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A double shift self-calibration method for micro
XY stages

Stefano Petròa,∗

aDepartment of Mechanical Engineering, Politecnico di Milano, Via La Masa 1, 20156,
Milano, Italy

Abstract

In most cases calibration of measuring instruments is obtained by comparing
measurement results to a measurement standard. But in the case of coordinate
measuring system, the availability of reliable measurement standards is often
limited: calibrated ball plated, for example, are expensive and difficult to main-
tain. This originated the so called “self-calibration” procedures, in which an
uncalibrated artifact is adopted to estimate the stage error of the system.

One of the most widespread coordinate measuring systems is an XY stage.
Several procedures have been proposed for the self-calibration of this kind of
system. Most of them are based on performing three or more measurements of
an uncalibrated plate, with the position of the plate changing from one mea-
surement to the other. Oftentimes, the positions are only slightly different from
each other, thus making it difficult to obtain them with a good accuracy when
measurements are carried out at a micro scale. In this work, an approach is
proposed which allows larger displacement from one measurement to the oth-
ers, thereby allowing an easier management for micro XY stages.
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XY stage; self-calibration; stage error compensation; uncalibrated artifact.

1. Calibration and self-calibration

Calibration is the key to the accuracy of any measuring instrument. Accord-
ing to the International Vocaboulary of Metrology (VIM) [1], the calibration is
defined as

operation that, under specified conditions, in a first step, estab-
lishes a relation between the quantity values with measurement un-
certainties provided by measurement standards and corresponding
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indications with associated measurement uncertainties and, in a sec-
ond step, uses this information to establish a relation for obtaining
a measurement result from an indication.

According to this definition, without calibration it is impossible to state that
measurements are traceable to the reference measurement unit, whereupon mea-
surement trueness is impossible to guarantee. But most often, calibration is not
only intended as the operation which “creates the link” between a measure-
ment standard and the measurement result, and is also intended as the opera-
tion which guarantees the measuring system behaves to its best capability. In
practical terms, it identifies the systematic measurement errors, allowing their
correction. According to the VIM, this operation should be called “adjustment
of a measuring system”, but is commonly referred to as “calibration”.

Like any other measuring instrument, coordinate measuring systems (CMSs),
too, need calibration. As most CMSs consist in a series of axes working to-
gether to provide a measurement result, the traditional measurement standard
adopted as reference to calibrate them is a laser interferometer: each axis is
tested against it singularly. Although some different approaches have been pro-
posed [2], in general testing the axes separately is not considered sufficient,
because they often interact. The choice artifacts made up of a series of regular
“sub-artifacts” (marks, hole, hemispheres, spheres, etc.) regularly distributed
on a plate as calibrated measurement standards are then quite common where
high accuracy is required. However, calibrated plates are expensive and difficult
to maintain.

To overcome this limitation, “self-calibration” [3, 4] techniques have been
introduced. In self-calibration techniques, an uncalibrated artifact is used in-
stead of a calibrated measurement standard. As such, a direct identification of
measurement errors is impossible. Therefore, repeated measurements in vary-
ing conditions are conducted. In the absence of random measurement errors,
the analysis of the measurement results leads to both the identification of the
systematic volumetric measurement errors (usually in limited sets of locations)
and the calibration of the artifact (with the identification of the deviation from
the nominal geometry) - the so called “separation”. Most often, the adopted
reference artifact is a plate with sub-artifacts. Many self-calibration approaches
have been proposed in the past for CMSs [5, 6].

Among the others, a method for the self-calibration of XY stages has been
proposed by Ye et al. [7] that involves the measurement of a square plate,
which brings a series of sub-artifact on an evenly spaced on grid; the distance
between two sub-artifacts is ∆, and there are N sub-artifacts along each side of
the artifact. The aim is to evaluate the systematic component of the volumetric
measurement error as a function of the probing location, but only in those
locations which correspond to a sub-artifact. Reference (Cartesian) axes can be
defined for both the artifact and the measuring device. To obtain an evaluation
the stage error at the artifact locations, according to Ye et al., the plate has to
be measured in three positions (views):

� View 0. This is the original view - the reference system of the plate
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nominally corresponds to the reference system of the measuring system.

� View 1. The plate is 90° counterclockwise rotated, in respect of the
measuring device reference system.

� View 2. The artifact is translated by ∆, in the positive x direction, with
respect to the measuring device reference system.

The proposed result is an analytical solution, which, in the absence of random
measurement errors, decompose the measurement results into the plate devi-
ations from the nominal geometry and the systematic stage errors. Several
evolutions and inspired approaches have been proposed [8, 9, 10, 11, 12, 13, 14,
15, 16, 17], including approaches dealing with coordinate measuring machines
[9, 13], rotary stages [14], and XY θz stages [11].

This work is a further derivation of the Ye et al. method. It has been de-
signed for the case in which micro-stages XYmust be calibrated. In this case
very small plates [18] are required. For such small plates, the ∆ displacement is
usually obtained by grooving on the plate side opposite to the sub-artifacts two
series of V-groves spaced by 120°, which can be coupled with three spheres con-
stituting a kinematic mount. But if ∆ is small (1 mm or even less), the grooves
will be very close to each other and then very small themselves, making their
accurate manufacture difficult or even impossible. A methodology allowing a
displacement larger than ∆ is available, this could make the manufacture of ac-
curate small plates easier. The proposed method allows for larger displacement
of the plate. Actually, a modification of the mathematics of Ye et al. method
allow a shift equal to twice the distance between the sub-artifacts of the plate.
This requires the addition of a “view 3” in which the plate is shifted by 3∆ in
the opposite direction of view 2, but with only a limited number of measure-
ments performed in it. Furthermore, this paper states that a further increase of
the displacement is impossible without a complete modification of the approach.
To show the theoretical performance of the method, it is validated by means of
simulation.

2. Procedure for the double-step self-calibration

As stated previously, when the sub-artifacts are very close to each other, i.e.
when ∆ is very small, obtaining the 1∆ translation required by Ye et al. method
can be very difficult. One could then wonder whether the mathematics of the
method allow for a larger displacement. In the following, it will be demonstrated
that it is possible to have self-calibration and separation if a view with a 2∆
translation in the positive direction is taken together with an additional view
with a 3∆ translation in the negative direction. The proposed method will be
defined as “double step” self-calibration.

The four views required by the method are then as follows (Fig. 1):

� View 0. This is the original view - the reference system of the plate
nominally corresponds to the reference system of the measuring system.
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View 0

View 3

View 1

View 2
2 3

Figure 1: Views required by the “double step” method. xy denotes the XY stage reference
system, x′y′ denotes the plate reference system.

� View 1. In this view the plate is 90° counterclockwise rotated, in respect
of the measuring device reference system.

� View 2. In view two the artifact is translated by 2∆, in the positive x
direction, in respect of the measuring device reference system.

� View 3. In view three the artifact is translated by 3∆, in the negative
x direction, in respect of the measuring device reference system. In this
view, it is not required to sample the whole plate. It suffices to sample
the central row of the array, and two adjacent columns (in the following,
it will be supposed that the central column and its adjacent column on
the positive x direction are sampled).

The plate adopted must have an odd and identical number of rows and
columns N , and N ≥ 9. It is worth noting that actually only a row and a
column measurement must be added, compared to the Ye et al. method.
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3. Mathematical model

Ye et al. originally proposed their model in an algebraic formulation. How-
ever, the data structure (coordinates of points belonging to an evenly spaced
grid) suggests that a matrix formulation is possible.This matrix formulation is
easier to understand, too, so the methodology will be proposed in such form.
A Mathworks Matlab© script is attached to illustrate a practical example of
application [19].

Before describing the methodology, let us define few scalars, vectors and
matrices which will be of assistance for a better comprehension.

� s = (N − 1) /2 + 1.

� 1k = [xi,1] , xi,1 = 1∀i ∈ {1, . . . , k}
1k is simply a column vector made up only by “1”. For notation simplicity,
1N = 1.

� Ek = [xi,j ] , i ∈ {1, . . . , N} , j ∈ {1, . . . , N − k} , xi,j =

{
1, i = j
0, i 6= j

MEk is a matrix identical to M deprived of the last k columns. For
notation simplicity, E = E2.

� S = [xi,j ] , i, j ∈ {1, . . . , N} , xi,j =

{
1, i = N − j + 1
0, i 6= N − j + 1

Post-multiplying matrix M time S has the effect of swapping the first
column with the last, the second with the penultimate, and so on, and
similarly pre-multiplying swaps rows. Please note that S is a symmetric
and orthogonal matrix.

� Tk = [xi,j ] , i, j ∈ {1, . . . , N} , xi,j =

1, i = j + k
1, i = j + k −N
0, else

Post-multiplying matrix M time Tk has the effect of “rotating” the columns
of M, that is, the kth +1 column of M becomes the first, the (k + 2)

th
col-

umn becomes the second, etc., while the first column becomes the N−k+1
column and so on. Please note that Tk is an orthogonal matrix.

� OT = [xi,j ] , i, j ∈ {1, . . . , N} , xi,j =

{
1, i > j ∧ i+ j is even
0, else

� X = [xi,j ] , i, j ∈ {1, . . . , N} , xi,j = ∆ (j − s)
Y = [xi,j ] , i, j ∈ {1, . . . , N} , xi,j = ∆ (i− s)
X and Y are auxiliary matrices which contain the nominal coordinates of
the points in the grid. Please note that X = YT, where T denotes the
matrix transposition.
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3.1. Assumptions on the stage error model

Exactly the same assumptions taken by Ye et al. are taken here. The
stage error at location (x, y) can be defined by a two dimensional function
G (x, y) = Gx (x, y) ex + Gy (x, y) ey, where ex, ey are the x and y direction
vectors of the stage and Gx (x, y) , Gy (x, y) are 2-dimensional functions defined
at any position the moving stage can reach. The goal of self-calibration is the
definition of this function, at least on a discrete number of locations. If we
consider only a NxN set of locations, the Gx (x, y) , Gy (x, y) functions can be
represented by a couple of NxN matrices Gx,Gy, in which the (n,m) element
defines the stage error at the coordinates x = (m− s) ∆, y = (n− s) ∆ in the
measuring device reference system.

The stage error is assumed to have the following properties:

� No translation.

1TGx1 = 0

1TGy1 = 0
(1)

� No rotation.

1T
(
XGT

y −YTGx

)
1 = 0 (2)

Translation and rotation of matrices Gx and Gy depends only on the
choice of measuring device reference system, and are therefore not relevant
in the definition of the stage error.

� No magnification.

1T
(
XGT

x + YTGy

)
1 = 0 (3)

The absence of magnification in Gx,Gy is hard to justify. In fact, it
implies de facto that the measuring system is metrologically traceable.
This in general requires calibration of the system, and as such is in contrast
with the idea of applying self-calibration. As such, to at least reduce the
impact of this assumption, it is suggested that the axes of the XY stage
(considered separately) are calibrated.

Two first order stage errors can now be introduced:

� Non orthogonality error. The non-orthogonality error is due to the fact
that the axes of the measuring device are not perfectly perpendicular. The
non-orthogonality error can be measured by the O index:

O =
1T
(
XGT

y + YTGx

)
1

1T (XXT + YTY) 1
(4)
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� Scale error. Scale error measures the different linearity of the axes, and
can be measured by the R index:

R =
1T
(
XGT

x −YTGy

)
1

1T (XXT + YTY) 1
(5)

Finally, any other stage error is taken into account by the second order stage
errors Fx,Fy, so that

Gx = OY +RX + Fx

Gy = OX−RY + Fy
(6)

The second order errors retains the G properties defined in (1), (2), and
(3),and has also the no non orthogonality and no scale error properties. The
properties of the second order errors can be summarized as:

1TXFT
x1 = 1TYTFx1 = 1TFx1 = 0

1TXFT
y 1 = 1TYTFy1 = 1TFy1 = 0

(7)

3.2. Assumptions on the artifact model

The deviation from the nominal coordinates for the set of sub-artifact at
location (x, y) can be defined by a couple of NxN matrices Ax,Ay, in which
the (n,m) element defines the deviation at the coordinates x = (m− s) ∆, y =
(n− s) ∆ in the artifact reference system.

Like the stage error, artifact error is endowed with some properties:

� No translation.

1TAx1 = 0

1TAy1 = 0
(8)

� No rotation.

1T
(
XAT

y −YTAx

)
1 = 0 (9)

Again, these properties are essentially due to the arbitrariness of the plate
reference system.

4. Measurement and measurement results analysis

Views 0 and 1 for the present methodology are identical to those proposed
by Ye et al.. As such, only the relevant results for view 0 and 1 are reported
here. For further information, please refer to Ye et al. works.

The following discussion does not consider the random measurement error.
If the random measurement error is not present, then the methodology is able
to exactly reconstruct the stage error. The impact of the random error will be
discussed later.
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4.1. View 0

In view zero, the measuring device reference system and the artifact ref-
erence system are nominally coincident. Of course, some positioning error is
unavoidable, which leads to the translational misalignment t0x, t0y in the x
and y direction of the measuring device reference system respectively, and the
rotational misalignment θ0. The measurement result can be expressed by the
matrices V0,x,V0,y, in which the (n,m) element defines the measured deviation
(in the measuring device reference system) from the nominal position for the
sub-artifact located at x = (m− s) ∆, y = (n− s) ∆ in the artifact reference
system. Mathematically, if no random error is present, and θ0 is small, the
measurement result may be expressed as follows:

V0,x = Gx + Ax − θ0Y + 11Tt0x

V0,y = Gy + Ay + θ0X + 11Tt0y
(10)

Based on this formulation, and on the properties of Gx,Gy,Ax,Ay, it is possible
to evaluate the misalignment parameters (please note that 1TX1 = 1TY1 = 0):

tx0 = 1TV0,x1/N
2

ty0 = 1TV0,y1/N
2

(11)

θ0 =
1T
(
XVT

0,y −YTV0,x

)
1

1T (YTY + XXT) 1
(12)

4.2. View 1

In view 1 the artifact is 90° counterclockwise rotated in respect of the mea-
suring device reference system. Again, misalignment can be expressed by the
terms t1x, t1y, and θ1. The measurement result can be expressed by the matrices
V1,x,V1,y. The measurement results expression is the following:

V1,x = SGT
x −Ay − θ1X + 11Tt1x

V1,y = SGT
y + Ax − θ1Y + 11Tt1y

(13)

Again, it is possible to evaluate the misalignment parameters:

tx1 = 1TV1,x1/N
2

ty1 = 1TV1,y1/N
2

(14)

θ1 =
1T
(
−XVT

1,x −YTV1,y

)
1

1T (XXT + YTY) 1
(15)
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4.2.1. Evaluation of the first order error terms

Based on the measurement results in view 0 and view 1, it is possible to
evaluate the first order error terms. First of all, let us remove the misalignment
from the measurement results, defining the U matrices:

U0,x = V0,x + θ0Y − 11Tt0x = Gx + Ax = OY +RX + Fx + Ax

U0,y = V0,y − θ0X− 11Tt0y = Gy + Ay = OX−RY + Fy + Ay

(16)

U1,x = V1,x + θ1X− 11Tt1x = OYT −RXT + SFT
x −Ay

U1,y = V1,y + θ1Y − 11Tt1y = −OXT −RYT + SFT
y + Ax

(17)

by summing or subtracting (16) and (17) the following system of equations,
which gets rid of the artifact error Ax,Ay, we can obtain:{

U0,x −U1,y = 2OY + 2RX + Fx − SFT
y

U0,y + U1,x = 2OX− 2RY + Fy − SFT
x

(18)

Solving (18) for O and R, remembering properties (7), yields (19) and (20),
which allows the evaluation of O and R respectively:

O =
1T
(
XU0,x −XU1,y + YTUT

0,y + YTUT
1,x

)
1

2 · 1T (XXT + YTY) 1
(19)

R =
1T
(
YTUT

0,x −YTUT
1,y −XU0,y −XU1,x

)
1

2 · 1T (XXT + YTY) 1
(20)

4.2.2. Evaluation of the real part of the Fourier transform of Fx and Fy
View 0 and view 1 are not sufficient to completely define the error map

Gx,Gy. In fact, they are the same view rotated by 90°, and therefore they
cannot point out any rotational symmetric error: at least a translational view
is required. However, most of the stage errors may be derived from these two
views.

In the following, an approach based on the Fourier transforms will be pro-
posed. Of course, knowledge of the 2D Discrete Fourier Transform (DFT) of
Fx and Fy, plus the already calculated O and R indexes is equivalent to the
complete knowledge of Gx and Gy.

First of all, we get rid of scale error and non-orthogonality error by defining
the following matrices:

P =U0,x −U1,y − 2OY − 2RX = Fx − SFT
y

Q =U0,y + U1,x − 2OX + 2RY = Fy + SFT
x

(21)

The following result may be obtained:

P + SQT − SPS−QTS = 0 (22)
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which implies that there is a linear dependence between P and Q. Therefore,
(21) is not sufficient to completely describe Fx and Fy - the rotational symmetric
terms of the stage error cannot be identified by view 0 and view 1 only.

2D DFT can be computed, in matrix form, by pre- and post-multiplying
time a special matrix W. In this work, we are not considering the classical
DFT matrix [20]. The formulation considered here is the following:

W = [xh,k] , h, k ∈ {1, . . . , N} , xh,k =
1

N
e

−2πi(h−1−(N−1)/2)(k−1−(N−1)/2)
N (23)

It is possible to shift from classical DFT and DFT obtained with this matrix
by simply reordering rows and columns, and by applying the shift theorem [20].
However, W matrix and transforms obtained by it have some properties (pro-
vided they are applied to a real matrix M) which will ease the self-calibration
methodology demonstration:

W = WT

SW = WS

NWSW = I

SWMW = (WMWS)
∗

WMTW = (WMW)
T

(24)

where ∗ denotes complex conjugate. After some manipulation, it is possible to
apply DFT to P and Q:

WPW = WFxW −WSFT
y W

WQTSW = WFT
y SW + WFxW

(25)

Applying the properties in (24), from (25) we obtain the following (26):

WPW = WFxW − SWFT
y W

WQTSW =
(
SWFT

y W
)∗

+ WFxW
(26)

From this result it is possible to obtain the real part of the transform of Fx and
Fy:

Re (WFxW) =
1

2
Re
(
WPW + (WQW)

T
S
)

Re
(
S (WFyW)

T
)

=
1

2
Re
(

(WQW)
T

S−WPW
) (27)

Unfortunately, it is not sufficient to obtain the imaginary part of the transform.
However, it is sufficient to obtain the following linear relationship:

Im
(
WFxW − S (WFyW)

T
)

=
1

2
Im
(
WPW + (WQW)

T
S
)

(28)
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4.3. View 2

In view 2 the artifact is shifted by an amount 2∆ in the positive x direction
of the measuring device reference system. As in view 0 and 1, misalignment
can be expressed by the terms t2x, t2y, and θ2. The measurement result can be
expressed by the matrices V2,x,V2,y. It is possible to express mathematically
the measurement results by means of multiplication of the various matrices
expressing artifact and stage error time T2. The measurement results expression
is the following:

V2,xE =
(
GxT2 + Ax − θ2Y + 11Tt2x

)
E

V2,yE =
(
GyT2 + Ay + θ2X + 11Tt2y

)
E

(29)

Please note that the last two columns of V2,x and V2,y do not actually
exist: in fact, the artifact columns of sub-artifacts corresponding to them fall
outside the investigated volume of the measuring instruments, and they may
even fall outside its measuring volume. This is made evident by the presence
of matrix E in (29). This condition prevents an easy evaluation of t2x, t2y, and
θ2. It is then preferable to introduce the following terms ξx = − (t2x +R2∆),
ξy = − (t2y +O2∆), and ξθ = −θ2, which take into account part of the stage
error due to non-orthogonality and scale error. For notation consistency, U2,x

and U2,y are introduced, too:

V2,xE = U2,xE =
(
(OY +RX + Fx) T2 + Ax − θ2Y + 11Tt2x

)
E

=
(
FxT2 +OY +RX + Ax − θ2Y +

(
11Tt2x +RX (T2 − I)

))
E

= FxT2E +OYE +RXE + AxE + ξθYE− ξx11TE

V2,yE = U2,yE = FyT2E +OXE−RYE + AyE− ξθXE− ξy11TE

(30)

Now, subtracting (16) from (30) it is possible to get rid of the scale, non
orthogonality, and artifact errors:

U2,xE−U0,xE = Fx (T2 − I) E + ξθYE− ξx11TE

U2,yE−U0,yE = Fy (T2 − I) E− ξθXE− ξy11TE
(31)

From the first equation in Eq. (31) it is possible to evaluate ξx:

ξx = −1T (U2,x −U0,x) EETOT
TXT1

1T11TEETOT
TXT1

(32)

where the properties that (T2 − I) EETOT
TXT = XT, and 1TY is a row vector

made up by null elements have been taken into consideration.
Determining ξθ is more complicated, and requires measurement results ob-

tained in view 1. From (21) we evince that

Fx + SFxS = P + SQT (33)
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which (considering that ST2 = TT
2 S) can be manipulated to obtain

FxT2 + SFxT
T
2 S = PT2 + QTT2 (34)

The following expressions can be derived from (31) (please note the second one
is obtained by pre-multiplying time S and post-multiplying time TT

2 S the first):

FxT2 −Fx =U2,x −U0,x +ξx11T −ξθY
SFxS −SFxT

T
2 S =SU2,xT

T
2 S −SU0,xT

T
2 S +ξx11T −ξθSYTT

2 S

(35)

By combining (33), (34), and (35) one can obtain the following expression:(
FxT2 + SFxT

T
2 S
)
− (Fx + SFxS)

=U2,x −U0,x − SU2,xT
T
2 S + SU0,xT

T
2 S− ξθ

(
Y − SYTT

2 S
)

=PT2 + SQTT2 −
(
P + SQT

) (36)

This is a matrix equation in which the only unknown term is ξθ. Every ele-
ment in the matrix defines an equation that can serve to evaluate ξθ, with the
exception of those elements which correspond to null elements of Y− SYTT

2 S.
Please remember that the last two columns of U2,x do not exist.

A similar result can be obtained from the U2,y terms, starting from:

Fy + SFyS = Q− SPT

FyT2 + SFyT2S = QT2 − SPTTT
2

(37)

and obtaining:(
FyT2 + SFyT

T
2 S
)

+ (Fy − SFyS)

=U2,y −U0,y − SU2,yT
T
2 S + SU0,yT

T
2 S + ξθ

(
X− SXTT

2 S
)

=QT2 − SPTT2 −
(
Q− SPT

) (38)

If no random error exists, the ξθ solutions to every equation in (36) and (38)
are equal. If some random error is present, one can take the average of the
values obtained, in order to minimize the overall evaluation uncertainty.

Finally, to determine ξy let us consider the second expression in (31). With
a procedure similar to the one adopted for the evaluation of ξx, the following
result can be obtained:

ξy = −1T (U2,y −U0,y) EETOT
TXT1 + ξθ1

TXEETOT
TXT1

1T11TEETOT
TXT1

(39)

Ye et al. have demonstrated similar formulas for calculating ξx, ξy, and ξθ
when there is a translation equal to ∆ in view 2. It is interesting to note that it
is impossible to solve ξx and ξy for values of the shift greater than 2∆, because
a property similar to (T2 − I) EETOT

TXT = XT does not exist. In particular,
it is impossible to formulate a matrix similar to OT.
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4.3.1. Evaluation of the central row of Fx and Fy
It is now possible to evaluate Fx and Fy for the central row of the matrices

only. Define:

FxT2E− FxE = HxE = U2,xE−U0,xE + ξx11TE− ξθYE

FyT2E− FyE = HyE = U2,yE−U0,yE + ξy11TE + ξθXE
(40)

Please note that at present the last two columns of Hx and Hy are missing.
A complete knowledge of Hx and Hy would allow a complete reconstruction
of Fx and Fy, but is not available at present. This problem will be addressed
in §4.4. However, even without these columns, based on (21) and (40) it is
possible to evaluate the central element of matrices Fx and Fy and their central
rows. Because this calculation does not involve full matrices, it is proposed in
algebraic form.

From (21):

Fx,s,s =
1

2
(Ps,s +Qs,s)

Fy,s,s =
1

2
(−Ps,s +Qs,s)

(41)

where Fx,h,k is element belonging to hth row and kth column of matrix Fx,
Fy,h,k is element (h, k) of matrix Fy, etc.

Consider now the central row of matrices of Fx and Fy, and in particular its
relationship with the central rows of Hx and Hy. It is easy to show that, for k
even,

Fx,s,N−k+1 − Fx,s,k = Hx,s,k +Hx,s,k+2 + · · ·+Hx,s,N−k+1

=

(N−k+1)/2∑
i=k/2

Hx,s,2i

Fy,s,N−k+1 − Fy,s,k = Hy,s,k +Hy,s,k+2 + · · ·+Hy,s,N−k+1

=

(N−k+1)/2∑
i=k/2

Hy,s,2i

(42)

and, for k odd,

Fx,s,N−k+1 − Fx,s,k =

(N−k+2)/2∑
i=(k+1)/2

Hx,s,2i−1

Fy,s,N−k+1 − Fy,s,k =

(N−k+2)/2∑
i=(k+1)/2

Hy,s,2i−1

(43)

Combining these equation with (33) and (37) the evaluation of every term of
the central row can be obtained, with the exception of element (s, s) that has
already been calculated. Define then m = k − s. For m > 0, even:
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Fx,s,m =
1

2

 m/2−1∑
i=−m/2

Hx,s,2i+s + Ps,m +Qm,s


Fy,s,m =

1

2

 m/2−1∑
i=−m/2

Hy,s,2i+s +Qs,m − Pm,s


Fx,s,−m =

1

2

− m/2−1∑
i=−m/2

Hx,s,2i+s + Ps,m +Qm,s


Fy,s,−m =

1

2

− m/2−1∑
i=−m/2

Hy,s,2i+s +Qs,m − Pm,s



(44)

A similar result can be obtained for m odd.
Unfortunately, this procedure cannot be extended to every term of Fx and

Fy. View 3 is then necessary. The estimate of Fx proposed in (44) is not good,
either. In fact, every term in (44) involves a summation, and, because every
term of the summation has its own uncertainty, the final uncertainty can be
large. Moreover, the number of term in every summation depends on m, so the
uncertainty of the single term varies and is proportional to m.

4.4. View 3

In view 3 the artifact is shifted by an amount 3∆ in the negative x direction
of the measuring device reference system. As in view 0 and 1, misalignment
can be expressed by the terms t3x, t3y, and θ3. The measurement result can be
expressed by the matrices V3,x,V3,y. It will be shown that it is not necessary
to measure the whole plate in view 3. It is sufficient to measure the central row
of the plate, and two adjacent columns (in the following, it will be supposed
that columns s and s+ 1 have been measured). It is possible to express math-
ematically the measurement results by means of multiplication of the various
matrices expressing artifact and stage error time T−3. The measurement results
expression is the the following:

V3,x = GxT−3 + Ax − θ3Y + 11Tt3x

V3,y = GyT−3 + Ay + θ3X + 11Tt3y
(45)

Having obtained an evaluation of the central row of matrix Fx and Fy,
obtaining an evaluation of t3x, t3y, and θ3 from the measurement of the central
row of V3,x and V3,y is not hard. Please note that, having obtained O from
(19) and R from (20), from (6) it is possible to evaluate the central row of Gx

and Gy. It is then possible to evaluate the central row of Ax and Ay, too,
from (10) or (13) (if a random measurement error is present, it is preferable to
compute both estimates and then average them). Define then v3,0,x the column
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vector representing the central row of V3,x, g0,x is the central row of Gx, etc.
The evaluation of t3x follows simply by

t3x =
1T

N−3E
T
3 TT

3v3,0,x − 1T
N−3E

T
3 TT

3g0,xT−3 − 1T
N−3a0,x

1T
N−3E

T
3 TT

3
1

(46)

Considering now measurement results in direction y, it is possible to write

ET
3 TT

3v3,0,y −ET
3 TT

3g0,yT−3 −ET
3 TT

3a0,y = θ3x + t3yE
T
3 TT

31 (47)

This is a matrix equation which can be solved through the least squares.

4.4.1. Obtaining the missing parts of the Fourier transforms of Fx and Fy
Misalignment, scale, and non orthogonality parameters for every view have

been evaluated. It is then possible to get rid of misalignment, scale, and non
orthogonality errors. This is done by introducing the C matrices:

C0,x = U0,x −OY −RX =Fx + Ax

C0,y = U0,y −OX +RY =Fy + Ay

C2,x = U2,x −OY −RX− ξθY + ξx11T =FxT2 + Ax

C2,y = U2,y −OX +RY + ξθX + ξy11T =FyT2 + Ay

C3,x = V3,x + (−OY −RX) T−3 + θ3Y − t3x11T =FxT−3 + Ax

C3,y = V3,y + (−OX +RY) T−3 − θ3X− t3y11T =FyT−3 + Ay

(48)

As (48) shows, C matrices are different linear combination of the Fx,Fy,Ax,Ay

matrices. It is also apparent that it is possible to get rid of the Ax,Ay terms by
adding up or subtracting the various C matrices. Unfortunately, only the C0,x

and C0,y matrices are actually complete - the others lack some columns, in par-
ticular those deriving from view 2 lack the last two columns, and those deriving
from view 3 lack the first three columns. It is therefore necessary to “build”
the missing columns. Express Hx,Hy as a function of C0,x,C0,y,C2,x,C2,y,
pointing out the absence of the last two columns:

HxE = FxT2E− FxE = C2,xE−C0,xE

HyE = FyT2E− FyE = C2,yE−C0,yE
(49)

Please note that every element of Hx,Hy could be written as

Hx,h,k = Fx,h,k+2 − Fx,h,k
Hy,h,k = Fy,h,k+2 − Fy,h,k

(50)

It is then apparent that the knowledge of the last two columns of Hx,Hy would
require the knowledge of Fx,h,N+1, Fx,h,N+2, Fy,h,N+1, Fy,h,N+2. These terms
have no physical meaning, in fact they may even fall outside the measuring vol-
ume of the measuring instrument. However, it is possible to solve the last two
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columns by supposing, without loss of generality, that Fx and Fy are periodi-
cal outside the inspected volume. This condition translates into the following
statements:

Fx,N+1,n = Fx,1,n

Fy,N+1,n = Fy,1,n

Fx,N+2,n = Fx,2,n

Fy,N+2,n = Fy,2,n

(51)

With these assumptions it is now possible to define the last two columns of
Hx and Hy; suppose that (N − 1) /2 is even (the solution in case (N − 1) /2 is
odd is similar):

Hx,h,N−1 =Fx,h,N+1 − Fx,h,N−1

=Fx,h,1 − Fx,h,N−1

=− {Fx,h,N−1 − Fx,h,1}

=−


Fx,h,N−1 − Fx,h,N−3 + Fx,h,N−3 − Fx,h,N−5 + · · ·+

+Fx,h,s+3 − Fx,h,s+1 + Fx,h,s+1 − Fx,h,s−2 + Fx,h,s−2 − Fx,h,s−4 + · · ·+
+Fx,h,5 − Fx,h,3 + Fx,h,3 − Fx,h,1


=−

s∑
m=(s+1)/2

(C2,x,h,2m − C0,x,h,2m)−
(s−5)/2∑
m=0

(C2,x,h,2m+1 − C0,x,h,2m+1)

− C0,x,h,s+1 + C3,x,h,s+1

(52)

Hx,h,N =Fx,h,N+2 − Fx,h,N
=Fx,h,2 − Fx,h,N
=− {Fx,h,N − Fx,h,2}

=−


Fx,h,N − Fx,h,N−2 + Fx,h,N−2 − Fx,h,N−4 + · · ·+

+Fx,h,s+2 − Fx,h,s + Fx,h,s − Fx,h,s−3 + Fx,h,s−3 − Fx,h,s−5 + · · ·+
+Fx,h,6 − Fx,h,4 + Fx,h,4 − Fx,h,2


=−

s∑
m=(s−1)/2

(C2,x,h,2m+1 − C0,x,h,2m+1)−
(s−5)/2∑
m=1

(C2,x,h,2m − C0,x,h,2m)

− C0,x,h,s + C3,x,h,s

(53)

Similar expressions may be proposed also for Hy.
Now, let us take the Fourier transform of Hx and Hy:

WHxW = WFxT2W −WFxW = WFxW (NWST2W − I)

WHyW = WFyT2W −WFyW = WFyW (NWST2W − I)
(54)
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NWST2W − I is a diagonal matrix. Unfortunately, its (s, s) element is equal
to 0, so NWST2W − I cannot be inverted. Define then Z as a diagonal matrix
whose elements are the inverse of the diagonal elements of NWST2W − I,
with the exception of the (s, s) element, whose value is not relevant. (54) can
be rewritten as

WFxW 'WHxWZ

WFyW 'WHyWZ
(55)

In (55) the symbol ' remembers that the equality does not comprehend the cen-
tral column of the matrices. However, remember that the real part of WFxW
and WFyW is already known by (27): because the imaginary part of the central
rows is known, (28) can be used to determine the imaginary part of the central
columns. Finally, (7) constrains the central element of WFxW and WFyW to
be equal to 0.

The knowledge of the transforms of Fx and Fy is of course equivalent to the
knowledge of Fx and Fy, thus solving the self-calibration problem. Anyway,
to minimize uncertainty Ye et al.suggest to use results obtained from view 2
(and in our case from view 3, too) as little as possible. This because measure-
ments obtained in view 2 and 3 tend to more affected by the presence of noise,
which is due to the complex evaluation of their misalignment parameters. More-
over, the diagonal elements of matrix Z act as uncertainty amplification factors.
Therefore it is suggested to calculate the real part of the transform by means
of (27), and to calculate the imaginary part using those cells of WHxWZ and
WHyWZ which correspond to the lower values of the diagonal elements of Z,
that is, either directly applying (55) when the corresponding diagonal element
is low, or applying (28) when the corresponding diagonal element is high.

5. Algorithm test

The algorithm has been tested by means of simulation.
A plate has been simulated. The plate has N = 25 and ∆ = 1 mm. Fig.

2 shows the artifact errors. Practically speaking, this image shows matrices
Ax and Ay. Each arrow represents the location error of a sub-artifact with
respect to its nominal position. Artifact errors have been generated according
to a non correlated Gaussian distribution, with null expected value and 0.001
mm standard deviation.

Based on this grid, the corresponding error map Gx and Gy has been sim-
ulated, as shown in Fig. 3. The error map has been generated considering the
following parameters: the non-orthogonality error O and the scale error R are
both equal to 0.00001. Both the second order error terms Fx and Fy have been
generated according to a Spatially correlated Autoregressive model of the first
order (SAR(1)) [21]. A SAR(1) model is a statistic model in which the data are
not uncorrelated, but share a spatial correlation, so elements which are close to
each other tend to show similar values. In formula, for, e.g., Fx,

Fx,h,k = ρx
∑
i,j

wh,ki,j Fx,i,j + εx,h,k (56)
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Figure 2: Artifact error - representation of Ax and Ay matrices.

where εx,h,k is a white noise, ρx is a correlation coefficient (larger values of ρ

denote a stronger correlation) and wh,ki,j represents the generic element of the
adjacency matrix (or spatial weights matrix ) for the first order neighborhood. In

other words, wh,ki,j is set equal to 1 if the (i, j) point is the neighbor of the (h, k)
point and 0 otherwise (see [21] for further details). In the present simulation
ρy = ρx = 0.9, and the standard deviation of εx,h,k and εy,h,k varies, in order
to investigate its impact on the method accuracy. This way, the total simulated
dispersion σG of Gx and Gy is in the range 0.1 - 10 µm.

Error map and artifact error have then been combined to simulate views
according to (10), (13), (29), and (45). In every simulation a random misalign-
ment error has been added, that is, misalignment parameters tαx, tαy and θα
have been simulated according a Gaussian statistical distribution with null ex-
pected value and standard deviation equal to 0.0001 mm for tαx, tαy and 0.0001
rad for θα.

If no random measurement error is present, the algorithm is able to evaluate
the exact value of every parameter or error described so far. In order to evaluate
the impact of the measurement error on the accuracy of the evaluated error map,
a simulation has been conducted.

Finally, a random measurement noise has been added to the simulated mea-
surements. The noise has been simulated according a gaussian distribution with
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Figure 3: Error map - representation of Gx and Gy matrices.

zero mean and standard deviation σr in the range 0.001 - 10 µm.
Simulation results are reported in terms of standard deviation (the average

error has been found to be null on average). In practice, Ĝx−Gx and Ĝy−Gy

are calculated, where Ĝx and Ĝy represent the estimated error map, and then

the sample standard deviation σC of all the values contained in Ĝx −Gx and
Ĝy − Gy is calculated. Fig. 4 proposes results for the standard deviation,
plotting σC as a function of standard deviation of the measurement noise σr
and the total dispersion of the stage error σG. The plot shows that σC does
not depend on σG: the method is able to estimate the stage error even when
it is large. σC is about the same order of magnitude of σr. In general, as the
stage error estimate adds up errors from several sub-artifact measurement, the
estimate standard deviation tends to be slightly larger than the random noise
standard deviation. This magnification effect on the standard deviation deserves
a deeper study. Fig. 5 plots the standard deviation of the estimate error σC
as a function of σr and the number of rows and columns of sub-artifacts N . It
is evident that the dependence of σC on N is approximately linear regardless
of the value σr. This effect had already been highlighted by Ye et al.when he
translation is equal to ∆. The magnitude of the increase of σC due to an increase
of N is similar in Ye et al.’s method and the proposed method.

A way of improving precision of the estimate of Gx and Gy is of course by
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Figure 4: Standard deviation of the estimate error σC as a function of σr and σG.

repeating the measurement and averaging the results. Moreover, in coordinate
measuring systems most of the times each sub-artifact is not measured on a
single sampling point, but on many sampling points that are then fitted. As,
such the random noise for the single sub-artifact measurement is usually lower
than the measuring system probing error.

6. Conclusions and final remarks

A methodology for self-calibrating 2D linear stages has been proposed. This
methodology involves the measurement of an uncalibrated artifact in four dif-
ferent views. Every sub-artifact that can be sampled has to be sampled in every
view, with the exception of the last view, in which only two columns and a row
have to be measured. If the experimental effort of the original methodology
proposed by Ye et al. is compared to the effort required by this methodology,
one can point out that they differ for 2N − 2 measurements of sub-artifacts, so
the experimental effort is not much larger. This methodology should allow the
self-calibration when a shift equal to ∆ is too small to be easily obtained.

It is also worth noting that the methodology results also in the calibration
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Figure 5: Standard deviation of the estimate error σC as a function of σr and the number of
rows and columns of sub-artifacts N .

of the plate used for the tests. As such, the self calibration can be tested by
adding a view taken with the plate e.g. 180° rotated.

Although this paper does not compare the proposed method to any method
other than Ye et al.’s, its performance is absolutely comparable to those of the
latter. The comparison of Ye et al.’s method to other methods can be found in
the papers reported in the bibliography.

Self-calibration methodologies are useful when calibrated artifacts would be
too expensive to be manufactured and maintained. In fact, the artifact adopted
can be uncalibrated and not even particularly accurate. However, the main lim-
itation of self-calibration methodologies is that they cannot guarantee metrolog-
ical traceability. In the proposed methodology, the no-magnification hypothesis
expresses this limit: traceability is required a priori. How to solve this limitation
(with a limited increase in experimental activity) will be investigated.
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