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Abstract

The 3 new principles mentioned in the title are:
– the nonlinear Boltzmann-Gibbs prescription;
– the local KMS condition;
– the dynamical detailed balance condition.
We prove their equivalence under general conditions and we generalize
some of the properties that enter into their definitions.
We also introduce the notion of irreversible (H,β)–KMS condition
and prove its equivalence, under additional conditions, with the local
(H,β)–KMS condition.
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1 Introduction

The notion of equilibrium states of physical systems is sufficiently
well understood and there exist several characterizations of this class
of states which, although based on different ideas, when applicable
to the same class of systems, define the same objects. For discrete
systems, i.e. with a pure point spectrum Hamiltonian H, the most
explicit description of an equilibrium state at inverse temperature β
is the Boltzmann–Gibbs prescription. The KMS condition is more
general because not restricted to discrete systems. In addition to this
there are various types of principles (variational, based on stability
conditions, . . . ) applicable to different classes of systems. An instruc-
tive and concise discussion of several characterizations of equilibrium
states is contained in the paper [20]. A discussion of the various char-
acterizations of Gibbs states by means of stability conditions is con-
tained in [21]. A further characterization, called Quantum Detailed
Balance (QDB) and characterizing equilibrium distributions as sta-
tionary states of special classes of Markov semi–groups, was proposed
by Kossakowski, Frigerio, Gorini and Verri [22], see also [12], [23] and
motivated by the singular coupling limit of open systems (see section
(5)). The classical analogue of this notion was well known in the the-
ory of classical Markov processes under the name of time reversibility
and expresses the stochastic reversibility of the trajectories of such
processes.

For non equilibrium phenomena the situation was, until recently,
quite different. Like nonlinearity, non equilibrium is a negative con-
notation that covers an infinity of totally inequivalent situations.
Therefore any attempt to characterize such a variety of behaviors in
terms of a few qualitative properties would be naive and probably
doomed to failure. A more realistic program is to look for some inter-
esting candidates that, within the class of stationary states for a given
Hamiltonian, singles out some special sub-class of states with proper-
ties that are rich enough to go beyond the equilibrium situation, but
specific enough to avoid vagueness.
The possibility to realize such a program begun to emerge in the late
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1990’s with the discovery that the stochastic limit of quantum systems
can be performed also starting from non–equilibrium states of the en-
vironment [10]: according to the similarity principle of the stochastic
limit approach, the invariant states of the reduced dynamics for the
system should reflect the properties of the initial state of the environ-
ment. This intuition was substantiated by the results of the analysis
of a number of specific models arising in concrete physical situations
[8], [7], [2], [9], [6].

The analysis of these concrete examples, combined with the pos-
sibility to perform the stochastic limit forward and backward in time
(hence to compare the two limit Heisenberg evolutions and their ir-
reversible reductions on the system), led to the abstraction of three
general principles which generalize in a natural way three of the above
mentioned characterizations of equilibrium states (see [3]) namely:

(i) the nonlinear Boltzmann-Gibbs prescription (see section 2 for
this and for (ii) below).

(ii) the local KMS condition

(iii) the dynamical detailed balance condition.

In the same paper it was proved that the relationships among these 3
conditions are natural extensions of those among the 3 corresponding
equilibrium notions namely: when restricted to some B(H) (algebra
of all operators on some Hilbert space) the first two conditions char-
acterize the same class of states and these states are invariant for the
Markov generators which satisfy the third condition (and under some
conditions they are the only states whith this property).
Moreover, in the non equilibrium case the Kossakowski, Frigerio, Gorini,
Verri quantum detailed balance condition is modified by the emer-
gence, in the expression of the adjoint of the forward Markov generator
with respect to an invariant measure, of the so–called current operator
(see sections 6 and 7) whose name is justified by the possibility, which
distinguishes the stochastic limit from the old Markovian (weak cou-
pling and low density) limit, to explicitly calculate the micro–currents
of energy from the environment to the system (see [3]).

These results were obtained under some special conditions on the
system Hamiltonian (genericity: see [7] for a discussion).
In the present paper we prove that this restriction can be dropped
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(see section 7). Moreover, based on previous results of Fagnola and
Umanità [17, 18, 19] who introduced the notion of privileged represen-
tation of a Markov generator with respect to a state, which will play a
crucial role in the present paper, we generalize the notion of dynamical
detailed balance into that of weighted detailed balance (see section
6) which gives the possibility to include Markov generators not nec-
essarily of stochastic limit type (see section 7), for example Markov
generator associated to an Hamiltonian (see section 4) or even more
general classes whose mutual relationships will be discussed elsewhere.
We also introduce the notions of infinitesimal and irreversible KMS
condition and prove that in some cases they are equivalent to the local
KMS condition (see section 3).

A preliminary version of the present paper has appeared in the
special issue of Busseikenkyu in commemoration of Shuichi Tasaki [2].
The paper [2], in addition to the material included in the present
one, includes a discussion of the connection between weighted detailed
balance and the cycle description of Markov generators used in the
Qian–Kalpazidou approach (see [24], [28]) as well as the construction
of an example of a non-equilibrium steady state for a quantum spin
chain coupled to two reservoirs at different temperatures, including a
discussion of its cycle dynamics and entropy production.

Finally an Appendix (see section 8) recalls some standard notions
and results of the stochastic limit frequently used in the present paper.

2 The local KMS condition

We denote B(H) the von Neumann algebra of all bounded operator
on a separable Hilbert space H and Tr(H) the corresponding space
of trace class operators. In the following we will be mostly concerned
with bounded generators, but we try to state the main definitions and
problems so that the extension to unbounded ones becomes as trans-
parent as possible.

Definition 1. Let be given a von Neumann algebra A acting on a
Hilbert space H, a self–adjoint operator H affiliated with A and a
Borel function

β : R+ → R+
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Denote
ut : A 3 x→ ut(x) := eitHxe−itH =: x(t) ∈ A (1)

the 1–parameter automorphism group of A generated by H (Heisen-
berg evolution). A normal state ϕ on A is said to satisfy the local KMS
condition with respect to the function β and the Heisenberg dynamics
(1) (simply the (H,β)–KMS condition, or the local KMS condition, if
no confusion is possible), if for each x, y ∈ A:
(i) The map

R + iβ(spec(H)) 3 t+ iβ(λ) 7→ ϕ(xy(t+ iβ(λ))) (2)

is well defined by analytic continuation of the map t ∈ R 7→ ϕ(xy(t)).
(ii) Denoting EH( · ) the spectral measure of H and introducing the
complex valued measure

R+ × R+ ⊇ I × J 7→ ϕx,y,H(I, J) := ϕ(xEH(I)yEH(J)) (3)

for each t ∈ R the integral∫
R+×R+

eit(λ−µ)eβ(µ)µ−β(λ)λϕx,y,H(dλ, dµ) =: ϕ (xy(t+ iβ(H))) (4)

exists.
(iii) In the notations (1), (4) for all t ∈ R the following identity holds:

ϕ (xy(t+ iβ(H))) = ϕ (y(t)x) (5)

Remark. If H is bounded and β is a locally bounded function
(bounded on bounded sets), then the operator exp(β(H)H) is bounded
and for all x ∈ A and t ∈ R one has:

y(t+ iβ(H)) = ei(t+iβ(H))Hxe−i(t+iβ(H))H = e−β(H)HeitHxe−itHeβ(H)H

= e−β(H)Hx(t)eβ(H)H ; x ∈ B(H) (6)

In the general case the operator exp(β(H)H) is well defined by the
spectral theorem and affiliated to A. Moreover the two maps

B(H) 3 x 7→ e−β(H))Hxeβ(H))H , eβ(H))Hxe−β(H))H (7)

are well defined on the finite rank operators, which are a weakly dense
sub–∗–algebra of B(H), and on this domain they can be shown to be
linear, multiplicative, trace preserving and mutually inverse.
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Therefore the maps (7) are densely defined on B(H) and, in the follow-
ing, whenever these maps will be used, it will always be understood
that their arguments are in their domains.
With these notations the local KMS condition (5) can be re–written
in the more intuitive form:

ϕ
(
xe−β(H)Hy(t)eβ(H)H

)
= ϕ (y(t)x) ; ∀t ∈ R (8)

for x, y in a dense subspace of B(H). From now on we fix the choice:

A = B(H)

Notice that the identity (8) makes sense for any 1–parameter family
Tty := y(t) and, if in addition

T0y = y ; ∀y ∈ B(H) (9)

then (8) becomes equivalent to:

ϕ
(
xe−β(H)Hyeβ(H)H

)
= ϕ (yx) (10)

for x, y in a dense subspace of B(H).
For reasons that will be clear in section 3 we formulate the following
Theorem in greater generality than needed for the goals of the present
section.

Theorem 1. Let H be a positive self–adjoint operator on a Hilbert
space H, β : R+ → R+ a Borel function and ρ a normal state on
B(H). For any map (y, t) ∈ B(H) × R → Tty := y(t) ∈ B(H)
satisfying (9) and for any state ϕ := Tr(ρ · ) the following statements
are equivalent:

(i) ρ satisfies the local (H,β)–KMS condition (8);

(ii) ρ satisfies the local (H,β)–KMS condition (10) at t = 0;

(iii) e−β(H)H is trace class and

ρ = Zβ
−1e−β(H)H , Zβ := Tr

(
e−β(H)H

)
(11)

Proof. (i) ⇒ (ii). Obvious.
(ii) ⇒ (iii). Using the cyclicity of the trace (10) becomes

Tr
(
xe−β(H)Hyeβ(H)Hρ

)
= Tr (xρy) ; ∀x, y ∈ B(H)
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Since x ∈ B(H) is arbitrary in a dense subspace, this is equivalent to

e−β(H)Hyeβ(H)Hρ = ρy (12)

which holds if and only if

yeβ(H)Hρ = eβ(H)Hρy ; ∀y ∈ B(H) (13)

Since also y ∈ B(H) is arbitrary in a dense subspace, this implies that,
for some scalar λ (6= 0 because Tr(ρ) = 1), one has:

eβ(H)Hρ = λ1 (14)

In particular ρ is invertible and the condition Tr(ρ) = 1 implies (11).
(iii) ⇒ (i). This follows because the identity (8), given (11), can be
rewritten in the form:

Tr
(
ρxe−β(H)Hy(t)eβ(H)H

)
= Zβ

−1Tr
(
xe−β(H)Hy(t)

)
= Tr (ρy(t)x)

Corollary 1. In the notations and assumptions of Theorem 1 the pos-
itive self–adjoint operator (Hamiltonian) H has necessarily the form

H =
∑

ε∈Spec(H)

εPε =:
∑
m∈N

εmPm (15)

with
Tr(Pε) < +∞ ; ∀ε ∈ Spec(H) (16)

Proof. Writing for simplicity F (λ) := β(λ)λ (λ ∈ R+) we know
from Theorem (1) that the operator exp

(
−F (H)

)
is trace class, hence

it has the form

e−F (H) =

∫
R
e−F (λ)EH(dλ) =

∑
Fn∈Range(F )

e−FnEn

where EH is the spectral measure of H, the range of F is countable
and

En := EH(F−1(Fn)) ; ∀Fn ∈ Range(F ) (17)

Tr(En) < +∞ (18)

Since (En) is an orthogonal resolution of the identity, (17) and (18)
imply that H has pure point spectrum, so it must be of the form (15).
Finally condition (16) follows from the fact that, if ε ∈ Spec(H), and
F (ε) = Fn, then

Tr(Pε) ≤ Tr(En) < +∞
Remark.
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(i) Notice that when β is an affine function:

β(λ) = β · λ+ µ ; λ ∈ R+

with β ≥ 0 and µ constants, the state (11) is the usual Gibbs
state at inverse temperature β and chemical potential µ.

(ii) Our condition that β : R+ → R+ excludes the case that some
value of β could be +∞. This means that every state of the form
(11) is faithful. Some equivalent formulations of the local KMS
condition are meaningful also for non faithful states. However in
the present paper we will restrict or attention to faithful states.

(iii) Any invertible density operator ρ which is a function of the
Hamiltonian H can be written in the form (11) for some function
β : R+ → R+ and, if one allows the value +∞ in the range of β
the invertibility condition can be dropped. Thus the local KMS
condition distinguishes, among the invariant states of a dynam-
ics (ρ ∈ {H}′), those which are functions of the dynamics, i.e.
in ρ ∈ {H}′′.

3 The infinitesimal and the irreversible

(H, β)–KMS condition

In the following, by a Markov semigroup we mean a weak∗–continuous
semigroup of completely positive, normal, identity preserving maps on
B(H). We will use the term Markov generator to denote any condi-
tionally completely positive linear operator densely defined on B(H)
and equal to zero on the identity.
We emphasize that, unless explicitly said otherwise, we do not assume
that such an operator effectively generates a Markov semi–group.
In the present section we introduce an infinitesimal and an irreversible
variant of the local KMS condition, relating a Markov semigroup with
a discrete Hamiltonian H and a state (see the identity (41) in [3]). We
prove that, under additional conditions on the Markov generator or
on the Hamiltonian, the two conditions characterize the same family
of states.
In the notations of Theorem (1), if Tt is a strongly continuous
1–parameter semi–group with generator L, then differentiating (8) at
t = 0 one finds the condition:

ϕ
(
xe−β(H)HL(y)eβ(H)H

)
= ϕ (L(y)x) (19)
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valid on the same dense subspace as in (8) with the additional condi-
tion that y is in the domain of L.

Definition 2. Let L be a Markov generator, ϕ a state on B(H),
and (H,β) as in section (2). The pair (ϕ,L) is said to satisfy the
infinitesimal form of the local (H,β)–KMS condition if condition (19)
holds.

Remark. Heisenberg evolutions are included in the above formu-
lation and in this case the Markov generator L is of Hamiltonian type,
i.e. of the form

L(y) := i[H, y] ; y ∈ B(H) ∩Domain(i[H, · ]) (20)

If the dissipative part of the generator is non zero we speak of the
irreversible (H,β)–KMS condition.
In some cases condition (19), in general weaker than (8) is in fact
equivalent to it. The simplest example is provided by the generators
of the form (20).

Proposition 1. Given a Borel function β, suppose that the Hamil-
tonian H given by (15) has non degenerate spectrum (i.e. mutually
distinct eigenvectors with 1–dimensional eigenspaces). Then, for the
Markov generator (20) and a state ϕ on B(H) the following statements
are equivalent:
(i) The pair (ϕ,L) satisfies the infinitesimal (instead irreversible) (H,β)–
KMS condition (19) (instead (8));
(ii) The state ϕ satisfies the local (H,β)–KMS condition (8).

Proof. We have only to prove that (19) implies (8). To this goal
denote ϕ := Tr(ρ · ) and |εm〉, |εn〉 the eigenvalues corresponding to
the eigenvectors εm and εm. The rank-one operator |εm〉〈εn| satisfies
δ(|εm〉〈εn|) = i(εm − εn)|εm〉〈εn|. It follows that the range of the map
δ contains all rank-one operators |εm〉〈εn| with n 6= m.
By the arbitrariness of x ∈ B(H) in this dense set, the infinitesimal
local (H,β)–KMS condition (19) yields

|εm〉〈εn| eβ(H)Hρ = eβ(H)Hρ |εm〉〈εn|

and this implies that eβ(H)Hρ is a multiple of the identity operator,
i.e. the thesis.

In the following section we will prove that the thesis of Proposition
(1) is also true for an important class of non Hamiltonian Markov
generators.
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4 Markov generators associated with

a given Hamiltonian

The infinitesimal form (19) of the (H,β)–KMS condition is clearly a
strong relationship between H, β and L.
The stochastic limit of quantum theory gives rise to a class of Markov
semigroups which are ”strongly related” with a discrete Hamiltonian
operatorH of the form (15) (which in the stochastic limit is interpreted
as the Hamiltonian of the small system coupled to the environment).
In the present section we begin to discuss the connections of some of
the properties which determine the above mentioned ”strong relation-
ship” with the local KMS condition.
The first of these properties consists in leaving invariant the commu-
tant of the algebra of all Borel functions of H.
Recall that the commutant algebra {H}′ of a self–adjoint operator H
is, by definition, the commutant of the (abelian) von Neumann alge-
bra generated by the spectral projections of H.
In the following, operators commuting with a self–adjoint operator H
will be called H–diagonal (simply diagonal if no confusion is possible).

Definition 3. Let H be a self–adjoint operator. A Markov semigroup
(Tt) (resp. generator L) is called associated to H if:

Tt
(
{H}′

)
⊆ {H}′ ∀t ≥ 0 (21)

respectively
L
(
Domain(L) ∩ {H}′

)
⊆ {H}′ (22)

From now on, in this section, we fix the Hamiltonian (15). Since
it has discrete spectrum, the map

B(H) 3 x 7→ E0(x) :=
∑
n∈N

PnxPn

is a normal Umegaki conditional expectation (completely positive norm
one projection) onto the commutant of H, also called the diagonal al-
gebra. Therefore:

{H}′ = {x ∈ B(H) : [x,H] = 0} = {x ∈ B(H) : E0(x) = x} (23)

The operator space

B(H)off := {x− E0(x) : x ∈ B(H)} = (24)

10



= {x ∈ B(H) : E0(x) = 0} = {x ∈ B(H) : x =
∑
m 6=n

PmxPn}

will be called the off–diagonal space.
One easily verifies that a Markov generator L is associated with H if
and only if:

L ◦ E0 = E0 ◦ L = E0 ◦ L ◦ E0 (25)

and that this is equivalent to say that

x ∈ Domain(L) ⇔ E0(x) , x− E0(x) ∈ Domain(L) (26)

and
L(Domain(L) ∩ B(H)off ) ⊆ B(H)off (27)

Lemma 1. Let H and β be as in Theorem 1 and suppose that ρ is a
function of H. Then, if x is diagonal and y off–diagonal one has

Tr(ρxy) = 0 (28)

Proof . It is sufficient to prove the statement in the case in which
x has the form x = PNzPN for some N ∈ N and z ∈ B(H) because
the generic diagonal x (instead x ∈ B(H)off ) is a sum of terms of this
form. With this choice of x the left hand side of (28) becomes

Tr(ρxy) = Tr(ρPNzPNy) = ρNTr(PNzPNy) = ρNTr(zPNyPN ) = 0.

Lemma 2. Let H and β be as in Theorem 1 and suppose that:
(i) L is a Markov generator satisfying (25).
(ii) ρ is a function of H.
Then if either x or y are diagonal, the identity (19) (infinitesimal form
of the irreversible (H,β)–KMS condition) holds for any choice of the
function β.

Proof .
If y ∈ {H}′, (25) implies that also L(y) ∈ {H}′. Therefore, since

ρ is a function of H we conclude that:

Tr(ρxe−β(H)HL(y)eβ(H)H) = Tr(ρxL(y))

which is (19). If x ∈ {H}′, since ρ is a function of H, we have:

Tr(ρeβ(H)HL(y)e−β(H)Hx) = Tr(ρL(y)x) = Tr(ρxL(y))
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which is again (19).
Remark. Notice that the above proof of Lemma 2 cannot be applied
in general if, instead of assuming that ρ is a function of H, one only
assumes that ρ ∈ {H}′.

Definition 4. A Markov generator L is said to have simple range
with respect to an Hamiltonian H of the form (15), (16) if:

∀(M,N) ∈ N2 , M 6= N , ∃y ∈ Domain(L) : PNyPM 6= 0. (29)

Theorem 2. Let H and β be as in Theorem (1) and let be given:
(i) a Markov generator L associated with H, i.e. satisfying (25),
(ii) a density operator ρ which is a function of H,
Then:
(II) If ρ satisfies the (H,β)–KMS condition, i.e. it has the form (11),
then the pair (L, ρ) satisfies (19) (infinitesimal form of the irreversible
(H,β)–KMS condition).
(I) Conversely, if the pair (L, ρ) satisfies (19) and if L has simple range
with respect to H, then ρ has the form (11).

Proof. (II) ⇒ (I). Suppose that, in the notation (11), the ρM
(M ∈ N) have the form

ρM =
e−β(εM )εM

Zβ
(30)

Then

Tr(ρxe−β(H)HL(y)eβ(H)H) =
∑
n

1

Zβ
Tr(Pnxe

−β(H)HL(y))

Because of (26) we can consider separately the case in which x is
diagonal and the case in which x is off–diagonal. If x is diagonal, then∑

n

1

Zβ
Tr(Pnxe

−β(H)HL(y)) =
∑
n

1

Zβ
Tr(xPne

−β(H)HL(y))

=
∑
n

e−β(εn)εn

Zβ
Tr(xPnL(y)) =

∑
n

ρn Tr(PnL(y)x) = Tr(ρL(y)x)

hence (19) holds. If x is off–diagonal, then∑
n

1

Zβ
Tr(Pnxe

−β(H)HL(y)) =
∑
n

1

Zβ

∑
m6=n

Tr(PnxPme
−β(H)HL(y))
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=
∑
n

∑
m6=n

e−β(εm)εm

Zβ
Tr(PnxPmL(y)) =

∑
m

ρm
∑
n6=m

Tr(PnxPmL(y))

=
∑
m

ρm Tr(xPmL(y)) =
∑
m

ρm Tr(PmL(y)x) = Tr(ρL(y)x)

Therefore also in this case (19) holds.

(II)⇒ (I). Since any element of B(H) can be written in a unique
way as a sum of a diagonal and an off diagonal part, Lemma (2)
allows to reduce the proof of (19) to the case in which either one is
in the diagonal space or both x and y are in the off–diagonal space.
In the former case the validity of (19) is guaranteed by Lemma 2
independently of the function β. In the latter case we argue as follows.
Let x, y ∈ B(H)off . It is sufficient to prove the statement in the case
in which x has the form x = PMzPN for some M 6= N ∈ N and
z ∈ B(H) because the generic x ∈ B(H)off is a sum of terms of this
form. With this choice of x the left hand side of (19) becomes

Tr(ρxe−β(H)HL(y)eβ(H)H) = Tr(ρPMzPNe
−β(H)HL(y)eβ(H)H) =

= ρMe
β(εM )εM−β(εN )εN Tr(L(y)PMzPN ) (31)

and the right hand side of (19) becomes

Tr(ρL(y)x) = Tr(ρL(y)PMzPN ) = ρN Tr(L(y)PMzPN ) (32)

Choosing z = L(y)∗ and using the identity

Tr((PNL(y)PM )(PML(y)∗PN )) = Tr(|PNL(y)PM |2) (33)

The identity between (31) and (32) becomes equivalent to:

ρMe
β(εM )εM−β(εN )εN Tr(|PNL(y)PM |2) = ρN Tr(|PNL(y)PM |2) (34)

Define:

N2
6=0 := {(M,N) ∈ N2 : M 6= N , ∃y ∈ Domain(L) , PNyPM 6= 0}

Then (34) implies that

ρMe
β(εM )εM−β(εN )εN = ρN ; ∀(M,N) ∈ N2

6=0 (35)

Since the identity (35) is trivially verified for M = N , the assumption
that L has simple range with respect to H implies that

N2
6=0 = N2

13



Therefore one can sum over N ∈ N obtaining

ρMe
β(εM )εM

∑
N∈N

e−β(εN )εN =
∑
N∈N

ρN = 1

which is equivalent to (30). Thus (I) holds and this end the proof.

Remark.

(i) It should be emphasized that the above theorem does not require
the invertibility of ρ. Because of (35) this is a consequence of
the irreversible (H,β)–KMS condition if L has simple range. In
general the landscape can be more complex and this kind of
complexity depends only on the interaction between system and
environment, not on the temperature function β.

The following theorem provides a different approach to the problem of
determining the structure of the pairs (L, ρ) satisfying the infinitesimal
form of the irreversible (H,β)–KMS condition

Theorem 3. Let H,β be as in Theorem 2, let ρ be a state on B(H)
and L a Markov generator (not necessarily associated with H).
Then the pair (ρ,L) satisfies the infinitesimal form (19), of the irre-
versible (H,β)–KMS condition, if and only if:

eβ(H)Hρ ∈ {Range(L)}′ (36)

Proof. Since the pair (ρ,L) satisfies the infinitesimal form (19),
one has for all x, y ∈ B(H):

Tr(eβ(H)Hρxe−β(H)HL(y)) = Tr(ρL(y)x)

if and only if

Tr(e−β(H)HL(y)eβ(H)Hρx) = Tr(ρL(y)x).

Since x ∈ B(H) is arbitrary, this is equivalent to:

e−β(H)HL(y)eβ(H)Hρ = ρL(y) if and only if L(y)eβ(H)Hρ = eβ(H)HρL(y)

Since y ∈ B(H) is arbitrary, this is equivalent to (36).

Corollary 2. If the Markov generator L satisfies (19) and the com-
mutant of the range of L is trivial, i.e.

{Range(L)}′ = C · 1 (37)

then ρ has the form (11).
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Proof. The thesis follows because (36) implies that eβ(H)Hρ is a mul-
tiple of the identity and we have seen that this implies that ρ has the
form (11).
Remark. Recently Bolaños and Fagnola [13] have shown that the
commutant of the range of the infinitesimal generator of a quan-
tum Markov semigroup on the algebra of d × d matrices is always
an Abelian subagebra. Exploiting this fact, they have proved that the
local (H,β)–KMS condition (8) for the pair (L, ρ) is equivalent to the
infinitesimal form of the local (H,β)–KMS (19). instead: the irre-
versible (H;β)–KMS condition is equivalent to the local irreversible
(H;β)–KMS condition in infinitesimal form.

5 Time reversed and adjoints of a Markov

generator

The theory of stochastic limit allows us to associate in a canonical
way to a system with free Hamiltonian H, interacting with an envi-
ronment, two Markov processes: the forward and the backward process,
obtained by taking the stochastic limit respectively in the forward and
backward time direction.
Like all Markov processes also these ones are canonically associated to
Markov semigroups, the forward and the backward (or time reversed)
semigroup, whose structure depends not only on H but also on the
free Hamiltonian of the environment, on the interaction and on the
initial state of the environment.
The generators of the forward and the backward semigroup are related
by a kind of duality relation introduced in [3] and called dynamical
detailed balance condition.
If the initial state of the environment is an equilibrium one, this re-
duces to Kossakowski, Frigerio, Gorini, Verri detailed balance.
In the following sections we will analyze the connections between the
above mentioned duality and some known operator–theoretical dual-
ity notions between Markov semigroups or their generators. For this
reason, in the present section, we recall some of these duality notions
and their properties.

If L : D ⊆ B(H) → B(H) is any linear operator, with a dense
domain D, the trace dual of L is by definition the linear operator
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L∗ : D∗ ⊆ Tr(H)→ Tr(H), with domain D∗, defined by the relation

Tr
(
ρL(x)

)
= Tr

(
L∗(ρ)x

)
; ρ ∈ D∗ , x ∈ D (38)

A density operator ρ ∈ D∗ is called L–stationary if

L∗(ρ) = 0 (39)

For Markov generators the following notions of duality with respect
to a fixed state ρ is often used.

Definition 5. Given a linear operator Φ defined on a dense domain
Dom(Φ) ⊆ B(H) and a normal state ρ on B(H), the linear operator(
Φ∗ρ,Dom(Φ∗ρ)

)
is the adjoint of Φ with respect to the scalar product

induced by ρ on B(H), i.e.

〈x, y〉ρ =: Tr (ρ x∗y) ; x, y ∈ B(H) (40)

More explicitly, the pair
(
Φ∗ρ,Dom(Φ∗ρ)

)
, where Dom(Φ∗ρ) is

{x ∈ B(H) : ∃z ∈ B(H),∀y ∈ Dom(Φ) , Tr
(
ρzy
)

= Tr
(
ρxΦ(y)

}
and

Tr
(
ρΦ∗ρ(x)y

)
= Tr (ρxΦ(y)) , ∀ y ∈ Dom(Φ), (41)

is called the ρ-adjoint of Φ and we denote it simply by Φ∗ρ.

Lemma 3. Suppose that Dom(L) is dense and consider the following
statements:
(i) ρ is L–stationary
(ii) L∗ρ satisfies

L∗ρ(1) = 0 (42)

Then (ii) implies (i) and, if ρ is invertible, (i.e., it has a dense range,
therefore its inverse is densely defined, but not necessarily bounded),
then (i) implies (ii).

Proof. (41) implies the following identities:

Tr
(
L∗ρ(1)yρ

)
= Tr

(
ρL∗ρ(1)y

)
= Tr

(
ρL(y)

)
= Tr

(
L∗(ρ)y

)
; ∀y ∈ Dom(L)

Thus if (ii) holds then, for all y ∈ Dom(L), tr
(
L∗(ρ)y

)
= 0 and (i)

follows from the density of Dom(L). Conversely if (i) holds then, with
x = 1 (41) implies that

tr
(
ρL∗ρ(1)y

)
= tr

(
ρL(y)

)
= tr

(
L∗(ρ)y

)
= 0
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for all y ∈ Dom(L).
Since Dom(L) is dense and the map y 7→ yρ is invertible and bounded
because such is ρ, this implies that also ρDom(L) is dense and there-
fore (42) holds.
The pairs (ρ,L) such that L∗ρ is a Markov generator can be character-
ized, if L is uniformly bounded, as follows (see e.g. [17] Theorem 3.1
p. 341).

Theorem 4. If L is uniformly bounded and ρ is faithful, then the
following statements are equivalent:

(i) L∗ρ is a Markov generator (in this case it is uniformly bounded),

(ii) denoting
σt(a) = ρitaρ−it

the modular group of ρ, L commutes with σt, i.e. Lσt = σt L,
∀t ≥ 0,

(iii) L commutes with σ−i, i.e. Lσ−i = σ−i L.

Definition 6. Any representation of a Markov generator L of the
form

L(x) = i[H,x]− 1

2

∑
k∈I

(L∗kLkx− 2L∗kxLk + xL∗kLk) (43)

where the triple (I,H, (Lk)k∈I) satisfies:
(i) I is an at most countable set,
(ii) H = H∗ ∈ B,
(iii) Lk ∈ B(H) for all k ∈ I and the series

∑
k∈I L

∗
kLk is strongly

convergent on a dense sub–set of H, is called a Gorini–Kossakowski–
Sudarshan–Lindblad (GKSL) representation of L.

Remark. Given a GKSL representation (6) of a Markov generator
L, if ρ is an invertible density matrix, then ∀x ∈ B(H) the formal
expression for L∗ρ(x) is given by

L∗ρ(x) =
∑
k

(
ρ−1LkρxL

∗
k −

1

2
(xL∗kLk + ρ−1L∗kLkρx)

)
(44)

From (44) it is clear that the ρ–adjoint of a Markov generator in gen-
eral does not need to be densely defined or to map the bounded oper-
ators into themselves. Furthermore, even if either of these properties
holds, in general L∗ρ(x) will not be a Markov generator.
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6 Weighted detailed balance for Markov

generators

In the paper [3] it was shown that the dynamical detailed balance con-
dition implies a very special relation, which is a natural generalization
of the quantum detailed balance condition of Frigerio, Kossakowski,
Gorini, Verri ([22]), between a Markov generator with an invariant
measure ρ and its ρ–adjoint.
In this section we introduce the notion of weighted detailed balance,
which generalizes the dynamical detailed balance condition.

Definition 7. A quantum Markov generator L is said to satisfy a
weighted detailed balance condition with respect to a faithful nor-
mal state ρ, if:
(i) the ρ–adjoint of L is a bounded Markov generator;
(ii) L admits a GKSL representation (6) with the following property:
there exists a sequence of positive numbers q := (qk)k∈I such that

L∗ρ − L = −2i[K, ·] + Π (45)

where K ∈ B(H) is a self–adjoint operator and

Π(x) :=
∑
k∈I

(qk − 1)L∗kxLk ; x ∈ B(H) (46)

Notice that (45) and (46) imply that Π is completely bounded
(What is the meaning of completely bounded?) and

Π(1) = 0 (47)

7 Markov generators of stochastic limit

type with respect to an Hamiltonian H

The notion of weighted detailed balance generalizes the notion of dy-
namical detailed balance introduced in [3] for a special form of the
coefficients (qk) and a special class of Markov generators. These gen-
erators are given through a GKSL representation of very special type
whose origins, from the stochastic limit approach, which suggests the
intuitive interpretation of the operator (46) as current operator, is de-
scribed in section 7 (see also Appendix II of the paper [2]).
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In the following we will freely use the notations introduced in Ap-
pendix I (see section (8)).

Let H ∈ B(H) be a self-adjoint operator (Hamiltonian) with dis-
crete spectral decomposition

H =
∑

εm∈Spec(H)

εmPm (48)

and denote B+ the set of its strictly positive Bohr frequencies (i.e. the
set of strictly positive eigenvalues of eitH( · )e−itH):

B+ := B+(H) := {ω = εr − εr′ > 0 : εr, εr′ ∈ Spec (H)} = (49)

= Spec+ (Ad(eitH))

Definition 8. A Markov generator L on B(H) is said to be of of
stochastic limit type with respect to the Hamiltonian (48) if it has the
form:

L(x) = i[∆, x]− (50)∑
ω∈B+

(
Γ−,ω

(
1

2
{D†ωDω, x} −D†ωxDω

)
+ Γ+,ω

(
1

2
{DωD

†
ω, x} −DωxD

†
ω

))
where, in the notations of Appendix I below (section (8)), for each
ω ∈ B:

Γ±,ω ∈ R+ (51)

∆ = ∆∗ ∈ {H}′ (52)

Dω = Eω(D) ; D ∈ B(H) (53)

The numerical coefficients (51) have a special structure deduced
from the stochastic limit and described in Appendix II of the paper
[2] (see also [1], [7]).

7.1 Canonical form of Markov generators of
stochastic limit type

Introducing the set

B̂+ := {ω ∈ B+ : Dω 6= 0 and either Γ−,ω 6= 0 or Γ+,ω 6= 0} (54)
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it is convenient to write the generator (50) in the form

L(x) = i[∆, x]−
∑
ω∈B̂+

Lω(x) (55)

with

Lω(x) =(
Γ−,ω

(
1

2
{D†ωDω, x} −D†ωxDω

)
+ Γ+,ω

(
1

2
{DωD

†
ω, x} −DωxD

†
ω

))
(56)

Remark. This shows that notation (54) has been introduced to elim-
inate from the sum (56) all the Lω which are identically zero.
Notice that, while B+ depends only on H, B̂+ depends also on L.
For ω ∈ B̂+, the operators Dω in (55) have the form (see also Ap-
pendix (8))

Dω := Eω(D) =
∑

{(εm,εn)∈B+(ω)}

PεmDPεn (57)

=
∑

{(εm,εn)∈B+(ω,D)}

PεmDPεn =
∑

{(εm,εn)∈B+(ω,D)}

D(εm,εn)

where by definition

B+(ω) := {(εm, εn) ∈ (Spec (H))2 : εn − εm = ω} (58)

and for some D ∈ B(H), denoting ∀(εm, εn) ∈ B+(ω):

D(εm,εn) := PεmDPεn (59)

B+(ω,D) := {(εm, εn) ∈ B+(ω) : PεmDPεn 6= 0}

where, for any operator D ∈ B(H), Eω(D) is given by (57).
Now for each ω ∈ B̂+ consider the generator (see (50))

Lω(x) =: Γ−,ω

(
1

2
{D†ωDω, x} −D†ωxDω

)
+Γ+,ω

(
1

2
{DωD

†
ω, x} −DωxD

†
ω

)
=

=
1

2
Γ−,ω{D†ωDω, x}+

1

2
Γ+,ω{DωD

†
ω, x}−

(
Γ−,ωD

†
ωxDω + Γ+,ωDωxD

†
ω

)
(60)

Using (53), for each x ∈ B(H) one finds

Γ−,ωD
†
ωxDω + Γ+,ωDωxD

†
ω = (61)
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=
∑

{(εm,εn)∈B+(ω,D)}

∑
{(εM ,εN )∈B+(ω,D)}

(
Γ−,ωD

†
(εm,εn)

xD(εM ,εN ) + Γ+,ωD(εm,εn)xD
†
(εM ,εN )

)
=

∑
{((εm,εn),(εM ,εN ))∈B+(ω,D)2}

(
Γ−,ωD

†
(εm,εn)

xD(εM ,εN ) + Γ+,ωD(εm,εn)xD
†
(εM ,εN )

)
With these notations

Lω(x) =
∑

{((εm,εn),(εM ,εN ))∈B+(ω,D)2}

1

2
Γ−,ω{D†(εm,εn)D(εM ,εN ), x}

+
1

2
Γ+,ω{D(εm,εn)D

†
(εM ,εN ), x}

−
(

Γ−,ωD
†
(εm,εn)

xD(εM ,εN ) + Γ+,ωD(εm,εn)xD
†
(εM ,εN )

) (62)

7.2 Dynamical detailed balance

In this section we prove that, if ρ is any faithful density operator which
is a function of the Hamiltonian H, then every Markov generator of
stochastic limit type with respect to H admits a ρ–adjoint and satisfies
the dynamical detailed balance condition in the sense of [3] which is
a particular case of Definition 7. To this goal the following Lemma
plays an important role.

Lemma 4.
(ε, ε′), (ε, ε′′) ∈ B+(ω)⇒ ε′ = ε′′ (63)

(ε′, ε), (ε′′, ε) ∈ B+(ω)⇒ ε′ = ε′′ (64)

(ε, ε′) 6= (ε′′, ε′′′) ∈ B+(ω)⇒ ε 6= ε′′ and ε′ 6= ε′′′ (65)

Proof. (63) follows from:

ε′ − ε = ω = ε′′ − ε⇒ 0 = (ε′ − ε)− (ε′′ − ε) = ε′ − ε′′

(64) follows from:

ε− ε′ = ω = ε− ε′′ ⇒ 0 = (ε− ε′)− (ε− ε′′) = ε′′ − ε′

Finally (64) implies that, if ε = ε′′, then one must have also ε′ = ε′′′

against the assumption. Similarly (63) implies that, if ε′ = ε′′′, then
one must have also ε = ε′′ against the assumption. Thus (65) follows.

In view of the following result, Lemma 4 is of crucial importance
for the thesis of the present paper.
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Lemma 5. For any ω ∈ B+ and for any (εm, εn) and (εM , εN ) in
B+(ω) one has:

D+
(εm,εn)

D(εM ,εN ) ∈ {H}′ (66)

Proof. We know, from (59), that

D(εm,εn) := PεmDPεn ; D+
(εm,εn)

= PεnD
+Pεm

Therefore, if (εm, εn) = (εM , εN ), then

D+
(εm,εn)

D(εm,εn) = PεnD
+PεmPεmDPεn = PεnD

+PεmDPεn ∈ {H}′.

Now, if (εm, εn) 6= (εM , εN ), then

D+
(εm,εn)

D(εM ,εN ) = PεnD
+PεmPεMDPεN

From (65) we know that

(εm, εn) 6= (εM , εN ) ∈ B+(ω)⇒ εm 6= εM and εn 6= εN

Therefore, if (εm, εn) 6= (εM , εN ), then

D+
(εm,εn)

D(εM ,εN ) = 0

in both cases (66) holds.

Lemma 6. Suppose that h′ ∈ {H}′ and ρ is a function of H. Then
the linear map x 7→ {x, h′} is self–addjoint with respect to the scalar
product (40) induced by ρ. (instead ρ–scalar product.)

Proof.

Tr(ρ{h′, x}y) = Tr(ρh′xy) + Tr(ρxh′y) = Tr(ρxyh′) + Tr(ρxh′y)

= Tr(ρx{y, h′}).

Corollary 3. For any ω ∈ B̂+ and for any (εm, εn) and (εM , εN ) in
B̂+(ω), if ρ is a function of H, then the linear operators

x 7→ {x,D+
(εm,εn)

D(εM ,εN )} ; x 7→ {x,D(εm,εn)D
+
(εM ,εN )}

are self–adjoint with respect to the scalar product (40) induced by ρ.
(instead: ρ–self–adjoint.)

22

Accardi
Highlight

Accardi
Highlight



Proof. Since
D+

(εm,εn)
D(εM ,εN ) ∈ {H}′ (67)

the thesis is an immediate consequence of Lemma 6.

Corollary 3 implies that the anticommutator part of the generator
(62) is ρ–self–adjoint for any state ρ which is a function of H. Let us
consider the completely positive part of (62), i.e.

Ψ(x) :=
(

Γ−,ωD
†
(εm,εn)

xD(εM ,εN ) + Γ+,ωD(εm,εn)xD
†
(εM ,εN )

)
From the identity

Tr(ρD(εm,εn)xD
†
(εM ,εN )y) = ρm Tr(D(εm,εn)xD

†
(εM ,εN )y)

= ρm Tr(xD†(εM ,εN )yD(εm,εn)) = ρm Tr(xD†(εM ,εN )yD(εm,εn)ρ
−1ρ)

= ρmρ
−1
n Tr(xD†(εM ,εN )yD(εm,εn)ρ) = ρmρ

−1
n Tr(ρxD†(εM ,εN )yD(εm,εn))

one deduces that(
D(εm,εn) · D

†
(εM ,εN )

)∗
ρ

= ρmρ
−1
n

(
D†(εM ,εN ) · D(εm,εn)

)
where (X)∗ρ denotes the ρ-adjoint of X. Similarly

Tr(ρD†(εm,εn)xD(εM ,εN )y) = ρn Tr(D†(εm,εn)xD(εM ,εN )y)

= ρn Tr(xD(εM ,εN )yD
†
(εm,εn)

) = ρn Tr(xD(εM ,εN )yD
†
(εm,εn)

ρ−1ρ)

= ρnρ
−1
m Tr(xD(εM ,εN )yD

†
(εm,εn)

ρ) = ρnρ
−1
m Tr(ρxD(εM ,εN )yD

†
(εm,εn)

)

Therefore(
D†(εm,εn) · D(εM ,εN )

)∗
ρ

= ρ−1m ρn

(
D(εM ,εN ) · D

†
(εm,εn)

)
In conclusion, the ρ-adjoint of Ψ(·) is

(Ψ)∗ρ (·) = ρ−1m ρnΓ−,ω

(
D(εM ,εN ) · D

†
(εm,εn)

)
+ρmρ

−1
n Γ+,ω

(
D†(εM ,εN ) · D(εm,εn)

)
and we conclude that the adjoint of Lω is:

(Lω)∗ρ =
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=
∑

{((εm,εn),(εM ,εN ))∈B+(ω,D)2}

{
1

2
Γ−,ω{D†(εm,εn)D(εM ,εN ), x}+

1

2
Γ+,ω{D(εm,εn)D

†
(εM ,εN ), x}

− ρ−1m ρnΓ−,ω

(
D(εM ,εN ) · D

†
(εm,εn)

)
− ρmρ−1n Γ+,ω

(
D†(εM ,εN ) · D(εm,εn)

)}

=
∑

{((εm,εn),(εM ,εN ))∈B+(ω,D)2}

{
1

2
Γ−,ω{D†(εm,εn)D(εM ,εN ), x}+

1

2
Γ+,ω{D(εm,εn)D

†
(εM ,εN ), · }

−Γ−,ω

(
D†(εm,εn) · D(εM ,εN )

)
− Γ+,ω

(
D(εm,εn) · D

†
(εM ,εN )

)}
+Γ−,ω

(
D†(εm,εn) · D(εM ,εN )

)
+ Γ+,ω

(
D(εm,εn) · D

†
(εM ,εN )

)
−

∑
{((εm,εn),(εM ,εN ))∈B+(ω,D)2}{(

ρ−1m ρnΓ−,ω

(
D(εM ,εN ) · D

†
(εm,εn)

)
+ ρmρ

−1
n Γ+,ω

(
D†(εM ,εN ) · D(εm,εn)

))}
= Lω( · ) +

+
∑

{((εm,εn),(εM ,εN ))∈B+(ω,D)2}{
Γ−,ω

(
D†(εm,εn) · D(εM ,εN )

)
+ Γ+,ω

(
D(εm,εn) · D

†
(εM ,εN )

)}
−

∑
{((εm,εn),(εM ,εN ))∈B+(ω,D)2}{(

ρ−1m ρnΓ−,ω

(
D(εM ,εN ) · D

†
(εm,εn)

)
+ ρmρ

−1
n Γ+,ω

(
D†(εM ,εN ) · D(εm,εn)

))}
Using the identity: ∑

{((εm,εn),(εM ,εN ))∈B+(ω,D)2}{
Γ−,ω

(
D†(εM ,εN ) · D(εm,εn)

)
+ Γ+,ω

(
D(εM ,εN ) · D

†
(εm,εn)

)}
=

=
∑

{((εm,εn),(εM ,εN ))∈B+(ω,D)2}{
Γ−,ω

(
D†(εm,εn) · D(εM ,εN )

)
+ Γ+,ω

(
D(εm,εn) · D

†
(εM ,εN )

)}
=
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One finds

(Lω)∗ρ = Lω( · ) +
∑

{((εm,εn),(εM ,εN ))∈B+(ω,D)2}

+
{

Γ−,ω

(
D†(εM ,εN ) · D(εm,εn)

)
+ Γ+,ω

(
D(εM ,εN ) · D

†
(εm,εn)

)}
−

∑
{((εm,εn),(εM ,εN ))∈B+(ω,D)2}{(

ρ−1m ρnΓ−,ω

(
D(εM ,εN ) · D

†
(εm,εn)

)
+ ρmρ

−1
n Γ+,ω

(
D†(εM ,εN ) · D(εm,εn)

))}
= Lω( · ) −

∑
{((εm,εn),(εM ,εN ))∈B+(ω,D)2}{(

(ρ−1m ρnΓ−,ω − Γ+,ω)
(
D(εM ,εN ) · D

†
(εm,εn)

)
+ (ρmρ

−1
n Γ+,ω − Γ−,ω)

(
D†(εM ,εN ) · D(εm,εn)

))}
Thus, introducing the ω–current operator

Πω,ρ := −
∑

{((εm,εn),(εM ,εN ))∈B+(ω,D)2}

(68)

{(
(ρ−1m ρnΓ−,ω − Γ+,ω)

(
D(εM ,εN ) · D

†
(εm,εn)

)
+ (ρmρ

−1
n Γ+,ω − Γ−,ω)

(
D†(εM ,εN ) · D(εm,εn)

))}
and recalling that ∆ =

∑
ω∈F ∆ω (see equation (??), (∆ω has not

been defined) one obtains

(Lω)∗ρ = Lω + Πω,ρ

In conclusion the ρ–adjoint of the generator (55) has the form

(L)∗ρ = −i[∆, · ] + L+
∑
ω∈B+

Πω,ρ = −i[∆, · ] + L+ Πρ

More explicitly the current operator Πρ takes the form

Πρ(x) =
∑

{(m,n):εm−εn>0}

((ρmqmn
ρnqnm

−1
)
qnmD

∗
mnxDmn+

( ρnqnm
ρmqmn

−1
)
qmnD

∗
nmxDnm

)

=
∑

{(m,n):εm−εn>0}

(
Jmnρ

−1
n D∗mnxDmn + Jnmρ

−1
m D∗nmxDnm

)
(69)

where
Jmn = ρmqmn − ρnqnm, Jnm = −Jmn (70)

25

Accardi
Highlight

Accardi
Highlight



This is the current operator defining the notion of dynamical detailed
balance deduced by Accardi and Imafuku from the stochastic limit
(see [3]). In the same paper it was proved that the quantities Jmn
have a natural interpretation as micro–currents of quanta from the
level εm to the level εn and that the case of all currents equal zero,
corresponds to the notion of quantum detailed balance in the sense of
(81).

In section (??) we will produce examples of simple physical situ-
ations which can give rise to Markov generators with non–zero cur-
rents.(Remove this paragraph.)

7.3 ρ–privileged GKSL representations of a Markov
generator L
In a GKSL representation (43), of a Markov generator L, the triple
(I,H, (Lk)k∈I) is in general not unique. However, fixing arbitrarily
a normal state ρ on B(H), one can introduce special, ρ–dependent,
classes of GKSL representations defined by triples (I,H, (Lk)k∈I) which
are simply related among themselves in the sense described by the fol-
lowing theorem (see [27], Theorem 30.16 for the proof).

Theorem 5. Let L be a norm–continuous Markov generator on B(H)
and let ρ be a normal state on B(H). Then there exists a GKSL
representation (43) of L, (insert: hereafter called special,) whose triple
(I,H, (Lk)k∈I), in addition to the above listed properties (i), (ii), (iii),
satisfies:
(iv) for each k ∈ I,

tr (ρLk) = 0 (71)

(v) if
∑

k∈I |ck|2 < ∞ and c0 +
∑

k∈I ckLk = 0 for complex scalars
(ck)k∈I∪{0} ((by definition 0 /∈ I), then ck = 0 for every k ≥ 0.

If (H̃, Ĩ, (L̃k)k∈Ĩ is another GKSL triple with the above five proper-
ties, then:
– the cardinalities of I and Ĩ are equal,

– there exists a scalar c ∈ R such that

H̃ = H + c

– there exists a unitary matrix (ulj)l,j∈I such that

L̃l =
∑
j

uljLj ; ∀l ∈ I
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In the notations of Theorem 5 the multiplicity space of the gener-
ator L is defined, up to unitary isomorphisms, to be an Hilbert space
K whose dimension is equal to the cardinality of I.
The following notion was introduced in [17].

Definition 9. A GKSL representation (H, I, (Lk)k∈I) of a bounded
Markov generator L is called privileged with respect to a faithful state
ρ if, in addition to (i), . . . , (v), the following conditions are satisfied:
(vi) ρ commutes with H:

Hρ = ρH (72)

(vii) for some sequence of positive real numbers (λk) one has

ρLk = λkLkρ (73)

Remark Conditions (72) and (73) imply that ρ is L–invariant.
Multiplying on the right by L∗k and taking trace one sees that the
faithfulness of ρ implies that

λk > 0 (74)

Conditions (73) and (74) imply that (71) becomes equivalent to

tr (Lk) = 0 (75)

In the privileged case the ρ–adjoint of L is

L∗ρ(x) = (76)

=
∑
k

(
L∗kxLk −

1

2
{x, L∗kLk}

)
+
∑
k

(λ−1k − 1)L∗kxLk − i[H, · ]

Thus, by definition, a Markov generator which has a ρ–privileged rep-
resentation automatically satisfies the weighted detailed balance con-
dition of Definition 7.
The stochastic limit type Markov generators, described in Section 7
satisfy conditions (72), (73) and (71), but boundedness and condition
(v) of Theorem 5 might be difficult to be verified in general.
Privileged representations characterize those bounded GKSL genera-
tors whose ρ–adjoint L∗ρ is also the generator of a uniformly continuous
QMS. Moreover, to every privileged, representation of a Markov gener-
ator L corresponds a privileged representation of its adjoint L∗ρ. More
precisely:
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Theorem 6. Let L be a bounded Markov generator with faithful
invariant state ρ.
(i) The ρ–adjoint of L is the generator of a uniformly continuous QMS
if and only if L admits a privileged representation with respect to ρ.
(ii) If a privileged representation of L is given by the triple (H, I, (Lk)k∈I)
then there exist α ∈ R and λk > 0 (k ∈ I) such that, defining

H̃ := −H − α (77)

L̃k = λ
− 1

2
k L∗k (78)

the triple (H̃, I, (L̃k)k∈I) is a privileged representation of the ρ-adjoint
L∗ρ of L.

Proof. For (i) see Theorem 4.3 in [17]. For (ii) see Theorem 4.4
in [17].

Theorem 7. Let (Tt)t≥0 be a norm continuous QMS with (bounded)
generator L and faithful invariant state ρ.
Then the following are equivalent:

(i) There exist:
– a sequence of positive numbers q := (qk)k∈I ,
– a ρ–special representation of L (in the sense of Theorem 5)
defined by a triple (H, I, (Lk)k∈I),
– a bounded operator K = K∗

such that, defining the operator Π(x) by (46), the weighted de-
tailed balance condition (45) is satisfied.

(ii) L∗ρ is a bounded Markov generator and the triple (H, I, (Lk)k∈I)

yields a privileged representation of L with H̃, L̃k the operators
in the corresponding privileged GKSL representation of L∗ρ, given
by Theorem 6, and there exists a sequence of positive weights
q := (qk) and operators H ′′, L

′′
k of a (possibly another) special

representation of L such that,

L̃k = q
1
2
k L
′′
k , ∀k ≥ 1 (79)

Proof. (i) ⇒ (ii). Since the qk are real, any Π of the form (46) is a
∗–map, i.e. Π(x)∗ = Π(x∗). It follows that L∗ρ is also a ∗–map, being
a sum of maps with these properties. Since, by assumption, L, Π and
K are bounded and ρ is faithful, we can apply a result of Majewski
and Streater (see Theorem 6, p. 7985 in [25]) and conclude that L∗ρ
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is a Markov generator. Hence, by Theorem 6, L admits a privileged
representation with respect to ρ.
Then we have that H and

∑
k L
∗
kLk commutes with ρ and (45), (46)

imply that ∑
k

L̃∗kxL̃k =
∑
k

L∗kyLk +
∑
k

(qk − 1)L
′∗
k xL

′
k (80)

with L
′
k operators of a special representation of L. By Theorem 5, we

can write L
′
k =

∑
l uklLl with u = (ukl) unitary operator on K. Now

a direct computation shows that∑
k

L
′∗
k xL

′
k =

∑
j,`

(∑
k

ukjukl

)
L∗jxLl =

∑
j

L∗jxLj

Therefore we can simplify the right-hand side of (80) and find∑
k

L̃∗kxL̃k =
∑
k

qkL
′∗
k xL

′
k =

∑
k

(
q
1/2
k L

′
k

)∗
x
(
q
1/2
k L

′
k

)
Then we can apply Theorem 30.16 in [27] on Kraus’ representations
of normal completely positive maps to conclude that there exists a
unitary operator v = (vkl) on the multiplicity space of the ρ–special
representation of L such that

L̃k = q
1
2
k

∑
j

vkjL
′
k = q

1
2
k L
′′
k

with L
′′
k =

∑
j vkjL

′
k. This proves (ii).

(ii) ⇒ (i) Conversely, assume (ii) holds and let us compute the
ρ–adjoint of Φ(x) =

∑
k L
∗
kxLk, the CP part of L. Since the GKSL

representation of L by means of the operators H, Lk is privileged, by
Theorem (6) the ρ–adjoint of the CP part Φ(x) =

∑
k L
∗
kxLk of L is

Φ̃(x) =
∑
k

L̃∗kxL̃k

where L̃k = λ
− 1

2
k L∗k. A direct computation using (79) with L

′′
k =∑

l uklLl yields

Φ̃(x) =
∑
k

L̃∗kxL̃k =
∑
k

qkL
′′∗
k xL

′′
k

=
∑
k

L
′′∗
k xL

′′
k +

∑
k

(qk − 1)L
′′∗
k xL

′′
l

= Φ(x) +
∑
k

(qk − 1)L
′′∗
k xL

′′
k
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Since H and
∑

k L
∗
kLk commute with ρ, we obtain (45) and (46) with

Lk
′ = L

′′
k . This proves (i).

Corollary 4. Assume that H, Lk are operators of a privileged repre-
sentation of the bounded Markov generator L with respect to a faithful
invariant state ρ.
Then the following are equivalent:

(i) the generator L satisfies the quantum detailed balance condition
of Frigerio, Kossakowski, Gorini, Verri [22]

L − L∗ρ = 2i[H, · ] (81)

(ii) L satisfies a weighted detailed balance condition with respect to
the faithful invariant state ρ with weights

q = (1, 1, · · · )

i.e., qk = 1, ∀k.

Proof. The thesis is an immediate consequence of Theorem 7
combined with Theorem 5.1 in [17].

7.4 Generic Markov generators of stochastic
limit type satisfy a weighted detailed balance
condition

The simplest class of Markov generators on B(H), of stochastic limit
type with respect to a discrete spectrum Hamiltonian H is obtained
when the Hamiltonian H is generic in the sense of [7], i.e.

Definition 10. A Markov generator (8), of stochastic limit type with
respect to a discrete spectrum Hamiltonian H is called generic if:
(i) H has a simple spectrum
(ii) for any ω ∈ B+ (see (49)), there exists a unique ordered pair
(εm, εn) of eigenvalues of H such that

εm − εn = ω > 0

(this is equivalent to say that the strictly positive eigenvalues of eitH( · )e−itH
are simple).
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In the present subsection we shall prove that, for this special class
of generators condition (v) of Theorem (5) can be easily verified, hence
for it the notions of weighted detailed balance and of dynamical de-
tailed balance coincide.
It is convenient, for simplicity of notations, to rewrite the Markov gen-
erator (50) exploiting the genericity assumption and simplifying the
set of indices, so to make the multiplicity space clear. To this goal we
denote

B̂+ := {ωj ∈ B+ : either Γ−,ω 6= 0 or Γ−,ω 6= 0}

Since the set B̂+ is at most countable, we can write

B̂+ = {ωj : 0 ≤ j ≤ |B̂+|} ⊆ N (82)

hence denoting

Γ±,j = Γ±,ωj and Dj = Dωj

the generator (50) can be written in the form

L(x) = i[∆, x]− (83)∑
j∈B̂+

(
Γ−,j

(
1

2
{D†jDj , x} −D†jxDj

)
+ Γ+,j

(
1

2
{DjD

†
j , x} −DjxD

†
j

))
Defining, for each j ∈ B̂+:

γ2j := Γ−,j ; γ2j+1 := Γ+,j ; L2j := γ
1
2
2jDj ; L2j+1 := γ

1
2
2j+1D

∗
j (84)

we have that
j ∈ {0 ≤ j ≤ |B̂+| − 1} =: I (85)

finally write the generator (50) in the form

L(x) = Φ(x) +G∗x+ xG (86)

where

Φ(x) =
∑
j∈I

L∗jxLj ; G = −1

2
Φ(I)− i∆

Recalling the definition of the operators Dj (see Appendix I), if the
index j ∈ I corresponds to the ordered pair (εm, εn) of eigenvalues of
H, then we can write:

L2j = γ
1
2
2jDj = γ

1
2
2jEj(D) = γ

1
2
2j〈εn|D|εm〉|εn〉〈εm|

L2j+1 = γ
1
2
2j+1Dj+1 = γ

1
2
2j+1Ej(D)∗ = γ

1
2
2j+1〈εn|D|εm〉|εm〉〈εn|

(87)
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since by genericity εn 6= εm, one has from (87):

tr
(
ρL2j

)
= γ

1
2
2j〈εn|D|εm〉tr

(
ρ|εn〉〈εm|

)
= γ

1
2
j 〈εn|D|εm〉ρntr

(
|εn〉〈εm|

)
= 0

Similarly tr
(
ρL2j

)
= 0. (87) also implies that, if 0 = c0 +

∑
j cjLj

then

0 = tr
(

(c0 +
∑
j

cjLj)
∗(c0 +

∑
j′

cj′Lj′)
)

=
∑
j

|cj |2,

it follows that cj = 0 for all j ≥ 0. Therefore the set {1, (Lk)k∈I} is
linearly independent, hence I is the multiplicity space of L.

Theorem 8. The expression (86) of a Markov generator L, of stochas-
tic limit type associated with a generic Hamiltonian H and with a
faithful invariant state of the form

ρ =
∑

εk∈Spec(H)

ρk|εk〉〈εk| ∈ {H}′ ≡ {H}′′ (88)

is a privileged decomposition with eigenvalues (λj) defined as follows:
if the index j ∈ I corresponds to the ordered pair (εm, εn), then:

λj :=

{
ρnρm

−1 , if j is even

ρn
−1ρm , if j is odd

(89)

Moreover the Markov generator L, in the expression (86), satisfies

a weighted detailed balance condition in which L̃k = q
1
2
k L
′′
k where

L
′′
k =

∑
j ukjLj with u ≡ (uk,j)k,j∈I is the unitary (permutation)

operator whose elements are defined by

uk,j :=

{
δk+1,j , if k is even

δk−1,j , if k is odd
(90)

and the sequence of weights q ≡ (qk) is given by (89) and, in the
notation (84):

qk :=

{
λ−1k γkγ

−1
k+1 , if k is even

λ−1k γ−1k γk+1 , if k is odd
(91)
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Proof. For j even one has, if the (λj) are defined as in (89):

ρLj = γ
1
2
j 〈εn|D|εm〉ρ|εn〉〈εm| = γ

1
2
j ρnρm

−1〈εn|D|εm〉|εn〉〈εm|ρ = λjLjρ

ρLj+1 = γ
1
2
j+1〈εn|D|εm〉ρ|εm〉〈εn| = γ

1
2
j+1〈εn|D|εm〉ρmρ

−1
n |εm〉〈εn|ρ = λj+1Lj+1ρ

This implies that the representation of L by means of operators (Lj)j
and ∆ is privileged with eigenvalues (λj) given by (89).
Finally, let us verify that condition (ii) in Theorem 7 holds.
From (87) we see that for every j ∈ I we have

L∗j =

γ
1
2
j γ
− 1

2
j+1Lj+1 , if j is even

γ
1
2
j γ
− 1

2
j−1Lj−1 , if j is odd

Hence denoting for 2j, 2j + 1 ∈ I

q2j := λ−12j γ2jγ
−1
2j+1 ; q2j+1 := λ−12j+1γ

−1
2j γ2j+1

and, using (90) to define the unitary operator u ≡ (uk,j)k,j∈I , one
obtains the relation:

L̃k = λ−1k L∗k = q
1
2
k L
′′
k (92)

This finishes the proof.
Remark. Notice that, if the index k ∈ I corresponds to the ordered
pair (εm, εn) in the sense of Definition 10, then the identity (91) implies
that, for generic Markov generators of stochastic limit type, one has:

qk = λ−1k γkγ
−1
k+1 = λ−1k Γ−,εm−εn(Γ+,εm−εn)−1 =: λ−1k qmnq

−1
nm (93)

8 Appendix (I): Eigenoperators of Ad(eitH)

In the present Appendix we recall some useful notions from [7].

Theorem 9. (see Theorem 34 in [7]) Let H = H∗ ∈ B(H) be a pure
point spectrum Hamiltonian

H =
∑

ε∈spec(H)

εPε =
∑
m

εmPm (94)

Consider the associated 1–parameter automorphism group;

ut(·) := eitH(·)e−itH (95)
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and the associated set of Bohr frequencies.

B = BH := {ω = εr − εr′ : εr, εr′ ∈ Spec (H)} = Spec (ut) (96)

Then one has:

ut(x) =
∑
ω∈B

e−itωEω(x) ; ∀x ∈ B(H) , ∀t ∈ R+ (97)

where, for each ω ∈ B, the operator Eω is defined by (58) and

Dω := Eω(D) =
∑

{(εm,εn)∈B+(ω)}

PεmDPεn (98)

The operators Eω satisfy the identities

Eω(x)∗ = E−ω(x∗) ; ∀x ∈ B(H) (99)

EωEω′ = δω,ω′Eω (mutual orthogonality) (100)∑
ω∈B

Eω(·) = idB(H) (normalization) (101)

Finally the operator

E0(·) :=
∑

{εn∈ Spec (H)}

Pεn(·)Pεn (102)

is the Umegaki conditional expectation onto {H}′.

Remark. One easily verifies (see Proposition 33 of [7]) that

Eω(B(H)) = {x ∈ B(H) : eitHxe−itH = e−itωx} (103)

Any element of this subspace will be called an ω–eigen–operator of
Ad(eitH). (101) is equivalent to

B(H) =
⊕
ω

Eω(B(H)) (104)

the sum being orthogonal in the sense that, if ω′ 6= ω, then

Eω′Eω(x) = 0 ; ∀x ∈ B(H)

The sum (104) is orthogonal also in another sense, specified by the
following Lemma.
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Lemma 7. If ρ ∈ {H}′ (in particular if ρ ∈ {H}′′), then for any
ω, ω′ ∈ B one has:

Tr (ρEω(x)∗Eω′(y)) = δω,ω′Tr (ρEω(x)∗Eω(y)) ; ∀x, y ∈ B(H)

Lemma 8. For any ω, ω′ ∈ B one has:

Eω(B(H)) · Eω′(B(H)) ⊆ Eω+ω′(B(H)) (grading) (105)

Eω(B(H))∗ = E−ω(B(H)) (106)

Corollary 5. For all ω ∈ B and any operator A ∈ {H}′ ≡ E0(B(H)),
one has

[A,Eω(B(H))] ⊆ Eω(B(H)) (107)

{A,Eω(B(H))} ⊆ Eω(B(H)) (108)

Moreover, ∀ω, ω′ ∈ B and ∀Dω ∈ Eω(B(H)), one has:

D∗ωDω, DωD
∗
ω ∈ {H}′ ≡ E0(B(H)) (109)

D∗ωEω′(B(H))Dω ⊆ Eω′(B(H)) (110)

Lemma 9. Let F : spec(H) → R be a Borel function. Then ∀y and
∀m,n ∈ N

F (H)Pmy = F (εm)Pmy

yPnF (H) = F (εn)yPn

in particular, if y has the form

y = PmzPn ; z ∈ B(H) ; m,n ∈ N (111)

Then
eβ(H)Hye−β(H)H = eβ(εm)εm−β(εn)εny (112)

8.1 The generic case

The generic case is characterized by the condition

cardinality of Bω =: |Bω| = 1 ; ∀ω ∈ B+ (113)

Let ω ∈ B+. Condition (113) is characterized by the existence of a
unique pair (ε+ω , ε

−
ω ) such that ε+ω , ε

−
ω ∈ spec(H) and

ε−ω := ε+ω − ω ∈ spec(H)
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or equivalently
ε+ω − ε−ω = ω > 0

In this case the spectrum of H is non degenerate so that

Pε = |ε〉〈ε|

Therefore:
E0(x) =

∑
n

〈εn, xεn〉|εn〉〈εn|

and, for ω > 0

Eω(D) = 〈ε+ω , Dε−ω 〉|ε+ω 〉〈ε−ω | =: δω|ε+ω 〉〈ε−ω |

Then recalling that E∗ω(D) = E−ω(D∗), one has

Eω(D)Eω(D)∗ = |δω|2|ε+ω 〉〈ε+ω | =: qωPε+ω

Eω(D)∗Eω(D) = |δω|2Pε−ω = qωPε−ω

Eω(D)∗xEω(D) = qω〈ε+ω , xε+〉Pε−ω
Eω(D)xEω(D)∗ = qω〈ε−ω , λεω〉Pε+ω

∆|ε〉 = id̂ε|ε〉 ; dω := d̂ε+ω − d̂ε−ω

L(|ε+ω 〉〈ε−ω |)

= idω|ε+ω 〉〈ε−ω |+ Γω,−

(
−1

2
qω|ε+ω 〉〈ε−ω |

)
+ Γω,+

(
−1

2
qω|ε+ω 〉〈ε−ω |

)
=

[
−
(

Γω,− + Γω,+
2

)
qω + idω

]
|ε+ω 〉〈ε−ω |

L(|ε−ω 〉〈ε+ω |) = −idω|ε−〉〈ε+| −
(

Γω,− + Γω,+
2

)
qω|ε−〉〈ε+|

=

[
−
(

Γω,− + Γω,+
2

)
− idω

]
|ε−〉〈ε+|

Under our assumptions the right hand side of (41) is equal to

eβ(εn)εm−β(εn)εnTr(ρL(y)x)

Let
ω = εm − εn
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Therefore the right hand side of (41) is equal to

eβ(εm)εm−β(εn)εn
[
−1

2
(Γω,− + Γω,+)qω + idω

]
Tr(ρ|εn〉〈εn|)

and, using that:

ρ =
∑

F (εn)|εn〉〈εn|

this is equal to

eβ(εm)εm−β(εn)εnF (εm)

[
−1

2
(Γω,− + Γω,+)qω + idω

]
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