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A	human	modelling	and	monitoring	approach	to	support	the	execution	of	
manufacturing	operations.	
	
Marcello	Urgo1,*,	Marco	Tarabini1,	Tullio	Tolio	
	
1	Politecnico	di	Milano,	Department	of	Mechanical	Engineering,	Milan,	Italy.	

	
Human	 workers	 have	 a	 vital	 role	 in	 manufacturing	 given	 their	 adaptability	 to	 varying	 environmental	 conditions,	 their	 capability	 of	 judgment	 and	
understanding	 of	 the	 context.	 Nevertheless,	 the	 increasing	 complexity	 and	 variety	 of	 manufacturing	 operations	 ask	 for	 the	 exploitation	 of	 digital	
technologies	to	support	human	workers	and/or	facilitate	their	interaction	with	automation	equipment.	The	proposed	approach	uses	artificial	intelligence	
for	image	processing	to	identify	the	actions	of	the	workers	and	exploits	the	knowledge	related	to	the	processes	through	hidden-Markov	models	to	identify	
possible	errors,	deviations	from	the	planned	execution	or	dangerous	situations.	An	application	case	 is	provided	for	assembly	operations	to	assess	the	
viability	of	the	proposed	approach	in	realistic	conditions.	
	
Man-machine	system,	Modelling,	Monitoring	

	

1. Introduction	and	problem	statement	

In	 many	 application	 areas,	 humans	 are	 a	 primary	 source	 of	 flexibility	 through	 their	 versatility	 in	 working	 on	 different	 and	
heterogeneous	 activities,	 adaptability	 to	 varying	 environmental	 conditions,	 capability	 to	 learn	 and	 improve	 their	 skills,	 capability	 of	
judgment	and	understanding	of	the	context.	Due	to	this,	despite	the	impressive	adoption	of	automated	equipment,	human	workers	have	
an	 important	 role	 in	manufacturing,	 in	 particular	 in	 the	 execution	 of	 processes	 characterized	 by	 a	 high	 level	 of	 variability	 (due	 to	
personalization	and/or	high	variety	of	 the	products)	or	high	complexity/low	formalization	(e.g.,	complex	Manufacturing-To-Order	or	
high-quality	handcraft	production).	These	requirements,	constituting	relevant	but	limited	market	niches	in	the	past	years,	are	becoming	
some	of	the	most	relevant	challenges	for	companies	pursuing	high	added-value	manufacturing	[1]	.	Approaches	designed	to	improve	the	
performance	in	these	manufacturing	environments	constitute	a	very	relevant	objective	for	industrial	companies.		
Nevertheless,	exploiting	the	high	degree	of	flexibility	and	adaptability	of	human	workers	also	increases	the	probability	to	introduce	

errors	in	comparison	to	the	stability	and	reliability	of	the	behaviour	of	automatic	equipment.	At	the	same	time,	the	integration	of	human	
workers	and	automatic	equipment	in	the	same	working	space	poses	concrete	and	relevant	performance	and	safety	challenges	[2]	.	To	this	
aim,	monitoring	systems	can	play	a	role,	providing	the	capability	of	understanding	what	a	human	operator	is	doing	and	identify	possible	
deviations	from	the	ideal	execution	of	a	given	process.	
Advanced	monitoring	approaches	are	a	major	need	in	flexible	and	high-performance	manufacturing	systems.	Although	advanced	tools	

and	 approaches	 are	 available	 for	machines,	 taking	 advantage	of	 a	wide	 range	of	 sensors	 and	models	 [3]	 ,	 the	monitoring	of	 human	
operators	is	a	less	developed	area	both	in	terms	of	research	and	industrial	applications	[4]	.	At	the	same	time,	the	impressive	advancement	
of	digital	technologies	and	artificial	intelligence	in	this	field,	mainly	pursuing	applications	in	autonomous	vehicles	and	security,	provides	
an	opportunity	for	the	design	of	new	approaches	that	were	not	feasible	before	[4]	.		
In	this	paper	we	address	the	design,	pilot	implementation	and	testing	of	a	monitoring	approach	for	manually	executed	manufacturing	

operations	grounding	on	advanced	vision	technologies	and	artificial	intelligence.	The	aim	of	the	approach	is	to	(i)	monitor	the	execution	
progress	of	the	process	to	infer	whether	it	has	been	completed	or	assessing	the	fraction	already	executed	and	(ii)	identify	possible	errors	
of	the	human	worker,	e.g.,	operations	whose	execution	has	been	forgotten,	(iii)	raising	the	alarm	in	case	of	unsafe	behaviour.	The	intended	
application	is	in	high-variability	manufacturing	environments	to	support	the	workers	in	the	execution	of	a	wide	range	of	tasks	and	their	
interaction	with	automation	equipment,	e.g.,	robots.	An	important	requirement	is	the	possible	adoption	in	real	operating	environments,	
being	able	of	coping	with	the	intrinsic	uncertainty	and	incomplete	knowledge	of	real	manually	executed	processes.		
The	paper	is	organized	as	follows:	Section	2	presents	an	analysis	of	the	literature;	Section	3	describes		the	structure	of	the	approach	and	

the	associated	requirements	which	are	then	addressed	in	details	in	Section	4;	in	Section	5,	the	application	to	an	industrial	case	is	presented	
while	Section	6	reports	the	conclusions	and	future	developments. 

2. Literature	review	

The	modelling	of	human	operators	is	a	challenging	research	area	due	the	difficulty	to	formalize	and	predict	their	behaviour.	The	modern	
trend	towards	flexible	automation	in	manufacturing	processes	raises	new	challenging	problems	in	this	area	with	respect	to	environments	
where	humans	and	machines	have	to	operate	and	collaborate	[1]	[5]	.		
Traditional	modelling	approaches	 for	monitoring	manufacturing	processes	 fail	when	dealing	with	 tracking	behaviours	 that	are	not	

deterministic.	To	overcome	this	limitation,	generative	models	are	defined	in	terms	of	stochastic	parameters	estimated	from	input	data	
[6]	.	Hidden	Markov	Models	(HMM)	[7]	[8]	and	Dynamic	Bayesian	Networks	are	among	the	most	commonly	used	generative	modelling	
methods.	 HMM,	 in	 particular,	 are	 among	 the	most	 suitable	 tools	 for	 the	monitoring	 of	 activities	 performed	 by	 humans	 in	 different	
application	areas	[8]	[10]	and	for	gesture	recognition	[9]	.	HMMs	also	provide	the	possibility	of	jointly	considering	the	available	knowledge	
(the	ideal	process)	and	the	information	coming	from	experiments	(the	output	of	tracking	approaches)	enabling	mixed	generative	and	
discriminative	approaches	[6]	.	With	regards	to	tracking	the	human	movements,	a	very	relevant	trend	is	deep	learning	as	a	data	driven	
technique	for	continuous	human	motion	analysis	[11]	.		
Within	this	increasing	corpus	of	approaches,	the	tracking	of	the	human	pose	has	shown	a	rapid	and	significant	development	in	the	last	

few	years	taking	advantage	of	deep	learning	image	recognition	methods	to	estimate	the	human	pose	in	terms	of	legs,	arms,	hands	and	
face.	 Tools	 exploiting	 these	 techniques	 have	 been	 developed	 by	 Google	 [12]	 within	 their	 GoogleAI	 initiative	 and	 Carnegie	 Mellon	
University	 [13]	with	applications	 to	 robotics.	These	advances	provide	 the	push	 towards	 the	possibility	of	developing	new	classes	of	
methods	exploiting	both	the	good	performance	of	these	tools	and	the	higher	detail	of	available	information.	



3. Monitoring	and	support	human-executed	processes	

As	described	in	Section	1,	the	aim	of	the	proposed	approach	is	to	be	able	of	tracking	a	human	worker	and	to	compare	the	results	against	
the	correct	way	of	executing	the	process.		
Considering	 the	 application	 in	 real	 working	 environments,	 the	 manufacturing	 process	 and	 the	 associated	 operations	 cannot	 be	

completely	formalized.	E.g.,	the	operator	could	pre-empt	operations	to	perform	checks	to	guarantee	the	correct	execution	of	the	process;	
or	operate	additional	actions	like,	picking-up	and	release	tools	multiple	times,	touching	his/her	head	or	body,	adjusting	the	glasses,	etc.		
Since	these	actions	are	not	necessarily	forbidden	and	do	not	constitute	a	significant	deviation	from	the	correct	execution	of	the	process,	

a	monitoring	approach	has	to	be	able	to	operate	in	these	conditions.	Thus,	being	able	to	infer	what	the	operator	is	actually	doing	grounding	
on	a	formal	description	of	the	process	and	coping	with	unformalized	actions	discriminating	those	not	disturbing	the	process	from	real	
errors.		
The	reference	architecture	of	the	approach	is	shown	in	Figure	1.	The	movements	of	the	human	operators	are	tracked	to	identify	the	

positions	of	his/her	body	and	hands.	A	normal	camera	is	used	shooting	a	video	of	what	is	being	executed.	Relying	on	a	simple	video	shot	
allows	to	avoid	the	need	to	wear	specific	sensors	or	markers	and	enlarge	the	range	of	applicability	of	the	approach.	The	video	is	processed	
and	the	coordinates	of	the	key	points	of	the	human	body	obtained.	
	

	
Figure	1.	Structure	of	the	proposed	approach	

	
The	tracked	positions	are	exploited	by	the	monitoring	approach	that,	grounding	on	a	formal	model	of	the	process	to	be	executed	and	

the	associated	uncertainty,	evaluates	what	the	human	operator	is	doing	with	the	aim	to:	(i)	assess	the	execution	progress	of	the	process;	
(ii)	identify	possible	errors	in	the	execution;	(iii)	identify	possible	unsafe	situations.	

4. Solution	approach		

The	proposed	approach	consists	of	three	steps:	(i)	the	estimation	of	the	human	pose	and	the	tracking	of	the	movements	in	the	captured	
video,	(ii)	the	definition	of	a	model	for	the	execution	of	the	process	and	the	link	with	the	information	coming	from	the	tracking	approach	
and	(iii)	the	use	of	the	model	to	monitor	the	execution	of	an	ongoing	process.	

4.1. Human	pose	estimation	and	tracking	
The	position	of	the	operator	is	estimated	by	analysing	frames	of	video	recordings	with	OpenPose	[13]	a	software	for	real-time	multi-
person	tracking	that	detects	human	body,	hand,	facial,	and	foot	key	points	[13]	(Figure	3).	The	software	output	are	the	coordinates	of	key	
points	for	the	people	detected,	together	with	a	detection	confidence	dc.	This	output	is	processed	to	censor	unreliable	data	due	to	the	
possible	presence	of	false	identification	of	shadows	or	mirror	reflections.	The	censoring	of	unreliable	data	grounds	on	the	confidence	
provided	by	OpenPose	and	coherence	constraints	related	to	the	human	body,	going	outside	the	scope	of	this	paper.	If	multiple	operators	
are	in	the	scene,	the	continuity	of	their	tracking	has	to	be	guaranteed	among	different	frames,	since	people	are	detected	in	random	order	
by	the	OpenPose	algorithm.	Thus,	a	matching	approach	has	been	used	to	 find	the	most	 likely	matching	between	the	different	people	
identified:	
1. In	the	first	frame	where	at	least	one	operator	is	present,	an	identifier	is	assigned	to	each	person;	
2. For	each	subsequent	non-empty	frame,	the	matching	between	the	identifier	and	the	people	is	verified	and,	if	needed,	modified	to	

guarantee	continuous	tracking.		
3. If	a	new	person	enters	the	scene,	a	new	identifier	is	assigned	while,	if	a	person	leaves	the	scene,	its	identifier	is	released	and	cannot	

be	used	anymore	
	

 
Figure	2.	Body	and	hand	modelling	schemes	for	tracking	[13]	.	

	
The	matching	of	the	estimated	people	in	step	(2)	is	based	on	the	computation	of	the	distance	between	the	key	points	acquired	in	two	

consecutive	frames.	To	link	the	pose	estimation	with	the	process	to	be	executed,	a	set	of	working	regions	are	defined	in	the	area	of	the	
captured	frame,	hence,	the	coordinates	of	the	operator’s	key	points	are	checked	against	these	regions.	These	regions	must	be	defined	in	
order	to	be	consistent	with	the	position	of	the	hands	of	the	human	worker	when	executing	the	different	operations.	Thus,	the	previous	
output	is	translated	into	a	sequence	of	presence	of	the	key	points	in	the	regions.	
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4.2. Modelling	of	human-executed	manufacturing	operations	
We	consider	the	execution	of	a	generic	process	by	a	human	operator.	We	assume	the	operator	has	to	follow	a	given	structure	of	the	

process	thorough	the	execution	of	a	partially	ordered	set	of	operations.	This	means	that	the	operator	has	some	degrees	of	freedom	in	the	
execution	of	the	process,	thus	the	monitoring	has	to	be	able	to	take	into	consideration	multiple	alternative	ways	of	executing	it.	To	match	
these	requirements,	a	Hidden	Markov	Model	is	defined,	able	to	consider	a	state-based	process	definition	together	with	the	measurements	
of	a	set	of	variables	related	to	the	process	execution.	HMMs	are	probabilistic	models,	hence,	are	able	to	deal	with	uncertainties	or	noise	
in	measured	observations	[6]	linked	to	the	underlying	state-based	process.		
The	formalization	of	the	process	starts	with	the	definition	of	the	states	describing	the	manufacturing	process,	modelled	through	a	set	

of	 states,	 S	 =	 {s,	 O1,	 O2,	 …,	 Ok,	 t},	 where	 states	 {O1,	 O2,	 …,	 Ok}	 	 represent	 a	 finite	 set	 of	 manufacturing	 operations	 belonging	 to	 the	
manufacturing	process	under	analysis,	while	s	and	t	are	dummy	states	modelling	the	beginning	and	completion	of	the	process.	Precedence	
relations	as	well	as	the	execution	times	for	the	operations	are	modelled	through	the	definition	of	transitions	among	the	states	in	S.	The	
tracking	approach	described	in	Section	4.1	analyses	every	single	frame	of	the	captured	video,	as	a	consequence,	the	output	assumes	a	
discretization	of	the	time	defined	by	the	number	of	frames	per	second	in	the	video.	At	each	time	unit,	ai,j,	defines	the	probability	to	move	
from	state	i	to	state	j	given	that	the	process	is	in	state	i.	An	example	is	provided	in	Figure	3	showing	the	modelling	of	a	very	simple	process	
consisting	of	three	operations	(O1,	O2	and	O3)	that	must	be	executed	in	series.	The	model	in	Figure	3	is	a	discrete-time	Markov	Chain	whose	
execution	generates	a	sequence	of	states	in	S.	It	is	a	stochastic	model;	hence	the	sojourn	time	in	the	states	is	not	deterministic,	and	it	also	
has	the	Markov	property:	the	probability	of	moving	to	the	next	state	only	depends	on	the	current	state,	independently	from	the	number	
of	time	units	already	spent	in	it.		
	

 
Figure	3.	A	Markov	Chain	model	of	a	simple	process.	

	
Although	the	tracking	approach	(Section	4.1	)	is	able	to	identify	the	position	of	the	human	body	in	the	scene	in	terms	of	the	presence	of	

a	set	of	key	points	in	a	given	area,	it	cannot	provide	any	information	about	what	the	operator	is	actually	doing	
Modelling	the	link	between	the	position	of	the	body	(e.g.,	the	hands)	and	the	process	in	execution	takes	advantage	of	the	features	of	

HMMs.	In	a	HMM,	the	states	in	S	are	hidden,	i.e.,	cannot	be	observed.	On	the	contrary,	they	can	be	monitored	through	an	emission,	i.e.,	
observable	variables	with	support	E	=	{e0,	e1,	…,	em}.	An	emission	ei	can	be	a	single	value	or	an	array	of	values,	providing	the	possibility	to	
consider	a	wide	range	of	observable	variables	in	a	single	emission	model.	The	link	between	the	execution	of	the	operations	in	S	and	the	
associated	emission	in	E	is	defined	through	the	emission	probability	bi,e,	i.e.,	the	probability	of	observing	emission	ei	when	the	process	is	
in	state	i.	The	HMM	associated	to	the	process	modelled	in	Figure	3	is	represented	in	Figure	4.		
	

 
Figure	4.	Hidden	Markov	Model	of	a	simple	process.	

	
Hence,	for	each	activity	of	the	process	to	be	executed	(represented	as	a	state	in	S),	a	set	of	emissions	can	be	defined	in	terms	of	the	

presence	of	the	hands	of	the	operator	in	a	set	of	areas	in	the	frame.	The	estimation	of	the	transition	and	emission	probabilities	(ai,j	and	
bi,e)	for	a	given	process	to	monitor	is	known	as	the	training	of	the	HMM.	The	main	approach	for	training	is	exploiting	a	set	of	paired	states	
and	emissions	sequences	coming	from	correct	executions	of	the	process,	to	estimate	the	value	of	ai,j	and	bi,e.	Also,	the	ideal	process	is	
exploited	for	the	training.		
Starting	from	the	model	of	the	process	in	Figure	3,	together	with	the	estimation	of	the	processing	times,	ideal	executions	are	sampled	

together	with	the	associated	sequence	of	generated	emissions.	These	data,	together	with	the	ones	coming	from	the	experiments,	are	used	
to	estimate	the	parameters	in	the	HMM.	

4.3. Monitoring	a	human-executed	process	
The	above-described	model	can	be	used	to	support	the	monitoring	of	a	process	through	the	observation	of	the	sequence	of	emissions	

obtained	through	the	tracking	of	the	human	body.	This	is	equivalent	to	perform	a	decoding	of	the	emission	of	an	HMM.	Thus,	given	a	
sequence	Θ! 	of	emissions	observed,	find	the	most	probable	sequence	of	states	Θ".	This	operation	is	performed	using	the	Viterbi	algorithm	
[7]	also	returning	the	probability	𝛿	associated	to	Θ".		
If	𝛿	 is	 low,	 it	means	 that,	 although	 the	 observed	 sequence	 of	 emissions	 is	 compatible	with	 the	 process,	 its	 likelihood	 is	 low	 and,	

consequently,	could	signal	a	wrong	execution	of	the	process.	If	𝛿	is	zero,	then	the	observed	sequence	is	impossible	or,	if	the	model	has	
been	properly	defined,	identifies	the	presence	of	people	or	their	hands	in	forbidden	regions.	
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Figure 2: Hidden Markov Model for use case A.

the pencil in his hand, is the box open, etc.) but we rather consider the position of this
hand as a god proxy of what he is actually doing.

3 Human tracking approach

4 Monitoring approach

The am of the monitoring approach is being able of comparing the results of the tracking
against what should be a correct way of executing the process. To this aim, the first
step to be accomplished is formalizing an ideal way (or ways) to operate the process.
Nevertheless, since the aim of the approach is to operate in working environment where
either the process cannot be completely formalized or the tracking approach is not able
to provide a complete set of information on the process, the underlying ideal process
model has to cope with partially observable and/or uncertain cases.
To accomplish this goal, Hidden Markov Model are the tool selected for the monitoring.

4.1 Hidden Markov Model

The definition of a Hidden Markov Model (HMM) has to start with the model of the
states modeling the real process, ths we refer to the description of the steps of the process
defining the following set of states S = {start, O1, O2, O3, null, end}. The transition
from one state to another is modelled through the transition probabilities ai,j , i.e., the
probability to move from state i to state j given that the process is in state i. The
states in S are hidden, meaning that they cannot be observed. On the contrary, they
can be investigated through what is called an emission. The value of the emission has
support E = {0, 1, 2, 3} while the model for the emissions is defined through the emission
probability bi,e, i.e., the probability of emitting value e when in state i. The HMM for
the use cas A is represente in Figure 2.

4.2 Fitting the model

The fitting of the model starts from the tracking of multiple alternative correct executions
of the process. For each of them we collect the timing of the di↵erent operations, hence
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5. Industrial	application	

To	assess	the	viability	of	the	proposed	approach	we	consider	an	industrial	application	in	the	manufacturing	of	mechanical	components	
and,	specifically,	the	load/unload	of	a	part	onto/from	the	fixtures,	whose	monitoring	is	highly	recommended	to	avoid	possible	errors	(e.g.,	
wrong	 parts	mounted	 onto	 the	 fixtures	 and/or	missing	 clamping	 operations)	 in	 case	 of	 high	 variety	 of	 parts.	We	 focus	 on	 a	 set	 of	
operations	by	executing	and	monitoring	them	in	a	realistic	environment.	The	aim	is	to	infer	whether	the	load/unload	process	has	been	
completed	and	identify	missing	operations	or	unsafe	behaviour.	
The	process	under	study	entails	a	set	of	operations,	e.g.,	 clamp/unclamp	fixtures,	unload/load	parts	 from	the	 fixtures,	pick-up	and	

release	tools,	etc.	A	detail	of	the	fixtures	and	part	 for	the	considered	application	is	shown	in	Figure	5,	 together	with	an	example	of	a	
possible	sequence	of	operations	for	the	process.	The	detailed	list	of	operations	is	reported	in	Table	1.	

	
Table	1.	List	of	assembling	operations	and	requirements.	

 
Operation	 Description	 Region	Requirements	

PC	 Pick-up	clamping	tool	 At	least	one	hand	in	A	
RC	 Release	clamping	tool	 At	least	one	hand	in	A	
PRP	 Pick-up	raw	part	 At	least	one	hand	in	C	
LRP	 Load	raw	part	 At	least	one	hand	in	D	
UWP	 Unload	worked	part	 At	least	one	hand	in	D	
RWP	 Release	worked	part	 At	least	one	hand	in	B	
C1	 Clamp	fixture	1	 One	hand	in	E	and	one	in	

D	
U1	 Unclamp	fixture	1	 One	hand	in	E	and	one	in	

D	
C2	 Clamp	fixture	2	 One	hand	in	E	and	one	in	

D	
U2	 Unclamp	fixture	2	 One	hand	in	E	and	one	in	

D	
	

 
Figure	5.	The	part	type	and	fixture	under	study	and	a	possible	execution	of	the	load/unload	process.	

 
The	25-point	body	and	21-point	hand	schemes	provided	 in	 the	OpenPose	 library	[13]	are	used	[13]-	For	each	captured	 frame,	 the	

positions	of	the	key	points	are	given	back	in	terms	of	their	coordinates	in	the	frame	itself.	Starting	from	these	coordinates,	the	movements	
of	the	worker’s	hands,	namely	key	point	10	(Figure	2)	for	both	the	right	and	left	hand,	are	mapped	onto	working	regions	in	the	captured	
frames.	An	example	of	the	result	of	the	tracking	is	provided	in	Figure	6,	showing	the	identification	of	the	key	points	for	the	human	body	
and	the	overlay	of	the	working	regions.	Thus,	the	output	of	the	tracking	is	a	sequence	of	observed	emissions	for	the	monitored	process	in	
terms	of	the	regions	where	the	hands	have	been	tracked	in	all	the	frames,	e.g.,	{A},	{D,	E},	etc.	Notice	that	emissions	can	contain	multiple	
regions	for	the	same	hand,	e.g.,	the	right	hand	could	be	in	region	D	and	E	at	the	same	time.	
	

 
Figure	6.	Human	body	tracking	and	working	regions.	



	
The	definition	of	the	HMM	(Figure	4)	grounds	on	an	ideal	process	based	on	the	operations	in	Table	1	and	the	associated	emissions,	in	

terms	of	the	presence	of	the	hands	in	the	working	regions.	Multiple	correct	execution	modes	for	the	assembly	process	are	taken	into	
consideration	by	defining	alternative	sequencing	of	the	operations,	to	cover	the	different	possible	behaviours	of	the	human	operators.	By	
monitoring	these	executions	of	the	assembly	process,	executed	by	different	operators,	an	estimation	of	the	emission	probabilities	of	the	
HMM	is	obtained.	This	training	of	the	HMM	is	further	enriched	taking	advantage	of	ideal	executions	of	the	process,	obtained	by	sampling	
the	processing	times	for	the	different	operations	and	deriving	the	positions	of	the	hands	according	to	the	requirements	in	Table	1.		
The	testing	of	the	approach	has	been	carried	out	tracking	multiple	executions	of	the	same	process,	both	correct	and	not	correct,	done	

by	different	operators.	As	anticipated,	two	different	execution	modes	of	the	process	have	been	considered	and,	for	each	of	them,	an	HMM	
has	been	instantiated	and	trained	with	10	correct	monitored	executions	plus	5	ideal	executions,	and	then	used	to	monitor	25	experiments	
in	total.		
The	identification	of	potentially	dangerous	behaviours	is	not	implemented	in	this	realistic	use	case	but	can	be	easily	addressed	checking	

for	the	presence	of	the	hands	in	forbidden	regions.	
The	results	are	shown	in	Table	2	considering	three	different	application	scenarios.	The	first	one	(A)	refers	to	the	monitoring	of	a	correct	

process,	to	guess	its	progress	execution	and	comparing	it	with	the	real	one.	The	monitoring	capability	is	good	at	the	beginning	of	the	
monitoring,	being	able	of	correctly	guessing	what	the	operator	is	doing	in	65%	of	the	cases,	while	the	process	is	at	10%	of	its	progress.	
Then	it	goes	worse	(due	to	the	high	variety	of	the	behaviours	of	the	operators)	and	improves	towards	the	end	of	the	process.	Notice	that,	
the	decrease	 in	 the	monitoring	capability,	between	 the	95%	and	100%	of	 the	process	advancement,	 is	due	 to	 the	 fact	 that	different	
executions	require	different	times	and,	at	the	end,	the	operator	is	still	being	tracked	disturbing	the	monitoring	capability.	In	one	case	only,	
the	approach	recognized	a	correct	process	as	completely	wrong.		
Scenario	B	refers	to	the	capability	of	identifying	a	process	deviating	from	the	correct	execution	at	30%	of	its	progress.	In	all	the	cases,	

the	approach	was	able	to	identify	the	problem	at	about	half	of	the	execution.	Finally,	scenario	3	addresses	the	monitoring	of	a	completely	
wrong	process.	Also	in	this	case,	the	approach	is	able	to	recognize	the	occurrence	of	a	wrong	process	at	about	half	of	the	execution	while	
at	the	beginning,	as	expected,	no	process	is	labelled	as	wrong.	
	

Table	2.	Results	
	

A. Identify	the	status	of	correct	process	executions	(15	tests)	
B. Recognize	an	error	happening	at	30%	of	the	execution	(5	tests)	
C. Recognize	completely	wrong	process	executions	(5	tests)	
	 Progress	of	the	time	horizon	monitored	

10%	 25%	 50%	 75%	 90%	 95%	 100%	

Su
cc
es
s		

Ra
te
	 A	 0.67	 0.33	 0.53	 0.67	 0.80	 0.80	 0.73	

B	 0.40	 0.40	 1.00	 1.00	 1.00	 1.00	 1.00	
C	 0.00	 0.60	 1.00	 1.00	 1.00	 1.00	 1.00	

6. Conclusions	

We	presented	an	approach	for	monitoring	of	manually	executed	processes	able	to	cope	with	the	intrinsic	uncertainty	and	incomplete	
information	of	real	environments	and	tested	on	a	real	case	demonstrating	good	performance	in	assessing	whether	the	process	has	been	
completed	or	not	as	well	as	raising	alarms	if	required	operations	have	not	been	executed.	Avoiding	false	alarms	is	a	relevant	aspect	for	
the	effective	adoption	in	real	manufacturing	environments.		
Future	research	will	address	a	more	extensive	training	and	testing.	Beside	this,	future	research	directions	to	improve	the	features	of	

the	proposed	approach	are	the	optimization	of	the	best	camera	position	for	the	process	to	monitor	and	the	development	of	more	advanced	
models	explicitly	considering	pre-emption	and	alternative	process	executions.	
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