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Abstract

In many applications, process monitoring has to deal with functional responses,
also known as profile data. In these scenarios, a relevant industrial problem consists
of detecting faults by combining supervised learning to functional data analysis and
statistical process monitoring. Supervised learning is usually applied to the whole
signal domain, with the aim of discovering the features that are affected by the
faults of interest. In this paper we explore a different perspective, which consists of
performing supervised learning to inferentially select the parts of the signal data that
are more informative in terms of underlying fault factors. The procedure is based
on a non-parametric domain-selective functional ANOVA and allows to identify the
specific subintervals where the profile is sensitive to process changes. Benefits achieved
by coupling the proposed approach with profile monitoring are highlighted using a
simulation study. We show how applying profile monitoring only to the identified
subintervals can reduce the time to detect the out-of-control state of the process. To
illustrate its potentiality in industrial applications, the proposed procedure is applied
to remote laser welding, where the main aim is monitoring the gap between the welded
plates through the observation of the emission spectra of the welded material.

Keywords: Design of Experiments, Interval-Wise Error Rate, Functional Data Analysis,
Statistical Process Control
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1 Introduction

The continuous technological advances of in-situ sensing systems and non-contact data ac-

quisition architectures allow gathering a huge amount of information about the process in

every operating condition. In particular, more and more often responses of manufactur-

ing processes can be modeled as functional data, i.e., a vector of data, where each value

corresponds to a specific temporal or spatial location.

Functional data can in fact represent the shape of a machined feature and/or the pattern

of a signal acquired during the process over time. In this scenario, statistical quality mon-

itoring (also known as statistical process control, SPC) has to be appropriately rethought

to deal with functional responses. With reference to statistical quality monitoring, the

problem of checking the stability of a functional response has been named “profile mon-

itoring” and has attracted the attention of many researchers over the past ten years (for

an overview, see, for instance, Noorossana et al. 2012 and references therein). It consists

of detecting a change of the functional response pattern that is deemed to be due to an

out-of-control state of the manufacturing process.

Traditional approaches for profile monitoring are designed considering an “unsuper-

vised” mode. In this case, a set of in-control profiles are used in the design phase (usually

referred to as Phase I in SPC literature), as the monitoring strategy consists of detecting

any kind of change from the in-control state by issuing an alarm. However, in many indus-

trial problems, faults have not the same impact on the process performance, and changes

from the in-control state can be of various nature. Supervised approaches should be pre-

ferred instead, where the term “supervised” refers to the use of out-of-control information

in the control chart design phase. Indeed, thanks to continuous advances of sensing tech-

nologies and data acquisition networks, a huge amount of information about the industrial

process is potentially available. This enables a better comprehension of process dynamics

that yields a deeper knowledge of every process state, including fault onset phenomena.

The underlying idea of so-called supervised monitoring consists of exploiting this knowl-

edge since the control chart design stage. Different authors (Basseville, 1988; Box and

Ramirez, 1992; Runger and Testik, 2003) pointed out that incorporating a priori knowl-

edge of a fault signature, when available, into control chart design is suitable to develop

fault-sensitized SPC schemes, possibly used in combination with traditional control charts.

As far as univariate processes are concerned, two methods were proposed to this aim, one

based on Cuscore charts (Box and Ramirez, 1992; Shu et al., 2002; Nembhard, 2006; Box

and Luceno, 2011) and one based on the generalized likelihood ratio statistic (Lorden, 1971;

Lai, 1995). A comparison between the two methods were discussed by Runger and Testik

(2003). Recently, the studies of Zhang et al. (2014, 2015) extended this concept to profile
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monitoring applications. Specifically, Zhang et al. (2014, 2015) studied profile monitoring

schemes for linear profiles where the out-of-control departure is known in advance and it

consists of a shape change from a straight line to a second-order polynomial curve. The

underlying idea was to develop control charting schemes based on testing the significance

of the quadratic term.

Our study extends that method by considering non-linear profiles of general shape,

where a functional basis expansion is used to approximate the profile pattern. As a matter

of fact, in many industrial applications, the process change does not affect a single term

of the basis expansion, but it influences a portion of the profile domain. Thus, a fault-

sensitized control chart can be developed by monitoring only that relevant portion, with

several benefits including dimensional reduction and faster detection of known faults. This

kind of control chart can possibly be used to supplement traditional charts, by combining

general purpose (unsupervised) and fault-sensitized (supervised) monitoring tools (Runger

and Testik, 2003). In a production environment, such a control chart can be designed

either for faults that are more likely to occur or for out-of-control conditions whose high

criticality implies the need to make the detection as fast as possible.

To efficiently and effectively monitor the process, it is then necessary to develop reliable

methods to select informative parts of the functional pattern. Even though such a selection

can be done in qualitative ways, for instance by a visual inspection of the data, or based

on engineering knowledge about the process, in some cases visual inspection and/or prior

knowledge can be unclear, and may neglect important aspects. Hence, we here propose

a quantitative statistical technique for domain selection. The approach that we propose

is sound even in absence of full prior knowledge about the process, and it is expected to

yield clearer and more reliable results. We propose to select the informative parts of the

functions by means of the inferential interval-wise testing procedure, first proposed in Pini

and Vantini (2015), and extended here to the case of multi-way functional ANOVA. In

detail, we test the significance of the effects of the factors on the output functions when

process changes can be experimentally observed, e.g. by injecting faults into the system

during an exploratory phase that precedes the control chart design. More importantly,

we provide a selection of the parts of the domain presenting significant effects of each

factor. Once this selection has been done, we propose to monitor the industrial process

based on the information that the functions contain on the selected domains. A simulation

study is presented to quantify the benefits resulting from coupling the interval-wise testing

procedure with profile monitoring techniques. In addition, a real case study is discussed,

which consists of a remote laser welding operation, where a laser emission spectrum is used

as a reference to check whether the distance between the plates to be welded (i.e., the gap)

is appropriate. In this case, a previous study (Colombo et al., 2013) showed that the gap
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between the plates affects the emission spectra and it can be used for monitoring purposes.

Moreover, developing a specific sensor aimed at detecting the emission just at some specific

wavelength instead of using the whole spectra can reduce the costs of the monitoring device

and reduce the computational time.

The paper is structured as follows: Section 2 presents the statistical methodology.

Section 3 presents the simulation study that includes a comparison between competitor

methods for profile monitoring. Section 4 reports an application of the proposed method

on a remote laser welding data set. Section 5 concludes the paper. A robustness analysis is

reported in the Appendix. All computations and plots have been created using R (R Core

Team, 2012).

2 The proposed methodology

The proposed methodology extends the traditional control chart design phase by including

a preliminary experimental step aimed at identifying the domain of the functional pattern

affected by the process. Thus, two sequential steps are required. First, a fault-driven design

of experiments is performed by injecting faults into the system. An analysis of variance

(ANOVA) is carried out to study the effects of these faults on the functional signal pattern.

In some cases, small-scale test benches or computer experiments can be used to this aim

when a direct fault analysis on the full scale plant is not viable. The kind of analysis we

propose to perform in this step is a domain-selective functional ANOVA based on interval-

wise testing.

During the second step, such knowledge is used to drive, in a supervised way, the design

of a profile monitoring tool, where only the selected portion of the functional pattern is

taken into account. In the following, the two building blocks of the proposed methodology

are presented. Subsection 2.1 presents the domain-selective functional ANOVA methodol-

ogy, whereas the development of supervised profile monitoring is discussed in Subsection

2.2.

2.1 Domain-selective functional ANOVA

Aim of this section is to describe the interval-wise testing methodology to select statistically

relevant portions of the functional pattern, and to extend it to a multi-way ANOVA design.

For ease of notation, and without loss of generality, we consider the example of a two-way

functional ANOVA with an interaction. Nevertheless, the methodology presented here can

be directly generalized to the analysis of factorial design with more than two factors.

Consider a two-way ANOVA in which we investigate the effects of factors A and B (with
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I and J levels, respectively) on a functional response based on a replicated full factorial

design. We assume that the response of the model is a function of a continuous variable t

observed over a domain (a, b) ⊂ R. In the considered model, the functional response will

be expressed as the result of two main effects, and of an interaction between them. The

aim of the analysis is to test the significance of every term in the model (i.e., interaction

and main effects).

In detail, let yijl : (a, b) 7→ R be the output functional data, where i denotes the level

of the first factor, j denotes the level of the second factor, and l denotes the replicate. We

assume functional data to be continuous functions of the variable t. Note that, as shown

in Pini and Vantini (2015), this condition can be relaxed, and the methodology can be

applied to generic L2 functions. The functional ANOVA model that we want to test is thus

the following:

yijl(t) = µ(t) + αi(t) + βj(t) + γij(t) + εijl(t), (1)

where t ∈ (a, b), with i = 1, . . . , I, j = 1, . . . , J , l = 1, . . . , nij, nij being the number of

replicates for ith level of the first factor and jth level of the second factor. In model (1), µ(t)

is the functional grand mean, αi(t) and βj(t) are functional main effects, and γij(t) is the

functional interaction effect. The functional errors εijl(t) are assumed to be independent

and identically distributed zero-mean random functions. Note that the proposed technique

can deal with autocorrelated functional data since we only require independence between

units, and not between time instants. Furthermore, we do not require the errors to follow

a gaussian process. All effects (as well as the errors) are expressed as functions of the

continuous variable t. For sake of identifiability, we require the classical constraints on the

effects, i.e., ∀t ∈ (a, b):
∑I

i=1 ni·αi(t) = 0;
∑J

j=1 n·jβj(t) = 0;
∑I

i=1

∑J
j=1 nijγij(t) = 0,

where ni· =
∑J

j=1 nij denotes the number of units at ith level of the first factor and n·j =∑I
i=1 nij denotes the number of units at jth level of the second factor.

The aim of our analysis is to test the significance of all coefficients of model (1). In

particular, we want to perform the functional counterparts of uni/multivariate ANOVA

tests:

• a functional test of the null model, jointly for all factors:H0,Model : αi(t) = βj(t) = γij(t) = 0 ∀i = 1, . . . , I; j = 1, . . . , J ; t ∈ (a, b);

H1,Model : (H0,Model)
C ;

(2)
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• three functional tests for the effects of each factor and interaction:

H0,A : αi(t) = 0 ∀i = 1, . . . , I; t ∈ (a, b); H1,A : (H0,A)C (3)

H0,B : βj(t) = 0 ∀j = 1, . . . , J ; t ∈ (a, b); H1,B : (H0,B)C (4)

H0,AB : γij(t) = 0 ∀i = 1, . . . , I; j = 1, . . . , J ; t ∈ (a, b); H1,AB : (H0,AB)C . (5)

Note that, similarly to uni/multivariate two-way ANOVA, (2) is a test of significance

of the whole functional model, whereas the three tests (3-5) allow performing a model

selection. The main difference with respect to a uni/multivariate ANOVA is that the tests

(2-5) involve functional coefficients, i.e., the null hypothesis is rejected whenever there is

a significant difference between the corresponding groups in at least one interval of the

domain.

The problem of inference in FDA has been widely discussed in the literature of the last

decades, and it can be addressed in several ways (e.g., Cuevas et al., 2004; Abramovich and

Angelini, 2006; Antoniadis and Sapatinas, 2007; Cuesta-Albertos and Febrero-Bande, 2010;

Goldsmith and Kitago, 2016; Pomann et al., 2016). A common feature of all these works,

is that the final result from the ANOVA testing determines whether the hypotheses (2-5)

are globally accepted or rejected. In particular, by applying these tests, we are only able

to answer the question “Are there any statistically significant effects of factors A and/or

B on the functional responses?”. In the case of a positive answer, these tests are not able

to select the intervals of the domain in which the effects are detected.

On the contrary, the principal aim of this paper is to provide practitioners with a

methodology that selects the most informative parts of the functions domain, in order to

use this information to design supervised monitoring tools. In detail, for each tests (2-5),

in case of rejection of the null hypothesis, we want to select the intervals of the variable

t where significant differences are detected. For this reason, we extend the interval-wise

testing proposed in (Pini and Vantini, 2015), that is a testing procedure for functional data

that enables to select the intervals of the domain presenting significant effects. Another

advantage of this procedure is that it is not based on parametric assumptions. We neither

need to assume normality of the residuals, nor to specify their covariance structure.

The extension of the procedure to functional ANOVA is based on three steps, detailed

in the following paragraphs.

First step: interval-wise testing. A functional test corresponding to tests (2-5) is

performed on any interval of the domain. In detail, for every I ⊆ (a, b), we perform a test
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of the null model, and three tests on the main effects and interaction:HI0,Model : αi(t) = βj(t) = γij(t) = 0 ∀i = 1, . . . , I; j = 1, . . . , J ; t ∈ I;

HI1,Model : (HI0,Model)
C

(6)

HI0,A : αi(t) = 0 ∀i = 1, . . . , I; t ∈ I; HI1,A : (HI0,A)C (7)

HI0,B : βj(t) = 0 ∀j = 1, . . . , J ; t ∈ I; H1,B : (HI0,B)C (8)

HI0,AB : γij(t) = 0 ∀i = 1, . . . , I; j = 1, . . . , J ; t ∈ I; HI1,AB : (HI0,AB)C . (9)

As proposed in Pini and Vantini (2015), we perform each test in a permutation frame-

work. In detail, we apply permutations of the residuals of the reduced model according

to the Freedman and Lane permutation scheme (Freedman and Lane, 1983). As common

practice in the permutational framework, we use classical test statistics. In particular, we

use the integral over the interval I of the two-way ANOVA statistics of the corresponding

classical F -tests.

In details, for the test of HI0,Model we use:

F IModel =

∫
I

∑I
i=1

∑J
j=1

∑nij

l=1(ŷij(t)− y(t))2/dfModel∑I
i=1

∑J
j=1

∑nij

l=1(yijl(t)− y(t))2/dfError

where ŷij(t) = µ̂(t)+α̂i(t)+ β̂j(t)+ γ̂ij(t) are the fitted values of model (1), y(t) is the grand

mean, dfModel = (I−1)+(J−1)+(I−1)(J−1), and dfError =
∑I

i=1

∑J
j=1 nij−dfModel−1.

Instead, for tests on HI0,A, HI0,B, and HI0,AB, we use:

F IA =

∫
I

I∑
i=1

ni· (yi·(t)− y(t)) /(I − 1)

F IB =

∫
I

J∑
j=1

n·j
(
y·j(t)− y(t)

)
/(J − 1)

F IAB =

∫
I

I∑
i=1

J∑
j=1

(
nij − (yij(t)− yi·(t)− y·j(t) + y(t))

)
/(I − 1)(J − 1)

where, with the common ANOVA notation, yi·(t) =
∑J

j=1

∑nij

l=1 yijl(t)/(ni·), y·j(t) =∑I
i=1

∑nij

l=1 yijl(t)/(n·j), and yij(t) =
∑nij

l=1 yijl(t)/nij.

This provides exact tests for HI0,Model, and approximated (asymptotically exact) tests

for HI0,A, HI0,B and HI0,AB. In the following, we denote with pIModel, p
I
A, pIB, and pIAB as the

p-values of tests (6-9) respectively.
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Second step: computation of the adjusted p-value function. An adjusted p-value

function is computed for each test (2-5). In detail, for each t ∈ (a, b), the p-value p̃(t) is

computed as the maximum p-value of all interval-wise tests (6-9) on intervals containing t:

p̃Model(t) = sup
I3t

pIModel, p̃A(t) = sup
I3t

pIA, p̃B(t) = sup
I3t

pIB, p̃AB(t) = sup
I3t

pIAB.

The adjusted p-value function p̃Model(t) is provided by a control of the interval-wise

error rate, while the adjusted p-value functions p̃A(t), p̃B(t), and p̃AB(t) are provided with

an asymptotic control of the interval-wise error rate as defined in Pini and Vantini (2015).

Third step: domain selection. The intervals of the domain presenting a rejection of the

null hypothesis are obtained by thresholding the corresponding adjusted p-value function

at level α. We select intervals presenting at least one significant effect by thresholding

p̃Model(t), intervals presenting a significant effect of the A factor by thresholding p̃A(t), and

so on.

The control of the interval-wise error rate allows controlling the probability of detecting

false positive intervals, i.e., the probability of wrongly rejecting any interval. For instance,

since p̃Model(t) is provided by a control of the interval-wise error rate, by selecting the

intervals associated with an adjusted p-value p̃Model(t) ≤ α, given any interval in which

the response is not influenced by any factor, the probability that this interval is (wrongly)

selected as significant is lower than α.

It is worth mentioning that, as shown by Pini and Vantini (2015), the procedure is also

consistent. In detail, the probability of detecting any interval where the factors A or B

have an effect on the response functions converges to one as the sample size increases.

2.2 Supervised profile monitoring

Once the relevant portions of a functional pattern have been selected, a supervised profile

monitoring technique can be applied to detect specific changes in the corresponding do-

main. Such a fault-sensitized control charting approach may be coupled with traditional

(unsupervised) monitoring tools in order to increase the reactivity to specific faults without

losing information about other possible out-of-control events.

The proposed profile monitoring approach (Noorossana et al., 2012; Woodall et al.,

2004; Colosimo et al., 2015) consists of monitoring the basis coefficients via a Hotelling’s

T 2 control chart coupled with a control chart on the sum of the squared model residuals.

Exploiting the result of the domain-selective ANOVA only the coefficients associated with

the basis functions that are non-zero over the selected interval are monitored via the T 2

control chart. Analogously, the model residuals are computed only within the same interval.
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Assume M functional profiles, ym(t), t ∈ (a, b), m = 1, . . . ,M were acquired under

in-control conditions to be used for control chart design (phase I). The basis expansion

considered in this study consists of a cubic B-spline basis, but the methodology is applicable

to any other basis. The profile approximation is such that:

ym(t) =

Q+L−1∑
q=1

cq,jφq(t, τ )

where Q is the order of the B-spline functions, L is the number of subintervals separated

by L − 1 interior knots, τ is the knot sequence τ = (τ1, . . . , τL)′, cq,m are the B-spline

coefficients, and φq(t, τ ) are the B-spline basis functions.

Let I be the interval selected by using the proposed approach and φ∗k, k = 1, . . . , K the

K B-spline functions that are non-zero within the interval I (where K ≤ Q+ L− 1). Let

c∗m = (c∗1,m, . . . , c
∗
K,m) be the corresponding coefficients. The T 2 statistic is then computed

as follows:

T 2
m(I) = (c∗m − c̄∗m)S−1c (c∗m − c̄∗m)′ j = 1, . . . ,M

where c̄∗m and S−1c are the sample mean and sample variance-covariance matrix of the non-

zero B-spline coefficients within the interval I. The “sum of prediction error” (SPE) is

used as control statistic for the residual control chart:

SPEm(I) =

∫
I
(ŷm(t)− ȳm(t))2dt, m = 1, . . . ,M

where ŷm(t) is the m-th signal approximated within the interval I and ȳm(t)) is the cross-

average pattern of phase I data. The control limits of both charts are estimated as per-

centiles of the empirical distributions and using the Sidak correction to guarantee a family-

wise type I error rate.

3 Simulation study

3.1 One-way domain-selective functional ANOVA

A simulation study is presented to investigate the suitability of the domain-selective ANOVA

methodology to enhance profile monitoring performances in the presence of known local

changes of the functional pattern of signal data. The results achieved by applying a one-way

domain-selective ANOVA are presented, first. Additional results in the presence of a two-

way ANOVA model are presented in Subsection 3.2. An in-control pattern was generated

by using the following model:

ym(t) =
8∑

k=1

Akgk(t;µk, σk) + εm(t), m = 1, . . . ,M ; t ∈ (a, b) (10)

9



where the functional terms gk(t;µk, σk) are normal probability density functions with pa-

rameters listed in Table 1, Ak ∼ N (10, 0.5) is the random amplitude term, and εm(t) ∼
N (0, 0.025). Note that the normal probability density functions with parameters listed in

Table 1 are fixed terms only used to set the functional shape of in-control profiles. On

the contrary, the values Ak are random values simulated from a normal probability density

function.

The simulated profiles consists of n = 200 equispaced datapoints over the interval

(a, b) = (1, 200). The profiles were approximated by using a B-spline basis expansion of

order 2 that consists of 200 basis functions with an equispaced knot sequence over the

profile domain.

Model term (k) µk σk

1 25 6

2 35 3

3 40 4

4 45 2

5 60 3

6 100 20

7 150 10

8 180 3

Table 1: Parameters used in the simulation model (in-control conditions)

The model (10) is used to generate a stream of independent profile data. As an example,

a superimposition of M = 1000 randomly generated in-control profiles and their cross-

sectional average are shown in Fig. 1.

0 50 100 150 200

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

In−control profiles

t

y(
t)

Figure 1: M = 1000 randomly generated in-control profiles (grey) and their cross-sectional

mean (thick black line)
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The model (10) is such that closer profile locations are more correlated than locations

that are far apart. Such a profile pattern has been selected as it is representative of

real signal data and within-profile correlation structures in profile monitoring application.

Nevertheless, future studies may be aimed at investigating either more complicated within-

profile or between-profile correlation structures.

Two different scenarios for out-of-control pattern simulation were considered. Scenario 1

consists of local shape modifications of the profile, whereas Scenario 2 consists of local mean

shifts. Scenario 1 is representative of out-of-control events that are hardly detected by using

traditional monitoring methods based on synthetic indexes. Scenario 2 is representative of

simpler deviations from an in-control pattern, although their local nature may reduce the

effectiveness of traditional monitoring methods.

Each scenario comprises three different faults, referred to as Fault A, B, C in Scenario 1

and Fault D, E and F in Scenario 2. The out-of-control functional patterns were generated

by using the following model:

ym(t) =
8∑

k=1

(δIkS + Ak)gk(t;µk, δIIkσk) + εm(t), j = 1, . . . ,M ; t ∈ (a, b) (11)

where the shift terms δIk and δIIk assume different values for different fault scenarios, as

shown in Table 2, whereas S is a term that is equal to 1 for all the faults except Fault C,

where it consists of a sinusoidal signal defined as S = sin(t/3).

Scenario Fault δIk δIIk S

Scenario 1

A δI3 = −dI ; δI5 = dI ; δIk = 0 otherwise δIIk = 1 k = 1, . . . , 8 1

B δIk = 0 k = 1, . . . , 8 δII5 = dII ; δIIk = 1 otherwise 1

C δI6 = dI ; δIk = 0 otherwise δIIk = 1 k = 1, . . . , 8 sin(t/3)

Scenario 2

D δI6 = dI ; δIk = 0 otherwise δIIk = 1 k = 1, . . . , 8 1

E δI8 = dI ; δIk = 0 otherwise δIIk = 1 k = 1, . . . , 8 1

F δIk = dI k = 1, . . . , 5; δIk = 0 otherwise δIIk = 1 k = 1, . . . , 8 1

Table 2: Shift parameters used in the simulation model (out-of-control conditions). The

dI values used for the simulation are summarized in Table 3

Fault A is representative of a shape modification that affects the profile portion with

higher amplitude and higher local variability, with a limited effect on the cross-section

average. Fault B is representative of a fault that modifies the shape of a narrow profile

portion, i.e. the one corresponding to the fifth Gaussian term. Fault C consists of a

superimposition of a sinusoidal term in a limited portion of the profile, representative of a

distortion caused by a vibratory pattern. With regard to Scenario 2, Faults D, E and F

consist of positive mean shifts of Gaussian terms. Fault D affects the profile portion where
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the signal to noise ratio is lower. Fault E affects only the last Gaussian term, whereas

Fault F affects the first five Gaussian terms, i.e. the portion of profile that captures the

largest portion of total amplitude variability. For a visualization of the different effects of

the faults, see Subsection 3.1.1.

Each simulation run consists of two sequential steps. In the first step, a single-factor

experiment is simulated where the factor consists of one of aforementioned faults and

its levels corresponds to its severity. During this phase, the domain-selective ANOVA

methodology is applied to determine the profile portion that is significantly affected by the

fault. In the second step, a dataset that comprises random realizations of both in-control

and out-of-control patterns is generated to test profile monitoring performances. Profile

monitoring is applied in two ways: (i) ignoring the result of the domain selection, i.e.,

considering the entire profile domain, and (ii) exploiting the result of the domain selection

to monitor the profile only in the relevant interval. The variants (i) and (ii) are called

respectively “traditional approach” and “domain-based approach” in the following.

The profile monitoring approach (Woodall et al., 2004; Noorossana et al., 2012; Colosimo

et al., 2015) consists of monitoring the spline model coefficients via a Hotellings T 2 control

chart coupled with a control chart on the sum of the squared residuals of the spline model.

In the domain-based version, the retained coefficients are those of basis functions that are

non-zero over the selected interval and the model residuals are computed only over that

interval. Two competitor methods were considered that are representative of monitoring

methods commonly used in the industry. The first competitor is called “location control

chart” (Boeing Commercial Airplane Group, Quality Assurance Department, 1998): it

consists of a control envelope associated with the signal where the upper and lower control

limits are k standard deviations from the in-control cross-sectional mean at each location.

According to this method, an alarm is issued when at least one data point of the profile

exceeds the control limits. By using Bonferroni’s correction, one can guarantee an overall

false alarm rate equal to the target value. The method was applied both to the traditional

implementation and the domain-based implementation.

Another competitor approach consists of estimating one (or more) synthetic indices for

each profile and using it (them) to design univariate (or multivariate) control charts. In

this study, the area under the curve is monitored by applying a Shewhart control chart

(Montgomery, 2008). The method is referred to as “index-based control chart”. Also in

this case, the area index can be computed either for the traditional implementation or the

domain selection procedure. The implementation details of the two steps of the simulation

study together with the major results are briefly described in Subsections 3.1.1 and 3.1.2.
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3.1.1 Profile domain selection results

500 simulation runs was performed for each fault scenario. The first step of each simulation

run consists of a single-factor experiment that involves four levels, respectively denoted by

“in-control”, “out-of-control, low severity”, “out-of-control, medium severity”, and “out-of-

control, high severity”. Each level was replicated five times. The severity levels associated

with the parameters δIk and δIIk are listed in Table 3. The selection of quite large severity

levels resembles what happens in industrial practice. The injection of artificial faults in

a manufacturing process usually yields macroscopic effects on the signals, whereas the

observation of incipient (low severity) faults is typically troublesome and difficult to control.

On the other hand, large severity levels favor the identification of the affected portion of

signal profile even with a small number of factor level replicates.

Scenario Fault Severity

Scenario 1

A dI ∈ {4, 8, 12}
B dII ∈ {1.5, 2.5, 4}
C dI ∈ {5, 15, 25}

Scenario 2

D dI ∈ {4, 8, 12}
E dI ∈ {5, 10, 15}
F dI ∈ {4, 8, 12}

Table 3: Fault severity levels used for the domain-selective functional ANOVA

Figure 2 shows an example of the domain-selective functional ANOVA methodology

results for one simulation run of each fault. The method clearly identifies the profile

portions affected by each fault.

3.1.2 Profile monitoring results

Each simulation run consists of a control chart design set of M = 4000 randomly generated

in-control patterns and a testing set of N = 4000 randomly generated patterns for each

severity level of the fault. The design set is further divided into a training set of first

M1 = 1000 profiles which are used to determine the sample mean and variance/covariance

structure under in-control conditions, and a tuning set of last M2 = 3000 profiles, used

to estimate the empirical control limits via a kernel density estimation (KDE) approach

(Izenman, 1991). In this case, the control limits correspond to percentiles of the empirical

distribution estimated via the so-called “plug-in” KDE methodology (Sheather and Jones,

1991; Sheather, 2004) which provides appropriate results in a wide range of applications.

Without loss of generality, the in-control average run length (ARL0) was set toARL0 = 100,

and the performances of the competitor monitoring schemes were compared in terms of out-

of-control ARLs. The five severity levels for different faults are listed in Table 4.
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Figure 2: Domain selection results for Scenario 1 and 2; five profile replicates are shown

for the in-control condition (black lines) and each severity level (red: low severity; green:

medium severity; blue: high severity); the grey areas represent signicant intervals at 5%

and 1% levels (light and dark grey, respectively)

Scenario Fault Severity

Scenario 1

A dI ∈ {0.2, 0.5, 1, 1.5, 2}
B dII ∈ {1.01, 1.025, 1.05, 1.075, 1.1}
C dI ∈ {0.5, 1, 1.5, 2, 2.5}

Scenario 2

D dI ∈ {0.2, 0.5, 1, 1.5, 2}
E dI ∈ {0.2, 0.5, 1, 1.5, 2}
F dI ∈ {0.1, 0.25, 0.5, 0.75, 1}

Table 4: Fault severity levels used for profile monitoring testing
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Notice that lower severities are considered now, because the aim consists of investigating

and comparing the performances of each method when the out-of-control ARL ranges

between ARL0 and one. Indeed, in the second phase of the monitoring process, we are

interested in not only detecting big deviations from in-control profiles (which all methods

would detect easily), but also very small deviations, which are more difficult to detect. The

results of the analysis are shown in Fig. 3 and Fig. 4, for Scenario 1 (left) and Scenario 2

(right), where the ARLs and the corresponding 99% confidence intervals are depicted.

Fig. 3 shows that the index-based approach is not suitable in the presence of shape

modifications like the ones in Scenario 1. With regard to the profile monitoring approach

and the location control chart, the domain-based implementation always outperforms the

traditional approach. The performance enhancement is achieved by exploiting only the

information content that is actually relevant to the fault pattern of interest. The profile

monitoring results the most effective approach in the presence of Fault B and C, whereas

the location control chart is more effective in case of Fault A. This is caused by the fact

that Fault A affects profile regions with high first derivative, where the narrow envelope of

the location control chart is particularly sensitive to small deviations.

Fig. 4 shows that, also in Scenario 2, the domain-based approach yields a considerable

enhancement of monitoring performances, with the only exception of Fault F, where profile

monitoring applied to the selected interval is equivalent to profile monitoring of the entire

domain. In Scenario 2, the index-based approach is suitable to monitor the profile data and

it is more effective when coupled with the interval selection methodology. Nevertheless,

the profile monitoring approach always outperforms the two competitors in Scenario 2.

3.2 Two-way domain-selective functional ANOVA

A second simulation study was performed to test the proposed approach when the domain

selection depends on more than one factor. The same model (10) used in the previous case

was applied to generate in-control patterns. Two faults modes are now considered: one

consists of faults A, B, C, D and F previously described; the other one consists of a local

trend that affects the last part of the domain. An additive model was used to simulate the

superimposition of the two fault modes, which entails an additional term with respect to

model (11):

ym(t) =
8∑

k=1

(δIkS + Ak)gk(t;µk, δIIkσk) +Bmh(t) + εm(t), j = 1, . . . ,M ; t ∈ (a, b). (12)

The local trend term Bmh(t) is such that h(t) = 0,∀t ∈ (a, 3b/4) and h(t) = t, ∀t ∈
(1 + 3b/4, b). Two levels for this additional fault mode were considered, one corresponding
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Figure 3: Profile monitoring ARL results in Scenario 1 with 99% confidence intervals

(dashed black line: traditional approach; solid red line: domain-based approach)
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Figure 4: Profile monitoring ARL results in Scenario 2 with 99% confidence intervals

(dashed black line: traditional approach; solid red line: domain-based approach)
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to the absence of the local trend (Bm = 0,m = 1, ,M) and one corresponding to a local

trend with Bm ∼ N(µB, σB), where µB = 2.5 and σB = 0.05. Model (12) is representative

of real cases where a superimposition of effects caused by multiple faults affects the pattern

of the monitored curves.

Analogously to the previous simulation study, each run consists of two sequential steps.

In the first step a two-factors experiment is simulated, where the first factor consists of one

of faults defined in Subsection 3.1 (four severity levels), and the second factor consists of

the local trend term (two severity levels). During this phase, the two-way domain-selective

ANOVA methodology is applied to determine the profile portion that is significantly af-

fected by at least one of the two fault modes. In the second step, a dataset that comprises

random realizations of both in-control and out-of-control patterns is generated to test pro-

file monitoring performances. Note that in this study we are interested in monitoring both

faults by means of the same functional data. So, the methodology is applied to determine

the profile portion that is significantly affected by at least one of the two fault

A total number of 500 simulation runs was performed for each fault scenario. The first

step of each run consists of a two-factors experiment where each treatment was replicated

five times. Fig. 5 shows an example of the two-way domain-selective functional ANOVA

methodology results for one simulation run of each superimposition of faults. Differently

from Fig. 5, a double region is selected, including the portions of domain where at least

one of the fault modes significantly affects the functional pattern. test F.

Regarding the comparison of monitoring methods, the same number of simulation runs

and the same settings described in Subsection 3.1 were used. In the training set, a null

severity of all the faults was applied and no local trend was added. In the testing set, a

constant severity of the trend term was considered, with µB = 0.1 and σB = 0.01, with a

varying severity of other faults. The results of the analysis are shown in Fig. 6 and Fig.

7, for Scenario 1 and Scenario 2, respectively, where the ARLs and the corresponding 99%

confidence intervals are depicted.

Fig. 6 and Fig. 7 confirm the main conclusions drawn in the previous case. The

superimposition of the trend term with constant severity caused a reduction of the ARL

values for all the competing methods. As an example, in Scenario 1, the ARL of index-

based control charts does not depend on the severity of faults A, B and C, but it is lower

than ARL0 because of the trend term having constant severity. The performances of all

the considered control charts improved by focusing the monitoring analysis only on the

relevant portion of the domain.
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Figure 5: Domain selection results using the two-way domain-selective ANOVA model; five

profile replicates are shown for each treatment; the grey areas represent signicant intervals

at 5% and 1% levels (light and dark grey, respectively)
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Figure 6: Profile monitoring ARL results in Scenario 1 with 99% confidence intervals

(dashed black line: traditional approach; solid red line: domain-based approach) – two-

way domain-selective ANOVA
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Figure 7: Profile monitoring ARL results in Scenario 2 with 99% confidence intervals

(dashed black line: traditional approach; solid red line: domain-based approach) – two-

way domain-selective ANOVA
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4 Case study: process monitoring in remote laser weld-

ing

To illustrate the potential of the proposed approach, this section presents a real case study

in remote laser welding. The term “remote” refers to a configuration in which the laser

beam is moved along the seam with the help of a laser scanner. One of the most common

applications of this process is the welding of zinc-coated steel in the lap-joint configura-

tion (Colombo et al., 2013). However, such a configuration and the materials used many

technical issues. Highly pressurized zinc vapors are often produced at the interface of the

two metal sheets which may cause defects in the welded material such as inclusions and

porosities. Some solutions were proposed in the literature to prevent these defects (Akhter

et al., 1991; Steen et al., 2003; Daimler Chrysler AG, 2005; Schwoerer, 2008; Gu, 2010),

mainly based on leaving a small gap (order of hundreds microns) between the metal sheets

to facilitate the degassing. However, errors in the final gap dimension may compromise the

quality of the welded material and the mechanical properties of the weld bead. Indirect

monitoring of the gap between the welded surfaces therefore represents a key issue to keep

the process under control and to determine the process quality without destructive off-line

tests (Colombo et al., 2013).

During remote welding of zinc-coated steel in the lap-joint configuration, the optical

emission of the welded material as a function of the wavelength can be used for process

characterization and monitoring purposes. Specifically, we are interested in selecting the

informative part of these profiles to monitor the gap between the two welded surfaces by

taking into account the location in which the emission spectra are acquired.

A Through Optical Combiner Monitoring architecture (Capello et al., 2008; Colombo

and Previtali, 2009, 2010) is used to monitor the laser welding. According to this technique,

the monitoring of the laser emission is performed remotely. In fact, far from the work area,

the optical emissions from the welding process are directly observed through the optical

combiner of the fiber laser source with a spectroscope. An extensive description of the

experimental welding procedure and the monitoring technology goes beyond the scope of

this paper and can be found in Colombo et al. (2013).

The optical emission depends not only on the gap but also on the location in the weld

seam where the spectrum is acquired. That is why, in Colombo et al. (2013), a two-way

analysis of variance is performed to evaluate the effect of the gap on the emission taking

into account the different locations. The former analysis is a valid instrument to assess how

the emission is influenced by the gap, and the results can be used to provide an indicator

to evaluate the gap remotely. However, the choice of a better indicator to evaluate the gap

effect is difficult to perform since the analyzed wavelength bands are fixed a priori. Here,
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we perform a domain selective functional ANOVA, according to the procedure described in

Section 2 to select the wavelength bands that are affected by the gap and/or by the welding

location. The selected bands can thus be used to remotely monitor the gap between the

plates during the welding process.

4.1 Experimental procedure and data acquisition

The optical emissions were acquired for different levels of gap and location, in a repeated

factorial design. Three values of gap corresponding to 100 nm, 200 nm and 300 nm were

explored. For each of the analyzed gap values, three replicates were produced resulting

in nine welded specimens. Interior each specimen, five emission spectra were acquired at

five different locations resulting in 45 acquired spectra. The emission data are described in

detail in Colombo et al. (2013).

To record the optical emission in the visible range, optical emission spectroscopy, i.e.,

the analysis of emitted light with high-wavelength resolution is used. The functional shape

of the spectrum is then used as functional response. The laser emission yijl(t) is acquired

at 703 discrete wavelengths t between 400.521 nm and 800.030 nm (where indexes i, j, l

indicate the levels of gap, location and replicate, respectively). The acquired data, as well

as the three means, corresponding to the three different values of the gap, are represented

in Figure 8. In the figure, the curves of each color correspond to the 15 functional emissions

(five locations and three replicates) within each gap level.

Note that in the explored wavelength range, it is possible to distinguish between three

different emission ranges:

• between 400 nm and 530 nm, it is observed the emission related to the electronic

transition, i.e., the plasma emission (light blue area of Figure 8);

• around 535 nm we observe a strong emission line, corresponding to the laser emission

(light green area of Figure 8);

• above 540 nm we observe the emission due to the thermal black-body radiation, i.e.

the thermal emission (light red area of Figure 8).

4.2 Results

The emission functions yijl(t) (i = 1, . . . , 3, j = 1, . . . , 5, l = 1, . . . , 3) are modeled according

to model (1), where t is the wavelength, αi(t) is the gap functional effect, βj(t) is the location

functional effect, γij(t) is the interaction functional effect, and εijl(t) is the functional error

term.
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Figure 8: Emission data captured in the factorial laser welding experiment (dashed lines),

colored according to the three different gaps; and means of the three groups, corresponding

to the three different gaps (solid lines). The vertical lines divide the figure along the abscissa

into the plasma (left), laser (middle), and thermal (right) emissions.

We applied the domain-selective functional two-way ANOVA described in Section 2

to test the null model H0,Model (2), the gap effect H0,Gap = H0,A (3), the location effect

H0,Loc = H0,B (4), and the interaction effect H0,GapLoc = H0,AB (5). Since the original data

are discrete evaluations of the curves, to obtain the functional data set we first performed

a smoothing of the 703 discrete data points on a dense piece-wise linear B-spline basis

characterized by 200 knots. The functional data are reported in the right panels of Figure

10. A robustness analysis with respect to the number of knots of the expansion is reported

in the Appendix. The test statistics of tests on intervals were approximated through a

rectangle integration method. Thanks to the continuity of test statistics with respect to

the extremes of integration, the adjusted p-value functions were approximated through a

finite family of tests over a fine discrete grid of 703 points (i.e., the maximal resolution

of the monitoring instrument). The permutation p-values were estimated by means of a

Conditional Monte Carlo algorithm based on 1000 iterations.

The results of the test for the interaction term γij(t) are reported in Figure 9. In detail,

the left panel shows the adjusted p-value function for the test of H0,GapLoc, and the right

panel shows the emission data obtained after the B-spline smoothing. Since the interaction
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Figure 9: Left: adjusted p-value function for the tests on H̃0,GapLoc. Right: emission data

colored according to gap and location levels.

effect is not significant (i.e., the adjusted p-value function presents high values along all the

wavelength domain), this term was removed from the model, and the following additive

functional ANOVA model was tested :

yijl(t) = µ(t) + αi(t) + βj(t) + εijl(t), ∀t ∈ (a, b). (13)

In the following, we describe the results of the tests on the additive model (13). Note that,

in this case, the test of the null model becomes:H̃0,Model : αi(t) = βj(t) = 0, ∀i = 1, . . . , 3; j = 1, . . . , 5; t ∈ (400.521, 800.030);

H̃1,Model : (H̃0,Model)
C .

Figure 10 reports the results of the additive two-way functional ANOVA of emission

data. In particular, the left panels report the adjusted p-value functions for each test. In

detail, on the top panel, we report the adjusted p-value functions of H̃0,Model, on the middle

panel the adjusted p-value functions of H0,Gap and on the bottom panel the adjusted p-

value functions of H0,Loc. For ease of visualization of the test results, the right panels of the

figure report the emission data and the significant intervals detected at 5% and 1% levels

(areas colored in light and dark grey, respectively) for the three tests. Data are colored in

the three panels according to the corresponding tests: on the top panel data are colored

differently according to the different levels of both gap and location; on the middle panel

data are colored according to the different levels of gap; on the bottom panel data are

colored according to the different levels of location.

Focusing on the test of H̃0,Glob (i.e., top panels of Figure 10), a significant effect of at

least one factor among gap and location was found in nearly the entire wavelength domain.
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Figure 10: Left: adjusted p-value functions for the tests on H̃0,Model (top), H0,Gap (middle)

and H0,Loc (bottom). Right: emission data colored according to gap and location levels

(top), gap levels (middle) and location levels (bottom). The gray areas represent significant

intervals at 5% and 1% levels (light and dark grey, respectively)

26



This result suggests that, as expected, the welding conditions have a significant effect on

the spectrum for all three emission ranges (plasma, laser, and thermal). The gap has a

significant effect in most of the wavelength domain (i.e., test of H0,Gap, middle panels of

Figure 10), suggesting that, consistent with previous results, the emission is significantly

influenced by the gap on all three emission ranges. The location has a significant effect

mostly in the plasma emission range (i.e., test of H0,Loc, bottom panels of Figure 10). This

suggests that plasma emission is influenced by the location.

The procedure described in this paper improves the results found by Colombo et al.

(2013) by precisely locating the wavelength bands associated to significant effects of the

two factors. The proposed method allowed the detection of a band (i.e., the band t ∈
(547 nm, 681 nm) corresponding approximately to thermal emission) in which the gap

effect is significant and the location one is not. This suggests the use of emission data on

this band to monitor the gap between the plates during the welding process regardless of

the welding location. This yields two major benefits. On one hand, it allows implementing

a more effective profile monitoring tool via a supervised control chart design phase as shown

in previous sections. On the other hand, it provides useful information to develop a novel

device for remote monitoring of the gap between the welded surfaces that allows analysing

the phenomenon only in the relevant wavelength domain which is insensitive to location

changes.

Future studies will be aimed at testing the presented approach in the presence of real

fault states. Another interesting future challenge posed by this data analysis consists of

introducing the gap in the functional model as a numeric explanatory variable, instead of a

factor. Since the effect of the gap on the emission spectra is observed to be not monotonic,

to perform this analysis, it is key to study its effect, and add the gap in the model in a

non-linear way.

5 Conclusions

We proposed a methodology that can be applied to enhance profile monitoring perfor-

mances in the presence of known fault scenarios. The method is specifically though for

signal-based profile monitoring applications, where the quality of the process can be auto-

matically assessed during the process itself via in-situ gathered data. Traditional control

charts are general-purpose monitoring tools that are able to detect any change from an

in-control state by issuing an alarm. The control chart design phase can therefore be re-

garded as an unsupervised learning procedure as no information about the out-of-control

states to be detected is used. However, in many industrial applications, fault changes may

have different impacts on the process performance. This motivates the use of supervised
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approaches, where the term “supervised” denotes the use of out-of-control information for

control chart design. Incorporating a priori knowledge about a fault signature, when avail-

able, into the design phase is suitable to develop fault-sensitized SPC schemes that can

considerably increase fault detection power. In the framework of profile monitoring appli-

cations, a fault-sensitized control chart can be developed by monitoring only the portion of

the functional domain where the effects of the fault are significant. To this aim, a two-step

methodology is proposed. In the first step, a domain-selective functional ANOVA is per-

formed to study the effects of one or more underlying factors on the output functions. This

selection is performed by extending the interval-wise testing procedure (Pini and Vantini,

2015) to the case of multi-way ANOVA framework. The second step consists of monitoring

the functional pattern only within the previously selected interval. The resulting control

chart can possibly be used to supplement traditional charts, in order to combine general

purpose (unsupervised) and fault-sensitized (supervised) monitoring tools. We presented a

simulation study to investigate the suitability of the domain-selective functional ANOVA

to enhance profile monitoring performances. In the simulation, out-of-control profiles pre-

senting local changes of the functional pattern were simulated, and the interval-wise testing

methodology was used to select the portion of the domain presenting a significant deviation

from in-control patterns. Then, different profile monitoring control charts were tested and

compared to highlight the benefits of the proposed approach with respect to monitoring

the entire domain. The simulation study showed that, in all simulated scenarios, the pro-

posed methodology outperformed the traditional approach, confirming the potential of a

supervised design phase.

The proposed methodology was eventually applied to a real case study in remote laser

welding. The aim of this study was to monitor the gap between two welded plates by

observing the emission spectra of the welded material. We applied the domain-selective

functional two-way ANOVA to study the effects of the gap on the output functions, by

taking into account the different locations at which the emission was registered. The final

result of this analysis is the selection of a wavelength band (i.e., the band t ∈ (547 nm,

681 nm) corresponding to the thermal emission), in which the emission is significantly

influenced by the gap and not by the location. This suggests to directly record the emission

data on this band to monitor the gap between the plates during the welding process at

any possible location. This result might also be used to develop a novel device for remote

monitoring of the gap between the welded surfaces that allows analysing the phenomenon

only in the relevant wavelength domain. The robustness of this result with respect to the

number of knots p of the B-spline basis expansion employed to smooth the data is discussed

in the Appendix. Even though the results of this robustness study showed that the number

of knots is not a crucial parameter, it is of course of major interest for future research to
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explore the trade-off, in terms of power of the procedure, as p increases. From the point

of view of the application, instead, the results obtained in the analysis of laser spectra

suggest to enrich the data set to further investigate the effect of the interaction, and to

introduce the gap in the functional model as a numeric explanatory variable associated

with a non-linear effect.
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Appendix. Robustness analysis

To investigate the robustness of the results with respect to the number of knots of the B-

spline expansion, we performed the test by varying this parameter. We considered different

cases based on B-splines expansions with a different number of knots. In particular, we

started from the analysis reported in Section 4 based on 200 knots and tried to double or

halve the number of knots. Finally, we also tried the maximum possible resolution (i.e.,

703 knots).

The test on the interactionH0,GapLoc is not significant in all cases. Hence, the comparison

is made on the additive model without interaction (13). The results of the tests are reported

in Figure 11. Similarly in the right panels of Figure 10, the results of the tests of H̃0,Model,

H0,Gap and H0,Loc at 1% and 5% levels are represented by means of the gray bands below

each graphic. In Figure 11, The axis on the left indicates the number of knots used for

the B-spline basis expansion, i.e., 100, 200, 400, and 703 knots corresponding to length of

B-spline supports of 8, 4, 2, and 1.14 nm.

This further analysis shows that the results are robust with respect to the number of

knots. Both the test on the null model H̃0,Model and the test on the gap H0,Gap report

significant differences in most of the wavelength domain. In particular, the gap has a

significant effect on all three emission ranges. On the other hand, the effect of the location

is significant mostly on the plasma emission.
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Figure 11: Emission data colored according to gap and location levels (top), gap levels

(middle) and location levels (bottom). The gray bands below each graphic represent the

results of tests on H̃0,Model, H0,Gap and H0,Loc, resp., varying the number of knots, at 5%

and 1% levels (light and dark grey, resp.)
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