., µH), as measured by any function
ofW• (e.g. MSE(W•|W• ≥ T )) is invariant to any permutation σ(·) of the hoppers indices
(µσ(1), µσ(2), ..., µσ(H)).

This is useful since we can reduce the search conducted by any optimization algorithm
to the region µ1 ≥ µ2 ≥ · · · ≥ µH . Assuming we try L integer values or “levels” of weights
in each of the H hoppers, this obviously generates K = LH combinations. However, it is
easy to see that if only integer solutions are considered, and we try L levels in each hopper,
the constraint µ1 ≥ µ2... ≥ µH reduces the combinations from K = LH to K = (L+H −
1)!/(H!(L−1)!). While a considerable reduction, enumeration of these combinations is still
not an option for realistic number of hoppers (H ≥ 8 is the norm). For instance, for H = 6
and using a realistic value L = 100 grams, the “ladder” constraint still calls for a search
space consisting in 1.6E+09 combinations, which need to be evaluated somehow, via some
objective function (like MSE, which is out of the question) or via simulation, which will
be very time consuming.

As we will show in the next section, excellent solutions can be obtained by optimizing
our objective function over a space that contains only combinations where up to s = 3
hoppers are kept shut in a cycle. Our intuition for searching only combinations where a
low number of hoppers remains shut in a cycle is that, if one has a MWM with a large
number of hoppers, then the properties of the machine will be defeated if we open only a few
hoppers each cycle. It is the combined action of many hoppers what makes the package
contents approach the target weight T from the right and save considerable money to
companies.

We now present a heuristic method that aims at producing solutions that meet the
aforementioned four characteristics.
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4 A heuristic optimization model for determining the

MWM hopper setpoints

The four characteristics identified in the previous section as common to all near-optimal
solutions can be used to devise a heuristic algorithm for setting up an MWM. We therefore
propose to solve:

maximize log|M |+ p(Θ, T ) + c(Θ, T ) (5)

subject to:

E[X[1]] + E[X[K]]

2
> 1.1 · T (6)

µ1 ≥ µ2 ≥ · · · ≥ µH (7)

0 < µi < f · T (8)

The log used in (5) is a standard way of scaling (up) a numerically small determinant. The
upper limit in (8) is aimed to reduce the search space of each setpoint. It was observed
that as H increases, the optimal values of the µi decrease, so increasingly smaller values
of f with f < 1 should be used.

Finally, in addition to constraints (6)-(8) it is necessary to ensure that there will always
be at least a feasible combination in a cycle, i.e., one combination, that in which all
hoppers open, should generate more product than T with very high probability. Under the
assumptions discussed in section 2, this can be expressed as:

Φ


T −

∑H
i=1 µi

α
√∑H

i=1 µ
2
i


 ≤ ǫ

which, since µi > 0 can be written as:

||µ||1 + α||µ||2Φ−1(ǫ) ≥ T (9)

The complete heuristic solution consists in maximizing (5) subject to constraints (6)-(9).
To solve it, we use an Augmented Lagrange routine in R’s Nloptr library (see Appendix B
for details of our R implementation). Since the optimization problem is clearly non-convex,
the optimizer was started from a grid of initial near-feasible trial points (equations (7), (8)
and (9) are satisfied at the initial points, although (6) may not be satisfied). Table 3 shows
results for H = 4 and H = 5 when the same combinations and parameters as for the
solutions in Table 2 were used.

As can be seen, the solutions found with the heuristic approach are very close to those
in Table 2, found by a simple search on a simulator of the machine. For H = 4 the heuristic
provides a slightly better MSE, whereas for H = 5 the opposite occurs. Although charac-
terizing the solutions increases the understanding of the problem, the heuristic method in
this section is only computationally feasible when the number of combinations K consid-
ered is very small. We now present a simple modification of this heuristic which allows a
user to tackle larger problems.
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Property H = 4 H = 5
µ∗ (267.4, 259, 234.6, 57.7) (228.1, 200.3, 161.9, 113.5, 61.0)

(E[X[1]] + E[X[K]])/2 549.9 549.6
Θ 521.0 525.8

-log(det(Σ)) 49.79 89.07

p ≡
∑K

i=1 P{Xi ∈ (T, T + 100)} 3.62 4.79
c(Θ, T ) 6 9

-log(det(M )) 26.2 65.84

Ê(W•|W• > T ) 520.7 514.6

V̂ar(W•|W• > T ) 340.3 132.6

M̂SE(W•|W• > T ) 769.8* 347.0

Table 3: Solutions obtained with the heuristic method (5-9) for H = 4 and H = 5 hoppers, T = 500, α =
0.123, ǫ = 1e − 05, f = 0.6 (H = 4) and f = 0.5 (H = 5), 100 initial trials (up to 2 hoppers can remain
shut). Quantities listed below the line were estimated via simulation for the solution in question. Compare
to Table 2 (* indicates the heuristic gives better MSE solution). The exact expression for E[X[1]] was used.

4.1 Modified optimization heuristic for faster solution

The main computational bottleneck of the heuristic optimization is the exact computation
of the expected values of the extreme values in constraint (6). We observed that while
E[X[K]] could be well approximated with max(Θi), a similar approximation is not possible
for E[X[1]]. As shown in Appendix A, computing this expectation requiresK K-dimensional
Normal integrals, which can only be attempted for small K. Unfortunately, we found
constraint (6) to be critical and hence it cannot be removed.

As an alternative, we could use a fast-to-compute lower bound LB(E[X[1]]) instead of
the computationally expensive E[X[1]] in constraint (6). Bertismas et al. [6] (Theorem
4) give a useful closed-form lower bound for E[X[1]] in a collection of possibly correlated
normals. This bound is given by:

E[X[1]] ≥ LB(E[X[1]]) ≡ −
1

2




K∑

i=1


−µi +

√(
−µi −max

i

{
−µi +

K − 2

2
√
K − 1

σi

})2

+ σ2
i






− 2−K

2
max

{
−µi +

K − 2

2
√
K − 1

σi

}
(10)

Bound (10) is extremely fast to compute compared to the exact moment, as it requires
no integration. Table 4 shows some computation times and MSE values for comparison
purposes when solving (5-9) using the exact moment and its lower bound approximation.

We have coded both versions of the heuristic, using the exact E[X[1]] as described
in Appendix A and the lower bound (10) using R (see Appendix B). The computing
time depends on K, the total number of combinations generated. Table 4 shows the
performance of solutions obtained with the exact moment only up to K = 16 given the
high computational times due to the multidimensional integrals involved. In contrast,
it is notable how the computing time required for finding solutions using the moment
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Time using Time using MSE (ŝd(MSE)) MSE (ŝd(MSE)) P-value for
H (max. LB(E[X[1]]) exact using exact using H1 : exact

# shut, s) K in (6) E[X[1]] in (6) E[X[1]] LB(E[X[1]]) E[X[1]] better

4(2) 11 5.2 457.5 772.2 (7.32) 800.4 (5.78) 0.0000
4(3) 15 6.0 2001.3 701.3 (10.06) 672.6 (18.10) 1.0000
5(2) 16 6.1 3167.2 349.8 (1.54) 391.8 (2.28) 0.0000

Table 4: Computing times (in seconds) for solving the setup weigher problem (6)-(9) using the exact or
lower bound for the smallest order statistic E[X[1]] for problems with few combinations K, considering
combinations where up to s hoppers remain shut in a cycle. In all cases, 100 initial trials T = 500 and
α = 0.123. The average and standard errors of MSEs were estimated based on 50,000 simulated cycles.
Times on an Intel 2.93 GHz Core 2 PC running R.

lower bound scales well with K (Table 5). For the three cases where we are able to
compare the performance of the heuristic with the exact moment and with its lower bound
approximation, the differences in MSE are inconclusive about which one is better overall.
The exact moment provided an statistical better MSE solution in the cases H = 4 (up to
2 shut) and H = 5 (up to 2 shut), but the lower bound approximation provides a better
MSE solution in the case H = 4 (up to 3 shut).

As the number of hoppers increases and one considers combinations where more hoppers
s remain shut, a numerical problem occurs: Σ and hence M become very ill-conditioned,
up to a point when det(Σ) is numerically zero. In our experiments this occurred (for
α = 0.123) when H > 10 and all comb(H, 3) were considered. This ill-conditioning can be
reduced if the combination that consists in all hoppers opening is not considered. This was
implemented in our computer code (Appendix B), which permitted us to solve problems
for H > 10.

4.2 Discussion: Recommendations for setting up an MWM

The characterization of an optimal solution given in section 3 provides useful insights for
how to setup an MWM. In particular, the hopper weights should generate several different
combinations of sums of weights whose densities cluster around the target package weight
(T ) providing many feasible options to the built-in knapsack algorithm to choose from
(characteristic # 2). In order to achieve this, the setting up of the hopper weights should
form a very specific “ladder” of weights {µi} whose values can be obtained with the heuristic
in section 4 and the accompanying R program (see Appendix B).

In addition, there is always one hopper weight that should contain considerable less
product, to help complete a package weight closer to the target a higher proportion of
the times. Table 6 shows the solutions obtained in one of the replicated optimizations
conducted for the cases in Tables 4 and 5. As it can be seen, the last hopper is set
to a substantially lower target mean weight µH than for the rest of the hoppers. We
observed, via simulation, that if the solutions in Table 6 are implemented, the hopper with
the minimum weight will always open in every cycle because it “completes” the package
weight to the desired target.
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H K Solution Simulated performance

(max, # shut, s) (# combs.) time MSE ŝd(MSE)

6(2) 22 6.2 133.8 1.58
7(2) 29 7.7 102.4 0.80
8(2) 37 10.5 80.5 0.92
6(3) 42 10.7 100.4 0.88
9(2) 46 16.9 111.9 1.20
7(3) 64 13.9 34.3 0.68
12(2) 79 17.1 12.8 0.27
8(3) 94 20.9 23.5 1.24
15(2) 121 31.8 9.44 0.41
9(3) 130 36.7 8.98 0.34
12(3) 299 162.1 1.23 0.02
15(3) 575 355.2 0.63 0.03

Table 5: Computing times (in seconds) for obtaining a solution with the lower bound heuristic and the
resulting average and estimated standard error of the MSE values over 10 simulations for larger values
of the number of combinations (K). Times and MSEs comparisons for solutions obtained solving (6)-(9)
with the lower bound LB(E[X[1]]) approximation in (6). Other parameters were α = 0.123 and f = 0.3
(in (8)) for all cases except 6(3), 7(3) and 9(2) where f = 0.4 gave better solutions. MSEs estimated based
on 50,000 simulated cycles (if K ≤ 50) or 10,000 cycles (if K ≥ 50). Times on an Intel 2.93 GHz Core 2
PC running R.

H(s) Best weights found

4(2) 271.3 255.8 237.8 65.6
4(3) 470.7 450.3 80.3 48.3
5(2) 242.0 183.8 160.8 125.5 90.5
6(2) 149.9 149.2 133.9 127.6 108.2 69.7
7(2) 146.0 141.0 106.2 101.6 94.5 81.5 77.2
8(2) 140.1 102.4 101.8 86.5 79.8 77.4 74.2 56.0
6(3) 199.6 186.7 171.3 148.3 136.4 52.7
9(2) 143.9 119.7 108.3 102.4 98.4 46.6 33.9 24.1 19.4
7(3) 173.8 154.4 142.7 129.9 120.7 89.2 60.0
12(2) 106.7 87.6 82.3 66.3 53.5 48.8 47.8 43.0 34.1 31.9 30.5 8.0
8(3) 128.0 126.7 113.8 110.6 107.0 103.9 89.8 65.2
9(3) 146.6 119.6 105.2 93.1 84.2 75.3 69.6 67.9 4.5
12(3) 113.0 105.6 95.8 76.7 67.0 62.8 51.4 37.2 36.7 27.6 26.3 9.1
15(2) 100.1 79.5 70.0 64.9 60.4 55.5 45.4 34.4 31.6 29.3 18.4 15.7 11.1 8.6 6.5
15(3) 142.0 67.4 58.0 56.0 55.8 54.1 46.9 45.3 35.9 24.0 21.0 14.9 11.9 9.0 7.1

Table 6: Best solutions found with our lower bound heuristic corresponding to one of the ten replicates
ran in the cases included in Tables 4 and 5.
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A notable result from our numerical experiments in Table 5 is how adding more com-
binations by increasing the maximum number of hoppers shut (from s = 2 to s = 3 shut)
but keeping the number of hoppers constant has a drastic decreasing effect in the average
MSE, e.g., from 80.5 to 23.5 (H = 8), from 111.9 to 8.98 (H = 9), and from 12.8 to
1.23 (H = 12). For most practical purposes, the MSE’s obtained (one gram of product)
in the types of products packed with MWMs (with no package underweighted) implies that
the solutions obtained with the proposed heuristic method are “optimal enough”. These
solutions (and the corresponding MSE analyses) can also be used to justify the acquisition
of MWMs with large numbers of hoppers.

5 Conclusions and further research

In this paper, the setup problem of a multihead weigher machine has been studied. The
hopper weight settings provided by the proposed optimization approaches will result in
substantial savings over standard ad-hoc setup procedures used for companies utilizing
MWMs.

A heuristic optimization model was developed based on a detailed characterization of
what constitutes a near optimal solution to the MWM setup problem. The heuristic re-
quires computations of moments of order statistics of correlated variables, and this becomes
computationally intractable even for moderate size problems. Using a lower bound approx-
imation of the moments of smallest order statistics proved to be considerably faster. The
lower bound heuristic is applicable for MWMs with several hoppers, providing excellent
solutions by considering only combinations that leave up to 3 hoppers shut in a cycle,
reducing the search space considerably.

The behavior of the optimal solutions for MWM’s with different number of hoppers
indicate how the optimal setpoint weights per hopper decrease as the number of hoppers
increases, with the weights in the best solutions found always forming a “ladder” of decreas-
ing weights, and one hopper with considerably lowest weight. It was shown how the mean
square error of the packed weights decreases as the number of combinations of hoppers
increases. Furthermore, great accuracy in packaging with minimum product “given away”
can be obtained with an optimally setup MWM with a large number of hoppers (H > 10)
if only combinations with up to 3 hoppers remaining shut are considered. The analysis
presented in this paper may also be used to justify the adoption of advanced MWMs with
several hoppers currently available in the market. We make available an implementation
of the proposed lower bound heuristic written in the R language (see Appendix B and
supplementary material) which could be used for either tuning an MWM at startup or to
justify the purchase of a machine with more hoppers.

Further research can be directed to study other types of MWMs with more complex
architecture and to study optimal setup problems of MWMs under objective functions dif-
ferent than the mean square error criterion investigated herein. For more complex MWMs
with a very large number of hoppers H, or that mix several types of product in the same
package, a simulation-optimization approach may be necessary to find its optimal settings.
Beretta et al. [5] have recently developed a simulation-optimization approach for MWMs
which includes economic considerations such as costs assigned to overfilled packages (rather
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than the MSE objective used here) and other operational costs, as commonly done in the
canning literature (e.g., [2, 13]).

References

[1] Afonja, B., (1972), “The Moments of the Maximum of Correlated Normal and t-
Variates”, Journal of the Royal Statistical Society. Series B (Methodological), Vol. 34,
No. 2, pp. 251-262.

[2] Arcelus, F.J., and Rahim, M.A., (1996), “Reducing performance variation in the can-
ning problem”, European Journal of Operational Research, 94, pp. 477-487.

[3] Beretta, A. (2010). Procedura RSM per la configurazione di una pesatrice multitesta,
Unpublished Master’s thesis, (in Italian), Facolta’ di Ingegneria dei Sistemi, Politec-
nico di Milano, Milano, Italy.

[4] Beretta, A., and Semeraro, Q., (2012), “On a RSM Approach to the Multihead
Weigher Configuration”, Proceedings of the 11th Biennial Conference on Engineer-
ing Systems Design and Analysis, ASME 2012, Vol. 1, pp. 225-233.

[5] Beretta, A., Semeraro, Q., and Del Castillo, E., (2016), “On the Multihead Weigher
Machine Setup Problem”, Packaging Technology and Science, 29, pp. 175-188.

[6] Bertsimas, D., Natarajan, K., and Chung-Piaw, T., (2006), “Tight Bounds on Ex-
pected Order Statistics”, Probability in the Engineering and Informational Sciences,
Vol. 20, No. 4, pp. 667-686.

[7] James, R.J.W., and Storer, R.H., (2005), “Techniques for solving subset sum prob-
lems within a given tolerance,” International Transactions in Operational Research,12,
pp.437-453.

[8] Kameoka, K., Nakatani, M., and Inui, N., (2000). “Phenomena in probability and
statistics found in a combinatorial weigher” (in Japanese). Transactions of the Society
of Instrument and Control Engineers, Vol. 36, pp. 388394.

[9] Karuno, Y., Nagamochi, H., and Wang, X., (2007). “Bi-criteria food packing by dy-
namic programming”, J. of the Operations Research Society of Japan, 50(4), pp. 376-
389.

[10] Karuno, Y., Nagamochi, H., and Wang, X., (2010). “Optimization problems and al-
gorithms in double-layered food packing systems”, J. of Advanced Mechanical Design,
Systems, and Manufacturing, 4(3), pp. 605-615.

[11] Imahori, S., Karuno, Y., Nagamochi, H., and Wang, X., (2011). “Kansei engineering,
humans and computers: efficient dynamic programming algorithms for combinatorial
food packing problems”, , Int. J. of Biometrics, 3(3), pp. 228-245.

[12] Ishida Corporation Ltd., Japan, http://www.ishida.com/

17



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

[13] Pollock, S., and Golhar, D., (1998). “The canning problem revisited: the case of
capacitated production and fixed demand”, European Journal of Operational Research,
105, pp. 475-482.

[14] Leppard, P., and Tallis, G.M., (1989), “Algorithm AS 249: Evaluation of the Mean
and Covariance of the Truncated Multinormal Distribution”, Journal of the Royal
Statistical Society. Series C (Applied Statistics), Vol. 38, No. 3, pp. 543-553.

[15] Prekopa, A. (1995). Stochastic Programming, Kluwer Academic Publishers, Dordrecht,
Boston.

[16] Tallis, G.M., (1965), “Plane Truncation in Normal Populations”, Journal of the Royal
Statistical Society. Series B (Methodological), Vol. 27, No. 2, pp. 301-307.

[17] Wilhelm, S., (2013), “Package tmvtnorm”, March 30, 2013,
http://www.r-project.org/ downloaded April 2013.

[18] Wang, B., and Mazumder, P., (2005), “Multivariate Normal Distribution Based Statis-
tical Timing Analysis Using Global Projection and Local Expansion”, Proceedings of
the 18th International Conference on VLSI Design held jointly with 4th International
Conference on Embedded Systems Design (VLSID05),

Appendix A. Exact computations for the moments of

the minimum of K unconstrained, correlated normals

Let X [1] = min(X1, X2, ..., XK) = min(X). Theorem 1 below provides expressions for
E(X[1]) and Var(X[1]) when X is a multivariate normal with arbitrary mean and covariance
matrix, not subject to any constraint. Afonja [1] provided expressions for the computation
of the moments of the maximum order statistics, which we modify in the Theorem below
for the moments of the minimum order statistic. In the theorem, φK(x;Θ,Σ) denotes the
(multivariate normal) pdf of X with Θ = (θ1, ..., θK)

′, Σ = {σij}, and φK(Z;R) denotes
the pdf of a standard multivariate normal with correlation matrix R.

Theorem 1 . Let X ∼ N(µ,Σ) be a K-dimensional normal random variable. The rth

moment of X[1] about the origin is given by

m′
r(X[1]) =

K∑

i=1

r∑

j=0

(
r
j

)
θr−j
i σj

i mj(Zi)
bi

Ri

where mj(Zi) denotes the marginal jth moment of a truncated standardized multivariate
normal which is given by

mj(Zi)
bi

Ri

=

∫ bi1

−∞

∫ bi2

−∞

· · ·
∫ biK

−∞

Zj
i φK(Z;Ri) dZ
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with the upper limits of integration b′i = (bi1, ..., biK) equal to:

bij =

{
θj−θi√

σii+σjj−2σij

, j 6= i

∞, j = i
(11)

and the correlation matrix Ri is given by:

Ri =

{
σii − σij′ − σij + σjj′√

σii + σjj − 2σij

√
σii + σj′j′ − 2σij′

≡ ri,jj′

}

j′ 6=i, j 6=i

(12)

Proof. If X[1] = min(X) then

E(Xr
[1]) ≡ m′

r(X[1]) =

∫ ∞

−∞

· · ·
∫ ∞

−∞

min(X)rφK(X;Θ,Σ) dX

where X[1] = Xi in the region Ai = {X : Xi < Xj; ∀j 6= i,−∞ < Xi <∞} with
⋃K

i=1 Ai =
EK and Ai ∩ Aj = ∅(i 6= j), except for sets of zero measure where Xi = Xj for some i, j.
Note how regions Ai correspond, for K = 2, to areas number 1 and 4 in Figure 3 for the
unconstrained case, i.e., when T = 0. Therefore,

E(X[1])
r =

∫
⋃K

i=1
Ai

min(X)rφK(X;Θ,Σ) dX

=

∫

A1

Xr
1φK(X;Θ,Σ) dX +

∫

A2

Xr
2φK(X;Θ,Σ) dX + · · ·+

∫

AK

Xr
KφK(X;Θ,Σ) dX

=
K∑

i=1

∫

Ai

Xr
i φK(X;Θ,Σ) dX

=
K∑

i=1

∫

Ai

(θi + σiZi)
r φK(Z;R) dZ

where the last equality follows from Zi = (Xi − θi)/σi (σi ≡
√
σii), i = 1, ..., K.

Following Wang and Mazumder (2005), we transform the integration region by redefin-
ing the Zj variables for j 6= i according to

Ai =

{
Z : −∞ < Zj ≡

Xi −Xj − (θi − θj)√
Var(Xi −Xj)

<
θj − θi√

Var(Xi −Xj)
≡ bij ; ∀j 6= i,−∞ < Zi ≡

Xi − θi
σi

<∞
}

and form the K × 1 vector

Z =




Zi ≡ Xi−θi
σi

Z1 ≡ Xi−X1−(θi−θ1)√
Var(Xi−X1)

Z2 ≡ Xi−X2−(θi−θ2)√
Var(Xi−X2)

...

ZK ≡ Xi−XK−(θi−θK)√
Var(Xi−XK)




(13)
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where the 2nd to Kth elements below the line do not include Zi. Denote by Ri the K×K
covariance matrix of Z with entries as in (12), which, from the definition of Z (13) equals
to:

Ri = {Corr(Xi −Xj, Xi −X ′
j)}j 6=i,j′ 6=i.

We then have:

E(Xr
[1]) =

K∑

i=1

∫ bi

−∞

(θi + σi Zi)
r φK(Z;Ri) dZ

where b′i = (bi1, bi2, ..., biK) (bii = ∞) as in (11). Evaluating the binomial term inside the
integral we finally get:

E(Xr
[1]) ≡ m′

r(X
r
[1]) =

K∑

i=1

r∑

j=0

(
r
j

)
θr−j
i σj

i mj(Zi)
bi

Ri

(14)

where the moments of a truncated, standard multivariate normal are

mj(Zi)
bi

Ri

=

∫ bi

−∞

Zj
i φK(Z;Ri) dZ QED. (15)

Computational details for the first two moments of the smallest

order statistic

Formula (14) in Theorem 1 gives for r = 1:

E(X[1]) = E[min(X)] =
K∑

i=1

(
θi m0(Zi)

bi

Ri

+ σi m1(Zi)
bi

Ri

)
(16)

and for r = 2:

Var(X[1]) = Var[min(X)] = E(X2
[1])− E(X[1])

2

=
K∑

i=1

(
σ2
i m2(Zi)

bi

Ri

+ 2θi σ2 m1(Zi)
bi

Ri

+ θ2i m0(Zi)
bi

Ri

)
− E(X[1])

2 (17)

Tallis [16, 14] provides algorithms for computing the moments of a truncated multi-
variate normal (implemented in R package tmvtnorm) which can in principle be used to
compute (15) for j = 0, 1, 2 and hence we would only compute (16) and (17) and be done,
as suggested by Afonja [1]. However, this is too slow, and a better approach is to use
a recursive result from Wang and Mazumder [18]. These authors perform the “trick” of
putting the ith element of a vector in row 1 (as done in (13) above) which simplifies the
handling of subindices in the computations required. The formulae by these authors have
some typos that we correct below.
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For any upper bounds B and any standard normal random vector Y with correlation
matrix V :

m0(Y1)
B
V =

∫ ∞

−∞

∫ b1

−∞

. . .

∫ bj

−∞

∫ bp

−∞︸ ︷︷ ︸
j 6=i

φp(Y ,V )dY (18)

(assuming hereon that all vectors have their element i put in element 1). Note that inte-
gration over i is for all reals, so this is really an integral over p− 1 dimensions).

In addition, if ρ1,j = corr(Y1, Yj) (j 6= i) and φ(b) is the standard normal density
evaluated at b, Wang and Mazumder provide, for r ∈ {1, 2} the (here corrected) recursive
expression:

mr(Y1)
B
V = (r−1)mr−2(Y1)

B
V +

K∑

j=2

[
ρ1,jφ(bj)

r−1∑

l=0

(
r − 1
l

)
(1− ρ21,j)

r−l−1

2 (−ρ1,jbj)lmr−l−1(Y1)
Bj

V j

]

(19)

where

Bj =



Y (j) : −∞ < Y1 <∞,−∞ ≤ Yl ≤

bl − bjρl,j√
1− ρ2l,j

, l = 2, 3, ..., K, l 6= j



 .

We define a vector Y (j), consisting of all elements in Y except of Yj. Matrix V j in (19)
contains the partial correlations between Ym and Yn given Yj, for any Ym and Yn in Y (j)

and is therefore of one dimension less than the covariance of the calling vector Y :

V j =





ρm,n − ρj,mρj,n√
1− ρ2j,m

√
1− ρ2j,n





m,n 6=j

(20)

where ρm,n ≡ ri,mn computed as in (12) above.

Equation (19) results, for r = 1 in:

m1(Y1)
B
V =

K∑

l=2

ρ1,lφ(bl)m0(Y1)
Bl

V l

(21)

and for r=2 we get:

m2(Y1)
B
V = m0(Yi)

B
V +

K∑

j=2

ρ1,jφ(bj)
[
(1− ρ21,j)

1/2 m1(Y1)
Bj

V j

− (ρ1,j bj) m0(Y1)
Bj

V j

]
(22)

Using (16), (18) and (21) we can obtain E(X[1]). Substituting (21) and (22) into the
variance formulae (17) we get Var(X[1]). However, the computation of Var(X[1]) needs to
be done with care as the mr(Y ) functions call each other recursively with vector and matrix
arguments of decreasing dimension.

Specifically, in the second call to m0(Y1) we need to form the (K−2)×1 vector Y (j,l), a
vector equal to Y (j) without element l. V j,l is then the (K−2)×(K−2) partial correlation

21
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matrix between the elements of Y (j,l) given Yl. These partial correlations are obtained via
(20) but using the entries in matrix V j rather than the entries in matrix Ri. Likewise,
Bj,l is obtained using the expressions for the bounds in Bj, but using the correlations in
V j instead of those in Ri.

We can now give a summary algorithm.

Algorithm 1 E(X[1]) and Var(X[1]) computation

1: Given: X ∼ N(Θ,Σ), a K-dimensional vector with Θ and Σ known.
2: for i = 1 to K do do

3: Y = Zi, B = bi using (11), V = Ri using (12). This requires putting element i in
position 1, so Z1 ← Zi. This must be reflected in matrix Ri.

4: Evaluate m0(Z1)
B
V

using (18)

5: Evaluate m1(Z1)
B
V

using (21). This is turns requires m0(Z1)
Bj

V j

6: Evaluate m2(Z1)
B
V

using (22). This is turns requires m1(Z1)
Bj

V j

which in turn

requires m0(Z1)
Bj,l

V j,l

7: Accumulate sums over i for E(X[1]) (16) and Var(X[1]) (17)
8: end for

9: Return (16) and (17), the first two moments of the smallest order statistics of the
possibly correlated normal variables in X.

Appendix B. R software implementation of heuristic

method

The heuristic in section 4 was implemented in R (program OptimizeWeigher.R). This pro-
gram contains function constraintsAll which evaluates the constraints (6)-(9) for given
µ, T, and α. Function computeDet evaluates the objective function (5). The program also
allows the user to apply the modified lower bound heuristic which uses (10) in constraint
(6) –using the heuristic is actually the default. The program contains function computeMSD

(not used in the heuristic of section 4) which evaluates expressions for E[X[1]], Var[X[1]],
E[X[K]] and Var[X[K]], the first two moments of the two extreme order statistics of a gen-
eral K-dimensional normal distributed variable, a function that may be useful in other
Applied Statistical problems.
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