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An Adaptive Fused Sampling Approach of High-Accuracy Data in

the Presence of Low-Accuracy Data

Abstract

In several applications, a large amount of low-accuracy (LA) data can be acquired at a

small cost. However, in many situations, such LA data is not su�cient for generating a high-

�delity model of a system. To adjust and improve the model constructed by LA data, a small

sample of high-accuracy (HA) data, which is expensive to obtain, is usually fused with the

LA data. Unfortunately, current techniques assume that the HA data is already collected and

concentrate on fusion strategies, without providing guidelines on how to sample the HA data.

This work addresses the problem of collecting HA data adaptively and sequentially so when it

is integrated with the LA data a more accurate surrogate model is achieved. For this purpose,

we propose an approach that takes advantage of the information provided by LA data as well

as the previously selected HA data points and computes an improvement criterion over a design

space to choose the next HA data point. The performance of the proposed method is evaluated,

using both simulation and case studies. The results show the bene�ts of the proposed method

in generating an accurate surrogate model when compared to three other benchmarks.

Keywords: Data fusion, adaptive sampling, expected improvement criterion

1 Introduction

Accurate modeling of a complex system requires exploration of a large design space. However, this

exploration often requires a large number of high-accuracy (HA) simulations or experiments that

are too costly or time-consuming to conduct. Alternatively, the model can be built based upon less

accurate simulations or experiments that are faster and less costly to undertake and can provide

a large number of data points. These approximate simulations, however, compromise the model

accuracy and may introduce bias in the model. A practical approach is to fuse the LA data obtained
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from crude but fast experiments with a few HA data points to remove the bias of the LA model and

construct a reasonably accurate and cost-e�ective model (Kennedy & O'Hagan, 2000; Qian et al.,

2006; Qian & Wu, 2008; Xia et al., 2011; Colosimo et al., 2015). Nevertheless, the proposed data

fusion strategies assume the availability of LA and HA data and do not provide any strategy for

sampling expensive HA data using the information that the abundant LA data can provide. The

goal of this paper is to propose an LA-data-led approach for collecting HA data to be fused with

LA data for constructing a more accurate model. Therefore, this paper lies at the intersection of

design of experiments and data fusion literature. Such LA-data-led sampling approach of HA data

can be used in many applications. For example, in geometric inspection and metrology (Colosimo

et al., 2010; Xia et al., 2011), measurements from less accurate metrology devices (e.g., structured

light scanner) can lead the sampling trajectory of the HA data obtained from more accurate tools

such as traditional Coordinate Measuring Machines (CMMs) that use contact touch probes.

In another example, reducing the number of tests performed on a combustion engine is one

of the most important requirements to improve cost e�ciency of the engine control units (ECU)

modeling. The ECU includes models of di�erent systems in a vehicle that are constructed based

on a large number of physical tests performed at di�erent levels of engine torque and speed. Often,

these physical tests have already been performed on other engines with similar speci�cations when

collecting data from a new engine, and can be considered as historical LA data. This LA data can

guide the design values at which performing a test on the new engine can signi�cantly improve the

model. This intelligent sampling can signi�cantly reduce the number of required experiments on

the engine, bene�ting the manufacturer both economically and environmentally.

In general, data fusion refers to the process of combining data obtained from di�erent sources

with the goal of achieving improved results over what could have been obtained from each source,

separately (Colosimo et al., 2015). A data fusion approach may consider one of the following set-

tings: a) Integrating data obtained from computer codes with di�erent levels of accuracy (Kennedy

& O'Hagan, 2000), b) Integrating physical experiment data with the data obtained from a computer

experiment (Kennedy & O'Hagan, 2001), and c) Integrating data collected from physical experi-

ments with di�erent levels of accuracy (Xia et al., 2011). In this paper, we concentrate on a situation

in which measurements contain noise and are collected from two sources, where one source is more

accurate but more expensive than the other. We refer to the data from these two sources as low and
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high-accuracy data. As a result, this paper is more concerned with the third setting, i.e., the fusion

of physical experiments data (or stochastic computer experiment data). Nevertheless, our proposed

approach can be modi�ed to be used in the deterministic settings. This paper will not be concerned

with the second setting, which is usually cast as a calibration of a computer model. In order to fuse

data from LA and HA experiments, several approaches have been introduced in the literature. In

the simplest approach, the two sets of data are directly merged together and are used to construct

a surrogate model. For example, in metrology applications, Bradley & Chan (2001) used the CMM

machine at the boundaries, where the laser scanner is less accurate, and combined all the data to

construct a model for a surface. Co-kriging models have extensively been used to fuse LA and

HA experiment data (Kennedy & O'Hagan, 2000; Forrester et al., 2007). The co-kriging approach

usually generates very accurate predictive models but are computationally expensive (Le Gratiet &

Garnier, 2014). Another popular framework used for data fusion is the hierarchical approach. Reese

et al. (2004) proposed a hierarchical method with linear models to integrate physical and computer

experiments. Qian & Wu (2008) introduced Bayesian hierarchical Gaussian process (BHGP) models

to fuse multiple sources of data. Their approach can be viewed as the Bayesian formulation of a

co-kriging model. Xia et al. (2011) used a hierarchical Bayesian model to align and fuse CMM

and laser scanner measurements. An alternative method that is tightly related to the Bayesian ap-

proaches uses a link function between the LA and HA observations. In fact, both of the co-kriging

and hierarchical Bayesian employ a form of link function. Qian et al. (2006) proposed a two-step

approach in which a surrogate model, referred to as a base model, is �rst �tted to the LA data.

Next, the base model is corrected according to the HA data, using a link function that scales the

base model linearly and captures the bias by a Gaussian process model. Xia et al. (2011) used a

kernel regression link model and employed a hierarchical Bayesian approach for estimating model

parameters.

The aforementioned methods focus on data fusion, assuming that the LA and HA experiments

have already been conducted and the data is available. They, however, do not provide a strategy

on how to collect few expensive HA points given LA data to achieve a more accurate model.

Consequently, they may under or over sample from the HA design space that may result in a

less accurate model or unnecessary sampling costs. Therefore, it would be essential to devise an

adaptive approach that uses LA data to systematically explore the design space and guide the
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sampling strategy for HA experiments. A large group of works in the �eld of computer design

of experiments provides methods for sampling a set of points from a design space, either in one-

step or sequentially, to construct an accurate model of a system. Space-�lling designs such as

Latin hypercube design (McKay et al., 1979; Stein, 2012; Morris & Mitchell, 1995; Santner et al.,

2013), distance-based designs (Johnson et al., 1990), uniform designs (Fang, 1980), and sequential

versions of these designs (e.g., Sobol sequences) are e�ective approaches for initial exploration of

the surface/model when no information is available. They, however, are constructed based on the

assumption that the features of the true model are uniformly distributed across the design space.

Criterion-based designs are obtained by minimizing/maximizing a statistical criterion such as mean

square prediction error (MSPE) or entropy (Box & Draper, 1959; Shewry & Wynn, 1987; Sacks

et al., 1989a,b). These approaches can be converted into sequential designs by selecting the point

that minimizes/maximizes the criterion at each step. The issue with these approaches is that they

only capture the global behavior of the model using a correlation function but fail to concentrate

on the areas of the design space where the model has high local variations. To capture both the

global and local features, Lam (2008) introduced an expected improvement criterion for a global

�t (EIGF). The EIGF at each point of a design space represents the amount of improvement (in

the �tted model) that the corresponding point can introduce if added to the design. Unfortunately,

none of the foregoing sequential design schemes take the fusion of HA and LA data into account.

They only focus on constructing a design when no prior information (e.g., LA data) is available.

A relevant approach that considers the fusion of LA and HA computer experiment data is the

sequential nested Latin hypercube design (LHD) proposed by Xiong et al. (2013). In this approach

the HA computer experiments are conducted at locations sampled by small LHDs and the LA

computer experiments are conducted at points selected by the large LHDs obtained by enlarging

the small LHDs. The issue with this method is that when sampling the HA data, the information

from the LA data is not used. Ezzat et al. (2017) proposed sampling the LA and HA data using

separate designs to calibrate a computer model based on a physical experiment. Although this

approach provides �exibility in terms of choice of designs, the LA information remains unused when

sampling the HA data. Please note that, although these two works are di�erent in scope (i.e.,

one focuses on the fusion of data obtained from computer experiments and the other focuses on a

calibration problem), both ignore the information from the LA data when sampling the HA data.
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This limitation is the main focus of this paper.

The main goal of this paper is then to introduce a sequential sampling method for HA data that

utilizes LA data to explore the design space and adaptively identify the points where HA data can

have the highest impact on improving the accuracy of the surrogate model constructed by fusion of

LA data and the sampled HA data. Additionally, as the proposed method samples the design space

sequentially, it can choose just enough HA data samples for a pre-speci�ed model accuracy and

hence reduce the sampling costs. Our method combines the EIGF experiment design approach with

a data fusion method that employs a link function to adaptively select the HA data. Speci�cally,

we �rst �t a Gaussian process (GP) to LA data to obtain a base surrogate model of the system.

This model captures the global behavior of the system but lacks accuracy. To improve this model,

we then select an initial set of HA points using a space �lling approach. Next, we modify the EIGF

criterion based upon both HA and LA data, and employ it to select the next HA points. Because

the information is limited early on in the sampling procedure, we propose a simulated annealing

procedure to explore more when data is not reliable, and exploit the sampled data as the sampling

moves forward and more information becomes available.

The rest of the paper is organized as follows: In the next section, we review the fusion of the LA

and HA data using a Gaussian process model. Section 3 describes the adaptive sampling approach

and how it can be used for selecting HA data. Next, in Section 4, we evaluate the performance of

the proposed method using two simulation studies. We also compare the proposed method to three

benchmarks based on the model prediction error. Section 5 describes two case studies used to assess

the proposed method in real-world applications. Finally, we summarize the paper in Section 7.

2 Review of the one-step data fusion model using a Gaussian pro-

cess and link function

In this section, we outline the data fusion method for the situation that both LA and HA data are

available. Next, we modify this framework to adaptively select and fuse the HA data. When data

from both experiments is already available, the common practice is to follow a two-step approach

for data integration that involves �tting a statistical model (usually a GP model) to the LA data

to generate a base surrogate model. Next, this model is adjusted using the HA data to obtain the

5



�nal surrogate model. Before we describe these two steps, we provide a set of notations used in this

paper.

In this paper, we consider two sources of data: one obtained from an LA but inexpensive

experiment, and one that is acquired (or to be acquired) from HA, expensive experiments. We

assume that a design value in both the HA and LA experiments consists of same p factors denoted

by v = (v1, · · · , vp). We also denote an experiment data measured at a design value v by z (v).

For instance, in the metrology example, v ∈ R2 is the location of a point in a x− y plane and z (v)

is the height of the product at that point. In the engine example, v ∈ R2 is a vector consisting

of torque and rpm, and z (v) is the engine performance (e.g., air mass) at a particular design

value. We denote an LA point with an index L and an HA point with an index H, i.e., (vL, zL)

for an LA data and (vH , zH) for an HA point. When no subscript is used for a design value

v, the point is general and can be low or high-accuracy. We designate the design set of the LA

experiments with ML runs by DL = {vL1, vL2, · · · , vLML
} and the corresponding measurement

data by zL = [zL1, zL2, · · · , zLML
]T . Our goal is to �nd an HA designDH = {vH1, vH2, · · · , vHMH

}

with the corresponding HA measurements zH = [zH1, zH2, · · · , zHMH
]T ; MH � ML so that when

integrated with zL a more accurate surrogate model is obtained. That is, for an unexplored point

v, the constructed model returns a value that is almost equal to zH (v). Notice that we assume the

HA experiment produces results that agree with the true system and therefore the error in the HA

experiment data is negligible.

2.1 Fitting a Gaussian process to LA experiment data

The �rst step of data fusion is to construct a base surrogate model, using the LA data. Mathemat-

ically, this can be represented by

zL = fL (vL) + εL, (1)

where εL accounts for the error and is assumed to follow a normal distribution with mean zero

and the variance σ2N , i.e., εL ∼ N
(
0, σ2N

)
, and fL (vL) is the core part of the model that captures

the features and patterns of the surrogate model. In the case of deterministic LA simulations,

the term εL should be removed to re�ect the fact that the data is not noisy. Among all possible

models to represent fL (vL), a GP model is usually considered due to its �exibility and simplicity
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of parameter estimation. A GP model is a random process in which a joint distribution of any

k < ∞ observations of the process {zL1, · · · , zLk} follows a multivariate Gaussian distribution.

Such a GP model is denoted by zL (v) ∼ GP (mL (vL) , kL (vL,wL)) , where mL (vL) denotes the

mean function of the Gaussian process evaluated at vL and kL (vL,wL) is the covariance function

of the GP. The output of kL (vL,wL) is the covariance between two random variables zL (vL)

and zL (wL) when vL 6= wL and the variance of zL (vL), otherwise. In many applications, a

constant or a linear function is an appropriate selection for the mL. In this article, we consider

a linear function, i.e., we set mL (v) = βT [1;v], where β ∈ Rp+1 is a set of parameters to be

estimated. Several functional forms (kernels) have been introduced for covariance functions, such as

exponential, squared exponential, and Matï¾÷rn covariance functions that are di�erent in terms of

smoothness and di�erentiability (Rasmussen & Williams, 2006). For a stationary GP, the covariance

function depends only on the distance between the two points. The distance is usually de�ned as

r (v,w) =
∑p

i=1 θi |vi − wi|
di , where θ = (θ1, · · · , θp) and d = (d1, · · · , dp) are the scale and power

parameters. When di = 2; i = 1, · · · , p the distance is Euclidean. Often, a covariance function

is written as kL (v,w) = σ2Lh (r (v,w)), where h is a correlation function, and σ2L is the variance

of data at any given point v. For example, in the squared exponential kernel function h (v,w) =

exp (−r (v,w; di = 2)). For more information on the form and properties of the covariance functions

see (Rasmussen & Williams, 2006; Lam, 2008). The hyper-parameters Θ = {β,σL, θ} of the base

model are unknown and should be estimated to best �t the observed LA data {(vL, zL)}ML
i=1. The

estimation procedure is based on the likelihood maximization of a multivariate normal distribution

(see Rasmussen & Williams 2006 and Qian et al., 2006). Once the hyper-parameters of a GP model

are estimated given the available data, the model can be used for prediction of z at any unexplored

point v. The empirical best linear unbiased predictor (BLUP) is usually adopted for this purpose

(see Qian et al. (2006)) as follows:

ẑL (v) = [1,v] β̂ + kT (K + σNIML
)−1

(
zL − V β̂

)
, (2)

where β̂ is the vector of estimated parameters, σN is the noise e�ect due to the noise-contaminated

measurements, kT = [k (v,vL1) , k (v,vL2) ; · · · , k (v,vLML
)] is a vector whose elements are the

covariance between v and all sampled points, K ∈ RML×ML is a covariance matrix whose (i, j)th
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element is k (vLi,vLj) ; i, j = 1, · · · ,ML, and V ∈ RML×(p+1) is the regressor matrix whose ith row

is [1,vLi]. Note that when the data is deterministic σN is zero. The BLUP smoothly interpolates

all the observed points to generate a prediction at a new point.

2.2 Fusion of the LA and HA data using a link model

In the second step, to integrate the LA and HA data and generate the �nal surrogate model, Qian

et al. (2006) proposed the following link function:

zH (v) = ρ (v) ẑL (v) + δ (v) + e,

where zH (v) is the observed HA value at point v, ẑL (v) is the base model prediction, δ (v) is a

GP model that captures the bias, ρ (v) is a linear function in v, i.e., ρ (v) = ρ0 +
∑p

i=1 ρivi, and e

is a random noise that follows a normal distribution. In the case of deterministic HA simulations,

the term e should be removed to re�ect the fact that the data is not noisy. Given a set of HA data,

the goal is to estimate the parameters of δ (v), i.e., the mean and the covariance function hyper-

parameters and ρ = {ρ0, ρ1, · · · , ρp}. The estimates can be computed by maximizing a likelihood

function. For a detailed estimation procedure of these parameters refer to (Qian et al., 2006). Next,

given ρ̂i; i = 1, · · · , p, one can compute δ = [δ (vH1) , · · · , δ (vHMH
)] by

δ (vHi) = zH (vHi)− ρ̂ (vHi) ẑL (vHi) .

Finally, at an unexplored point v, the bias δ (v) can be predicted using a BLUP predictor. In this

article, we select a constant value, δ0, for the mean function. Therefore, the BLUP is constructed

as

δ̂ (v) = δ̂0 + kTK−1
(
δ − δ̂01MH

)
,

where 1MH
is a vector of size MH whose elements are all one. At a given point v the prediction of

the �nal surrogate model is given by ẑ (v) = ρ̂ (v) ẑL (v) + δ̂ (v). Unless it is mentioned otherwise, a

Matï¾÷rn covariance function with the scale parameter ν = 3
2 (see (Rasmussen & Williams, 2006))

is used for δ (.)

Note that the major assumption for this model is that the LA data provides su�cient information
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about the overall geometric shape of the true surface, otherwise discarding the LA data and using

only HA data may provide a better surrogate model.

3 Adaptive data fusion using a modi�ed EIGF criterion

Instead of assuming that the HA data is already available, this article aims to sample HA points

sequentially to be integrated with the available LA data in order to construct a more accurate �nal

surrogate model. For this purpose, we �rst describe an expected improvement criterion for a global

�t, introduced by Lam (2008). Then, we modify this criterion so that it takes the LA data into

account when selecting an HA point and ultimately constructing an HA design.

3.1 Expected improvement for a global �t

An expected improvement (EI) for computing the maximum of a black-box function was �rst pro-

posed by Schonlau (1997). Lam (2008) extends the EI criterion to a global �t setting, where the goal

is to �nd a design that leads to a better global �t rather than the maximum point. Let Z (.) follow

a GP model denoted by GP (mZ (.) , kZ (., .)), i.e., Z (v) is a random variable that follows a normal

distribution with mean mZ (v) and the variance V ar (Z (v)) = kZ (v,v). Then, the improvement

of a point v is de�ned as

I (v) = (Z (v)− z (vc))
2 ,

where vc is the nearest observed design value to v, and z (vc) is its corresponding data. Note that

one may consider I(v) = (Z(v)−Z(vc))
2

||v−vc||2 as an improvement criterion, which e�ectively gives more

weight to the points that are closer to vc. But, due to the major assumption of the Gaussian

process that the closer the points the more similar they are, we would like to select a point further

away from vc to obtain more information. Therefore, a normalized I (v) may not be a good choice.

Because Z (v) is a random variable, the expected improvement for a global �t (EIGF) should be

considered and is de�ned as

EIGF (v) = E
(

(Z (v)− z (vc))
2
)

= V ar (Z (v)) + [ẑ (v)− z (vc)]
2 ,
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where ẑ (v) is the prediction value of the GP model at point v. In the EIGF equation, a large value of

V ar (Z (v)) indicates that the model is uncertain about its prediction at v, and therefore including

v in the design can signi�cantly improve the model. Similarly, a large value of [ẑ (v)− z (vc)]
2

indicates a high local variation around v and therefore selection of v in the design may help the

model in capturing the local behaviors. As a result, in theory, the EIGF captures both the global

and local behavior of the model based on the variance at each point, and by exploiting the observed

neighboring points. To obtain a design DH , one can use the EIGF criterion sequentially. That is, at

each step the maximizer of the EIGF over the design space is sampled until a pre-speci�ed design

size is reached.

The main issue with the EIGF criterion is that, with no prior knowledge of the surface and with

a small design size, [ẑ (v)− z (vc)]
2 may not capture the local variations because the prediction

value at a point v is an interpolation of its neighboring points (obtained from the BLUP), and

therefore it is likely that [ẑ (v)− z (vc)]
2 becomes ine�ective. Therefore, given the small size of HA

experiments, an adaptive sampling approach based on EIGF that only relies on HA data may result

in an inaccurate surrogate model. However, when LA data is available, the information from the

base surrogate model can be exploited as the prior knowledge to resolve this problem. Beside this

issue, the selection of the EIGF maximizer at each step of the sequential sampling, especially at the

early steps when only a few data points are explored, may result in excessively greedy choices. To

alleviate this problem, an exploration-exploitation routine can be considered.

In the next section, we introduce a modi�ed version of EIGF that computes the expected im-

provement of a point by considering not only the explored HA neighboring points, but also the

available LA data. Furthermore, we design an exploration and exploitation framework that uses

the modi�ed EIGF probabilistically to sample the next HA point.

3.2 Modi�ed EIGF and data fusion

In this section, we propose an approach for sampling HA points, considering the information of the

LA data. For this purpose, we modify the EIGF criterion so that it takes the LA data into account

when computing the expected improvement of a design value. The underlying assumption of the

proposed method is that the base surrogate model, constructed using the LA data, captures some

of the local features of the system, and therefore can lead the sampling path to the areas of the
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design space with higher local variation. This will help increase the number of samples collected in

these local areas and, consequently, results in a more accurate model. In order to achieve this goal,

we de�ne the fused expected improvement for a global �t and data fusion (FEIGF) by considering

the link function between the HA and LA, ZH (vH) = ρ (vH) ẑL (vH) + δ (vH) , as follows:

FEIGF (vH) = E
(

(ZH (vH)− zH (vHc))
2
)

= E
(

(ρ (vH) ẑL (vH) + δ (vH)− ρ (vHc) ẑL (vHc)− δ (vHc))
2
)

= (ρ (vH) ẑL (vH)− ρ (vH) ẑL (vHc))
2 + V ar (δ (vH)) +

(
δ̂ (vH)− δ (vHc)

)2
,

where vH is a design value that may be considered for an HA experiment and vHc is the nearest

explored point to vH . In the FEIGF equation, ρ (.) and δ (.) are assumed to be known or are

estimated based on previously observed data (e.g., data from previous sampling steps). Furthermore,

δ̂ (vH) denotes the prediction of the bias GP model, δ (vHc) represents the bias value computed

based on the HA measurement and is assumed to be known, and ẑL (.) denotes the prediction of

the base surrogate model at a given point. The FEIGF consists of three terms: The �rst term

(ρ (vH) ẑL (vH)− ρ (vH) ẑL (vHc))
2, measures the local behavior of the surface as it is revealed by

the LA model. The large value of this term at a design value vH signals high variations around

that point and therefore, including it in the design can improve the accuracy of the �nal model.

The second term, V ar (δ (vH)), captures the prediction uncertainty of the bias model, δ, at vH .

When V ar (δ (vH)) is high, including vH in the design may improve the predictions of the bias

model. The third term,
(
δ̂ (vH)− δ (vHc)

)2
, quanti�es the local variations of the bias around vH ,

and therefore, including this point in the design may result in more accurate bias predictions.

In order to adaptively and sequentially sample an HA data point using the FEIGF criterion, we

�rst consider a dense grid, G, over the design space and at each step select the design value that

for example maximizes the FEIGF criterion over such a grid. In other words, at the sampling step

t (i.e., when t − 1 HA points are already collected), we �rst estimate the GP model of bias (δt−1)

and the scaling parameter (ρt−1) based on the available LA points and the HA data points sampled

up to step t − 1, using the approach explained in section 2.2. Next, given the GP model of bias

and the scaling parameter, we calculate the FEIGF over the grid G. Finally to select a point to

be added to the design, we may consider the point that maximizes FEIGF criterion. That is, we
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may sample vt = arg maxv∈G (FEIGF (v) |δt−1, ρt−1). However, the problem with sampling the

point with maximum FEIGF is that at the early stages of HA sampling when the number of HA

points is small, relying on the maximum value of FEIGF may result in excessively greedy choices.

The reason is that when the GP estimation is based on only few points the prediction variance (i.e.,

the second term in FEIGF) is large for many points, increasing the in�uence of the third term in

separating and selecting the HA point. The third term, however, is inaccurate when the bias δ is

estimated based on only few points, and results in a poor choice of a design value. To alleviate this

problem, we adopt a probabilistic sampling approach in collecting the points so that early on in the

process it allows selecting points with smaller-than-maximum FEIGF value (exploration) and as

more information becomes available, it high-likely samples design values that maximize the FEIGF

criterion. For this purpose, we de�ne the following probability distribution parameterized by αt

over the FEIGF (v):

pαt (FEIGF (v)) =
exp (αtFEIGF (v))∫
exp (αtFEIGF (v)) dv

,

where αt is an increasing sequence that tends to zero as t → 0 and tends to ∞ as t → ∞. In

an extreme case, when αt = 0, the distribution pαt (FEIGF (v)) is a uniform distribution and as

αt →∞, the above distribution places all the probability mass over the max (FEIGF (v)). In this

paper, we select αt = t
MH

at the sampling step t. We randomly sample from pαt (FEIGF (v))

at each step t to select the HA data point. Observe that early in the sampling process, we allow

selecting points that have smaller values of improvement to explore the design space, and as more

information becomes available, we select points with larger FEIGF. Note that, to compute the

probability distribution, we approximate the continuous distribution by a discrete distribution in

which the probability mass is located at each point of the grid G, where we calculated the FEIGF.

Finally note that, one can sample a batch of points, instead of one, at each sampling process step.

However, in our experience, when the batch size is small comparing to the total sampling budget, it

will not signi�cantly in�uence the results. Figure 1 illustrates an overview of the proposed adaptive

data fusion approach.
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Figure 1: Overview of the proposed adaptive data fusion approach

4 Performance evaluation using simulation study

In this section, we conduct simulations to evaluate the performance of the proposed adaptive data

fusion technique. We compare the proposed method, labeled as adaptive with fusion, with three

other benchmarks: In the �rst benchmark, we consider a one-step design in which MH data points

from HA experiments are sampled using an LHD and are directly used to construct the �nal model.

We label this benchmark as one-step approach. The second benchmark, designated as one-step-

fused, selectsMH data points from HA experiments using an LHD and fuses them with the available

LA data through a link model described in Section 2.2. Finally, the third benchmark adaptively

samples the HA data using the EIGF without integrating the sampled data with the available LA

data. We label this method adaptive w/o fusion. Note that we used the standard LHD which is

not based on optimizing any criterion. We compare all the methods in terms of prediction accuracy

using standard mean square error, i.e.,

SMSE =

∑M
i=1 (zi − ẑi)2∑M

i=1 z
2
i

,

where zi is the true system value, ẑi is the predicted value of the �nal surrogate model, and M

is the total number of points in a grid over which we sample points. In order to estimate the

hyper-parameters of a GP model, we use a MATLAB package developed by Rasmussen & Williams

(2006).

One-dimensional surface simulation: We �rst consider a one-dimensional non-stationary func-

13



tion

zH = f (v) = (6v − 2)2 sin (12v − 4) + 3 cos (50v − 1) + cos (4v − 1)

as the true function for v ∈ [0, 1]. Next, we generate the LA data from a shifted and scaled version

of the function f de�ned as

zL = g (v) = Af (v) +B (v − 0.5)2 + C + ε (v) ,

where, A = 1.2, B = 40, and C = 0.5, and ε (v) is a normally distributed error with mean 0 and

standard deviation τ (v) = 4 (v − 0.5)2, i.e., ε (v) ∼ N
(

0, τ (v)2
)
. Notice that zL is designed to

have larger bias and noise near the boundaries as it is the case in many real applications (e.g., in

metrology). Figure 2a illustrates the true curve along with the LA data collected over an equidistant

grid of size 100. Figure 2b illustrates the true curve, the �tted GP to the LA data and the �tted

curves obtained by one-step and one-step-fused benchmarks as well as the adaptive with and without

fusion methods. The initial number of points for the adaptive approaches is MH,init = 5 and the

budget, MH , is 25 for all methods. As described, the one-step benchmarks sample the 25 points at

once using an LHD, whereas the adaptive methods �rst sampleMH,init = 5 design values by an LHD,

and then sequentially sample points from a grid of size M = 1000. As illustrated, the predictions

obtained from the proposed method and the one-step-fused benchmark are fairly accurate, indicating

the advantage of the data fusion when the LA data captures some of the local and global behaviors

of the surface. Between these two methods, the proposed method performs slightly better where

local variations exist and the LA data is more biased (e.g., in [0, 0.1] and [0.9, 1] intervals). The

adaptive w/o fusion selects several points on the interval [0.8, 1] where the function has a large

slope and generates an accurate prediction. However, it fails to capture the local variations in the

intervals [0.1, 0.2] and [0.4, 0.6] because ẑ (v) is an interpolation of its neighbors, which can be

located far apart when the sample size is small. As a result, the adaptive without fusion does not

perform well in this scenario. The one-step approach performs fairly well but fails to capture some

of the local variations due to a lack of prior information. Such information is provided by the LA

data when fusion is performed.
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Figure 2: (a) Illustration of the true curve and LA data in one dimensional simulation; (b) Example
of the �tted curves in comparison to the true curve

To further investigate and compare the performance of the proposed method with the bench-

marks, we calculate the SMSE values after sampling of each point in adaptive approaches and

compare them to the SMSEs obtained by one-step methods. Because our approach is probabilistic

in nature, we consider 100 replications of the simulation and take the average of SMSE values over

these replications. For all these simulations, we take the initial number of points to be 20% of

the budget, MH . Figure 3 illustrates the performance of proposed method in comparison to all

benchmarks at di�erent values of MH . For a better visualization, we illustrate the logarithm of

SMSE in these �gures. For the one-step methods the SMSE represents the error of the �t when

MH points are all selected at once. Observe that in all cases the adaptive approach outperforms

the other methods in terms of SMSE. First, with the same number of samples the proposed method

produces more accurate predictions. For instance, when MH = 20, the logarithm of the SMSE of

the proposed method is about −5, where it is about −4.2 and −2 for one-step-fused and one-step

benchmarks, respectively. Second, it reaches the same level of the prediction error with fewer num-

ber of samples than the benchmarks. For example, in Figure 3c and 3d the adaptive approach with

fusion obtains the same level of SMSE with about 15 and 20 samples rather than 25 and 30 used

by other methods.

In all cases, the SMSE of the adaptive approach drops rapidly at the beginning of the sampling

process. The reason is that early samples provide information about the overall behavior of the bias

(i.e., they introduce large improvements), but late samples mostly introduce detailed information
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and provide small improvements. Therefore, after some sampling steps the improvement in SMSE

becomes very slow. In practice, this step can be considered as a stopping criterion. For example,

in Figure 3d after sampling 26 points, no signi�cant improvement can be observed.

Two-dimensional surface simulation: As a two-dimensional example, we consider a six-hump

camel surface proposed by Branin (1972) as the true surface:

zH = f (v1, v2) = 4v21 − 2.1v41 +
1

3
v61 + v1v2 − 4v22 + 4v42

with v1 ∈ [−2, 2] and v2 ∈ [−1, 1]. We scale and shift the true function to construct an LA data

generator as

zL = g (v) = Af (v) +B1 (v1 − 0.5) +B2 (v2 + 0.5) + C + ε,

where A = 0.5, B1 = 1, B2 = 2, and C = 2, and ε is a normally distributed error with mean 0 and

standard deviation τ , i.e., ε ∼ N
(
0, τ2

)
. Figure 4 illustrates the f and g functions evaluated over

an equidistant grid of 50×50 with τ = 0.2. We evaluate the performance of the proposed method in

comparison to all benchmarks at di�erent values ofMH based upon the SMSE values calculated over

an equidistant grid of 50× 50 over the design space. Similar to the previous simulation study, the

SMSE of the one-step methods represents the prediction error of the �nal model generated by MH

points that are selected at once using an LHD. Figure 5 illustrates the SMSE of the proposed method

versus the benchmarks. Because our approach is probabilistic in nature, we consider 100 replications

of the simulation and take the average of SMSE values over these replications. As illustrated, in all

cases the adaptive approach results in more accurate predictions. For instance, when MH = 80, the

logarithm of the SMSE is about −5.5 that outperforms the one-step-fused benchmark (−5), and

the other two benchmarks (−3.5). Furthermore, the proposed method can achieve the same level of

prediction error with fewer number of samples than the benchmarks. For example, in Figure 5d the

adaptive approach with fusion obtained the same level of SMSE with about 65 samples rather than

100 that is used by other methods. In addition, the initial SMSE of the proposed method is always

smaller than the initial SMSE of the adaptive w/o fusion benchmark. This superiority is due to the

information provided by the LA data. Finally, it is worth mentioning the two small jumps in Figures
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Figure 3: Comparison of the proposed method to benchmarks in simulation study I at di�erent
values of budget MH . Observe that the adaptive approach reaches the same level of error as
benchmarks with much fewer samples. For example in (c) the proposed approach reaches the same
level of error of one-step-fused with only 15 sampled points.
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Figure 4: Illustration of the true and biased surfaces used for two dimensional simulation

5a and 5b. The reason for these jumps is the computational instabilities that may occasionally occur

when �tting a GP model. Such instabilities are related to the likelihood optimization procedure

that may be trapped in a local maxima. To avoid (or alleviate) these situations, we incorporate a

simulated annealing heuristic for function optimization (Kirkpatrick et al., 1983) in our procedure.

5 Case Study

In this section, we consider two case studies to evaluate the performance of the proposed method

in real-world applications. First, we consider a metrology example in which a set of HA metrology

data are collected using a CMM to improve the LA measurements collected by a structured laser

(SL) scanner for reconstructing a free-form surface. In the second case study, we are interested

in constructing a surrogate model that predicts the air mass of an engine at a speci�c torque and

revolution speed by performing few new HA experiments on the engine and combining it with

previously collected data from another similar engine.
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Figure 5: Comparison of the proposed method to benchmarks in simulation study II at di�erent
values of budget MH . Note that the adaptive approach can obtain the same level of error as
benchmarks with fewer samples. For example in (c), the proposed approach achieves the same level
of error as one-step with fusion benchmark with only 65 sampled points rather than 100.
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Figure 6: The free-form surface used for the case study (Colosimo et al., 2015). Three orthogonal
reference surfaces (left panel). CMM sampling (right panel).

5.1 Freeform surface metrology

The freeform surface, illustrated in Figure 6, has been used for this case study. The freeform surface

is machined from a 100mm ×100mm ×100mm workpiece. The surface is measured, using both SL

scanner and a Coordinate Measuring Machine (CMM) Zeiss �Prismo 5 HTG VAST� equipped with

an analog probe head with maximum probing error of MPEP = 2µm (according to ISO 10360-2).

For more details on the measurement procedure refer to (Colosimo et al., 2015). The point cloud

obtained from each machine (SL scanner and CMM) contains 9635 points. The measurements from

the SL scanner is considered as the LA data points, and the available data from the CMM is used

to construct an emulator of the CMM by �tting a GP model. The goal is to collect a set of HA

data from the CMM so when combined with the LA data points a more accurate �nal surrogate

model is achieved.

We use our proposed method to construct a �nal surrogate model of the surface, and will

compare its performance in reconstructing the freeform surface to other benchmarks, i.e., one-step,

one-step-fused, and adaptive w/o fusion at di�erent levels of budget MH . In the case of adaptive

approaches, we choose the initial sample size to be 20% of the budget. In order to estimate the link

model parameters, we consider the squared exponential covariance function. Before discussing the

prediction performance of surrogate models obtained by the proposed method and the benchmarks,

it is interesting to look into the location of the points selected by the proposed adaptive approach.

Figure 7 illustrates the location of the selected points for MH = 30 and 75. As illustrated, more

points are selected on the upper right corner and at the lower left corner where more local variations

exist. For example, several points are sampled around the boundary of the hump on the lower left
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Figure 7: Location of the points selected by the proposed method for (a)MH = 30 and (b)MH = 75

area. This indicates the capability of our approach in selecting points at the locations with higher

variability. Figure 8 illustrates the logarithm of SMSE of each method at di�erent levels of budget.

As can be seen from the �gures and similar to the simulation results, the proposed method can

achieve the same level of SMSE as other approaches, particularly the one-step-fused approach, with

much smaller sampled points. For example, when MH = 70, the proposed approach obtains same

SMSE as the one-step-fused approach with about 60% of the budget. Observe that the initial SMSE

of the proposed method is smaller than both the one-step and adaptive w/o fusion benchmarks.

The reason is the good accuracy of the LA data that results in the base surrogate model with small

errors. The base surrogate model provides signi�cant information about the surface even without

any (or with very few) HA data points available.

5.2 ECU calibration

In a modern vehicle, the engine control unit (ECU) ensures the functionality of the vehicle and

diagnoses failure for a number of components. The ECU implements surrogate models of complex

physical dynamical systems that are constructed based on a large number of tests performed at dif-

ferent levels of engine torque and speed. To reduce the experiment cost, exploiting the performance

measurements of another engine (LA data) with similar speci�cations (e.g., with the same number

of cylinder and displacement) may help identify few design values at which the engine should be
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Figure 8: Comparison of the proposed method to benchmarks in case study I at di�erent values of
budget MH . Note that the adaptive approach requires fewer samples to obtain the same level of
error as benchmarks. For example, in (b) the proposed approach obtains the same SMSE as the
one-step-fused approach with about 75% of the budget.
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evaluated. The data collected from these tests (HA data) can then be fused to the LA data to

construct a surrogate model. For example, for a new engine, the air mass of the combustion process

should be measured at di�erent combinations of engine torque and revolution speed (rpm) to en-

sure the right performance of the engine. Performing these tests over a large number of rpm-torque

combinations is not economical. Historical data obtained from a similar engine may illuminate few

points where the air mass should be measured.

For this purpose, we consider two diesel engines, both with the displacement of 2000 cc and

four cylinders. In ECU calibration of a diesel engine a typical task is to optimize the air mass of

the combustion process due to the di�erent engine states, namely di�erent combinations of engine

revolutions (rpm) and torque. We designate the engines by E1 and E2. We assume that the data

from E1 has already been collected through a series of experiments and are interested in integrating

this data with a few experimental data obtained from E2 to generate a surrogate model that predicts

the performance of E2 at various design values. Therefore, the data in this case study is the air

mass measured over a two dimensional space of rpm and torque.

The available data for both engines E1 and E2 contains 256 measurements at di�erent combi-

nations of rpm-torque. In this case study, we �rst generate an emulator of each engine Ei; i = 1, 2

by �tting a GP model with a constant mean and piecewise cubic covariance (PCC) function to the

available data. These emulators are then used to replicate the performance of the engines at any

given design value. Figure 9 illustrates the predictions of both E1 and E2 emulators over a grid of

size 50 × 50. Note that the emulator of E1 can be considered as the base surrogate model, i.e., a

GP model �tted to the LA data, but the emulator of E2 is used as an HA simulator that produces

the result of an experiment on E2 at any pair of rpm and torque.

We compare the accuracy of the �nal surrogate models generated by the proposed method and

the benchmarks for di�erent budgets. For this purpose we calculate the SMSE over an equidistant

grid of size 100 × 100. Figure 10 illustrates the logarithm of SMSEs of each method at Mh =

15, 25. As illustrated, the �nal surrogate model constructed by the proposed method achieves lower

prediction errors. Furthermore, the proposed approach can obtain the same level of accuracy with

much fewer sampled points when compared to the benchmarks. For example when MH = 25, the

proposed approach obtains the same level of accuracy as the one-step-fused approach with about

80% of the budget.
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emulators.
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Figure 10: Comparison of the proposed method to benchmarks in case study II for di�erent values
of budget MH . Observe that in both situations, the adaptive approach can reach the same level of
error as benchmarks with much fewer samples. For example, in (b) the proposed approach obtains
the same SMSE as the one-step-fused approach with about 80% of the budget.
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Figure 11: Example of the distribution of points included in the design for di�erent budgets.

Examples of the distribution of the points included in the design for di�erent budgets are illus-

trated in Figure 11. Note that in all three cases, the points are mostly selected at the locations

with higher local variabilities, especially the upper part of the surface. This is mainly because the

proposed method can identify the locations with higher local variation and perform exploration at

those areas.

6 Discussion

This paper mainly assumes that the LA data is already available and utilizes the information from

such data to sample HA data. The available LA data could have been collected using any design of

experiment approach such as LHD and criterion-based designs. The design of experiment method

by which the LA data is collected may or may not have signi�cant in�uence on the �nal accuracy

of the model. For example, in the situation, in which obtaining LA data is very inexpensive and a

large set of data that e�ectively covers the sampling space can be collected, any legitimate design

of experiment may provide su�cient information about the LA design space. However, when the

size of LA data is not very large, a design that better captures the design space, by for example an

adaptive approach, can be bene�cial.

Given the lowest accuracy data is available, the proposed method may be extended to the

situations in which data can be collected from three or more sources with di�erent �delity levels.

For this purpose, our proposed method can be used in a nested or hierarchical fashion to collect data

from higher �delity levels. For example, when three levels of �delity, low-accuracy (LA), medium-

accuracy (MA), and high-accuracy (HA) exists, one can �rst build a base surrogate model using
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the LA data and employ our approach to collect MA data and construct a more accurate model

(intermediate model) by fusion of LA and MA data. Then the intermediate model can be used as

the base model in our approach to collect HA data and the �nal model.

7 Conclusion

In many applications, inexpensive high-density but low-accuracy data is fused with high-accuracy

data obtained from expensive experiments to improve the model estimation. Current approaches

assume that the HA data is already measured and focus on techniques to integrate the LA and

HA data. This paper considers the problem of selecting high-accuracy data points to be fused with

available LA data. In particular, an adaptive approach that takes advantage of the LA data as

well as the previously selected HA points is proposed to sequentially select the next HA point. The

proposed approach modi�es the concept of expected improvement and combines it with the link

model used in data fusion to collect as few HA data points as possible so when combined with the

available LA data, a more accurate surrogate model is achieved. The proposed adaptive data fusion

approach is compared and contrasted with three di�erent benchmarks in several simulation and case

studies. The simulation studies illustrated the strength of our method in modeling a non-stationary

surface with a few HA data points when biased LA data of a surface was available. Two case studies

illustrated the bene�t of our approach in real-world applications. The �rst case study modeled a

freeform surface by collecting (from a CMM) a few HA points and integrating them with a large

number of available LA data points measured by a structured laser scanner. The results indicated

that our approach selects more points at the locations with larger local variations, which resulted

in a more accurate model in terms of prediction errors. In the second case study, the performance

measurements of a vehicle engine were exploited to collect HA data from a similar engine to generate

an accurate surrogate model for ECU calibration. It was observed that the model generated by the

proposed adaptive method produces more accurate predictions compared to the models constructed

by the benchmarks.

This paper assumes that LA data is already available and utilizes the information from such

data to sample HA data. However, when low-accuracy data is not available, one may or may not

consider sampling LA data. Decision to sample LA data to be used for sampling HA data depends
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on the relative cost of sampling and the accuracy of LA and HA data and requires further analysis

as a future work.
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