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Abstract

Laser Power Bed Fusion (LPBF) has the ability to produce three-dimensional (3D)

lightweight metal parts with complex shapes. Extensive investigations have been con-

ducted to tackle build accuracy problems caused by shape complexity. For metal parts

with stringent requirements, surface roughness, laser beam positioning error, and part

location effect can all affect the shape accuracy of LPBF built products. This study de-

velops a data-driven predictive approach as a promising solution for geometric accuracy

improvement in LPBF processes. To address the shape complexity issue, a prescrip-

tive modeling approach is adopted to minimize geometrical deviations of built products

through compensating CAD models, as opposed to changing process parameters. It

allows us to predict and control a wide range of shapes starting from a limited set of

measurements on basic benchmark geometries. An error decomposition and compen-

sation scheme is developed to decouple the influence from different error components

and to reduce the shape deviations caused by part geometrical deviation, laser beam

positioning error and other location effects simultaneously via an integrated modeling

and compensation framework. Experimentation and data collection are conducted to

investigate error sources and to validate the developed modeling and accuracy control

methods.
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1 Introduction

The metal Additive Manufacturing (AM) market has been growing at double-digit rates in

recent years [1]. Among various technologies suitable to produce metal parts on a layer-by-

layer basis, Laser Power Bed Fusion (LPBF) uses laser to locally melt fine metal powder

along pre-defined scanning paths [2]. It has the capability to produce parts with customized

complex shapes and desired mechanical properties. Despite successful demonstrations in

highly regulated aerospace and healthcare sectors, LPBF faces quality issues such as ge-

ometric distortions, surface defects, poor dimensional accuracy, porosity, residual stresses,

cracks and delamination, balling phenomena, microstructural inhomogeneities and impuri-

ties. Comprehensive reviews of these defects, including their root causes and final impacts

on part quality and mechanical properties can be found in [3–9].

Dimensional and geometric deviations in LPBF can be further classified into: i) shrinkage

and oversize effects, ii) warping, curling and other geometrical distortions, iii) dross formation

at down-facing surfaces, and iv) super-elevated edges. To address these issues, efforts have

been devoted to relating the energy input from the laser source to the fusion of materials and

understanding the effects of laser-material interactions on build quality for optimal selection

of process settings and scanning strategies (please refer to [5] and references therein). Indeed,

process parameters determine the melt pool size and stability, which affect not only part

microstructures, but also track geometries, and consequently the shapes and dimensions of

the end-part. For example, part shrinkage and over-size effects in LPBF are observed and

investigated in [10–12].

In addition, proper optical system alignment, mirror quality, perfection of the f − θ lens,

and the uniformity of laser beam profile across the build area have been attributed to in-

plane geometrical accuracy as well [13]. The study in [14] points out that a mis-calibrated

system may result in parts with inaccurate final dimensions. An elliptical distortion of the

laser spot in LPBF may occur near the edges of the baseplate due to high scanner deflection

angles, which inflates the local dimensional and geometrical inaccuracy, depending on the
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part location on the baseplate [14].

Warping effects are believed to be influenced by heat dissipation mechanisms and the

development of thermal stresses during the build [11]. Non-uniform thermal expansion and

part contraction lead to the so-called curling phenomenon [2]. The study in [15] shows

that this phenomenon is usually associated with an uneven shrinkage between the top and

the bottom of overhanging areas. A combination of shrinking and warping effects yield

curved profiles of down-facing surfaces intended to be flat. Thermal stress-induced distortions

can be mitigated by pre-heating the base plate [16], a procedure commonly adopted by

industrial LPBF systems to avoid abrupt temperature changes between successive layers for

alleviating thermal stresses. An alternative solution adapts process parameters to the local

geometries and sizes of the part [11]. In the presence of down-facing surfaces, dross formation

and bad contours are known to be caused by a lack or an improper design of supporting

structures [17]. The study in [17] proposes a feedback control method to reduce surface

roughness by adjusting laser power based on in-situ melt pool measurement.

Super-elevated edge represents another type of out-of-plane geometrical distortion, fea-

tured by elevated ridges of the solidified material. It not only affects end-part quality, but

also induces the propagation of defects due to possible interferences with the powder re-

coating system. The work in [18] discusses the effect of process parameters and scanning

strategies on the flatness of scanned surfaces and the generation of super-elevated edges.

Despite a wide literature devoted to the study of the final part quality and the factors that

affect the process accuracy, currently a comprehensive causal model is hard to be established

due the process complexity. A data-driven predictive approach is therefore a promising

alternative to improve the geometric accuracy for LPBF processes. We aim to contribute to

the LPBF literature from two aspects. First, we propose a data-analytical modeling approach

that allows us to minimize geometrical deviations through compensating CAD models rather

than varying the process parameters. Second, the proposed modeling approach is prescriptive

in the sense that it allows us to predict and control the geometric deviations of arbitrary
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shapes starting from a limited set of measurements on basic benchmark geometries. The

proposed modeling approach applies to in-plane geometric and dimensional deviations.

Our prescriptive modeling approach is based on the in-plane shape deviation modeling

and compensation strategies established in a series of works for AM built products [19–27].

Methodology validation has been conducted and successfully demonstrated in the stere-

olithography (SLA) processes not only for simple shapes such as cylinders [19] or poly-

hedrons [21], but also for arbitrary freeform shapes [27]. The strategy has also been ex-

tended to fused deposition modeling (FDM) processes [28, 29] and out-of-plane geometric

modeling [30–32]. However, extending the existing approach to LPBF processes faces new

challenges:

• Surface roughness coupled with shape deviation profile: When LPBF built parts are

small in size, the shape deviation error may be comparable in magnitude to the surface

roughness, causing large uncertainty in the determination of the actual shape profile.

• Laser beam positioning error : Unlike the projection based AM processes, the position

accuracy of laser beam in LPBF (and other laser based AM processes) may vary with

location, leading to location-dependent positioning error.

• Additional machine-dependent local effects : further location-dependent effects on the

shape deviation profile may be introduced by specific properties of the LPBF system

used to fabricate the part. They can be caused by non-uniform inert gas flow within the

building chamber or other inaccuracies of the equipment used for chamber environmen-

tal control. For example, non-laminar gas flow may cause input energy attenuation,

gas entrapment, spatter contamination, etc. Please refer to [33,34] for details.

We propose an integrated experimental and modeling approach to improve the in-plane

geometrical part quality in LPBF processes by addressing these new issues due to surface

roughness, laser beam positioning error, and other location effects.
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Following the introduction, our proposed strategy of prescriptive in-plane (x − y plane)

shape deviation modeling in LPBF processes will first be formulated in Section 2. Section 3

illustrates the prescriptive in-plane shape deviation modeling for arbitrary shapes considering

surface roughness. Section 4 and Section 5 introduce the analysis and prediction method for

laser beam positioning error and machine-dependent location effects, respectively. A final

summary and conclusion is given in Section 6.

2 Proposed Strategy

Our goal is to improve the geometrical accuracy by reducing shape deviations. Issues arising

from LPBF such as surface roughness, laser beam positioning error, and other location

effects, have not been considered in [19,21,24,27].

(a) Modeling procedure (b) Implementation procedure

Figure 1: Flow chart of proposed strategy for accuracy improvement

To fill the gap and establish a data-analytical approach for LPBF processes, we propose

in Fig. 1a a modeling procedures based on LPBF experimentation. Two sets of experiments

are required: (1) location effect experimentation for investigating the laser beam positioning

error and other location effects; and (2) shape deviation experimentation for establishing

shape deviation models. Metrology effort includes surface roughness measurement and CMM

5



(coordinate measurement machine) measurement of geometrical shapes.

This modeling procedure involves three components:

• Prescriptive shape deviation modeling for freeform shapes in LPBF processes consider-

ing surface roughness : The actual measured deviation of product boundary is denoted

by ∆r(θ). (Please see details in Section 3.2). It can be represented as: ∆r(θ) = f(·)+εθ,

where θ is the location angle under the Polar Coordinate System (PCS), ∆r(θ) is the

shape deviation along radius direction at angle θ, f(·) is the shape deviation model,

and error term εθ ∼ N(0, σ2). The prescriptive model f(·) will be initially established

with a few test cases from shape deviation experiments (Fig. 1a). To filter out the

influence of surface roughness and achieve better prediction of shape deviations, we

split the variance of error term into σ2 = σ2
1 +σ2

2 where σ2
1 and σ2

2 are related to shape

deviations and surface roughness, respectively. The surface roughness related term

σ2 will be measured and assumed to be consistent among shapes, while σ1 has to be

estimated.

• Laser beam positioning error modeling using error equivalence concept : Similar to FDM

extruders [28, 29], laser beam during printing process may deviate from its intended

position (x, y) by error (ex(x, y), ey(x, y)). To predict the laser beam positioning errors,

we adopt the error equivalence concept [35–38], by transforming the positioning error

into the equivalent amount of shape design error. One simple illustrate of the error

equivalence concept is that a design error that leads to the increased size or boundary

of a product can be replicated by moving the laser position. The outcomes of the two

different error sources are equivalent and one can be chosen to represented the other.

The transformed positioning error will be readily integrated into the shape deviation

prediction model, which will simplify the model building and compensation. Note

that only the fixed effect of laser beam positioning error is considered. Random and

time-varying effects of the laser beam positioning error are not captured by the model.
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• Location effect modeling to capture other machine-related location effects : The machine-

dependent location effect is approximated as a fixed effect at each location to affect

build accuracy. Following the same logic, we adopt the error equivalence concept and

use a location-dependent term x0(s) to capture the machine-dependent location effect

at location s. Termed as the location effect term, it is represented as the equivalent

amount of shape design error as well, which can be easily integrated into the finalized

shape prediction model. Similar treatment can be found for “over-exposure” effect in

SLA processes [19]. Again, like the laser beam positioning error, only the fixed effect

of location effect is considered.

Once the shape deviation model is established, accuracy prediction and compensation

before printing a new part can follow the procedure in Fig. 1b.

3 Prescriptive Shape Deviation Modeling for Freeform

Shapes in LPBF with Surface Roughness Influence

3.1 Shape Deviation Experimentation for LPBF

The design of shape deviation experimentation is shown in Fig. 2. All six test parts are

produced on the same baseplate by using a Renishaw AM250 LPBF system. Among them,

three cylinders (or circular disks), one square disk and one pentagon disk are adopted as

training samples for model building. The freeform shape is used to test the prescriptive

power of the established model, i.e., using only a few simple test parts (five in our study) to

predict shape deviation of freeform products.

A gas-atomized 18Ni (300) maraging alloy powder supplied by Sandvik Osprey LTD

(Neath, UK) with average particle size of 35µm is used. Default process parameters for this

metal powder type are shown in Table 1. Point distance dp represents the distance between

successive laser exposure points along one scan line, while meandering scan strategy adopts
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Figure 2: Design of shape deviation experimentation on a single plate (unit: mm)

parallel scan tracks with opposite scanning directions between tracks.

The height of all the parts is 5mm. The shape profile measurements for in-plane error

evaluation are performed at a fixed height of 4.5mm above the baseplate by using a Zeiss

Prismo 5 VAST MPS HTG Coordinate Measuring Machine (CMM) equipped with a 1mm

radius probe.

Table 1: The specific parameters of the LPBF process

Variable value

laser power P 200W
exposure time t 104µs

point distance along the track dp 65µm
hatch distance dh 80µm
layer thickness z 50µm
scanning strategy meandering

3.2 Initial Analysis of Shape Deviations In LPBF Process

The CMM measurement of test parts provides point coordinates of part boundaries defined

in the Cartesian Coordinate System (CCS). Following [19], the coordinates (x, y) (in-plane

shape) in the CCS will be transformed into (r, θ) in the PCS. Comparing to nominal design
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shapes, part shape deviation in the PCS is denoted as ∆r(θ). As pointed out in [19], the

advantage of this representation is the decoupling of modeling and shape complexity.

Figure 3 illustrates the deviation profiles ∆r(θ) (red dots) of three circular disks with

radii 20mm, 10mm and 5mm .
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(b) 10mm cylinder
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(c) 5mm cylinder

Figure 3: Deviation (dots) and prediction profiles (solid lines denote posterior means, and dashed
lines denote the 2.5% and 97.5% posterior quantiles) of three cylinders by cylindrical basis model
g1

The shape deviation profiles ∆r(θ) (red dots) of the square and pentagon disks with

circumcircle radii 13
√

2mm and 15mm are shown in Fig. 4.
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(a) 15mm pentagon
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Figure 4: Deviation (dots) and prediction profiles (solid lines denote posterior means, and dashed
lines denote the 2.5% and 97.5% posterior quantiles) of the polyhedron shapes by freeform model

Since our goal is to establish one model for predicting the shape deviations of different
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shapes, Huang et al. (2014) [21] devises a cookie-cutter modeling framework to connect

different shapes and [27] extends by formulating a prescriptive shape deviation model for

freeform shapes as Eq. 1:

∆r(θ, r(θ)) = g1(θ, r(θ)) + g2(θ, r(θ)) + εθ (1)

where basis function g1 represents the deviation pattern of cylindrical shape or circular

sectors of a cylinder, and basis g2 is the cookie-cutter function that carves the others shapes

from the cylindrical base. g2 is particularly necessary if there are straight edges and corners.

The cylindrical shape is considered as the fundamental model building block (Note that

in the study of in-plane shape deviations, the cylindrical disks are treated as 2D shapes or

circles). One example of cylinder deviation model g1 for SLA processes is given by Eq. 2 [19].

g1(θ, r0) = x0 + β0(r0 + x0)
a + β1(r0 + x0)

b cos(2θ) (2)

where x0 is a constant shape-independent effect (e.g., light over-exposure) underlying the

SLA process, r0 is the nominal radius of the circumcircle, θ is the angular position, while β0,

β1, a and b are coefficients that have to be estimated.

Bayesian estimation of the model parameters in Eq. 2 can be conducted through Markov

Chain Monte Carlo (MCMC) [19]. Using the data of three circular disks in our experiment

(Fig. 3), the estimated model parameters of g1(·) are given in Table 2. The prediction

profiles and their confidence interval are shown in Fig. 3 as well. Note that we assume the

priors a ∼ N(1, 22), b ∼ N(1, 12), log(x0) ∼ N(0, 12) and place flat priors on β0, β1, and

log(σ).

The cookie-cutter function g2 connects the cylindrical shape model to polygons by treat-

ing a polygon as being cut from its circumcircle [20,21]. One example is the sawtooth wave

function as Eq. 3.

10



Table 2: Summary of posterior draws in cylindrical basis model

Mean SD 2.5% Median 97.5%

β0 −0.003623 0.001137 −0.005463 −0.003824 −0.001186
β1 −0.001065 4.3919× 10−4 −0.002040 −0.001018 −0.000339
a 0.626926 0.104855 0.4950065 0.597999 0.915121
b 0.841573 0.157791 0.5731525 0.831657 1.202621
x0 0.008658 0.002045 0.004202 0.009035 0.012160
σ 0.014855 3.0791× 10−4 0.014281 0.014861 0.015475

g2(θ, r0) = β2(r0 + x0)
αsaw.tooth(θ − φ0) = β2(r0 + x0)

α(θ − φ0)MOD(
2π

n
) (3)

where φ0 is a phase variable determined by the smallest angular distance from the vertex of

a polygon to the axis of the PCS, n is the number of polygon sides, x MOD y = remainder

of (x/y), while β2, α are coefficients to be estimated.

We pool the data of square and pentagon disks (Fig. 4) together with three circular

disks to estimate the complete freeform model Eq. 1. To specify a model robust to both

cylinder and polygon shapes, we keep the parameters a, b and x0 in Table 2. The parameter

estimation with same Bayesian procedure as well as the prediction profiles are given in Table

3 and Figure 4. We assume prior α ∼ N(1, 12) and place flat priors on β0, β1, β2, and

log(σ).

Table 3: Summary of posterior draws for estimating freeform model

Mean SD 2.5% Median 97.5%

β0 −0.002653 1.1062× 10−4 −0.002861 −0.002651 −0.002444
β1 −6.9131× 10−4 7.4398× 10−5 −8.3113× 10−4 −6.9054× 10−4 −5.4787× 10−4

β2 −5.5581× 10−4 2.7009× 10−4 −0.001174 −5.2043× 10−4 −1.1727× 10−4

α 1.436602 0.212887 1.088236 1.415376 1.998083
σ 0.020724 3.3094× 10−4 0.020086 0.020726 0.021376

The work in [26,27] further extends the framework to freeform shape by generalizing the

basis functions g1 and g2 with the proposed Circular Approximation with Selective Cornering

(CASC) strategy. In CASC strategy, a n-side polygon (n is large) first approximates the

freeform shape. Then a series of sectors approximate the polygon. Equation 2 is extended
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to Eq. 4 by applying cylindrical base model to each sector with different nominal radius.

g1(θ, r(θ)) = x0 + β0(ri(θi) + x0)
a + β1(ri(θi) + x0)

b cos(2θ)

for θi−1 ≤ θ < θi, 1 ≤ i ≤ n, θ0 = θn (4)

where θi (1 ≤ i ≤ n) is the position of each approximated vertex and ri(θi) (1 ≤ i ≤ n) is

the nominal radius of each approximated sector

Equation 3 is generalized as Eq. 5 based on the observation that only vertices with sharp

transitions in the approximated polygon will be selected for the cookie-cutter function to

alternate the function amplitude.

g2(θ, r(θ)) = β2(rj(θj) + x0)
αsaw.tooth(θ)

=



β2(rj(θj) + x0)
απ(θ − θj−1) MOD (θj − θj−1)

2(θj − θj−1)

if θj−1 ≤ θ < θj, 1 ≤ j ≤ n, θ0 = θn,

θj = ϑk, 1 ≤ k ≤ m

0, otherwise

(5)

where m is the number of selected vertices for the cookie-cutter function with m � n, and

ϑk, k = 1, 2, ...,m is the angle of m vertices. For further details, the interested readers can

refer to [27].

Applying the estimated parameters to the generalized freeform model (Eqs. 1, 4 and 5),

we derive the prediction profile of the freeform with circumcircle radius 12mm in Figure 6.

Here circumcircle means the smallest circle that contains the freeform shape.

The prediction results capture the main trend of shape deviation well. However, since

the relatively small size of experimental parts leads to small shape deviation, it is necessary

to verify whether the actual geometric deviation is significant in the test parts. The null

hypothesis is that there is no geometric shape deviation in the 6 experimental parts (Figure
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(a) 20mm cylinder
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(b) 10mm cylinder
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(c) 5mm cylinder

Figure 5: Deviation (dots) and prediction profiles (solid lines denote posterior means, and dashed
lines denote the 2.5% and 97.5% posterior quantiles) of three cylinders by freeform model
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Figure 6: Deviation profile (dots) and prediction (solid lines denote posterior means, and dashed
lines denote the 2.5% and 97.5% posterior quantiles) of 12mm freeform shape

2), the Bayesian posterior intervals are used. Figures 5, 4 and 6 indicate 95% predictive

intervals that contain the zero line, meaning the null hypothesis cannot be rejected.

A major reason of this conclusion is the low signal to noise ratio (S/N), where the

relatively large “noises” come from surface roughness, laser beam positioning error and

measurement error. From experimental analysis, the standard deviation of surface roughness

is around 14µm, the magnitude of laser beam positioning error is ±25µm and the magnitude

of CMM measurement error is ±2µm. Those errors are of similar magnitude as the shape

deviations of parts with small size.

13



Since it is important to conduct independent assessment of shape deviation by excluding

surface roughness, we will use this set of experimental data to demonstrate the proposed

methods. For parts with larger size, the developed methods and procedures can be applied

in the same manner.

3.3 Filtering Surface Roughness

Surface roughness in LPBF is determined by different factors [39]. The out-of-plane rough-

ness is dominated by the stair-step effect, which mainly depends on the powder size and the

layer thickness. In-plane roughness, the one of interest in this study, is mainly affected by

process parameters, the material properties and the powder size. An as-build average rough-

ness, Ra in the order of 8-12µm was reported for LPBF of steel powders by using default

process parameters [39,40]. Depending on the surface functionality, post-process treatments

and machining operations are usually applied to comply with final product specifications.

However, to determine the in-plane geometric error of as-build parts, the effect of surface

roughness needs to be quantified and taken into account. In our experiment, the roughness

measurement is conducted on the circumference of a cylinder with a touch probe profilome-

ter. The roughness profile and measured roughness indexes are reported in Figure 7 and

Table 4.

Figure 7: Measured surface roughness profile for cylinder with r0 = 5mm

Table 4: Surface roughness indexes for cylinder with r0 = 5mm

Ra Rq Rz Rmax

10.9µm 14.2µm 60.2µm 80.5µm
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where Ra =
1

n

n∑
i=1

|yi| is the arithmetic average of absolute values, Rq =

√
1

n

n∑
i=1

y2i is

the root mean squared value, Rz is the average maximum height of the profile, Rmax is the

maximum roughness depth and yi is the roughness value at ith point.

Comparing the measured deviation (dots in Figure 3) and the roughness measurement

(Figure 7 and Table 4), the surface roughness is non-negligible. The mixture of roughness

dramatically increases the variance of deviation profile, leading to much wide predictive

intervals. Therefore, the variance caused by surface roughness needs to be filtered out to

achieve actual predictive intervals on shape deviations.

Surface roughness and high frequency components of shape deviations are hard to be

distinguished. Considering their distinct characteristics and mechanisms, we introduce two

independent components in model error term εθ ∼ N(0, σ2) with σ2 = σ2
1 + σ2

2. Here σ2
1 and

σ2
2 are related to shape deviations and surface roughness, respectively. We set σ2 equal to

Rq (Rq = 14.2µm in our test part) and leave σ1 for model estimation from the data.

Figure 8: Illustration of roughness influence in PCS

One critical issue is that surface roughness is evaluated along the direction normal to the

surface, while shape deviations of non-cylindrical surfaces are represented as the deviation

along the radial direction under a PCS. Figure 8 shows these two directions are not necessarily

parallel to each other. Denote yv(ϕ) as the measured roughness along the direction normal

to the surface. Its impact on shape deviation along the radial direction is yr(ϕ) =
yv(ϕ)

sinϕ

where ϕ is the angle with reference parallel to the nominal surface. Translation from θ to ϕ
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is shown in Eq. 6 which is edge-dependent. Therefore in deviation modeling, σ2 should vary

with ϕ and follow σ2(ϕ) =
σ2
sinϕ

and

ϕ = θ − φ0 +
(n− 2)π

2n
+ (

2π

n
)(θ − φ0)INT (

2π

n
), θ ∈ [0, 2π] (6)

3.4 Initial Model Building and Validation by Filtering Surface

Roughness

In this section, we re-establish the shape deviation model by filtering the surface roughness

σ2. We use the same dataset and model estimation procedure introduced in Section 3.1.

The Bayesian model estimation of cylindrical basis model Eq. 2 and the whole freeform

model Eq. 1 are listed in Tables 5 and 6, separately. Their corresponding prediction profiles

are shown in Figure 9 and 11, while the 2.5%, mean and 97.5% posterior quantiles consider

σ1 only. Apparently, considering surface roughness in model fitting greatly improve the

prediction power for shape deviations.

Table 5: Summary of posterior draws in cylindrical model

Mean SD 2.5% Median 97.5%

β0 −0.002118 6.2380× 10−4 −0.003185 −0.002157 −0.000851
β1 −0.001067 4.2940× 10−4 −0.002067 −0.001034 −0.000382
a 0.763537 0.098170 0.624365 0.743364 1.012372
b 0.841486 0.156348 0.587817 0.830261 1.160492
x0 0.006113 0.001427 0.003129 0.006126 0.008806
σ1 0.002675 0.001813 6.8206× 10−4 0.002923 0.005676

Table 6: Summary of posterior draws for estimating freeform model

Mean SD 2.5% Median 97.5%

β0 −0.001614 6.9346× 10−5 −0.001752 −0.001612 −0.001490
β1 −7.0420× 10−4 6.5672× 10−5 −8.2621× 10−4 −7.0442× 10−4 −5.7230× 10−4

β2 −5.5815× 10−4 3.5792× 10−4 −0.001193 −4.6014× 10−4 −1.0681× 10−4

α 1.45006 0.295512 1.042592 1.426695 1.987236
σ1 0.010975 4.9288× 10−4 0.009997 0.010974 0.011985

16



0 1 2 3 4 5 6

−
0.

06
−

0.
04

−
0.

02
0.

00
0.

02
0.

04
0.

06

Deviation Profile and Model Fit of Large Circle Shape

θ

D
ef

or
m

at
io

n 
(m

m
)

(a) 20mm cylinder
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(b) 10mm cylinder
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(c) 5mm cylinder

Figure 9: Actual deviation (dots) and prediction profiles (solid lines denote posterior means, and
dashed lines denote the 2.5% and 97.5% posterior quantiles) of three cylinders by cylindrical basis
model g1 while filtering surface roughness
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(a) 20mm cylinder
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(b) 10mm cylinder
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(c) 5mm cylinder

Figure 10: Actual deviation (dots) and prediction profiles (solid lines denote posterior means, and
dashed lines denote the 2.5% and 97.5% posterior quantiles) of three cylinders by freeform model
while filtering surface roughness

Applying the estimated parameters to the generalized freeform model (Eqs. 1, 4, 5), the

predicted shape deviation profile of the freeform shape after filtering the surface roughness

is shown in Figure 12.

Figures 10, 11 and 12 still indicate 95% predictive intervals that contain the zero line,

meaning the null hypothesis of no geometric shape deviation still cannot be rejected. The

major reason is that besides surface roughness, other “noises” such as laser beam position-

ing error and measurement error are still relatively large comparing to the small size of

experimental parts, making the signal to noise ratio (S/N) still relatively low.
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(a) 15mm pentagon
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(b) 13
√

2mm square

Figure 11: Actual deviation (dots) and prediction profiles (solid lines denote posterior means, and
dashed lines denote the 2.5% and 97.5% posterior quantiles) of the polyhedron shapes by freeform
model while filtering surface roughness
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Figure 12: Actual deviation profile (dots) and prediction (solid lines denote posterior means, and
dashed lines denote the 2.5% and 97.5% posterior quantiles) of 12mm freeform shape while filtering
surface roughness

4 Laser Beam Positioning Error Prediction and Elim-

ination with Error Equivalence Concept

Quality of AM built parts can vary with spatial locations on a building plate. Laser beam

positioning error and other machine-dependent location effects are two influential sources
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contributing to spatial variations. In this section, we will first introduce the location-effect

experimentation to investigate these two error sources. Laser beam positioning error will

be modeled and integrated into shape deviation prediction. Other location effects will be

analyzed in the next Section.

4.1 Location Effect Experimentation

To gain insight into the laser positioning accuracy, a regular grid plate with 9 × 9 small

cylinders are printed by the same LPBF machine (as shown in Figure 13). The radius of

each cylinder is 2.5mm and the height is 5mm. The cylinders are produced by using the

same process settings and same metal powder described in Section 3.1. The same CMM

system with 1mm radius probe is used to measure the circumference profile of cylinders at

the height of 4.5mm above the baseplate.

Figure 13: Experimental grid with 9× 9 small cylinders in location effect experimentation

This experimentation is employed to model and predict the two location-dependent errors.

The laser beam positioning error is benchmarked by the difference between the actual center

of each cylinder and its nominal center, while the machine-dependent location effect at each

cylinder location is estimated from each deviation profile.

Since no extra marker is added to locate the part center, the center of each cylinder
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needs to be identified via numerical approximation. A linear least square based circle fitting

algorithm is adopted here to estimate the actual cylinder center according to CMM mea-

surement data [41]. This algorithm is not sensitive to outliers and provides a quite reliable

center estimation for the regular geometries.

4.2 Predictive Modeling of Laser Beam Positioning Error

In the location effect experimentation, the cylinders are so small that their positions are

highly influenced by the laser beam positions. Therefore, the actual center of each cylinder

could be benchmarked by its nominal position to represent the laser beam positioning error

at different locations. The pattern of positioning error within the building area is shown in

Figure 14. It shows that the actual laser beam positions tend to be closer to plate center,

which is consistent with the analysis of extruder position errors in FDM process [28,29].

Figure 14: Pattern of the laser beam positioning error. Each point denotes the desired position of
cylinder center. Measured and predicted positioning errors are denoted by solid and dashed arrows,
respectively

The measured laser beam positioning error along x− and y− directions separately are

shown as the points in Figure 15. We adopt a 2nd order polynomial model under the

assumption of lack of spatial correlation of the residual in Eq. 7 to model the laser beam
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positioning error in x− and y− directions separately.

Z(x, y) = p00 + p10 ∗ x+ p01 ∗ y + p20 ∗ x2 + p11 ∗ x ∗ y + p02 ∗ y2 + ε, ε ∼ N(0, σ) (7)

where Z(x, y) represents either ex(x, y) or ey(x, y).

Model estimation as well as 95% confidence interval are listed in Table 7. To verify the

existence of laser beam positioning error in both directions, F test with 5 and 75 degrees of

freedom is conducted. The small p−value for F test indicates the existence of positioning

error in both directions. We adopt the sum of square error (SSE) and adjusted R-square to

quantify the goodness of fitting, which could be found in Table 8. Corresponding modeling

fitting plots and residual plots are shown in Figure 15 and Figure 16. The dashed arrows in

Figure 14 show the prediction of positioning error.

Table 7: Summary of model fitting for positioning errors in x− and y− directions with 95%
confidence interval

ex(x, y) ey(x, y)

Mean 2.5% 97.5% Mean 2.5% 97.5%

p00 2.359 ×10−4 -0.003575 0.004047 0.00671 0.004665 0.008756

p10 -2.497 ×10−4 -2.93 ×10−4 -2.065 ×10−4 -8.804×10−6 -3.201e×10−5 1.44×10−5

p01 -1.453 ×10−4 -1.886 ×10−4 -1.021 ×10−4 -2.722 ×10−4 -2.954 ×10−4 -2.49 ×10−4

p20 -1.02 ×10−6 -2.081×10−6 3.961×10−8 7.069×10−7 1.38×10−7 1.276×10−6

p11 -9.501 ×10−7 -1.880×10−6 -1.995×10−8 -9.936×10−8 -5.986×10−7 3.999×10−7

p02 1.333×10−6 2.733×10−7 2.393×10−6 5.038×10−7 -6.516×10−8 1.073×10−6

Table 8: Goodness of fitting for positioning error in x− and y− directions

ex(x, y) ey(x, y)

SSE 0.00618 0.00178

Adjusted R-square 0.6997 0.8732

p-value of F test < 2.2× 10−16 < 2.2× 10−16

Since in our experiment, the centers are identified by numerical approximation [41], the

measured laser beam positioning error at each cylinder center may contain two portions: the

center fitting error and actual positioning error. Consequently, the center fitting error needs

to be quantified.
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(a) x− direction (b) y− direction

Figure 15: Measurement (points) and prediction profiles (surface) of the laser beam positioning
error (unit: mm)

(a) x− direction (b) y− direction

Figure 16: Model fitting residual plots of the laser beam positioning error (unit: mm)

Here we adopted a numerical method to estimate the standard deviation of center fitting

in both x− and y− directions. For each small cylinder, the measurement data contains

around 200 points along the boundary. We randomly pick 160 points for center fitting and

repeat 50 times. Figure 17 presents the standard deviation of the 50 estimations for each

cylinder. Comparing to the measured positioning error in Figure 15, the center fitting error

is negligible. So we will not consider the center fitting error when modeling laser beam

positioning error.

4.3 Transforming Positioning Error into the Equivalent Amount

of Shape Design Error

In this sub-section we aim to model the impact of laser beam positioning errors on shape

deviation. Similar to the extruder positioning error in FDM process [28, 29], the proposed
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(a) x− direction (b) y− direction

Figure 17: Center fitting standard deviation of each cylinder (unit: mm)

strategy of controlling laser beam positioning error is to transform it into the equivalent

amount of shape design error. After the transformation, our compensation framework could

be able to compensate the positioning error along with the shape deviations.

Laser beam during printing process may deviate from its intended position (x, y) by error

(ex(x, y), ey(x, y)). As a result, the actual point position (x′, y′) could be presented as:

 x′ = x+ ex(x, y)

y′ = y + ey(x, y)
(8)

The error equivalence concept [35–38] is adopted to transform positioning error into the

equivalent amount of shape design error by:

(i) predicting the actual laser beam position (x′, y′) with Eq. 8;

(ii) transforming (x′, y′) into PCS as r′(θ), then calculating deviation error as ∆r(θ) =

r(θ)− r′(θ).

Here r(θ) and ∆r(θ) represent the actual size and deviation along radius direction at angle

θ respectively. Our compensation framework is built to compensate ∆r(θ), which contains

both shape deviation and positioning error.

Applying the transformed positioning error to the three cylinders in shape deviation

experimentation, the equivalent amount of deviation profile containing both actual shape

deviation and positioning error is shown in Figure 18. Since the null hypothesis of no
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geometric shape deviation cannot be rejected in Section 3, here we will not re-estimate the

shape deviation model again.
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(b) 10mm cylinder
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(c) 5mm cylinder

Figure 18: Equivalent deviation profiles of three cylinders

5 Analysis and Modeling of Additional Location Ef-

fects

Different LPBF systems may exhibit different location effects on the resulting geometrical

accuracy. This can be caused by difference in the chamber equipment and environmental

control configurations. As an example, non uniform inert gas flows may lead to non-uniform

shape deviation profiles within the building area. In this study, the existence of additional

location effects is approximated as a fixed effect at each location. We adopt the error

equivalence concept and use a location-dependent term x0(s) to capture this effect at location

s. Here we use the position of part center s = (x, y) to represent the part location. Termed

as the “location effect term”, it is represented as the equivalent amount of shape design

error, which is integrated as a term into the finalized shape prediction model Eq. 1. Similar

treatment can be found for “over-exposure” effect in SLA processes [19].
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5.1 Estimation of Location Effect Term x0(s) at Different Loca-

tions

To gain insight of any possible machine-dependent location effect, the actual deviation pro-

files of the small cylinders in location effect experiment (Figure 13) are analyzed first. For

instance, Figure 19 presents the deviation profiles of the 9 cylinders in the top row. Com-

paring all the deviation profiles, two conclusions could be derived: (i) deviation profiles of

those cylinders share the same pattern with our validated shape deviation model; (ii) the

deviation magnitudes are slightly different especially in some columns.

We adopt the cylindrical basis model Eq. 2 and the three cylinders (r = 20mm, 10mm,

and 5mm) in shape deviation experiment plus the 81 small cylinders (r = 2.5mm) in location

effect experiment to estimate x0(s) at different locations. To gain an estimation consistent

with the previously validated model, we fix all the parameters in Table 5 except x0 and σ1,

then conduct same Bayesian procedures to estimate the 84 independent x0 simultaneously.

The estimated x0(s) at the 81 locations in location effect experiment is shown as the points in

Figure 20a, which verifies that a more severe location effect, possibly cause by a non-uniform

gas flow indeed exist at the right top area of the plate.

5.2 Predictive Modeling of Location Effect Term x0(s)

The 81 x0 estimated by the small cylinders in the location effect experiment are employed to

fit the predictive model for x0(s). The three larger cylinders in shape deviation experiment

remain for validation. We still employ a 2nd order polynomial model to predict x0(s) at any

position s = (x, y), which could be formulated as:

x0(s) = p00 + p10 ∗ x+ p01 ∗ y + p20 ∗ x2 + p11 ∗ x ∗ y + p02 ∗ y2 + ε, ε ∼ N(0, σ) (9)

Model estimation as well as 95% confidence interval are listed in Table 9. The p-value of

F test with 5 and 75 degrees of freedom (shown in Table 10) further illustrate the existence
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Figure 19: Deviation profiles of the 9 cylinders in the top row of the grid in location effect
experimentation

of location effect. The sum of square error (SSE) and adjusted R-square are shown in Table

10 to quantify the goodness of fitting. Figure 20 presents the corresponding modeling fitting

plots and residual plots.

Validation analysis is conducted on the three cylinders in the shape deviation experiment

(Figure 2). The original x0 fitted when estimating shape deviation model in Section 3.4, the

new x0 fitted when estimating x0(s) at different locations in Section 5.1 as well as the x0

predicted by the established model in Eq. 9 are compared in Table 11. The desired center

position s = (x, y) of each cylinder is also listed in the table.
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Table 9: Summary of model fitting for location effect term x0(s) with 95% confidence interval

x0(s)

Mean 2.5% 97.5%

p00 0.02502 0.02406 0.02597

p10 1.416 ×10−4 1.308 ×10−4 1.525 ×10−4

p01 6.331×10−5 5.244×10−5 7.419×10−5

p20 -1.257×10−6 -1.524×10−6 -9.906×10−7

p11 8.097×10−7 5.758×10−7 1.044×10−6

p02 -3.916×10−7 -6.582×10−7 -1.25×10−7

Table 10: Goodness of fitting for location effect term x0(s)

x0(s)

SSE 0.0003908

Adjusted R-square 0.9221

p-value of F test < 2.2× 10−16

(a) Estimated x0(s) (points) and prediction profile
(surface)

(b) Model fitting residual plot

Figure 20: Model fitting and residual plots of the location effect term x0(s) (unit: mm)

Table 11: Fitted vs predicted x0 for the three cylinders in Figure 2 (unit: mm)

cylinder
radius (mm)

x0 fitted in shape
deviation modeling

x0 fitted when
estimating x0(s)

x0 predicted by the
estimated model

x y

20 0.006113 0.007339 0.0348 55 72.5

10 0.006113 0.008653 0.0175 25 -87.5

5 0.006113 0.004668 0.0184 75 -67.5

The fitted x0 are similar no matter being treated as a constant or independent parameters.

However, the predicted x0 is relatively larger than the actual estimated x0. The reason mainly

comes from the lack of data. Although the location effect term x0 is fixed among different

parts, it has a relative higher influence on the small parts. Therefore, if all the parts are very

small, the estimation process will pay more weights on x0(s), leading to some bias. To avoid

27



the bias, multiple parts with different size should be printed at each location and estimated

together.

6 Conclusion

Facing new challenges in the final part quality improvement of LPBF process, this work pro-

poses a prescriptive data-analytical modeling approach that could decouple different error

sources and achieve a comprehensive model to predict shape deviations. Building upon our

prescriptive in-plane shape deviation modeling and compensation framework for freeform

shapes in stereolithography process, this work achieves methodological extension from the

following three aspects. First, the non-negligible surface roughness is filtered out from the

geometric deviation profile to guarantee confident part deviation prediction. Second, we

establish spatial models to quantify laser beam positioning error in both x− and y− direc-

tions. Last, we estimate a machine-dependent location effect and build a predictive model.

Both the laser beam positioning error and this additional location effect are transfered into

equivalent shape design error following equivalent error concept and compensated along with

geometric deviation.

The prescriptive shape deviation model is established by using only a limited number of

benchmark geometries and validated on a freeform product. The analysis and modeling of

the location-dependent errors including laser beam positioning error and machine-dependent

location effects are conducted on a 9 × 9 regular cylinder grid. The modeling analysis

demonstrates the existence of both errors in LPBF process. The established spatial predictive

models illustrate the goodness of fitting.

Our modeling work is based on the assumption that the LPBF process is stable and

repeatable. Build-to-build variation and machine-to-variation should be further investigated

and evaluated. Though the proposed data-analytical black-box modeling framework can be

applicable to the production of other geometries, further experimentation and analysis is
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needed to investigate the LPBF process performance when building larger products with

more complicated shapes.
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