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Abstract. Nowadays, in a user centered design approach, one of the main parameters for assessing the well-being 
of building spaces is Indoor Air Quality (IAQ), which can assure a crucial level of comfort and optimal conditions 
to preserve users’ productivity and cognitive performance. Research works in this direction mention that with 1000 
ppm of CO2 concentration, a reduction of the users’ cognitive performance about 11-23% is reported and, for a 
concentration of 2500 ppm, the decrease reaches 44-94% compared to the performance at 600 ppm. Consequently, 
a correct buildings ventilation is crucial. The use of mechanical systems seems possibly to avoid the problem but 
indeed the existing buildings often have outdated and not flexible systems to face changing needs. Thereby, the 
ventilation rates are not related to people density and the static setup of HVAC systems might be an issue to 
maintain an acceptable level of CO2 concentration. Moreover, in school buildings, mechanical ventilation is not 
diffusely adopted and insufficient rates of fresh air supplied to the classrooms are connected with inappropriate 
IAQ, occurrence of SBS symptoms among pupils. Current technology provides easy measurement of CO2 through 
dedicated sensors networks. The present research uses the pilot educational building eLUX, located in the Smart 
Campus of the University of Brescia, to investigate the possibility to integrate IAQ data generated by IoT sensors 
to improve the estimation of occupancy rate in the educational spaces. The aim is to underline the relevance of the 
parameter to regulate properly the HVAC systems and to define opening/closing patterns for automated windows 
to enhance IAQ. The data collected during the monitoring phase are useful to train an Artificial Neural Network 
(ANN) that through an IoT communication protocol could actuate the ventilation rate control. 

1. Introduction 
The wellbeing into the indoor space is a fundamental accomplishment of the buildings where users spend 
their everyday life nonetheless the standard indoor conditions are not a satisfaction guarantee for a 
twofold reason a) the standard conditions, given by the regulations, are not always respected and b) the 
user is not standard. Studies in the office spaces show that the users experience dissatisfaction in 10% 
of that cases every day and 28% every week. The possibility to interact and customize their working 
spaces allows the users to feel most available to extend their comfort threshold beyond the standard 
levels and increase the potential of the adaptive comfort given by the building behavior. This 
individualization principle also enhance the productivity and smartness of the workers with an individual 
and social benefit. The paradigm of the Cognitive Building upsurges the concept of modulation of the 
indoor conditions providing an automatic response to the users’ feedback or preferences learned, through 
an IoT infrastructure [1]. In the IoT-based smart city the variability of input and output can be managed 
through the building digital twins. Indoor conditions are critical also in the educational buildings and 
researches demonstrated that insufficient ventilation [2], increased CO2 concentration and decrease of 
IAQ [3], implies weaker results in the exams pass rate [4]. The cognitive performance in the 
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accomplishment of learning task and knowledge restitution suffers of increased value of CO2 
concentration. Many researches conveyed that ventilation rates in school buildings are often 
substandard, and it is not exceptional to register 3000 ppm of CO2 concentration in the classrooms. Table 
1 shows the air parameters affecting the learning performance in the educational spaces [5].  

Table 1. Parameters with standard and recommended value with outcomes on learning performance. 

Parameters Standard values Recommended values Outcomes Standard 

A
ir 

Indoor Air Temperature 20±2 20-25 +2-4% for each -1°C  
 

ISO 7730 
Ventilation rate 3 8 +7% from 5 to 15 
CO2 emissions - < 1000 +1-2.5% 

VOC emissions - <200 - 

2. Case study 
The analysis focuses on the eLUX - energy Laboratory as University eXpo [6], the demonstrator 
building  at the Smart Campus of the University of Brescia [7]. The building, located in the Faculty of 
Engineering, develops the concept of cognitive building and uses the digital twin of the educational 
building to perform a data mapping of the data coming from the sensors installed in the classrooms. In 
the present study one of the two ICT laboratories in the underground floor (namely MLAB2) are adopted 
as case study. All the spaces, i.e. n. 2 laboratories in the underground floor; n. 2 lecture rooms in the 
ground floor; n. 1 auditorium in the first floor and n. 2 levels of atrium and the main eLUX lab in the 
underground floor, are sensorized. Data are gathered and visualized in the classroom to inform the users 
and mined to unveil failures and issues in the educational spaces. The Internet of Things (IoT) paradigm 
is used in the modeling of the data generated by the sensors and in the communication protocols used to 
exchange this data (based on RESTful Web Services). In such a way, it is possible a horizontal 
integration among the devices (sensors and actuators) of different domains (HVAC, EMS, Building 
Automation), and it easy to export data to machine learning applications. The ANN model is feed with 
data directly provided by the sensors through a dedicated IoT interface. The actuation commands (e.g. 
the opening of motorized windows) can be sent to the actuator on the field (e.g. motors) by means of the 
same IoT interface. The living lab is ongoing since October 2017.  

3. Methodology  
3.1. ANN for CO2 prediction 
A common model used for modeling temporal data is the Recurrent Neural Network (RNN). RNNs are 
neural networks that are able to learn sequences that are not composed of independent, identically 
distributed observations. Rather, they are able to elicit the context of observations within sequences and 
accurately classify sequences that have strong temporal correlations [8]. In RNN, the information cycles 
through a loop. When it makes a decision, it takes into consideration the current input and also what it 
has learned from the inputs it received previously. An historical limitation of RNN is the poor 
performance when training models with more than 10–20 time steps [9], but this weakness can be 
overcome using Long Short-Term Memory (LSTM) layer. A common LSTM unit is composed of a cell, 
an input gate, an output gate and a forget gate. The cell remembers values over arbitrary time intervals 
and the three gates regulate the flow of information into and out of the cell. LSTM solves complex, 
artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms [10].  
The network used in this research is shown in Figure 1, where: 

• Layer 1 (BR): is a recurrent layer that takes a vector and produces vector of size n. A recurrent 
layer is able to process a sequence of arbitrary length by recursively applying a transition 
function. The activation of the hidden states at timestamp t is computed as a function f of the 
current input symbol xt and the previous hidden states ht−1; 

• Layer 2 (LSTM): is a layer that contains a recurrently connected memory cells and three 
multiplicative units—the input, output and forget gates—that provide continuous analogues of 
write, read and reset operations for the cells; 
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• Layer 3 (LSTM): is another Long Short Term Memory layer; 
• Layer 4 (SL): represents a net that takes a sequence of inputs and returns the last element of the 

sequence; 
• Layer 5: is a fully connected net layer that computes w.x+b with output vector of size n. 

 
Figure 1. Structure of the neural network adopted in the study. 

3.2. Dataset and ANN training 
The initial dataset was made of 1078 records given by the sensors, 22 records each day representing a 
value of CO2 each half an hour from 8 am to 6.30 pm. The dataset was split into two parts, the first part 
containing the first 75% of the records was used to train the ANN, the second 25% was used as test. 

4. Data preparation 
The analyses were focused on the winter (heated) period from 15/10/2017 to 22/12/2017. The whole 
dataset consists of 570 records of CO2 measures and 17470 records of Temperature and Relative 
Humidity measures. Measures are registered only if a sensor is activated. Thus, data corresponding to 
the two sensors (n. 1 for CO2 and n. 1 for T, RH) are be collected separately and at different time 
intervals. Consequently, some work on data must be done to make them comparable. CO2, T and RH 
data were interpolated to obtain a value of each parameters every 30 minutes from 8 am to 18.30 am. 
Figure 2, for example, shows the evolution of the measured CO2 in the chosen period of time and 
compares it to the interpolated values. 

 
Figure 2. Comparison between measured and interpolated data of CO2 concentration in MLAB2. 

5. Comfort and indoor air quality in winter time inside MLAB2 
5.1. States of comfort conditions given by combined parameters 
The comfort conditions are related to the values assumed by the main analysis parameters and 
thresholds to define the comfort level are introduced base on international and national standard as 
reported in Table 2. The three positions of the parameter referred to the two comfort thresholds entails 
n. 3 condition for each parameter (Table 2). The three states (below L1, between L1 and L2 and above 
L2) for the three measured parameters (T, RH and CO2) create n. 27 possible states of indoor 
conditions. They have been ordered and numerated starting from best-case scenario (number 1) to the 
worst-case scenario (number 27). The best-case scenario considers: a) both the indoor air temperature 
and the relative humidity in the comfort range between L1 and L2; b) CO2 concentration lower than 
600 ppm which means a healthy indoor air quality. The average condition (13) is defined when an 
issue is perceived however the condition is not strongly critical: i.e. the temperature is below 20°C (a 
little bit cold), the relative humidity is lower than 30% (dry air perceived) and CO2 concentration is 
between 600 and 1000 ppm (between fresh air and lower limit of fresh air). The critical conditions 
are defined when temperature is higher than 22°C (too warm implies a reduction of optimal cognitive 
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performance), relative humidity above 45% (wet perception) and CO2 concentration higher than 1000 
ppm. 

Table 2. Thresholds for indoor comfort conditions and IAQ: comfort range is between L1 and L2. 

Parameter Symbol L1 L2 
Carbon dioxide concentration CO2 600 1000 
Indoor air temperature T 20 22 
Minimum Relative Humidity RH min 35 30 
Maximum Relative Humidity RH max 40 45 

5.2. Indoor condition mapping 
To ease the visualization of the comfort conditions and indoor air quality an hourly mean of the three 
measured parameters was computed and depicted in Figure 3. The horizontal axis represents the hours 
of the day, from 8 am to 6 pm, and the vertical axis represents the days of analyzed time span.  
Figure 3 shows how a) CO2 concentration, b) indoor air temperature and c) relative humidity changes 
during the days from 16/10/17 to 22/10/17. 

5.3. Prediction of the global comfort 
Carefully analyzing  

Figure 3, it is possible to observe that the 27 conditions of comfort are not always present at all hours 
of the day. In particular, the maximum variability occurs at 12 o'clock and at 14 o'clock (Figure 3).  

 

Figure 3. Data mapping for hours in the monitoring period: indoor air temperature (T), relative 
humidity (RH), CO2 concentration (CO2) and states of the combined parameters (MLAB2 

monitoring period 16/10/17 to 22/12/17). 

Since the phenomenon described by the comfort condition values is not very complex, it was 
considered possible to construct a model to forecast the state of comfort using a traditional forecasting 
model such as the Markov model that is simpler and perform better compared to deep learning models 
in certain cases [11]. Simply stated, Markov model is a model that obeys Markov property. A 
stochastic process has the Markov property if the conditional probability distribution of future states 
of the process depends only upon the present state, not on the sequence of events that preceded it. 
Assuming that the sequence of measured hourly global comfort condition has the Markov property; 
it is possible to predict the global comfort in the next hour with a very high accuracy. For example, 
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given the global comfort in the first four hours of the day, from 8 am to 11 am, the predicted values 
of global comfort for 12 am have a Pearson's correlation coefficient R2 of more than 0.91 (Figure 4). 

  
Figure 4. Comparison between predicted and measured global comfort. 

6. Results 
The results of the training process are shown in Figure 5, on the training dataset the Pearson's correlation 
coefficient R2 between the measured values and the ANN forecasts is 0.93, the one computed for the 
test dataset is 0.88 and, eventually, the correlation between measured values and forecasts on the whole 
dataset is almost 0.92. 

   

Figure 5. Structure Performance of the ANN after the training. 

These very high correlations were obtained by the ANN despite the difficulty of the dataset,. If we plot 
the difference between the CO2 value at time t+1 and the value at time t on the y-axis of a graph where 
on the x-axis there are the time step, we see that there are big leaps between two successive 
measurements, some even up to 800 ppm (Figure 6a).  

a b 

 
 

Figure 6. a) Differences between two successive CO2 values; b) Comparison between the CO2 
concentration predicted by the trained neural network and the actual values during the test period. 

These differences are due, among other reasons, to the occasional use of the MLAB2 classroom and 
make the use of classical techniques to predict time series like parametric methods unsuitable on this 
dataset. Another view of the prediction capabilities of the trained ANN is given in Figure 6b. It shows 
a comparison between the CO2 concentration in ppm predicted by the trained neural network and the 
actual values during the test period, i.e. the period of time when the data in the test dataset were collected. 
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The mean square error (MSE) in the test period is around 75 ppm against an average CO2 measured of 
712 ppm, thus the MSE is more or less 10.6% of the average CO2.  

7. Conclusions 
Daily users are struggling with harsh comfort condition in the existing educational facilities and adaptive 
behaviour can reduce the commonly reported dissatisfaction that is related for the 35% to indoor air 
temperature and 63% to CO2 concentration higher than 1000-1500 ppm (stuffy air perception). The 
possibility to calibrate the ventilation according to occupancy level and when comfort parameters such 
as temperature due to external factors (i.e. solar radiation) grows, could promote IAQ, users’ learning 
performance and building energy saving. Using heat recovery systems coupled with HVAC implies a 
70% thermal losses decrease due to higher ventilation rates required when 1000 ppm of CO2 are 
exceeded and automated systems can preserve the IAQ and the learning and cognitive performance of 
the students. The main problem is to face the outdated systems in existing buildings while the IoT 
network development is not intrusive in the BACS implementation for real-time energy management. 
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