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Abstract Impulsive interband excitation with femtosecond near-

infrared pulses establishes a plasma response in intrinsic germanium 

structures fabricated on a silicon substrate. This direct approach 

activates the plasmonic resonance of the Ge structures and enables 

their use as optical antennas up to the mid-infrared spectral range. The 

optical switching lasts for hundreds of picoseconds until charge 

recombination red-shifts the plasma frequency. The full behavior of the 

structures is modeled by the electrodynamic response established by an 

electron-hole plasma in a regular array of antennas. 

 

Plasmonics offers an elegant way to effectively couple optical radiation to sub-

wavelength structures [1, 2, 3, 4, 5, 6]. Owing to the strong field enhancement, it 
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becomes possible to access light-matter interactions at the nanometer scale [7, 8, 9, 

10] with the opportunity to efficiently excite single quantum systems [11, 12]. In 

particular, the mid-infrared (MIR) spectral range is of interest for sensing explosives, 

hazardous chemicals and molecules of biological relevance in the so-called 

“vibrational fingerprint region” that covers the wavelength band from 3 to 20 µm [13, 

14, 15, 16, 17], i.e. from 100 THz to 15 THz. In this context, Ge represents a novel 

material for MIR plasmonics [18, 19, 20]. Recent technological advancements enable 

ultra-high doping of single-crystalline films and the approach of growing Ge on Si 

substrates ensures full compatibility with standard semiconductor technologies. The 

doping level can be tailored in order to tune the carrier concentration and thus to 

control the plasma frequency νp [21, 22, 23]. State-of–the-art doping techniques 

allows semiconducting materials to be employed for plasmonics applications up to 

MIR frequencies [19]. 

Semiconductors are also appealing for the possibility to excite optically electrons 

from the valence to the conduction band, thus establishing a plasma response [24, 

25] that lasts until the charges recombine. This approach has been successfully 

exploited to study active plasmonics [26, 27, 28] and THz metamaterial devices [29, 

30] in direct bandgap semiconductors such as InSb, GaAs [31, 32, 33], or in Si [34]. 

The plasma frequencies were achieved in these materials, however, were limited to 

the far-infrared or terahertz ranges.  

In this work, we demonstrate the activation of MIR plasmonic resonances in Ge 

microstructures by impulsively establishing a plasma response that extends up to a 

frequency of 60 THz with ultrashort near-infrared pulses. We also provide a 

theoretical insight on the plasmonic behavior of the antennas by modeling their 

optical response triggered by an electron-hole plasma in the semiconductor band 

structure.  

 

Ge is the ideal material for our application since: i) it can be effectively excited by 

near-infrared radiation resonant with direct transitions; ii) the indirect gap prevents 

quick recombination of photoexcited carriers with the consequential drift of the 

plasma frequency on ultrafast timescales; iii) Ge has no dipole-active optical phonons 
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in the MIR spectral region that complicate its dielectric behavior and speed up the 

recombination process [18, 24, 35]. 

When an ultrashort near-infrared pulse excites intrinsic Ge, electron-hole pairs are 

created in the Γ-valley of the band structure via interband absorption [see Fig. 1(a)]. 

Electrons at the Γ-point scatter into the L minima within 100 fs, where they acquire a 

larger effective mass m*. For high pump fluence, two-photon absorption has also to 

be taken into account and allows access to the large joint density of states around 

the L symmetry point. The occurrence of photoexcited electrons in the L-valley of the 

conduction band and holes in the valence band at the Γ point leads to a Drude-like 

dielectric response with the intrinsic Ge becoming quasi-metallic. The resonance 

characteristics of optical structures depend significantly on both their geometry as 

well as the inherent number of free carriers. Thus, impulsive excitation can be used 

to activate and tune the resonance properties of Ge plasmonic antennas. 

 

Figure 1 (color online): (a) Sketch of the band structure of Ge [35] with 

near-infrared transitions at the direct gap and two-photon absorption at 

the L symmetry point. The graph includes the effective masses for 

electrons in different valleys with respect to their rest mass m0. 

Scanning electron micrographs of (b) a 2 µm double rod antenna array 

and (c) a 2 µm single rod antenna array fabricated from a 1µm thick, 

intrinsic Ge epitaxial layer grown on a Si substrate. 
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Single-crystalline, undoped Ge films were grown on intrinsic Si substrates by low-

energy plasma-enhanced chemical vapor deposition [20, 23, 36, 37]. The 1-µm-thick 

layer was patterned by electron beam lithography using a Vistec VB6 tool with 

subsequent reactive ion dry etching [see Fig. 1(b) and (c)] using hydrogen 

silsesquioxane resist and a mixed SF6 and C4F8 process [19, 38, 39]. With these steps 

we produced single and double rod antennas with a width of 800 nm and an arm 

length of either 2 µm or 3 µm. The double rod antennas consist of two equal arms 

featuring a gap size of 300 nm. The design of the arrays is optimized to provide 

minimum coupling between the localized plasmonic modes of different adjacent 

antennas while preserving the maximum coverage of the substrate. 

 

The optical control of the Ge optical antennas is driven by an ultrafast laser system 

pumped by a Ti:sapphire regenerative amplifier [24]. It is seeded by a femtosecond 

Er:fiber laser that supplies also the 8 fs pulses used for electro-optical sampling 

(EOS) of the MIR transients. A two-stage non-collinear optical parametric amplifier 

(NOPA) [40] generates sub-20 fs pulses with energies up to 15 µJ at a central 

wavelength tuned to 1050 nm for the efficient excitation of direct interband 

transitions in the Ge structures. The large photon fluence also allows for two-photon 

absorption and the creation of a high concentration of free carriers that support a 

plasmonic behavior up to a frequency of approximately 60 THz [24]. Si absorbs the 

near-infrared wavelength only via inefficient indirect transitions resulting in a 

negligible photo-carrier density in the substrate [35]. 

To probe the MIR activation of the Ge antennas we employed broadband phase-

stable pulses extending from 15 THz to 30 THz. These transients are generated via 

difference frequency generation between the output beams of two additional OPAs 

operating at center wavelengths of 1.18 µm and 1.28 µm, respectively. The nonlinear 

mixing takes place in a 250-µm-thick GaSe crystal to guarantee sufficient probing 

bandwidth and a pulse duration of 125 fs [41]. 

To trigger the switching dynamics of the Ge structures we focused collinearly the 

near-infrared pump and MIR probe pulses with a large-aperture parabolic mirror. The 
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incidence on the sample was set at the Brewster’s angle condition for the Si 

substrate, 𝛼𝐵𝑟 = 74°. The probe electric field was selected to be p-polarized and 

parallel to the long antenna axis. The time interval Δ𝑡 between excitation and 

probing was adjusted with an optical delay stage. Between 2000 and 3000 antennas 

are excited at a focus diameter of 130 µm. The dimension of our structures is 

significantly larger than the pump wavelength of 1050 nm. Therefore, the near-

infrared pump is absorbed in the Ge antennas following the conventional Lambert 

Beer’s law [42] without significant geometry-related photonic effects. Instead, the 

MIR interaction with the antennas is strongly governed by the sub-wavelength size of 

the elements and the dynamical activation of their plasmonic resonance. The pump 

pulse intensity is controlled to optimally tune the maximum plasma frequency 

obtained in Ge without reaching the threshold for optical damage.    

An off-axis parabolic mirror collimates the radiation reflected in the specular 

direction. This geometry is chosen to minimize any influence of the substrate. The 

MIR probe transients are then characterized in amplitude and phase by electro-

optical sampling in a 90- µm-thick GaSe crystal [41]. The reflection spectra are 

obtained by Fourier transform. The excitation is modulated at 500 Hz, i.e. at half the 

repetition rate of the system. The probe is then measured in the presence and 

absence of the pump pulse in order to extract the transient reflectivity of the sample. 

 

Figure 2 (color online): (a) The intensity spectrum of the near-infrared 

pulse that activates the Ge antennas. (b) The MIR probe transient as 

measured by electro-optical sampling and corresponding intensity 

spectrum (inset). 
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Without excitation, the antennas do not display any plasmonic behavior and we 

detect the MIR light reflected by the array. After near-infrared excitation, a 

significant reduction of the intensity in the specular direction is observed. Fig. 3(a) 

demonstrates the electric field profile of the MIR pulse as reflected by the sample 

before (black line) and after photoexcitation (red line). The spectral intensity is thus 

reduced by 65% as depicted in Fig. 3(b). This effect is due to the increased 

scattering and absorption cross section of the Ge antennas once the plasmonic 

resonance has been established. In fact, the probe light is mainly re-emitted in the 

direction normal to the sample surface rather at large angles as expected by a dipole 

radiation pattern.  

 

Figure 3 (color online): (a) The electric field time trace and (b) the 

spectral intensity of the MIR probe pulse reflected from the 2-µm 

double-rod antenna array with (red) and without (black) near-infrared 

optical excitation at a pump energy of 6 µJ. The carrier density in the 

active antenna is estimated to be approximately 1.6·1020 cm-3. (c) The 

integrated reflectivity change as a function of the pulse energy 

recorded at a delay time of 125 ps after excitation. The arrow indicates 

the experimental conditions corresponding to the data depicted in (a) 

and (b). 
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It should be noted that any residual pump-probe signal from the substrate would 

increase the reflectivity rather than diminishing it, as expected for the 

photoexcitation of an unstructured semiconductor material [24]. The pump-probe 

signal vanishes almost completely by rotating the samples by 90° to set the probe 

beam polarization perpendicular to the long antenna axes. This aspect further proves 

the activation of localized plasmons that become resonant within the geometrical 

constraints of the structures. Qualitatively, the switching action is similar for all the 

array samples investigated. The response we measured is particularly broadband as 

expected for plasmonic resonances established in proximity of the plasma frequency. 

In Fig. 3(c) we plot the fluence dependence for the reflectivity of the 2 µm Ge double 

antenna array at a fixed delay between pump and probe of 125 ps. We notice that 

the reflectivity initially displays a slight increase. This is mainly due to the onset of a 

low plasma frequency in Ge. For higher pumping fluence, the antennas are 

plasmonically activated and interact with MIR photons. We can define a threshold for 

the switching at the fluence of 3 mJ/cm2 (2 µJ pulse energy) that we estimate to 

create a plasma frequency of 20 THz [24]. 

Fig. 4(a) reports the transient reflectivity of the antennas array as a function of the 

time delay between near-infrared excitation and MIR probing. In a previous work 

[19], we studied the steady-state localized resonances in heavily-doped Ge antennas 

with the same geometry as the one investigated here. We demonstrated the 

occurrence of two distinct features, one with the near fields concentrated at the Ge-

Si interface (lower-energy resonance) and one with the near fields concentrated at 

the Ge-air interface (higher-energy resonance). Here we can follow the evolution of 

the Ge-Si resonance after optical activation of the intrinsic antennas while the plasma 

frequency red-shifts as the carriers recombine in Ge. The relatively short 

recombination time, measured to be approximately 300 ps, is in good agreement 

with studies on thin films and nanowires where surface recombination plays a 

significant role [37, 43]. Directly after excitation, the induced plasma frequency and 

reaches a frequency of 60 THz. In these conditions, the Ge-air resonance lies at 

approximately 45 THz and therefore is outside our observation window. On the other 

side, we clearly observe the signature of the lower-energy resonance between 24 

and 20 THz. Subsequently, the resonance redshifts to below 19 THz in about 400 ps, 
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until no resonance characteristics are detectable anymore once νp becomes lower 

than 15 THz. This drift of the plasmonic response is due to electron-hole 

recombination and the consequent reduction of the carrier density. 

 

Figure 4 (color online): (a) The spectrally resolved relative reflectivity 

change (ΔR/R, color encoded) of the 2 µm single-rod antenna array 

under near-infrared excitation. The data was acquired at a 5 µJ pump 

pulse energy as a function of the delay time between the pump and the 

MIR probe. The black solid line follows the calculated Ge-Si resonance 

frequency and the shaded area represents the confidence interval of its 

value. (b) Simulation of the reflectivity of the Ge structure array as a 

function of the free charge-carrier density. The delay time axis is 

assigned by considering a recombination time of 288 ps. The white 

lines indicate no reflectivity change whilst the black line follows the Ge-

Si antenna resonance. The simulation can be compared with the 

experimental data range (dashed) by considering a slight blue-shift of 

the response. The color bar is valid for both graphs.  
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A more quantitative description of the antennas activation as measured in the 

experiments, together with a rigorous assignment of the observed optical features to 

the different antenna resonances, has been derived from electromagnetic simulations 

performed with a frequency-domain method known as the Rigorous Coupled Wave 

Analysis (RCWA) [44]. This approach exploits a decomposition of the field in a 

Fourier basis and the scattering matrix approach to obtain the mode amplitudes in 

the different layers. TM-polarized reflection spectra have been simulated for all 

angles between 71° and 81° and then averaged by using a Gaussian function to take 

into account the focusing conditions of the experiments. The dielectric constant of Ge 

used for the simulations was calculated considering the effective Drude response of a 

plasma constituted by both electrons and holes and considering their respective 

effective masses. In particular, we calculated that the valence band contribution is 

due to both heavy and light holes. In detail: 

υ𝑝 =
1

2𝜋
√

𝑁𝑒

𝑚L
∗ 𝜀0

+ 
𝑁hh𝑒

𝑚hh
∗ 𝜀0

+
𝑁lh𝑒

𝑚lh
∗ 𝜀0

 

where N is the number density of electron-hole pairs, e the fundamental electron 

charge, 0 the free space permittivity and m* the effective mass of electrons in the L-

valley of the conduction band (m*L = 0.12m0) and for heavy and light holes in the 

valence band (m*hh = 0.33m0 and m*lh = 0.043m0, respectively). The densities for 

heavy and light holes sum up to N but their distribution is not equal given the 

different dispersion of the respective bands. We calculate the ratio between the two 

numbers to be: 

𝑁ℎℎ

𝑁𝑙ℎ
= (

𝑚ℎℎ
∗

𝑚𝑙ℎ
∗ )

3

2
. 

In addition, we also considered the crucial contribution of low-frequency absorption 

from the split-off hole band to the emptied states at the Γ point via Lorentzian line 

shapes for the evaluation of the effective dielectric function. The exact position of 

these transitions in the energy spectrum depends on the carrier concentration and 

dynamically red-shifts while electrons and holes recombine. It is worth noting that 

our modeling approach does not make use of any fitting parameters. 
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Fig. 4(b) presents the results of the calculated reflectivity as a function of the free 

carrier density. The horizontal axis is plotted in a logarithmic scale to mimic the 

recombination dynamics and to allow for a more direct comparison with the 

experimental trace in the time domain. We notice that the simulation reproduces the 

strong modulation of the reflectivity around the plasmonic resonance and that 

describes the shift towards longer wavelengths for lower carrier densities. The 

calculation qualitatively reflects the experimental observations with only a slight blue 

shift of the spectral response that might be due to the anharmonicity of the bands 

and the consequent non-constant effective masses of the carriers. Nevertheless, the 

assistance of the finite-difference time domain simulations allows us to establish that 

our experiments track the Ge-Si lower-energy plasmonic response (black line in Fig. 

4(b)) at a frequency of approximately 24 THz. The black solid line in Fig. 4(a) follows 

this evolution and is calculated by tracking the signal amplitude that is expected by 

the simulation for a given carrier density. Interestingly, at early times we can 

observe a complex, quasi-stationary evolution of the resonance frequency followed 

by its monotonic red-shift to below 19 THz within 400 ps. The effect occurring in the 

first 10 ps is in nice qualitative agreement with the electromagnetic simulations 

reported in Fig. 4b and might be additionally affected by initial non-equilibrium 

dynamics in the carrier distribution. The Ge-air resonance lays at higher energies and 

is not depicted in the figures. 

A different perspective for active control of the antenna array on the picosecond time 

scale exploits the so-called Rayleigh-Woods anomalies [45, 46, 47], i.e. the abrupt 

discontinuities observed in the transmission and reflection spectra of plasmonic 

arrays at correspondence of a diffraction orders. Such steep spectral features, that 

have important practical application e.g. for MIR filters [47, 48], can also be 

modulated in intensity by the pump pulse, while their spectral position is fixed by the 

array geometry and therefore does not shift during the transient evolution of the 

plasma frequency.  
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Figure 5 (color online): The reflected intensity spectrum of the 3-µm 

single-rod antenna array measured with (red line) and without (black 

line) optical excitation. This sample displays a distinct and steep 

Rayleigh-Woods anomaly signature at 22 THz that becomes significant 

after the optical excitation. 

In the antenna array constituted by single 3-µm-long rods with 7 µm periodicity we 

observe (Fig. 5) a sharp variation of the reflectivity that is strongly suppressed above 

22 THz upon photoexcitation with the near-infrared pump pulse. Such a system can 

therefore act as an optically controlled, ultrafast MIR filter whose response can be 

further optimized and engineered by increasing the complexity of the array geometry 

[47, 48]. 

In conclusion, we have demonstrated that it is possible to optically activate intrinsic 

germanium antennas and establish localized plasmonic resonances that can access 

the MIR spectral range. This approach gives full control over the field enhancement 

and confinement of MIR light in the sub-diffraction limit and at the ultrafast 

timescale. Our experiments lay the foundation for active plasmonic nanosystems that 

are particularly appealing for the broadband identification of molecules through their 

vibrations in the fingerprint region. Crucial is the prospect to exploit established all-

semiconductor technologies for direct on-chip integration of innovative sensing 

devices driven by compact picosecond lasers. In addition, the optical switching of 

near-field optics paves the way for novel approaches in fundamental and 

semiconductor material sciences. For example, the all-optical manipulation of 
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optoelectronic devices, such as integrated MIR waveguides, detectors and filters will 

be possible.  
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