


Abstract—We consider the task of performing prediction with 

neural networks on the basis of uncertain input data expressed in 

the form of intervals. We aim at quantifying the uncertainty in 

the prediction arising from both the input data and the prediction 

model. A multi-layer perceptron neural network (NN) is trained 

to map interval-valued input data into interval outputs, 

representing the prediction intervals (PIs) of the real target 

values. The NN training is performed by non-dominated sorting 

genetic algorithm–II (NSGA-II), so that the PIs are optimized 

both in terms of accuracy (coverage probability) and dimension 

(width). Demonstration of the proposed method is given on two 

case studies: (i) a synthetic case study, in which the data have 

been generated with a 5-min time frequency from an Auto-

Regressive Moving Average (ARMA) model with either Gaussian 

or Chi-squared innovation distribution; (ii) a real case study, in 

which experimental data consist in wind speed measurements 

with a time-step of 1-hour. Comparisons are given with a crisp 

(single-valued) approach. The results show that the crisp 

approach is less reliable than the interval-valued input approach 

in terms of capturing the variability in input. 

Index Terms—Interval-valued neural networks, multi-

objective genetic-algorithm, prediction intervals, short-term wind 

speed forecasting, uncertainty. 

I. INTRODUCTION

REDICTION plays a crucial role in every decision-making

process, and for this reason it should take into account any 

source of uncertainty that may affect its outcome. Prediction 

uncertainty can arise due to measurement errors,lack of 

knowledge in input data, and model approximation errors (e.g. 

due to imperfections in the model formulation) [1]-[3].For 

practical purposes, uncertainties can be classified in two 

distinct types [3]: epistemic and aleatory. The former derives 

from imprecise model representation of the system behavior, 

in terms of uncertainty in both the hypotheses assumed 

(structural uncertainty) and the values of the model parameters 
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(parameter uncertainty) [4]. The latter describes the inherent 

variability of the observed physical phenomenon, and it is 

therefore also named stochastic uncertainty, irreducible 

uncertainty, or inherent uncertainty [5].  

Uncertainty quantification is the process of representing the 

uncertainty in thesystem inputs and parameters, propagating it 

through the model, and then revealing the resulting uncertainty 

in themodel outcomes [2].  

In the literature, methods such as evidence theory [5], 

probability modeling [6],Neural Networks-based prediction 

intervals estimation [7]-[11],conformal prediction [12], [13], 

interval analysis [14]-[16], fuzzy set theory [17], and in 

particular type-2 fuzzy sets and systems [18]-[21], as well as 

extensions of fuzzy mathematical morphology [22], [23], 

Monte Carlo simulation [24], and Latin hypercube sampling 

[25] have been used to efficiently represent, aggregate, and

propagate different types of uncertainty through computational

models. Interval analysis is a powerful technique for bounding

solutions under uncertainty. The uncertain model parameters

are described by upper and lower bounds, and the

corresponding bounds in the model output are computed using

interval functions and interval arithmetic [26]. These bounds

contain the true target value with a certain confidence level.

The interval-valued representation can also be used to reflect

the variability in the inputs (e.g. extreme wind speeds in a

given area, minimum and maximum of daily temperature,

etc.), or their associated uncertainty (e.g. strongly skewed

wind speed distributions, etc.), i.e. to express the uncertain

information associated to the input parameters[14]-[16], [27].

In this paper, we present an interval-valued time series 

prediction modelingframework based on a data-driven learning 

approach, more specifically a multi-layer perceptron neural 

network (NN). Demonstration of the proposed method is given 

on two case studies: (i) a synthetic case study, with 5-minutes 

simulated data; (ii) a real case study,involving hourly wind 

speed measurements. In both cases, short-term prediction (1-

hour and day-ahead, respectively) is performed taking into 

account both the uncertainty in the model structure, and the 

variability (within-hour and within-day, respectively) in the 

inputs.  

The wind speed prediction case study has been chosen 

because of its relevance for wind power production. Among 

the various renewable energy candidates, wind energy has 
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received fast growing attention throughout the world, and the 

utilization of wind power has increased dramatically over the 

past decade: the worldwide wind capacity has reached 296 

GW by the end of June 2013, out of which 13980 MW have 

been added in that first half of 2013 [28]. This increasing 

integration of wind energy into power grid leads to additional 

uncertainty in the system due to the stochastic characteristics 

of wind itself. Wind power variations in short-term time scales 

have significant effects on power system operations such as 

regulation, load following, balancing, unit commitment and 

scheduling[8], [29], [30]. Thus, accurate prediction of wind 

speed and its uncertainty is critical for the safe, reliable and 

economic operation of power systems [29], [30]. In other 

words, optimal integration of wind power into the grid requires 

highly accurate predictions with a reliable assessment of the 

uncertainties associated to the system. To this aim, Prediction 

Intervals (PIs) are a simple way to communicate a measure of 

the uncertainty in the predictions. PIs are preferable results of 

the prediction, rather than point estimates, because they 

provide information on the confidence in the prediction [7]-

[11], taking into account the underlying uncertainties.  

In the present work, an interval representation has been 

given to the hourly and daily inputs by using two different 

approaches (see Section IV), which quantify in two different 

ways the within-hour and within-day variability. The network 

maps interval-valued input data into an interval output, 

providing the estimated prediction intervals (PIs) for the real 

target. PIs are comprised of lower and upper bounds within 

which the actual target is expected to lie with a predetermined 

probability[7]-[11]. The NN prediction model is trained by a 

multi-objective genetic algorithm (MOGA) (the powerful non-

dominated sorting genetic algorithm-II, NSGA-II), so that the 

PIs are optimal both in terms of accuracy (coverage 

probability) and dimension (width). 

The prediction interval coverage probability (PICP) 

represents the probability that the set of estimated PI values 

will contain a certain percentage of the true output values. 

Prediction interval width (PIW) simply measures the extension 

of the interval as the difference of the estimated upper and 

lower bound values. The network uses interval-valued data but 

its weights and biasesare crisp (i.e. single-valued). The NSGA-

II training procedure generates Pareto-optimal solution sets, 

which include non-dominated solutions for the two objectives 

(PICP and PIW). 

The originality of the work appears in two aspects: (i) while 

the existing papers on short-term wind speed/power prediction 

use single-valued data as inputs, obtained as a within-hour 

[11], [29] or within-day average [31],[32], we give an interval 

representation to hourly/daily inputs by using two approaches 

(see Section IV), which properly account (in two different 

ways) for the within-hour/day variability; (ii) we handle the 

PIs problem in a multi-objective framework[11], [33], whereas 

the existing relevant methods for wind speed/power prediction 

[8]consider only one objective for optimization.Also, the

proposed approach integrates the estimation of the prediction

intervals in its learning procedure while several methods

construct PIs in two steps (first doing point prediction and then

constructing PIs). In short, with the present work, we are able 

to account for both aleatoryuncertainty in wind speed and 

epistemic uncertainty due to model parameters and to 

demonstrate an indication of how the uncertainties in input 

affect the output quantities,by the interval representation of the 

input variables. 

It is worth recalling that in [11], we have performed a 

comparison with single-objective genetic algorithm (SOGA) 

and single-objective simulated annealing (SOSA) methods. 

SOSA has been proposed in support of the LUBE method in 

[7]. The comparison results show that the PIs produced by 

NSGA-II compare well with those obtained by LUBE and are 

satisfactory in both objectives of high coverage and small 

width. In [33], we have implemented the NSGA-II to train a 

NN to provide the PIs of the scale deposition rate. We have 

performed k-fold cross-validation to guide the choice of the 

NN structure (i.e. the number of hidden neurons) with good 

generalization performance. We have used a hypervolume 

indicator metric to compare the Pareto fronts obtained in each 

cross-validation fold.All these analyses have been performed 

with single-valued inputs for both works.More precisely, in 

[11],single-valued historical wind speed values 

𝑊𝑡−1,𝑊𝑡−2,…,𝑊𝑡−𝑘have been selected as input variables for

predicting 𝑊𝑡  in output. In [33], the case study concerns the

scale (deposition) rate on the metal surfaces of equipment used 

in offshore oil wells. The output variable is the scale rate (y), 

and it has been predicted using the single-valued influencing 

input variables: temperature (T) and pressure (P), water 

composition (W) and fluid velocity (V) near the metal 

surfaces. 

The paper is organized as follows. Section II introduces the 

basic concepts of interval-valued NNs for PIs estimation. In 

Section III, basic principles of multi-objective optimization are 

briefly recalled and the use of NSGA-II for training a NN to 

estimate PIs is illustrated. Experimental results on the 

synthetic case study and on the real case study concerning 

wind speed prediction are given in Section IV. Finally, Section 

V concludes the paper with a critical analysis of the results and 

some ideas for future studies. 

II. NEURAL NETWORKS AND PREDICTION INTERVALS

Neural networks (NNs) are a class of nonlinear statistical 

models inspired by brain architecture, capable of learning 

complex nonlinear relationships among variables from 

observed data [34]. This is done by a process of parameter 

tuning called “training”. It is common to think of a NN model 

as a way of solving a nonlinear regression problem of the kind 

[35], [36]: 

𝑦 = 𝑓 𝑥;𝑤∗ + 휀(𝑥),     휀(𝑥)~𝑁(0,𝜎휀
2 𝑥 ) (1)

where 𝑥,𝑦 are the input and output vectors of the regression, 

respectively, and  𝑤∗ represents the vector of values of the

parameters of the model function 𝑓, in general nonlinear. The 

term 휀(𝑥) is the error associated with the regression model 𝑓, 

and it is assumed normally distributed with zero mean. For 
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simplicity of illustration, in the following we assume 𝑦 one-

dimensional. An estimate 𝑤  of 𝑤∗ can be obtained by a

training procedure aimed at minimizing the quadratic error 

function on a training set of input/output values𝐷 = { 𝑥𝑖 , 𝑦𝑖 ,
𝑖 = 1,2,… ,𝑛𝑝},

𝐸 𝑤 = (𝑦 𝑖 − 𝑦𝑖)
2𝑛𝑝

𝑖=1
(2) 

where𝑦 𝑖 = 𝑓 𝑥𝑖 ;𝑤   represents the output provided by the NN

in correspondence of the input 𝑥𝑖  and 𝑛𝑝  is the total number of

training samples.  

A PI is a statistical estimator composed by upper and lower 

bounds that include a future unknown value of the target 𝑦(𝑥)  

with a predetermined probability, called confidence level in 

literature [7]-[11].  

To evaluate the quality of the PIs, we take the prediction 

interval coverage probability (PICP) and the prediction 

interval width (PIW) [7], [10] as measures: the former 

represents the probability that the set of estimated PIs will 

contain the true output values 𝑦(𝑥) (to be maximized), and the 

latter simply measures the extension of the interval as the 

difference of the estimated upper bound and lower bound 

values (to be minimized). In general, these two measures are 

conflicting (i.e., wider intervals give larger coverage), but in 

practice it is important to have narrow PIs with high coverage 

probability [7]. 

When interval-valued data [26] are used as input, each input 

pattern 𝑥𝑖  is represented as an interval 𝑥𝑖 = [𝑥𝑖
−, 𝑥𝑖

+] where

𝑥𝑖
− ≤ 𝑥𝑖

+ are the lower and upper bounds (real values) of the

input interval, respectively. Each estimated output value 𝑦 𝑖
corresponding to the 𝑖 − 𝑡 sample 𝑥𝑖  is, then, described by an

interval as well, 𝑦 𝑖 = [𝑦 𝑖
−, 𝑦 𝑖

+], where 𝑦 𝑖
− ≤ 𝑦 𝑖

+ are the

estimated lower and upper bounds of the PI in output, 

respectively.  

The mathematical formulation of the PICP and PIW 

measures given by [7] is modified for interval-valued input 

and output data:  

𝑃𝐼𝐶𝑃 =
1

𝑛𝑝
𝑐𝑖

𝑛𝑝

𝑖=1
(3) 

where𝑛𝑝  is the number of training samples in the considered

input dataset, and  

𝑐𝑖 =  

1 𝑦𝑖 ⊆ [𝑦 𝑖
−, 𝑦 𝑖

+]
𝑑𝑖𝑎𝑚 (𝑦𝑖∩𝑦 𝑖)

𝑑𝑖𝑎𝑚 (𝑦𝑖)
𝑦𝑖 ⊄ [𝑦 𝑖

−, 𝑦 𝑖
+]  ∧  𝑦𝑖 ∩ 𝑦 𝑖 ≠ ∅

0 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒 

    (4)  

where 𝑦𝑖 = [𝑦𝑖
−, 𝑦𝑖

+],𝑦𝑖
− ≤ 𝑦𝑖

+ are the lower and upper bounds

(true values) of the output interval, respectively, and 𝑑𝑖𝑎𝑚() 

indicates the width of the interval. More precisely, (4) means 

that if the interval-valued real target is covered by the 

estimated PI, i.e. if the target is a subinterval of the estimated 

PI, then𝑐𝑖  is equal to 1. If the estimated PI does not cover the

entire real target, but the intersection of the two is not empty, 

then 𝑐𝑖  is equal to the ratio between 𝑑𝑖𝑎𝑚 𝑦𝑖 ∩ 𝑦 𝑖  and the

width of the interval 𝑦𝑖 , and in that case 𝑐𝑖  takes a values

smaller than 1. Finally, if the estimated PI does not cover the 

entire real target and the intersection of the two is empty, then 

the coverage 𝑐𝑖  of the 𝑖 − 𝑡 sample is 0. Due to lack of

further information, this calculation corresponds to the 

probabilistic assumption that the target 𝑦𝑖  can take any value

in [𝑦𝑖
−, 𝑦𝑖

+] with uniform probability, i.e. that each point in

[𝑦𝑖
−, 𝑦𝑖

+] is equally likely to be a possible value of y.

For PIW, we consider the normalized quantity: 

𝑁𝑀𝑃𝐼𝑊 =
1

𝑛𝑝

(𝑦 𝑖
+−𝑦 𝑖

−)
𝑛𝑝
𝑖=1

𝑦𝑚𝑎𝑥 −𝑦𝑚𝑖𝑛
   (5) 

where NMPIW stands for Normalized Mean PIW, and 𝑦𝑚𝑖𝑛

and 𝑦𝑚𝑎𝑥  represent the minimum and maximum values of the

true targets (i.e., the bounds of the range in which the true 

values fall). Normalization of the PI width by the range of 

targets makes it possible to objectively compare the PIs, 

regardless of the techniques used for their estimation or the 

magnitudes of the true targets. 

Note that (3) is an empirical version of PICP, which yields 

an estimate of PICP according to the frequentist interpretation 

of probability theory.Similarly, (5) yields an estimate for 

NMPIW. 

III. NON-DOMINATED SORTING GENETIC ALGORITHM-II

(NSGA-II) MULTI-OBJECTIVE OPTIMIZATION FOR NEURAL 

NETWORK TRAINING 

The problem of finding PIs optimal both in terms of 

coverage probability and width can be formulated in a multi-

objective optimization framework considering the two 

conflicting objectives PICP and NMPIW. 

A. Multi-objective Optimization by NSGA-II

In all generality, a multi-objective optimization problem

considers a number of objectives, 𝑓𝑚 , 𝑚 = 1, 2,… ,𝑀,

inequality 𝑔𝑗 , 𝑗 = 1, 2,… , 𝐽 and equality 𝑘 , 𝑘 = 1, 2,… ,𝐾

constraints, and bounds on the decision variables 𝑥𝑖 , 𝑖 =
1, 2,… , 𝐼. Mathematically the problem can be written as 

follows [37]: 

Minimise/Maximise 𝑓𝑚 𝑥 ,  𝑚 = 1,2,… ,𝑀;(6) 

subject to     𝑔𝑗  𝑥 ≥ 0,    𝑗 = 1,2,… , 𝐽;     (7) 

𝑘 𝑥 = 0,    𝑘 = 1,2,… ,𝐾;          (8) 

𝑥𝑖
(𝑙)

 ≤ 𝑥𝑖 ≤ 𝑥𝑖
(𝑢)

    𝑖 = 1,2,… , 𝐼.    (9) 

A solution, 𝑥 =  𝑥1 , 𝑥2 ,…𝑥𝐼  is an 𝐼-dimensional decision

variable vector in the solution space 𝑅𝐼 , restricted by the

constraints (7), (8) and by the bounds on the decision variables 

(9). 

The search for optimality requires that the 𝑀 objective 

functions 𝑓𝑚  𝑥 , 𝑚 = 1, 2,… ,𝑀be evaluated in

correspondence of the decision variable vector 𝑥 in the search 

space. The comparison of solutions during the search is 

performed in terms of the concept of dominance [37]. 

Precisely, in case of a minimization problem, solution 𝑥𝑎  is
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regarded to dominate solution 𝑥𝑏  (𝑥𝑎 ≻ 𝑥𝑏 ) if the following

conditions are satisfied: 

∀𝑖 ∈  1,2,… ,𝑀 : 𝑓𝑖 𝑥𝑎 ≤ 𝑓𝑖 𝑥𝑏 ∧   (10)

∃𝑗 ∈  1,2,… ,𝑀 : 𝑓𝑗  𝑥𝑎 < 𝑓𝑗  𝑥𝑏  (11)

If any of the above two conditions is violated, the solution 

𝑥𝑎  does not dominate the solution 𝑥𝑏 , and 𝑥𝑏  is said to be non-

dominated by 𝑥𝑎 . Eventually, the search aims at identifying a

set of optimal solutions 𝑥∗ ∈ 𝑅𝐼 whichare superior to any other

solution in the search space with respect to all objective 

functions,and which do not dominate each other. This set of 

optimal solutions is called Pareto optimal set; the 

corresponding values of the objective functions form the so 

called Pareto-optimal front in the objective functions space. 

 In this work, we use GA for the multi-objective 

optimization. GA is a population based meta-heuristics 

inspired by the principles of genetics and natural selection 

[38]. It can be used for solving multi-objective optimization 

problems [39], [40]. Among the several options for MOGA, 

we adopt NSGA-II, as comparative studies show that it is very 

efficient [38], [40], [41]. 

B. Implementation of NSGA-II for training a NN for

Estimating PIs

In this work, we extend the method described in [7] to a 

multi-objective framework for estimating output PIs from 

interval-valued inputs.  More specifically, we use NSGA-II for 

finding the values of the parameters of the NN which optimize 

two objective functions PICP (3) and NMPIW (5) in a Pareto 

optimality sense (for ease of implementation, the 

maximization of PICP is converted to minimization by 

subtracting from one, i.e. the objective of the minimization is 

1-PICP).

The practical implementation of NSGA-II on our specific

problem involves two phases: initialization and evolution. 

These can be summarized as follows (for more details on the 

NSGA-II implementation see [33]): 

1) Initialization phase:

Step 1: Split the input data into training (Dtrain) and testing

(Dtest) subsets. 

Step 2: Fix the maximum number of generations and the 

number of chromosomes (individuals) 𝑁𝑐 in each population; 

each chromosome codes a solution by 𝐺 real-valued genes, 

where 𝐺 is the total number of parameters (weights) in the NN. 

Set the generation number 𝑛 = 1. Initialize the first population 

𝑃𝑛  of size 𝑁𝑐, by randomly generating 𝑁𝑐 chromosomes.

Step 3: For each input vector 𝑥 in the training set, compute 

the lower and upper bound outputs of the 𝑁𝑐 NNs, each one 

with 𝐺 parameters. 

Step 4:  Evaluate the two objectives PICP and NMPIW for 

the 𝑁𝑐 NNs (one pair of values 1-PICP and NMPIW for each 

of the 𝑁𝑐 chromosomes in the population 𝑃𝑛 ).

Step 5:  Rank the chromosomes (vectors of 𝐺 values) in the 

population 𝑃𝑛  by running the fast non-dominated sorting

algorithm [41] with respect to the pairs of objective values, 

and identify the ranked non-dominated fronts 

𝐹1,𝐹2,… ,𝐹𝑘where 𝐹1is the best front, 𝐹2 is the second best

front and 𝐹𝑘  is the least good front.

Step 6: Apply to 𝑃𝑛  a binary tournament selection based on

the crowding distance [41], for generating an intermediate 

population 𝑆𝑛  of size 𝑁𝑐.

Step 7: Apply the crossover and mutation operators to 𝑆𝑛 , to

create the offspring population 𝑄𝑛  of size 𝑁𝑐.

Step 8: Apply Step 3 onto 𝑄𝑛  and obtain the lower and

upper bound outputs. 

Step 9: Evaluate the two objectives in correspondence of the 

solutions in 𝑄𝑛 , as in Step 4.

2) Evolution phase:

Step 10: If the maximum number of generations is reached,

stop and return 𝑃𝑛 . Select the first Pareto front 𝐹1as the optimal

solution set. Otherwise, go to Step 11. 

Step 11: Combine 𝑃𝑛  and 𝑄𝑛  to obtain a union population

𝑅𝑛 = 𝑃𝑛 ∪ 𝑄𝑛 .

Step 12: Apply Steps 3-5 onto 𝑅𝑛  and obtain a sorted union

population.  

Step 13: Select the Nc best solutions from the sorted union 

to create the next parent population 𝑃𝑛+1.

Step 14: Apply Steps 6-9 onto 𝑃𝑛+1 to obtain 𝑄𝑛+1. Set

𝑛 = 𝑛 + 1; and go to Step 10.  

Finally, the best front in terms of non-dominance and 

diversity of the individual solutions is chosen. Once the best 

front is chosen, the testing step is performed on the trained NN 

with optimal weight values.  

Note that herein the diversity corresponds to “crowding 

distance” [41]. Each solution 𝑖in the population has two 

attributes: nondomination rank𝑖𝑟𝑎𝑛𝑘  and crowding distance

𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 . For a solution pair, 𝑖and 𝑗, we have𝑖 ≺𝑛 𝑗if
𝑖𝑟𝑎𝑛𝑘 <𝑗𝑟𝑎𝑛𝑘  or (𝑖𝑟𝑎𝑛𝑘   = 𝑗𝑟𝑎𝑛𝑘   and  𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 > 𝑗𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  ).

That is, if there are two solutions under consideration with 

different nondomination ranks, we prefer the one with the 

lower (better) rank. Otherwise, if both solutions have same 

ranking, i.e. belong to the same non-dominated front, we select 

the solution which locates in the region with the smaller 

number of points. Note that non-dominant solutions are found 

by performing the fast non-dominated sorting algorithm: the 

chromosomes (vectors of 𝐺 values) in the population 𝑃𝑛  are

ranked by running the fast non-dominated sorting algorithm 

[41] with respect to the pairs of objective values, and then we

identify the ranked non-dominated fronts 𝐹1,𝐹2,… ,𝐹𝑘  where

𝐹1 is the best front, 𝐹2 is the second best front and 𝐹𝑘  is the

least good front. Finally, in order to obtain the optimal Pareto 

front to be used in practice, we take the first 50 non-dominated 

solutions in the first front 𝐹1. Of course, one can select more

solutions. For further explanations, we refer the readers to 

[41]. 

The total computational complexity of the proposed 

algorithm depends on two sub-operations: non-dominated 

sorting and fitness evaluation. The time complexity of non-

dominated sorting is 𝑂(𝑀𝑁𝑐2), where 𝑀 is the number of

objectives and 𝑁𝑐 is the population size [41]. In the fitness 

evaluation phase, NSGA-II is used to train a NN which has 𝑛𝑝
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input samples.  Since for each individual of the population a 

fitness value is obtained, this process is repeated 𝑁𝑐 × 𝑛𝑝

times. Hence, time complexity of this phase is 𝑂(𝑁𝑐 × 𝑛𝑝). In

conclusion, the computational complexity of one generation is 

𝑂 𝑀𝑁𝑐2 + 𝑁𝑐 × 𝑛𝑝 .

IV. EXPERIMENTS AND RESULTS

Two case studies have been considered: a synthetic case 

study, consisting of four time series datasets generated 

according to different input variability scenarios, and a real 

case study concerning time series of wind speed data.  The 

synthetic time series datasets have been generated with a 5-

min time frequency from an Auto-Regressive Moving Average 

(ARMA) model with either Gaussian or Chi-squared 

innovation distribution.  For what concerns the real case study, 

hourly measurements of wind speed for a period of 3 years 

(from 2010 to 2012) related to Regina, a region of Canada, 

have been used [42]. 

The synthetic case study is aimed at considering hourly data 

andthe effects of within-hour variability. Hourly interval input 

data is obtained from the 5-min time series data by two 

different approaches, which we refer to as “min-max” and 

“mean”: the former obtains hourly intervals by taking the 

minimum and the maximum values of the 5-min time series 

data within each hour; the latter, instead, obtains one-standard 

deviation intervals [𝑥𝑖 − 𝑠𝑖 , 𝑥𝑖 + 𝑠𝑖] by computing the sample

mean (𝑥𝑖)and standard deviation (𝑠𝑖) of each 12 within-hour 5-

min data sample. Single-valued (crisp) hourly input have also 

been obtained as a within-hour average, i.e. by taking the 

mean of each 12 within-hour 5-min data sample, for 

comparison. The wind speed case study considers the effect of 

within-day variability, and min-max and mean approaches are 

applied to the 24 within-day hourly data samples. 

The architecture of the NN model consists of one input, one 

hidden and one output layer. The number of input neurons is 

set to 2 for both case studies, since an auto-correlation analysis 

[43] has shown that the historical past values 𝑥𝑡−1 and 𝑥𝑡−2

should be used as input variables for predicting 𝑥𝑡  in output.

The number of hidden neurons is set to 10 for the synthetic

case study and to 15 for the real case study, after a trial-and-

error process. The number of output neurons is 1 in the input-

interval case, since in this case a single neuron provides an

interval in output; conversely, in order to estimate PIs starting

from crisp input data, the number of output neurons must be

set equal to 2, to provide the lower and upper bounds. As

activation functions, the hyperbolic tangent function is used in

the hidden layer and the logarithmic sigmoid function is used

at the output layer. We remark that all arithmetic calculations

throughout the estimation process of the interval-valued NN

have been performed according to interval arithmetic (interval

product, sum, etc.).

To account for the inherent randomness of NSGA-II, 5 

different runs of this algorithm have been performed and an 

overall best non-dominated Pareto front has been obtained 

from the 5 individual fronts. To construct such best non-

dominated front, the first (best) front of each of the 5 runs is 

collected, and the resulting set of solutions is subjected to the 

fast non-dominated sorting algorithm [41] with respect to the 

two objective functions. Then, the ranked non-dominated 

fronts 𝐹1,𝐹2,… ,𝐹𝑘  are identified, where 𝐹1is the best front,

𝐹2is the second best front and 𝐹𝑘  is the worst front. Solutions

in the first (best) front 𝐹1 are then retained as the overall best

front solutions. This procedure gives us the overall best non-

dominated Pareto front for the training set. After we have 

obtained this overall best front, we perform testing using each 

solution included in it. 

For the firstcase study, the first 80% of the input data have 

been used for training and the rest for testing. For the second, a 

validation process has been performed. So the dataset has been 

divided into three parts: the first 60% is used for training, 20% 

for validation and the remaining 20% for testing. All data have 

been normalized within the range [0.1, 0.9].  

Table 1 contains the parameters of the NSGA-II for training 

the NN. “MaxGen” indicates the maximum number of 

generations which is used as a termination condition and𝑁𝑐 

indicates the total number of individuals per 

population.𝑃𝑐 indicates the crossover probability and is fixed

during the run.𝑃𝑚 _𝑖𝑛𝑡 is the initial mutation probability and it

decreases at each iteration (generation) by the formula:  

𝑃𝑚 _𝑖𝑛𝑡 × 𝑒(−
𝑔𝑒𝑛

𝑀𝑎𝑥𝐺𝑒𝑛
)

(12) 

TABLE I 

NSGA-II AND SOSA PARAMETERS USED IN THE EXPERIMENTS 

Parameter Numerical value 

MaxGen 300 

Nc 50 

Pm_int

Pc 

0.06 

0.8 

Μ 0.9 

Η 50 

Tinit 200 

Tmin 10-50

CWCint 1080

Geometric cooling 

schedule of SA 
Tk+1 = Tk * 0.95 

The average CPU times for both training and testing of NN 

have been recorded using MATLAB on a PC with 4 GB of 

RAM and a 2.53-GHz processor. The average CPU time for 

the entire training process with 300 generations takes around 5 

hours; whereas the construction of testing PIs, i.e. for the 

online prediction of PIs, is very fast, of the order of1minute. It 

is needless to say that from the user point of view, the 

computational burden of the training phase is relatively less 

important [7], [8], since the training phase is, usually, only 

performed once. Note that computational load is dependent on 

the complexity of the structure of the model (e.g. number of 

input neurons, hidden layers, and hidden neurons), the size of 

the dataset and the performance of the learning algorithm. 

Moreover, as we have used MATLAB INTLAB Version 6 

toolbox for all interval arithmetic calculations, the total 

computation time for training the NN with interval-valued 
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inputs has significantly increased compared to the CPU times 

of the case study performed in [11]. 

A. Synthetic Case Study

Four synthetic datasets have been generated according to the

following model: 

𝑦 𝑡 = 𝑓 𝑡 + 𝛿 𝑡 , (13) 

where𝑓(𝑡) is the deterministic component and 𝛿(𝑡) is the 

stochastic one, and the time horizon is 50 days which makes 

1200 hours.  The deterministic component has the following 

expression: 

𝑓 𝑡 = 10 + 1.5 ∗ 𝑠𝑖𝑛  
2𝜋𝑡

𝑇1
+ 𝑠𝑖𝑛

2𝜋𝑡

𝑇2
 , (14) 

where the period 𝑇1 of the first periodic component has been

set equal to 1 week, while 𝑇2 is 1 day. The stochastic

component 𝛿(𝑡)of the generating model in (13) is given by an 

𝐴𝑅𝑀𝐴(𝑝, 𝑞) model [43], with 𝑝 = 2 autoregressive terms, 

with same coefficients 𝜙1 = 𝜙2 = 0.1, and 𝑞 = 1 innovation

term with coefficient given by 𝜑1 = 0.05. Four different

scenarios are then considered, which differ in the distribution 

chosen for the innovation term, and in the higher or lower 

innovation variability: in two of the four scenarios the 

innovation is Gaussian, and has variance equal to 1 and 9 

respectively, while in the other two scenarios the innovation 

has a Chi-squared distribution, with 2 or 5 degrees of freedom 

(corresponding to a variance equal to 4 and 10, respectively). 

We thus generate four different 5-min time series datasets, 

from which we will obtain either crisp or interval hourly data. 

Fig. 1 illustrates the testing solutions corresponding to the 

first (best) Pareto front found after training the NN on interval 

data constructed by the min-max approach (left) and mean 

approach (right). The plots show the solutions for the data 

generated from a Gaussian distribution. On each plot, two 

testing fronts are illustrated: the ones where solutions are 

marked as circleshave been obtained after training the NN on 

the interval data showing higher variability, while the ones 

with solutions marked as diamonds have been obtained after 

training the NN on the interval data having lower variability. 

Testing solutions obtained with data showing a lower 

variability are better than the ones with higher variability; 

hence, we can conclude that a higher variability in the input 

data may cause less reliable prediction results, and should thus 

be properly taken into account. Pareto fronts of solutions 

obtained for the data generated from a Chi-squared distribution 

are similar, and the results robust with respect to the choice of 

the innovation distribution. 

Given the overall best Pareto set of optimal model solutions 

(i.e. optimal NN weights), it is necessary to select one NN 

model for use. For exemplification purposes, a solution is here 

subjectively chosen as a good compromise in terms of high 

PICP and low NMPIW. The selected solution is characterized 

by 95% CP and a NMPIW equal to 0.420 for the min-max 

approach applied to lower variability Gaussian data. The 

results on the testing set give a coverage probability of 95.5 % 

and an interval width of 0.412. Fig.2 shows 1-hour-ahead PIs 

for the selected Pareto solution, estimated on the testing set by 

the trained NN; the interval-valued targets included in the 

testing set are also shown in the figure.  

Moreover, we also plot in Fig.3 the 5-min original time 

series data (testing set), corresponding to the generating 

scenario with Gaussian distribution and low variability, 

together with the estimated PIs corresponding to the selected 

solution: the solid line shows the 5-min original time series 

data, while the dashed lines are the PIs, estimated starting from 

interval input data constructed with the min-max approach 

within each hour. Since the time step for the estimated PIs is 1 

hour, in order to compare them to the 5-min original time 

series data, we have shown in Fig.3 the same lower and upper 

bounds within each hour; thus, the PIs appear as a step 

function if compared to the original 5-min data. 

INSERT FIGURE 1 (TWO COLUMNS) 

INSERT FIGURE 2 (TWO COLUMNS) 

INSERT FIGURE 3 (TWO COLUMNS) 

In order to compare the Pareto front optimal solutions 

obtained with crisp and interval-valued inputs, a new 

normalized measure of the mean prediction interval width, 

named NMPIW*,  has been a posteriori calculated as follows: 

𝑁𝑀𝑃𝐼𝑊 ∗ =
𝑅𝑇

𝑅𝑅𝑇
×

𝑁𝑅𝑇

0.8
× 𝑁𝑀𝑃𝐼𝑊  (15) 

where RT, RRT and NRT represent, respectively, the range of 

target (i.e., the range of the non-normalized hourly training 

data in input), the range of real target (i.e., the range of the 

non-normalized 5-min original time series data over the 

training set), and the range of normalized target (i.e., the range 

of the normalized hourly training data in input, 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛 ).

Note that, unless the synthetic scenario changes, RRT takes 

the same value for min-max, mean and crisp approaches. The 

idea behind renormalization is to be able to compare PIs 

estimated from both interval and crisp approaches with respect 

to 5-min original time series data. As NMPIW for each 

solution on the Pareto front has been calculated by dividing the 

mean prediction interval width (MPIW) by the range of the 

training set in question, which is different for the two 

approaches, the Pareto fronts corresponding to the two 

approaches are not comparable. In order to analyze the 

performance of each approach with respect to 5-min original 

time series data, one should carry out a renormalization 

process which takes into account the range of the dataset 

involved in the comparison, and which leads the estimated PIs 

to a common unit of measure. As a numerical example for the 

calculation of NMPIW*, we have considered a testing 

solution, obtained on the synthetic data generated from the 

Gaussian distribution with lower variability and with the crisp 

approach, reported in Fig.4. The selected solution results in a 

coverage probability of 91% and an interval width of 0.328 on 

the testing.The values of RT, RRT and NRT are 6.87, 11.383, 
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and 0.647, respectively. Thus, by using (16), we have obtained 

NMPIW* as follows: 

𝑁𝑀𝑃𝐼𝑊 ∗ =
6.87

11.383
×

0.647

0.8
× 0.328 = 0.16  (16) 

Moreover, for each solution on each Pareto front, a PICP* 

value has been a posteriori calculated. Equations (3) and (4) 

have been used with 𝑦𝑖  representing non-normalized 5-min

original time series data, and with 𝑐𝑖 = 1, if 𝑦𝑖 ∈
[𝐿 𝑥𝑖 ,𝑈 𝑥𝑖 ]and otherwise𝑐𝑖 = 0, where 𝐿(𝑥𝑖)and

𝑈(𝑥𝑖)indicate de-normalized lower and upper bounds of the

estimated PIs. Since estimated PIs have been obtained with 

hourly input data, while original data have a 5-min time 

frequency, in order to a posteriori calculate PICP* with respect 

to the original  data we have assumed the same lower and 

upper bounds, [𝐿(𝑥𝑖),𝑈(𝑥𝑖)], for each 5-min time step within

each hour. Renormalization allows us to convert current Pareto 

fronts to new ones whose coverage probability and interval 

size are calculated according to the 5-min dataset, and are 

comparable across different (crisp and interval) approaches. 

INSERT FIGURE 4 (TWO COLUMNS) 

In Fig.4, a comparison between the testing fronts obtained 

with interval-valued and crisp inputs are illustrated. Solutions 

have been plotted according to the renormalized measures, i.e. 

the axes of the plots correspond to the new quantities 

NMPIW* and 1-PICP*, so that they can be compared. It can 

be appreciated that the solutions obtained with a crisp 

approach never result in coverage probabilities greater than 

90% with respect to the original data. Furthermore, when the 

variability in the original data increases (right plots), the crisp 

approach gives less reliable results in terms of coverage 

probability, which is smaller than 80%.However, a model 

should take the within hour variability (high or low) into 

account and be capable of properly capturing it. Predictions 

resulting in a coverage probability lower than expected show 

the poor prediction power of the crisp approach, which cannot 

be considered a reliable support to decision making in the 

presence of high variability.  

B. Real Case Study: Short-term Wind Speed Prediction

In this Section, results of the application of the proposed

method to short-term wind speed forecasting with interval-

input data are detailed. The dataset considered for the analysis 

consists in hourly wind speed data measured in Regina, 

Saskatchewan, a region of central Canada. Wind farms in 

Canada are currently responsible of an energy production of 

5403 MW, a capacity big enough to power over 1 million 

homes and equivalent to about 2% of the total electricity 

demand in Canada [44]. The actual situation in Saskatchewan 

is characterized by the presence of 4 large wind farms located 

throughout the region, with a total capacity of approximately 

198 MW [45]. 

The wind speed dataset, covering the period from January 1, 

2010 till December 30, 2012, has been downloaded from the 

website [42].  Since hourly data have been collected, 24 wind 

speedvalues are available for each day. Fig.5 shows the 

behavior of hourly wind speed values only in the first 20 days, 

for the sake of clarity: one can appreciate the within-day 

variability in each individual day. The wind speed changes 

from 0 km/h to 72 km/h with an unstable behavior. From this 

raw hourly wind speed data, one can obtain daily interval wind 

speed data with the min-max and mean approach described at 

the beginning of Section IV. The so obtained datasetsinclude 

1095 intervals among which the first 60% is used for training, 

20% for validation and the remaining 20% for testing.  

The procedure described in Sections II and IIIhas been 

applied for day-ahead wind speed prediction, both with 

interval and crisp inputs. Crisp results are reported for 

comparison, in terms of daily averages of the raw hourly data, 

with the same data splitting for training, validation and testing 

sets. The inputs are historical wind speed data 𝑊𝑡−1and

𝑊𝑡−2both for interval and crisp inputs; the optimal number of

inputs has been chosen from an auto-correlation analysis [39].  

When an optimal solution is selected from the front 

obtained by optimizing the NN on the basis of the training 

data, it is possible that the CP resulting from the application of 

this optimal NN to unseen data is lower than the one obtained 

on the training data.Thus,a validation set has beenalso 

selected, to test the generalization power of the proposed 

method. In other words, the aim is to test whether the selection 

of the solution with the required CP on the training data will 

result in well-calibrated PIs on the validation data or not.  Fig. 

6 showsthe values of PICP and NMPIW obtained on the 

validation set along the iterations of the MOGA (for the min-

max approach). To obtain these graphs, at each iteration of the 

training process, we have selected the solution from the 

training front which either results in 90% PICP or is closest to 

(and, if possible, above) 90%. Then, the selected solution has 

been used on the validation set, and the corresponding PICP 

and NMPIW valueshavebeen recorded.The motivation behind 

these plots is to show the capability of the MOGA algorithmto 

generate reliable predictions on unseen data. 

Table II reports the PICP and NMPIW values of the 

selected training and validation solutions corresponding to 

those having coverage probability between 90% and 100% on 

the overall best non-dominated Pareto front. These solutions 

are obtained by the min-max approach. From inspection both 

of Table II and the profiles of both objectives on the training 

and validation sets shown in Fig. 6, we can observe that the 

training, validation and testing results do not show significant 

difference. The PICP evaluation is coherent with NMPIW; 

hence, we can conclude that the proposed method results in 

well-calibrated PIs not only on the training set but also on the 

validation set. 

In Fig. 7, the testing solutions obtained with the interval-

valued min-max and mean approaches, and with crisp inputs, 

are illustrated. The figure has been plotted according to the 

renormalized solutions, as explained in Section IV-A, i.e. the 

axes of the plot correspond to the new quantities NMPIW* and 

1-PICP*.  As already appreciated in the synthetic case study,

one can notice that the solutions obtained with a crisp



8 

approach do not result in a coverage probability larger than 

95% with respect to the original data. Furthermore, looking at 

the solutions in Fig. 7 which show a CP greater than 90%, the 

ones corresponding to the crisp approach give larger interval 

size. Since in practice it is important to have narrow PIs with 

high coverage probability, an interval-inputs approach is more 

suited to reliable decision making. 

TABLE II 

TRAINING, VALIDATION AND TESTING RESULTS OBTAINED BY NSGA-II 

Training Validation Testing 

PICP 
(%) 

NMPIW 
PICP 
(%) 

NMPIW 
PICP 
(%) 

NMPIW 

90.1 0.440 91.0 0.470 91.4 0.452 

90.3 0.446 92.0 0.474 92.6 0.461 

90.6 0.452 91.6 0.482 92.6 0.466 

91.6 0.456 92.5 0.486 93.3 0.471 

92.1 0.466 93.1 0.494 93.9 0.480 

93.2 0.487 94.3 0.514 95.1 0.500 

93.6 0.493 94.4 0.526 94.8 0.506 

94.3 0.529 96.0 0.562 96.6 0.546 

96.9 0.578 97.7 0.606 98.3 0.595 

97.9 0.636 98.9 0.673 98.9 0.651 

98.5 0.662 99.2 0.692 99.3 0.679 

99.2 0.721 99.5 0.757 99.7 0.739 

INSERT FIGURE 5 (TWO COLUMNS) 
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From the overall best Pareto set of optimal solutions (i.e. 

optimal NN weights) obtained after training the network on 

the interval input data constructed with the min-max and mean 

approaches, a solution must be chosen. The selection of the 

solution might be accomplished by setting a constraint on one 

of the objective and choosing the optimal value for the other 

one, or by considering some other methods to weigh the two 

objectives [46]. In general, the selection should represent the 

preferences of the decision makers (DMs). Here, for 

simplicity’s sake, we do not introduce any specific formal 

method of preference assignment but subjectively choose a 

good compromise solution: for the min-max approach, the 

results give a coverage probability of 92.1% and interval width 

of 0.466 on the training, and a coverage probability of 93.9% 

and interval width of 0.480 on the testing. For the mean 

approach, the selected solution results in a coverage 

probability of 91.7% and interval width of 0.424 on 

thetraining, and a coverage probability of 93% and interval 

width of 0.437on the testing.  

Figs.8 and 9 reportday-ahead PIs (dashed lines) for the 

selected Pareto solutions, with respect to the mean and min-

max approaches respectively, estimated on the testing set by 

the trained NN.The interval-valued targets (solid lines) 

included in the testing set are also shown in the figures. As 

wind speed cannot be negative, to reflect the real physical 

phenomena the negative lower bounds of the PIs have been 

replaced with zeros. From inspection of the figures, we 

observe that the target profile of the mean approach is more 

accurate if compared to that of the min-max approach. 

However, the peak points have beencovered relatively better 

by the min-max approach if compared to the mean. Hence, 

which one would be preferably chosen depends on the 

application.The mean approach might be considered more 

similar to classical methods for short-term wind speed/power 

prediction using single-valued data as inputs, obtained as a 

within-hour or within-day average. By this approach we 

canadd information tothe single-valuedaverages, and thus 

wecan include in the model the potential uncertainty caused by 

the data itselfshowing a within hour/day variability.Hence, the 

mean approachis a well-suited interval inputs alternative to the 

classical crisp inputs one, and it might be considered more 

feasible in practice.  

INSERT FIGURE 8 (TWO COLUMNS) 
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In order to compare the interval-valued and crisp 

approaches in a clear way, we have shown the PIs obtained by 

both approaches in one Figure(see Figs. 10 and 11). In Fig. 10, 

we have shown the estimated day-ahead PIs corresponding to 

the selected solutions obtained by mean and crisp approaches, 

respectively, on the daily crisp wind speed testing set by the 

trained NN. The solutions have been selected from the overall 

best Pareto set of optimal solutions obtained by mean and crisp 

approaches. These solutions result in 91.8% CP* and 0.483 

NMPIW* for the mean approach, and has 91.3% CP and 0.495 

NMPIW for the crisp approach, on the testing dataset. It is 

clear that the solution obtained by the mean approach 

dominates the one obtained by the crisp approach. Note that 

PICP* and NMPIW* values have been a posteriori calculated 

only for the mean approach; as thecrisp approach has been 

trained with the crisp daily wind speed training set, it is not 

necessary to convert PICP and NMPIW to PICP* and 

NMPIW* values. 

Similarly, Fig. 11 has been plotted by considering a 

posteriori calculated PICP* and NMPIW* values (see Fig. 7) 

corresponding to thetwo solutions selected from the overall 

best Pareto fronts of min-max and crisp approaches, 

respectively. These solutions result in 91.4% CP* and 0.452 

NMPIW* for min-max approach, and 91.2 % CP* with 0.472 

NMPIW* for crisp approach, on the testing dataset (raw 

hourly wind speed data). It is obvious that the solution 

obtained by min-max approach is superior to the one obtained 

by crisp approach. In other words, we have obtained higher 

quality PIs with interval-valued input approach. Note that this 

comparison is done on the raw hourly wind speed dataset. 

Since the time step for the estimated PIs is 1 day, in order to 

compare them to the hourly original time series data, we have 

shown in Fig. 11 the same lower and upper bounds within each 

day; thus, the PIs appear as a step function if compared to the 
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original 1-hour data. Due to space limitations we have only 

plotted the estimated PIs obtained by min-max approach. 

TABLE III 

PICP AND NMPIW VALUES OBTAINED BY SOSA WITH RESPECT TO WIND 

SPEED DATASET (TRAINING / TESTING) 

INSERT FIGURE 10 (TWO COLUMNS) 
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From the results illustrated in Figs. 10 and 11, one might 

comment that the PIs obtained with the interval inputs 

approach are capable of capturing the peak points (highest and 

lowest) of the target of interest (hourly data). Although there 

are some highly extreme values dropping out of the estimated 

PIs, the interval approach leads to better coverage of the 

intermittent characteristic of wind speed than the crisp 

approach. In other words, the interval approach manages to 

describe more efficiently the short-term variability of wind 

speed.  

C. Comparison with single-objective simulated annealing

(SOSA) method

In this section, we present the results from a comparison 

with a method called “Lower and Upper Bound Estimation 

(LUBE)” proposed by Khosravi et al. in [7] to estimate PIs 

with single-valued (crisp) inputs. In their paper, the 

authorshave used single-objective simulated annealing 

algorithm (SOSA) to train the NN and adopted the cost 

function defined in (17),which combines PICP and NMPIW, 

to be minimized. 

The cost function proposed in [7] is called coverage width-

based criterion (CWC): 

𝐶𝑊𝐶 = 𝑁𝑀𝑃𝐼𝑊(1 + 𝛾 𝑃𝐼𝐶𝑃 𝑒−𝜂 𝑃𝐼𝐶𝑃−𝜇 )          (17)             

where𝜂 and 𝜇 are constants. The role of 𝜂 is to magnify any 

small difference between 𝜇 and PICP. The value of μ gives the 

nominal confidence level, which is set to 90% in our 

experiments (see Table I). Then, 𝜂 and 𝜇 are two parameters 

determining how much penalty is paid by the PIs with low 

coverage probability. The function 𝛾 𝑃𝐼𝐶𝑃  is equal to 1 

during training, whereas in the testing of the NN is given by 

the following step function: 

𝛾(𝑃𝐼𝐶𝑃) =
0,  𝑃𝐼𝐶𝑃 ≥ 𝜇
1,  𝑃𝐼𝐶𝑃 <  𝜇

          (18) 

To perform a comparison between SOSA and the proposed 

MOGA method, we have run the SOSA by using the same 

interval-valued wind speed training data. For SOSA, the initial 

temperature has been determined after a trial and error 

procedure. It has been tried with values of 5, 200 and 500: it 

turns out that the SOSA with initial temperature of 200 gives 

best performance.Table I contains the parameters of the 

SOSA;the maximum number of generation has been set to 

500. 

The training process has been repeated five times. Training 

and testing results in each run have been reported in Table 

III.Due to space limitation, we have put only min-max

approach results.

According to the results reported in Table III, it can be 

observed that the training and corresponding testing solutions 

do not show high consistency in terms of coverage probability 

and interval size among the five runs performed. In other 

words, there is a high difference among the results: SOSA 

gives high CP value in one run whereas it generates less 

accurate PIs in another one:3 out of 5 runs give CP values 

smaller than the predetermined nominal confidence level, i.e. 

90% in our experiments. Thus CWC values are quite high for 

those runs. Although the existing works done based on the 

SOSA LUBE method with single-valued inputsshow 

promising results for the construction of PIs [7]-[10], the 

reported results in the present work (see Table III) demonstrate 

a drawback about SOSA method’s robustness on this specific 

problem.  

For comparison purpose, we haveselected the run giving the 

smallest CWC value on the training set, which is 0.649.Note 

that in previous works of literature [7], [47], the mean or 

median value of several runs has been used as final prediction 

result. The selected run results in 93.8% CP and 0.567 

NMPIW on the training set, and a coverage probability of 

95.6% and interval width of 0.578 on the testing. By 

comparison, we have selected a solution from the overall best 

Pareto front obtained by MOGA min-max approach. This 

selected solutiongives a coverage probability of 94.3 % and 

interval width of 0.529 on the training, and a coverage 

probability of 96.6 % and interval width of 0.546 on the 

testing.For what concerns the mean approach, we have 

observed similar results: 2 out of the 5 runs have given CP less 

than 90% both on training and testing sets. The runs resulting 

in coverage probability bigger than 90% have quite large 

interval widths (above 50%). We have selected a run which 

has the smallest CWC value: it has a coverage probability of 

93.1% with 0.520 NMPIW on the training and 94.7% CP and 

interval width of0.531 on the testing datasets. On the contrary, 

the MOGA method has given a solution with 93.3% CP with 

0.440 interval size on the training, and 94.4% CP with 0.453 

interval size on the testing set. 

It is clear that the solutions obtained by MOGA dominate 

the best ones obtained by SOSA. It is worth pointing out that 

as both solutions obtained by min-max method give large 

interval sizes (around 50%) they cannot provide useful 

information in practice, because the uncertainty level is too 

high to support a reliable and informed decision in typical 

application contexts. However, with the MOGA approach one 

can select a solution from the Pareto frontgiving tight PIW 

with a high CP, which satisfies the predetermined nominal 

SOSA 

METHOD 
PICP (%) NMPIW CWC 

1 93.8 / 95.6 0.567 / 0.578 0.649 / 0.578 

2 71.7 / 73.8 0.300 / 0.312 2897 / 1032 

3 72.0 / 75.2 0.297 / 0.310 2425 / 519.6 

4 75.5 / 76.3 0.317 / 0.328 439.0 / 311.3 

5 92.1 / 95.1 0.725 / 0.752 0.978 / 0.752 
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confidence level. In short, from the results reported in Table 

III, one can conclude that the SOSA method does not give 

high quality PIs with respect to the interval-valued time 

series forecasting case study considered in this work. 

V. CONCLUSIONS

The goal of the research presented in this paper is to 

quantitatively represent the uncertainty in neural networks 

predictions of time series data, originating both from 

variability in the input and in the prediction model itself. The 

application focus has been on wind speed, whose forecasting is 

crucial for the energy market, system adequacy and service 

quality in power grid with integrated wind energy systems. 

Accuracy of predictions of power supply and quantitative 

information on the related uncertainty is relevant both for the 

power providers and the system operators. 

Specifically, we have presented two approaches that can be 

used to process interval-valued inputs with multi-layer 

perceptron neural networks. The method has been applied on a 

synthetic case study and on a real case study, in which the data 

show a high (short-term) variability (within hour and within 

day). The results obtained reveal that the interval-valued input 

approach is capable of capturing the variability in the input 

data with the required coverage. The results enable different 

strategies to be planned according to the range of possible 

outcomes within the interval forecast. 

As for future research, the use of an ensemble of different 

NNs will be considered to further increase the accuracy of the 

predictions, andtype-2 fuzzy setscan be integrated into the 

proposed model as an alternative way to represent the input 

uncertainty.  
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Fig. 1.Testing solutions for the Gaussian time series: min-max approach (left) and mean approach (right). 

Fig. 2.Estimated PIs for 1-h ahead prediction on the testing set (dashed lines), and interval-valued input data (target) constructed by the min-max approach from 

the Gaussian distribution scenario with lower variability on the testing set (solid lines). 

Fig. 3.Estimated PIs for 1-h ahead prediction on the testing set (dashed lines), and the original 5-min time series data on the testing set (solid line) obtained in the 
Gaussian distribution scenario with lower variability. 
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Fig. 4.Testing solutions obtained in the synthetic case study with interval-valued (min-max approach) and crisp approaches: data have been generated from the 

Gaussian distribution with lower (left) and higher variability (right). 

Fig. 5.The raw hourly wind speed dataset used in this study: first 20 days. 

Fig. 6.Evaluation of PICP (top) and NMPIW (bottom) with respect to training and validation setsalong MOGA iterations, considering interval inputs obtained 

with a min-max approach. 



14 

Fig. 7.Comparison between crisp and interval-valued approaches testing solutions, after renormalization, for day-ahead wind speed prediction: min-max with 

respect to crisp approach comparison (left), and mean with respect to crisp approach comparison (right). 

Fig. 8.Estimated PIs with interval inputs for day-ahead wind speed prediction on the testing set (dashed lines), and interval-valued wind speed data (constructed 

by the mean approach) included in the testing set (solid line).  

Fig. 9.Estimated PIs (dashed lines) with interval inputs for day-ahead wind speed prediction on the testing set and interval-valued wind speed data (constructed 

by the min-max approach) included in the testing set (solid line).  
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Fig. 10.Estimated PIs with interval (dotted red lines) and crisp (dashed blue lines) inputs for day-ahead wind speed prediction on the testing set and single-valued 

(crisp) daily wind speed data included in the testing set (solid line).  

Fig. 11.  Estimated PIs with interval (dotted red lines) and crisp (dashed blue lines) inputs for day-ahead wind speed prediction on the testing set and single-

valued (crisp) raw hourly wind speed data (solid line). 




